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Chiral phase transition of two-flavor QCD at finite quark masses is known to be a crossover except near
the chiral limit, but it can turn to a first order transition when adding many extra flavors. This property is
used to explore the nature of the phase transition of massless two-flavor QCD using lattice numerical
simulations. The extra heavy flavors being incorporated in the form of the hopping parameter expansion
through the reweighting, the number of the extra flavors and their masses appear only in a single parameter,
defined by h. We determine the critical value of h, at which the first order and the crossover regions are
separated, and examine its dependence on the two-flavor mass. The lattice calculations are carried out at
Nt ¼ 4, and show that the critical value of h does not depend on the two-flavor mass in the range we have
studied (0.46 ≤ mπ=mρ ≤ 0.66) and appears to remain finite and positive in the chiral limit, suggesting that
the phase transition of massless two-flavor QCD is of second order.
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I. INTRODUCTION

Quantum chromodynamics (QCD) shows a variety of
phases, and in passing over a phase boundary one would
encounter either first (discontinuous) or second order
(continuous) transition, depending on temperature, density,
quark masses, the number of flavors, etc. Chiral phase
transition of QCD with two massless quarks at the
vanishing chemical potential has been studied with various
approaches for a long time, since it provides us with a solid
basis in the study of 2þ 1-flavor QCD in the real world.
Nevertheless, the nature of the transition of this relatively
simple system is yet ambiguous, and is counted as one of
the longstanding problems.
Based on the universality argument and the results of

the leadingorder ϵ expansion,Pisarski andWilczek analyzed
the renormalization group (RG) flow of the three-
dimensional scalar field theory, which shares the same
internal symmetry with massless QCD around the critical
temperature (Tc), andpointedout that, in the two-flavor case,
the order of the transition could crucially depend on the
presence (or the absence) of the flavor singlet axial (UAð1Þ)
symmetry at Tc [1]. IfUAð1Þ symmetry is largely violated at
Tc, the second order phase transition with the Oð4Þ scaling
becomes possible although not mandatory. On the other
hand, when the symmetry is effectively and fully restored at
Tc, the leading order calculation of the ϵ expansion suggests
no infrared fixed point (IRFP), and hence the second order
phase transition is excluded. But, later, further studies using
different advanced techniques found evidence of IRFP, and

the confirmation of the presence of the IRFP is under active
investigation [2–5]. Thus, the transition in this case again can
be either of first or second order. Recently, a novel possibility
is pointed out, following the RG flow analysis: in the
presence of small but finite UAð1Þ symmetry breaking,
the system may undergo the second order transition with
the Oð4Þ scaling but one of the critical exponents related
to the scaling dimension of the leading irrelevant operator is
different from that of theOð4Þ [6], although again the second
order transition is not mandatory.
Numerical simulations of QCD on the lattice can, in

principle, determine the order of the transition as well as
the universality class, to which massless two-flavor QCD
belongs, by performing the scaling study [7–15]. However,
it is not easy to keep all the systematic and statistical
uncertainties under control in the chiral limit due to large
computational costs. Furthermore, it appears that, in
practice, the standard scaling study may not be efficient
enough to distinguish the first and the second order
transitions because the scaling functions are similar
between the Z2 and Oð4Þ universality classes [16]. With
lattice QCD simulations, one can also study the presence
(or absence) of UAð1Þ symmetry through the Dirac spec-
trum. For recent progress, see, for example, Refs. [17–20].
Clarifying this point is important not only for under-

standing the QCD phase diagram but also for the scenario
of the axion dark matter. The axion abundance is essentially
determined by the temperature dependence of the topo-
logical susceptibility, χtðTÞ, which vanishes when UAð1Þ
symmetry is fully and effectively restored. If χt vanishes
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very rapidly right above Tc, too many axions would be
produced, and the axion dark matter scenario becomes hard
or is even excluded [21], depending on how rapidly it
vanishes. The lattice studies to test the axion dark matter
scenario has recently begun in the quenched approximation
[21–23].
In this paper, we follow the approach proposed in

Ref. [24], in which the phase transition of two-flavor
QCD is studied by adding many extra heavy quarks. We
call this the many flavor approach. The transition of two-
flavor QCD at a finite quark mass is known to be a
crossover, but it can turn to a first order transition when
adding many extra flavors. This property is used to explore
the nature of the phase transition of massless two-flavor
QCD. The extra quarks are incorporated in the form of the
hopping parameter expansion (HPE) through the reweight-
ing. Then the number of the extra flavors (Nf) and their
mass parameter (κh) appear in a single parameter,

h ¼ 2Nfð2κhÞNt ; ð1Þ

where Nt denotes the number of lattice sites in the temporal
direction. We determine the critical value of the parameter
(hc) at which the first order and the crossover regions are
separated, and examine its dependence on the two-flavor
mass. The order of the transition for a given h is
discriminated by the shape of the constraint effective
potential at Tc, which is constructed from the probability
distribution function (PDF) for a generalized plaquette.
Namely, it is discriminated by whether the potential at Tc is
in single- or double-well shape. It is important to note that,
in the determination of hc in this approach, the convergence
of the HPE is not the matter since we can consider arbitrary

