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Complete gauge fixing beyond perturbation theory in non-Abelian gauge theories is a nontrivial
problem. This is particularly evident in covariant gauges, where the Gribov-Singer ambiguity gives an
explicit formulation of the problem. In practice, this is a problem if gauge-dependent quantities between
different methods, especially lattice and continuum methods, should be compared: Only when treating the
Gribov-Singer ambiguity in the same way is the comparison meaningful. To provide a better basis for such
a comparison the structure of the first Gribov region in Landau gauge, a subset of all possible gauge copies
satisfying the perturbative Landau gauge condition, will be investigated. To this end, lattice gauge theory
will be used to investigate a two-dimensional projection of the region for SU(2) Yang-Mills theory in two,
three, and four dimensions for a wide range of volumes and discretizations.
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I. INTRODUCTION

In gauge theories gauge-fixed correlation functions, like
the gauge boson propagator, are excellent tools in inter-
mediate steps of calculations to determine gauge-invariant
physics. Thus, gauge-dependent correlation functions have
been investigated heavily in both perturbation theory [1]
and beyond [2–7]. The key element in the latter calculations
has been the judicious combination of lattice gauge theory,
functional continuum methods, in particular Dyson-
Schwinger equations and functional renormalization group
equations, effective theories, and perturbation theory [5].
However, this requires one to fix a gauge in a controlled
way to determine these correlation functions.
Beyond perturbation theory, this becomes complicated.

The local gauge conditions employed in perturbation
theory are no longer sufficient to uniquely identify a single
representative for a gauge orbit. This is the so-called
Gribov-Singer ambiguity [8–12]. Here, this ambiguity will
be investigated for [SU(2)] Yang-Mills theory in the case of
the Landau gauge1; i.e., besides any other gauge conditions
all gauge copies also satisfy the perturbative Landau gauge
condition.
To resolve this ambiguity, there are in principle two

possibilities: Either use nonlocal gauge conditions to
identify a single representative (see, e.g., [6,7,17–38]) or
to average, akin to non-Landau covariant gauges in
perturbation theory, over the remaining gauge copies with
a suitable weight (see, e.g., [5,39–47]). Of course, by
formally including a δ-function as a weight function, the
prior possibility is only a special case of the latter option.
Note that the standard minimal Landau gauge appears to be
equivalent to an averaging over all Gribov copies inside the
first Gribov region with a flat weight function [5,39,48],

and thus all treatments without mentioning the residual
freedom are implicitly of this type of gauge fixing. There
are numerous of them, especially on the lattice. See [5,6]
for reviews.
While such constructions are, at least at the level of an

operational definition using algorithms, always possible in
lattice gauge theory, this is not the case in the continuum.
In fact, the question of how to reconstruct such gauges in
continuum calculations, e.g., in functional methods, has
been an important and unresolved question to date
[5,7,26,28,29,35,39,42–47,49–51]. But to be able to com-
pare results on and off the lattice unambiguously, it is
necessary to do so. The agreement between both
approaches so far [2–7,19,28,35,45,52–57] strongly sug-
gests that, at least implicitly, this is already done. It remains
to do so explicitly.
One option appears indeed to construct an averaging

procedure over Gribov copies, similar to what is done is
covariant gauges in perturbation theory. Necessarily, this
will require some kind of nonlocal averaging [5,45,46]. In
addition, if the resulting term is a surface term, it is possible
to recast it into boundary conditions of functional equa-
tions [58], which indeed appear to discriminate between
different solutions of the equations [5,28,59]. The question
is whether this can be done in an orbit-independent fashion.
For this, it will be necessary to understand the distribution
of Gribov copies as a function of the orbit. Contributing
toward this goal is the first aim of the present work. To
identify suitable averaging procedures it is useful to
understand the structure of the first Gribov region.
Improving this understanding is the second aim of
this work.
The basic structure of the (first) Gribov region is

reviewed in Sec. II. How it is treated here technically
using lattice gauge theory is presented in Sec. III. The first
result is the number of Gribov copies as a function of
dimensions and the lattice parameters in Sec. IV. This is

1Matter fields appear to affect the Gribov-Singer ambiguity
[13–16], but this is a different topic.
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important for the central question of (orbit-independent)
normalization. The second question is the structure of the
orbit when it comes to possible weight functions. This is
presented in Sec. V. Results and consequences are then
wrapped up in Sec. VI.
Similar investigations on the structure of the Gribov

region have also been performed in [17,34,60–68], though
all having a different focus and, partly, approach, as in the
present work, and are therefore complementary. Some
preliminary results on the topic of this work can be found
in [5,29,69,70]. Using the information gained in this work
to construct various completions of the Landau gauge along
the lines of [29,39,45,46] will be presented in an upcoming
work [71].