small κh by considering arbitrary large Nf as seen from
Eq. (1).
We perform an exploratory study on Nt ¼ 4 and try to

see how hc depends on the two-flavor mass. Then, hc is
found to stay constant against the change of the two-flavor
mass in the range we have studied and to remain positive
and finite in the chiral limit. Since the two-flavor system is
equivalent to the 2þ Nf flavor system with h ¼ 0, our
result suggests that massless two-flavor QCD belongs to
the region of second order phase transition. This kind of
extension of QCD is useful also for the study of the phase
structure in the presence of finite chemical potential [24].
The similar approach but introducing a finite imaginary
chemical potential is taken in Ref. [15].
The paper is organized as follows. After the central idea

of many flavor approach is explained in Sec. II, the method
is described in detail in Sec. III. The lattice setup and the
main part of this paper are given in Sec. IV. In Sec. V, two
independent analyses are performed for the consistency
check. Finally, the conclusion and perspectives are stated in
Sec. VI. The preliminary result of this paper is available
in Ref. [25].

II. MANY FLAVOR APPROACH

The central idea of many flavor approach is outlined.
Figure 1(a) shows the so-called Columbia plot for 2þ 1
flavor QCD [26], which summarizes the present knowledge
on the mass dependent nature of the phase transition of
QCD as a function of mud and ms. The physical point is
believed to be located in the crossover region [13,27]. The
plot tells us that there are two distinct first order regions
lying around the quenched limit (mud ¼ ms ¼ ∞) and the

FIG. 1. Basic idea of “many flavor approach.”
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chiral limit of three-flavor QCD (mud ¼ ms ¼ 0), respec-
tively. In what follows, we focus on the latter.
Our interest is in whether the massless two-flavor QCD

point (mud ¼ 0 andms ¼ ∞) is inside the first order region
or not and hence in the shape of the first order region. If it
ends at a finitems, called the tricritical point, massless two-
flavor QCD is on the line of the second order phase
transition (the solid curve on the mud ¼ 0 line). On the
other hand, if the first order region extends to ms ¼ ∞,
massless two-flavor QCD should undergo the first order
transition (i.e. the dotted curve near the mud ¼ 0 line).
In either case, if we could resolve which of the solid or
dotted curves is realized, we would be able to answer the
question. However, it is difficult to trace the critical line
for the 2þ 1 flavor case, because the critical line is located
in the small ms region when mud is moderately small
[13,28,29].
The situation will change in 2þ Nf flavor QCD as

shown in Fig. 1(b). The bottom-right corner of Fig. 1(b) is
of first order for Nf ≥ 3. The critical line is expected to
move upward as Nf increases, and for sufficiently large Nf

it could enter the region where the hopping parameter
expansion from the static limit (crosses at mh ¼ ∞) works
well (above the dashed line). Then, one should be able to
easily identify how the critical line runs as a function of
mud. If the critical heavy mass mc

hðmudÞ remains finite in
themud → 0 limit, it immediately means that massless two-
flavor QCD corresponding to the point ðmud;mhÞ ¼ ð0;∞Þ
is the outside of the first order region. An important remark
is that, in the limit of ms → ∞ or mh → ∞, both 2þ 1 and
2þ Nf flavor QCD end up with the same theory, which we
want to study. Thus, the original question is simplified to
the one whether the critical heavy mass in the chiral limit
stays finite or not.
While most of the current knowledge on the shape of the

first order region are only qualitative, in a context of the
Taylor-expanded reweighting method [30] we can derive a
solid statement about the slope at mud ¼ mh if the same
quark action is employed for two and Nf flavors. Suppose
thatmud ¼ mþ Δmud andmh ¼ mþ Δmh and expand the
logarithm of the quark determinants in terms of Δmud and
Δmh. Then, one will be aware that the partition function
does not change as long as Δmh ¼ −2Δmud=Nf and hence
that physics is identical along the line of slope −2=Nf near
mud ¼ mh line in the ðmud;mhÞ plane [31]. This means that
the critical line in 2þ Nf flavor QCD crosses the line of
mud ¼ mh with a slope milder than the 2þ 1 flavor case.
In Ref. [24], it is demonstrated that by adding extra

flavors the end point (or the critical line) indeed enters
the region reachable by the hopping parameter expansion.
In this paper, we examine the light quark mass dependence
of the end point. As we will explain below, mc

hðmudÞ seems
to remain finite in the chiral limit of mud, suggesting the
phase transition of massless two-flavor QCD is of second
order.

III. CALCULATIONAL METHOD

We first generate two-flavor configurations at finite
temperatures following the standard hybrid Monte Carlo
method. Using the hopping parameter expansion and the
reweighting method, we incorporate extra Nf flavors of
heavy quarks into those configurations, and measure the
probability distribution function for a generalized plaquette
to construct the constraint effective potential for 2þ Nf

flavor QCD.
After the HPE, the hopping parameter for heavy quarks

κh and Nf appear only in a single parameter, h [see
Eq. (15)]. If the parameter h is in the crossover region,
the effective potential should take a single-well shape at the
pseudocritical temperature, Tpc. On the other hand, when
the parameter h enters the first order region, a double-well
shape should emerge at Tc. By scanning h, we determine
the critical value hc, at which the first order and the
crossover regions are separated. The critical value hc is
determined at four values of two-flavor mass to see the light
quark mass dependence of hc. In the following, the
calculational procedure is described in detail.
The PDF was introduced in Refs. [32,33] and has been

extensively used in various fields to study the critical
properties of various materials [34] or the phase diagrams
of QCD [35]. In our study of 2þ Nf flavor QCD, the PDF
w for a quantity X̂ is defined by

wðX; β; κl; κh; NfÞ ¼
Z

DUδðX − X̂Þ½detMðκhÞ�Nf

× e−SgaugeðβÞ−SlightðκlÞ; ð2Þ

where SgaugeðβÞ and SlightðκlÞ are the lattice actions for the
gauge field and two flavors of light quarks, respectively.
β ¼ 6=g20 is the simulation parameter setting the temper-
ature through the lattice spacing, and κl is the light quark
mass parameter. Note that the method described below
works for any kinds of light quark action unless it contains
β dependent coefficients. The action for the Nf extra
flavors is written in the determinant form in Eq. (2), where
MðκhÞ is the lattice Dirac operator for heavy quarks with a
mass parameter κh. A quantity to be constrained, X̂, is
basically arbitrary, but the order parameter would be the
most natural choice if it is available. In this paper, following
previous works [24,35–37], X̂ is chosen to be the gener-
alized plaquette,

P̂ ¼ c0ŴP þ 2c1ŴR; ð3Þ

where ŴP and ŴR denote the averaged plaquette and
rectangle, respectively, and c0 and c1 satisfying c0¼1−8c1
are the improvement coefficients for lattice gauge action. In
terms of P̂, the gauge action is written as
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SgaugeðβÞ ¼ −6NsiteβP̂; ð4Þ

where Nsite ¼ N3
s × Nt represents the number of sites in

four-dimensional lattice volumes. Our main analysis is
carried out with X̂ ¼ P̂, but the calculation for X̂ ¼ L̂ with
L̂ the real part of the Polyakov loop averaged over spatial
sites is also performed as a consistency check (see Sec. VA).
Choosing X̂ ¼ P̂ brings a great simplification in the
numerical analysis as explained below. In principle, we
could choose other quantities, e.g. the chiral condensate, to
be X̂. But, whenever a quantity other than P̂ is chosen, we
lose not only the advantage for X̂ ¼ P̂ but also the accuracy
in the results as demonstrated in Sec. VA for X̂ ¼ L̂.
With the PDF thus obtained, the constraint effective

potential V is calculated by

VðX; β; κl; κh; NfÞ ¼ − lnwðX; β; κl; κh; NfÞ: ð5Þ

In practice, the PDF is not directly accessible, and hence we
instead calculate the histogram defined by

HðX; β; κl; κh; NfÞ ¼
wðX; β; κl; κh; NfÞ
Zðβ; κl; κh; NfÞ

; ð6Þ

where ZðβÞ is the partition function. Note that ZðβÞ is not
calculable, but its ratio at two different β values is
calculable [38].
In order to see the shape of the potential, we need to

calculate the potential over a certain range of X. However,
a simulation at a single β provides the potential only in a
limited range of X. Thus, the potential calculated at a
certain β needs to be translated to that at other β. We call the
temperature, at which wewant to calculate the potential, the
reference temperature (or βref ). Then, the potential is
calculated as

VðX; βref ; κl; κh; NfÞ þ lnZðβ�; κ0l; κ0h; N0
fÞ

¼ − lnHðX0; β0; κ0l; κ
0
h; N

0
fÞ − ln

�
wðX00; β00; κ00l ; κ

00
h; N

00
fÞ

wðX0; β0; κ0l; κ
0
h; N

0
fÞ

�

− ln

�
wðX; βref ; κl; κh; NfÞ
wðX00; β00; κ00l ; κ

00
h; N

00
fÞ
�
− ln

Zðβ0; κ0l; κ0h; N0
fÞ

Zðβ�; κ0l; κ0h; N0
fÞ
:

ð7Þ

All the intermediate quantities such as β0, X0, κ0l, κ
0
h and N0

f

are arbitrary as well as β�. For a practical reason, we take

X0 ¼ X00 ¼ X; β00 ¼ βref ; κ0l ¼ κ00l ¼ κl;

κ0h ¼ κ00h ¼ 0; N0
f ¼ N00

f ¼ 0; ð8Þ

and β� is chosen to be the vicinity of βref .
In the following, we take X̂ ¼ P̂, then the effective

potential is simplified as

VðP; βref ; κl; κh; NfÞ þ lnZðβ�; κ0l; κ0h; N0
fÞ

¼ V lightðP; βref ; κlÞ − lnRðP; βref ; κl; κh; NfÞ: ð9Þ

The first term is defined by

V lightðP;βref ; κlÞ ¼ − lnHðP;β; κl;0;0Þ− 6Nsiteðβref − βÞP

− ln
Zðβ;κl;0;0Þ
Zðβ�; κl;0;0Þ

ð10Þ

and represents the constraint effective potential for two
flavors alone. The second term of Eq. (9) is defined by