II. THE (FIRST) GRIBOV REGION

The existence of the first Gribov region in Landau gauge
is arguably the geometrically most remarkable feature of
(Euclidean) Yang-Mills theory. The first Gribov region in
Landau gauge is defined [8] as the set of all gauge copies on
a given gauge orbit which satisfy the perturbative Landau
gauge condition ∂μAa

μ and for which the Faddeev-Popov
operator

Mab ¼ −∂μDab
μ ¼ −∂2δab þ gfabcAc

μ ¼ −Dab
μ ∂μ

is positive semidefinite; i.e., it has only zero or positive
eigenvalues. There is at least one gauge copy on every
gauge orbit which satisfies both conditions [12], and thus a
restriction to the first Gribov region is meaningful.
Furthermore, and this is the most distinct characteristic,
this region is bounded [72], and thus only bounded field
configurations are required to describe all of the physics of
Yang-Mills theory. The boundary can be shown to be not a
smooth manifold, but exhibits, e.g., conelike singularities
and cusps [62]. The Faddeev-Popov operator is also the
inverse ghost propagator, which is therefore linked to the
eigenspectrum. In fact, there is evidence that the ghost
propagator at the lowest momentum accessible on a finite
lattice [73] is essentially dominated by the lowest eigen-
value, at least for the largest volumes [34,67,74], though
this is not true at small volumes [66]. Therefore, it is
assumed here that the ghost propagator at the lowest
momentum can be taken as an approximate and indirect
measure for the behavior of the lowest eigenvalue of the
Faddeev-Popov operator [29].
This restriction is not giving a unique gauge copy for

every gauge orbit, and gauge orbits can have multiple
gauge copies inside the first Gribov region [10,75]. These
are called Gribov copies, though technically they are just a
subset of ordinary gauge copies, and are physically indis-
tinct from all remaining gauge copies outside the first
Gribov region. Still, here Gribov copies will denote the
gauge copies within or on the boundary of the first Gribov
region.

The Gribov copies are nonperturbative in the sense that
one Gribov copy cannot be reached from another one by a
gauge transformation which is a perturbative series in the
gauge coupling [8]. However, every Gribov copy inside the
first Gribov region can be reached from any other Gribov
copy by a gauge transformation. Thus, to every gauge orbit,
there is a restricted set of gauge transformations which
change between the Gribov copies. Since the Gribov copies
are physically indistinct, this defines a residual gauge
symmetry inside the first Gribov region: The set of
Gribov copies for each gauge orbit together with the set
of gauge transformations transforming between them.
Conceptually [39,76], this is the same as the Becchi Rouet
Stora and Tyutin symmetry of ordinary perturbation theory
[1], which is also only a set of gauge transformations which
leaves the gauge condition intact. However, in the present
case, an explicit definition of the corresponding transforma-
tion is still lacking and will likely be a nonlocal one [77].
There are other Gribov regions, which surround the first

Gribov region. They are defined by the number of negative
eigenvalues of the Faddeev-Popov operator, which devel-
ops another one when passing a Gribov horizon by letting
the lowest positive one pass through zero to become
negative. These Gribov regions are fully embedded into
each other. They are not the subject of this work, though it
is hypothesized that they may play a role in recovering the
conventional Becchi Rouet Stora and Tyutin symmetry
beyond perturbation theory [28,42,43,76].
The first Gribov region can also be characterized by the

condition that every Gribov copy minimizes the functional

F½Aμ� ¼ −
Z

ddxAa
μAa

μ ¼
X
x;μ

ℜtrUμðxÞ; ð1Þ

where A is the gauge field and U the link variable.
This quantity has as first derivative the Landau gauge
condition and as Hessian the Faddeev-Popov operator. The
expectation value of this quantity is just the momentum-
integrated gluon propagator [30], and thus the first Gribov
region is the region of minimal (integrated) gluon propa-
gators. However, this quantity is a composite operator and
divergent in the continuum limit, and thus requires
renormalization.
Since these are the minima, there must be absolute

minima. Such absolute minima exist, and the set of all
Gribov copies which are absolute minima is called the
fundamental modular region (FMR) [36]. In principle, it is
possible that the minima become degenerate in the thermo-
dynamic limit, as happens, e.g., in U(1) gauge theory [78].
In fact, since there is at least one minimum, and therefore

always at least one absolute minimum, on every gauge
orbit, every gauge orbit passes through this region.
Moreover, it can be shown that this region is, as the first
Gribov region, bounded and convex [36]. Furthermore, it
contains the origin, and therefore is centered inside the first
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Gribov region. On any finite volume, its boundary does not
touch the one of the first Gribov region; i.e., the Faddeev-
Popov operator has no zero eigenvalue inside it in a finite
volume. In the infinite-volume limit, this region has a
common boundary with the first Gribov region [36], though
this common boundary is a subset of the boundary of the
first Gribov region, the so-called Gribov horizon. Note that
the boundary of the fundamental modular region is rather
complex, as on its boundary degeneracies may arise, which
have to be taken care of [10].