RðP; βref ; κl; κh; NfÞ ¼ h½detMðκhÞ�NfiP∶fixed;ðβref ;κlÞ; ð11Þ

h� � �iP∶fixed;ðβref ;κlÞ ≡
hδðP − P̂Þ � � �iðβref ;κlÞ
hδðP − P̂Þiðβref ;κlÞ

; ð12Þ

where h� � �iðβ;κlÞ denotes the ensemble average over two-
flavor configurations generated with β and κl. It is
important to note that, separating the effective potential
into the two-flavor part and the extra heavy part as in
Eq. (9), the latter becomes independent of βref . The reason
is as follows. Due to the operator δðP − P̂Þ, the factor of
expð6NsiteβrefPÞ comes out of the brackets in Eq. (12).
Since this factor cancels between the numerator and the
denominator in Eq. (12), βref dependence disappears. This
simplification takes place only for X̂ ¼ P̂.
For the extra heavy quarks, we employ the unimproved

Wilson fermion because it suffices for the present purpose.
For sufficiently small κh, the determinant in Eq. (11) can be
approximated by the leading order of the HPE as

ln ½detMðκhÞ�Nf ≈ Nfð288Nsiteκ
4
hŴP þ 12N3

sð2κhÞ4L̂Þ
¼ 6N3

shŶ ð13Þ

¼ 9Nsite
h
c0

P̂þ 6N3
shẐ; ð14Þ

where the following quantities have been introduced:

h ¼ 2Nfð2κhÞ4; ð15Þ

Ŷ ¼ 6ŴP þ L̂; ð16Þ

Ẑ ¼ −
12c1
c0

ŴR þ L̂: ð17Þ

Here and hereafter, Nt ¼ 4 is assumed because we take that
value in numerical simulations, but the extension to other
values of Nt is straightforward though the expression
becomes complicated. Then, lnR in Eq. (9) can be
approximated as
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lnRðP; κl; hÞ ≈ ln hexp ð6N3
shŶÞiP∶fixed;ðβ;κlÞ ð18Þ

¼ 9Nsite
h
c0

Pþ lnR0ðP; κl; hÞ; ð19Þ

where

lnR0ðP; κl; hÞ ¼ ln hexp ð6N3
shẐÞiP∶fixed;ðβ;κlÞ: ð20Þ

Although Eqs. (18) and (19) are algebraically identical, the
equality is not necessarily trivial in numerical data because
the δ function is approximated by

δðxÞ ≈ 1=ðΔ ffiffiffi
π

p Þ exp½−ðx=ΔÞ2�: ð21Þ

Then, the difference can arise when

he6N3
shŶ exp ½−ðP − P̂Þ2=Δ2�iðβ;κlÞ

− e9Nsite
h
c0
Phe6N3

shẐ exp ½−ðP − P̂Þ2=Δ2�iðβ;κlÞ ≠ 0;

which should vanish for sufficiently small Δ, but then the
statistical error will enlarge. In the following analysis, both
expressions are examined to check the consistency.
It is important to note that, after the HPE, the number of

extra heavy flavors (Nf) and their mass parameter (κh)
appear only in a single parameter h, Eq. (15). Because of
this, κh and Nf have been replaced by h in the arguments of
R and R0, and our purpose turns to finding the critical value
of h, hc. It should be also noted that the second derivatives
of Eqs. (18) and (20) with regard to P are identical because
the difference is proportional to P.
One side remark is below. Thus far, we have restricted

the extra heavy quarks to be degenerate. But the extension
to the nondegenerate case is straightforward by interpreting

h as h ¼ 2
PNf

f¼1ð2κhÞNt . In the following, we only con-
sider the degenerate case for simplicity.
Choosing X̂ ¼ P̂ significantly simplifies the procedure

to find the critical value of h [24,36] as follows. We are
interested in the shape of the potential at the (pseudo)
critical temperature, which requires βref to be tuned to its
(pseudo)critical value, βc (or βpc). This tuning can be
totally skipped if we look at the curvature, i.e. the second
derivative of the potential with respect to P, because it is
independent of βref . R is independent of βref as stated
above. V light depends on βref , but its second derivative does
not as explained below.
The finite temperature transition of two-flavor QCD is

always a crossover for the two-flavor masses adopted in
this paper. Then, at any temperatures, the shape of the PDF
(or equivalently histogram) for P̂ in two-flavor QCD can be
well approximated, around the peak, by Gaussian form,

wðP; β; κl; 0; 0ÞjP∼P̄ðβ;κlÞ ∝ exp

�
−
6NsiteðP − P̄ðβ; κlÞÞ2

2χPðβ; κlÞ
�
;

ð22Þ

where P̄ðβ; κlÞ ¼ hP̂iβ;κl is the average of generalized
plaquette at β and κl, and χP is the susceptibility of P,
given by

χPðβ; κlÞ ¼ 6NsitehðP̂ − P̄ðβ; κlÞÞ2iβ;κl : ð23Þ

Substituting this into Eq. (10) yields, up to a constant shift,

V lightðP; βref ; κlÞjP∼P̄ðβ;κlÞ ¼
6NsiteðP − P̄ðβ; κlÞÞ2

2χPðβ; κlÞ
− 6ðβref − βÞNsiteP: ð24Þ

Then, the first and second derivatives are given by

dV lightðP; βref ; κlÞ
dP

����
P∼P̄ðβ;κlÞ

¼ 6NsiteðP − P̄ðβ; κlÞÞ
χPðβ; κlÞ

− 6ðβref − βÞNsite; ð25Þ

d2V lightðP; κlÞ
dP2

����
P∼P̄ðβ;κlÞ

¼ 6Nsite

χPðβ; κlÞ
: ð26Þ

Thus, we can calculate the curvature of the two-flavor part
by collecting χPðβ; κlÞ obtained at various β. Importantly,
Eq. (26) is independent of βref . In summary, the curvature
of the total effective potential,

d2VðP; βref ; κl; hÞ
dP2

¼ d2V lightðP; βref ; κlÞ
dP2

−
d2 lnRðP; κl; hÞ

dP2
;

ð27Þ

is independent of βref .
The procedure to identify hc in the chiral limit of two

flavors goes as follows. At h ¼ 0, the contribution of the
extra heavy flavors is trivially zero, and the system is
reduced to two-flavor QCD, where the transition is a
crossover. Therefore, the second derivative of the potential
is always positive. As h is increased from zero, the
minimum of the curvature takes zero at some point, which
gives hc. In this procedure, one needs not tune βref to βpc or
βc, because the curvature is independent of the temperature
or βref. This simplification does not occur in general, and
one such example is explicitly shown in Sec. VA. By
looking at the light quark mass dependence of hcðκlÞ, we
try to extract hc in the chiral limit.
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IV. NUMERICAL RESULTS

A. Simulation parameters

Following Ref. [39], we take the Iwasaki gauge action
(c1 ¼ −0.331) and the OðaÞ-improved Wilson fermion
action with the perturbatively improved csw for two
flavors of light quarks. Simulations are performed on
Nsite ¼ 163 × 4 lattices with 25 to 32β values at each of
four κl, and 10,000 to 40,000 trajectories have been
accumulated at each simulation point. Four light quark
masses are ranging from κl ¼ 0.145 to 0.1505. Figure 2
shows the histogram of the generalized plaquette.
At the pseudocritical point βpc for each κl, we carried out

zero temperature simulations on 163 × 32 lattices to find
the mass ratio of pseudoscalar and vector mesons, mπ=mρ,
and the quark mass defined through the partially conserved
axialvector current (PCAC),

ampcac ¼
hP~xðA4ðNt=2þ 1; ~xÞ − A4ðNt=2 − 1; ~xÞÞPð0Þi

4hP~xPðNt=2; ~xÞPð0Þi
;

ð28Þ

where A4ðxÞ and PðxÞ are the flavor nonsinglet, local
axialvector and pseudoscalar operator, respectively, and
Nt ¼ 32. Then, the four values of κl in this paper turn out to
cover 0.46 < mπ=mρ < 0.66, or 0.019 < ampcac < 0.054.
These results are tabulated in Table I.

B. Main results

We present the numerical results for the two terms in the
right-hand side of Eq. (27) separately, and focus on the
second term first. With the approximated δ function (21),
lnRðP; κl; hÞ [Eq. (18)] and lnR0ðP; κl; hÞ [Eq. (20)] are
calculated. We take two values of Δ, 0.0001, 0.00025, to
see the stability of the results, and the discrepancy arising
from a different choice of Δ is taken as the systematic
uncertainties. In the following plots, the results with
Δ ¼ 0.0001 are shown unless otherwise stated.
The P dependence of lnRðP; κl; hÞ and lnR0ðP; κl; hÞ are

shown in Fig. 3. The statistical errors are invisible on this
scale. The sizes of lnR and lnR0 differ by an order of
magnitude, which indicates that the difference proportional
to P is large and explains why the curvature in lnR is less
clear than that in lnR0. The curvature in lnR and lnR0
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FIG. 2. Histogram of the generalized plaquette at four values of κl.

TABLE I. Simulation parameters (κl and csw) and the pseu-
docritical β (βpc) in two-flavor QCD, determined from the peak of
the susceptibility for the generalized plaquette. mπ=mρ and other
quantities are determined on a 163 × 32 lattice at βpc for each κl.

κl csw βpc amπ amρ mπ=mρ ampcac

0.1450 1.650 1.778 0.779(1) 1.172(2) 0.665(33) 0.0535(1)
0.1475 1.677 1.737 0.651(1) 1.130(5) 0.576(28) 0.0350(2)
0.1500 1.707 1.691 0.514(2) 1.099(10) 0.468(24) 0.0202(2)
0.1505 1.712 1.681 0.495(2) 1.082(13) 0.458(23) 0.0186(2)
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originates from the rapid increase of the Polyakov loop (L̂)
contained in Eqs. (16) or (17) around βpc.
We then calculate the slope and curvature by fitting the

data of lnR and lnR0. Here let us mention the fits and the
selection of the results. Each data point shown in Fig. 3 is
obtained in a separate simulation, and is totally independent
of other points. The data points are fit to polynomial
functions of P as

lnRð0ÞfitðPÞ ¼
XNpoly

i¼0

ciPi; ð29Þ

over three fit ranges (or three different numbers of the data
points), two different polynomial orders, and two values of
Δ. Since not all the fits are successful, we only keep the fit
results, which satisfy χ2=dof < 3, in the following analysis.
Figure 4 shows the values of χ2=dof obtained from the fit

of lnR and lnR0 as a function of the number of the data
points used, where only the results with χ2=dof < 3 are
plotted. It is seen that χ2=dof with Δ ¼ 0.00025 is always
larger than that with Δ ¼ 0.0001. Once the fit parameters
are determined, it is straightforward to calculate the
curvature of the potential.

Although we analyze the second derivative to derive the
main result, we discuss the first derivative because it is
instructive. The first derivative of Eq. (9) is obtained as
follows. First, the numerical values of P̄ðβ; κlÞ and
χPðβ; κlÞ are calculated and substituted in Eq. (25) to
obtain the two-flavor contribution. Then, the Nf flavor’s
contribution, the first derivative of lnRð0Þ, is determined
using the fit results of Eq. (29). By adding up, we obtain the
first derivative of the full effective potential. Figure 5 shows
the typical behavior of the first derivative of the potential,
where the five curves in each plot represent the results for
h ¼ 0.0, 0.1,…, 0.4 from top to bottom and the fit results
with Δ ¼ 0.00010 and n ¼ 5 are used. It is clear that for
h ¼ 0 the curve is monotonically increasing for all κl while
the “S” shape is seen for h ¼ 0.4. In principle, it may be
possible to determine the critical value of h using these
plots, however it is not easy to clearly distinguish an “S”
shape from a monotonic increase. Thus, we use the second
derivative to determine hc as described below.
The results for the curvature are plotted in Fig. 6 for lnR

(solid curves) and lnR0 (dashed curves), where the results
for h ¼ 0.2 and 0.4 are shown as examples. Again,
the fit results with Δ ¼ 0.00010 and n ¼ 5 are used.
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The difference in the curvature between lnR and lnR0 turns
out to be reasonably small at all κl.
Next, the curvature of the first term in Eq. (27) is

presented, which can be easily calculated using the aver-
aged value and the susceptibility of P̂ at each β as in
Eq. (26). The curvatures thus obtained are shown in Fig. 6
together with the statistical error, where the fit results

obtained with a fifth order of polynomial are shown by
dotted curves. It is seen that, independently of κl,
d2V light=dP2 is always positive as expected.
Figure 6 shows that d2 lnR=dP2 and d2 lnR0=dP2 have a

peak slightly below the P value at which d2V light=dP2 takes
the minimum. This indicates that, in the many flavor
system, the phase transition or rapid crossover occurs at
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P smaller than the two-flavor case. For all κl, it is observed
that the peak of d2 lnR=dP2 or d2 lnR0=dP2 is almost
touching the curve of d2V light=dP2 at h ¼ 0.2, and exceeds
d2V light=dP2 at h ¼ 0.4 in a certain region of P.
The resulting curvature of the full effective potentials

Eq. (27) for κl ¼ 0.1450 and 0.1505 are shown in Fig. 7. It
is seen that the minimum of the curvature with h ¼ 0.0
(solid curve) approaches to zero towards the chiral limit of
two light flavors. Thus, with this observation alone, one
might expect that the potential with κl ¼ 0.1505 requires
only a small h to bring it into the double well shape.
However, at κl ¼ 0.1505, it is also true that adding the
heavy quarks does not reduce the minimum of the curvature
by much. As a consequence, hc takes a similar value at
κl ¼ 0.1450 and 0.1505.
To determine hc, we iterate the calculation with h

varying in steps of 0.02. Figure 8 shows the critical values
of h as a function of the number of data points used in the
fit, corresponding to Fig. 4. Since no reason exists to select
the best result from them, we take all the results satisfying
χ2=dof < 3 as the final results, and the systematic uncer-
tainty is chosen to cover the whole accepted results.
We can also determine the value of P at hc, denoted by

Pc (for the numerical values, see Table II). In Fig. 9, all
the results with χ2=dof < 3 are plotted together on the
Pc-hc plane. While hc is insensitive to the two-flavor
mass, Pc is found to decrease towards the chiral limit of

the two-flavor mass. This qualitative feature is tested in
the direct simulations of 2þ Nf flavor QCD in Sec. V B.
The light quark mass dependence of hc is plotted in

Fig. 10 as a function of the mπ=mρ ratio (left) and the
PCAC quark mass (right). The error is dominated by the
systematic uncertainty associated with the fitting pro-
cedure. In the top-right corner of each plot, hc determined
from the direct 2þ Nf flavor simulation with κl ¼ 0 (i.e.
ml ¼ ∞) and Nf ¼ 50 is shown with an uncertainty (for
the direct simulations, see Sec. V B). hc at κl ¼ 0 is clearly
larger than those around 0.145 ≤ κl ≤ 0.1505, which indi-
cates that hc gradually decreases towards the chiral limit as
a global behavior. In the range of 0.145 ≤ κl ≤ 0.1505, hc
does not show significant dependence on ml within the
error, and a constant fit yields hc ¼ 0.23ð1Þ in the chi-
ral limit.
If this mild dependence is continued down to the chiral

limit and hence hc in the chiral limit remains positive and
finite, hc in the chiral limit corresponds to the tricritical
point in Fig. 1. Mean field analysis of an effective theory
predicts the tricritical scaling [40–43],

hc ∼ ðconstÞ ×m2=5
l þ const ð30Þ

in the vicinity of the tricritical point, where the power 2=5
is independent of Nf. In addition to the constant fit (top),

we also fit the data to a linear function of m2=5
l in each

plot, yielding hc ¼ 0.35ð26Þ and 0.32(17) in the chiral
limit of the two-flavor mass, respectively. Note that
the slope is undetermined and consistent with zero. In
either case, a positive value of hc is favored in the chiral
limit, which suggests the second order transition of
massless two-flavor QCD. Further checks require more
extensive lattice calculations and are postponed to future
papers.

V. CONSISTENCY CHECK

A. Effective potential constraining Polyakov loop

As an independent check of the results obtained in
Sec. IV, we try to estimate hc with a different method. The
quantity to be constrained to obtain the PDF is arbitrary as
long as it has an overlap with the order parameter. In this
section, we take the real part of the Polyakov loop, L̂.
Recalling Eq. (7), the constraint effective potential for L̂ is
given by

VLðL;βref ;κl;κh;NfÞ¼− lnwLðL;βref ;κl;0;0Þ

− ln

�
wLðL;βref ;κl;κh;NfÞ
wLðL;βref ;κl;0;0Þ

�
ð31Þ

¼ VL;lightðL; βref ; κlÞ
− lnRLðL; βref ; κl; κh; NfÞ; ð32Þ

κl=0.1505

0.145

d
2  V

 / 
d 

P2

P

h=0.0
0.2
0.4

 1.5  1.55  1.6  1.65  1.7

0

-40000

 40000

 80000

 120000

FIG. 7. The curvature of the effective potential at κl ¼ 0.1450
and 0.1505 and for h ¼ 0.0 (solid), 0.2 (dashed) and 0.4 (dotted).

TABLE II. Numerical results of hc and P at hc.

κl hc P at hc

0.1450 0.23(6) 1.627(34)
0.1475 0.27(8) 1.595(27)
0.1500 0.26(5) 1.561(41)
0.1505 0.27(10) 1.572(24)
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where

VL;lightðL; βref ; κlÞ ¼ − lnwLðL; βref ; κl; 0; 0Þ ð33Þ
¼ − lnhδðL − L̂Þe6ðβref−βÞNsiteP̂iðβ;κlÞ;

ð34Þ
RLðL; βref ; κl; κh; NfÞ
¼ e6N

3
shLhexp ½36N3

shŴP þ 6ðβref − βÞNsiteP̂�iL∶fixed;ðβ;κlÞ:
ð35Þ

Unlike the case with X̂ ¼ P̂, βref dependence remains in the
second derivative of the potential with respect to L, which
means βref has to be explicitly tuned to the (pseudo)critical
temperature for each value of h. In the crossover region, the
minimum of the potential and the minimum of its second
derivative are realized at the same value of L. On the other
hand, in the first order region, βref has to be tuned until the
two minima in the potential take the same depth.
The potential, VLðLÞ, is shown in Fig. 11 for h ¼ 0.0,

0.2 and 0.4, where VLðLÞ at each h is shifted in a vertical
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direction for comparison. First of all, the effective potential
for the Polyakov loop is not as clean as that for the
generalized plaquette, especially at nonzero h, which only
allows us to extract the qualitative feature. It is seen that the
potential has a positive curvature at h ¼ 0 in our lightest
and heaviest light quarks. When h ¼ 0.2, the potential
around the minimum becomes almost flat, indicating that it
is close to the end point. If h is further increased to 0.4, the
double well shape appears to emerge though the statistical

error makes it ambiguous. These qualitative features are
consistent with the findings in the previous section.

B. Direct simulations of 2þ Nf flavor QCD

Although the convergence of hopping parameter expan-
sion is not the matter for the discussion in the previous
section, it is interesting to investigate the convergence of
the HPE for future applications. We study this by explicitly
performing simulations of 2þ Nf flavor QCD and com-
paring the results with those based on the HPE. However,
thoroughly precise calculations of the many flavor system
require an extensive scan of simulation parameters (κh, β
and Nf) even after fixing κl. Furthermore, in general, it is
not easy to locate the end point of the first order transition
accurately, because the statistical noise grows as one
approaches the end point. Instead, we draw a thermal cycle
on the β-P plane, which is obtained by increasing (or
decreasing) β until passing its (pseudo)critical value and
then reversing the direction. For representative values of κh,
κl and Nf, we accumulated 400 trajectories at each point of
the thermal cycle.
We take κl ¼ 0, 0.145 and 0.1505, and choose Nf

ranging from 4 to 50, depending on κl, and monitor each
thermal cycle whether the hysteresis curve occurs or not. If
it occurs, the parameters chosen turn out to be in the first
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FIG. 9. hc and P at hc: The results from lnR (open symbols)
and lnR0 (filled symbols).
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order region. By repeating this, we try to find the critical
value of κh, κhc , for fixed values of κl and Nf. The thermal
cycles at several simulation parameters are shown in
Fig. 12.
Figures 12(a) and 12(b) show the thermal cycle at κl ¼ 0

and Nf ¼ 10, 16, 32, 50, which tells us that κhc decreases
with Nf. Figure 12(c) shows the same but with nonzero κl.
Comparing the Nf ¼ 16 data in Figs. 12(a) and 12(c) or the

Nf ¼ 32 data in Figs. 12(b) and 12(c), it is found that κhc is
clearly different between κl ¼ 0 and 0.1505. In Fig. 9 of
Sec. IVA, we have discussed that the HPE predicts that P at
hc decreases with κl. Figure 12(d) seems to show that it is
the case, at least, qualitatively.
The critical values, κhc , obtained at each κl and Nf are

translated into hc using Eq. (15), and plotted as a function
of Nf in Fig. 13. It is expected that, for a sufficiently large
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Nf, hc approaches an asymptotic value, but the value of Nf

we have studied seems not to reach such a region yet
although the increasing rate looks slowing down.
Importantly, it is seen that κhc does not differ by much
between κl ¼ 0.145 and 0.1505, which is consistent with
the observation in the HPE analysis. It is interesting to
include the next-to-leading order contribution of the HPE
analysis.

VI. SUMMARY AND DISCUSSION

We have studied the finite temperature phase transition
of QCD with two light and many heavy quarks at zero
chemical potential, where the heavy quarks are introduced
in the form of the hopping parameter expansion via the
reweighting method. The phase structure was scanned on
the κl-h plane to identify the critical line separating the
continuous crossover and the first order regions.
The nature of the transition is identified by the shape of

the constraint effective potential constructed from the
probability distribution function of the generalized pla-
quette. For h ¼ 0, the system reduces to two-flavor QCD,
which always shows continuous crossover and hence the
potential has a single well. As one increases h, at some
point the potential takes a double-well shape, which defines
a critical value, hc. We have determined hc at four light
quark masses, and observed that hc is independent of
two-flavor mass in the range we have studied
(0.46 ≤ mπ=mρ ≤ 0.66). This result indicates that the
critical heavy mass remains finite in the chiral limit of
the two flavors, suggesting the phase transition of massless
two-flavor QCD is of second order. Some of the qualitative
features observed in the main analysis were checked by two
independent analyses.
The approach in this study can be said as follows. Two-

flavor QCD with a finite mass is enforced to undergo a first
order phase transition by adding extra quarks. It is then
likely that those extra quarks are necessary to keep the first
order transition down to the chiral limit of two-flavor QCD.

This method is applicable for any kinds of lattice fermions
unless they contain β dependent coefficients. According to
the definition of h, Eq. (15), κhc can be considered to be
arbitrarily small for a given hc by assuming arbitrarily large
Nf, and thus we do not have to care about the convergence
of the hopping parameter expansion. Nevertheless, it is
interesting to see the limitation of the HPE for a fixed Nf

for further applications.
In order to establish our finding, possible systematic

uncertainties, which are not investigated in the present
paper, need to be understood. Since, at the end point, the
second order phase transition occurs, a sizable finite
volume effect is possible in the vicinity of the point.
However, we do not expect it to be significant in the many
flavor approach. In this approach, the end point is deter-
mined through the extrapolation of the effective potential
with regard to h, and the extrapolation is performed in a
region free from finite size effects since the two-flavor
configurations are all generated at a parameter region away
from the second order end point. Namely, at the price of the
uncertainty due to the extrapolation, we could have avoided
the finite volume effect associated with the second order
phase transition. Nevertheless, it is clearly important to
explicitly check that the effect is under good control. Such
work is ongoing.
Although the behavior observed in Fig. 10 seems to

suggest that the chiral limit of hc is finite and positive, it
then has to show the tricritical scaling [Eq. (30)]. At the
present, our results allow us to fit to any smooth function in
ml. In order to improve the situation, we need to explore
lighter quark masses and reduce the systematic uncertainty
associated with the fitting procedure. However, during the
preliminary study, we realized that the lightest quark mass
presented in this paper is the lower limit in our lattice setup.
To go beyond the limit, the setup has to be changed.
Towards the ultimate goal, the discretization effects also
have to be examined. A systematic study of these uncer-
tainties requires large scale simulations, and we postpone
them to future works.
We can extend the many flavor approach to explore QCD

at finite chemical potential as initiated in Refs. [24,44]. In
this case, mean field analysis predicts that the critical line
runs like ml

c ∼ jμj5 [43]. We believe that such a study
brings valuable information to understand the rich QCD
phase diagram.
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