III. TECHNICAL SETUP

The technical setup for this investigation is essentially as
described in [29,73]. The simulations are performed for the
Wilson action of d ¼ two-, three-, and four-dimensional
Yang-Mills theories on a lattice of size Nd for some bare
gauge coupling β, using a mixture of overrelaxation and
heat-bath sweeps [73]. The lattice spacing is set by
assigning the string tension a value of ð440 MeVÞ2, as
described in [30,73].
The resulting set of configurations is then gauge fixed

using a self-adapting stochastic overrelaxation algorithm
[73]. To investigate different Gribov copies, this is per-
formed using Nr restarts with random seeds [17]. This
operation is rather expensive, and thus only a limited set of
configurations and lattice parameters with different Nr
could be used to track the development. These parameters
are listed in Table I. Note that in the following very often
only particular sets of parameters are shown as examples,

TABLE I. Number and parameters of the configurations used,
ordered by dimension, lattice spacing, and physical volume. pmin
is the smallest momentum on the given lattice, and thus the one at
which the ghost propagator has been evaluated. In all cases
2ð10N þ 100ðd − 1ÞÞ thermalization sweeps and 2ðN þ 10ðd −
1ÞÞ decorrelation sweeps of mixed updates [73] have been
performed, and autocorrelation times of local observables have
been monitored to be at or below one sweep. The number of
configurations were selected such as to have a reasonable small
statistical error for the ghost propagator at the lowest momentum.
The number Nr was chosen such that, given the results from
lattices with smaller physical volumes and/or coarser discretiza-
tions, the total fraction of identified genuine Gribov copies should
be substantial. The number of configurations had to also be
chosen large enough such that so-called exceptional gauge orbits
with particular extreme Gribov copies, i.e., with very large
coordinates, were (marginally) sufficiently sampled as well. In
total Oð105Þ configurations have been obtained and Oð107Þ
gauge fixings have been performed.

d N β a−1 [MeV] L [fm] pmin [MeV] Nr Config.

2 92 6.23 863 21 58.9 21 2761
2 80 6.40 875 18 68.7 20 2634
2 58 6.45 879 13 95.2 20 2220

(Table continued)

TABLE I. (Continued)

d N β a−1 [MeV] L [fm] pmin [MeV] Nr Config.

2 18 6.55 886 4.0 299 20 1720
2 34 6.64 893 7.5 165 20 1590
2 68 6.64 893 15 82.5 20 2503
2 10 6.68 895 2.2 553 20 2234
2 50 6.68 895 11 112 20 2107
2 26 6.72 898 5.7 216 20 1320
2 42 6.73 899 9.2 134 20 1841
2 106 8.13 994 21 58.9 22 2478
2 92 8.33 1010 18 69.0 21 5166
2 68 8.70 1030 13 95.2 20 4624
2 58 8.83 1040 11 113 20 2220
2 80 9.03 1050 15 82.4 20 2388
2 50 9.36 1070 9.2 134 20 2107
2 42 9.91 1100 7.5 164 20 1841
2 122 10.6 1140 21 58.7 23 2806
2 106 10.9 1160 18 68.7 22 2478
2 34 11.1 1170 5.7 216 20 1590
2 92 11.7 1200 15 81.9 21 2489
2 80 11.8 1210 13 95.0 20 4865
2 68 11.9 1210 11 112 20 2780
2 58 12.4 1240 9.2 134 20 2331
2 26 13.1 1280 4.0 309 20 1320
2 50 13.8 1310 5.7 165 20 2107
2 122 14.3 1340 18 69.0 23 1536
2 92 15.5 1390 13 94.9 21 2522
2 106 15.5 1390 15 82.4 22 2478
2 80 16.3 1430 11 112 20 4980
2 42 16.8 1450 5.7 217 20 1829
2 68 16.9 1460 9.2 135 20 2385
2 58 18.4 1520 7.5 165 20 8929
2 122 20.3 1600 15 82.4 23 2833
2 106 20.4 1600 13 94.9 22 2814
2 18 20.6 1610 2.2 559 20 1720
2 92 21.5 1650 11 113 21 2583
2 34 22.2 1670 4.0 308 20 1590
2 80 23.2 1710 9.2 134 20 2370
2 50 23.6 1730 5.7 217 20 2103
2 68 25.2 1790 7.5 165 20 2660
2 122 26.9 1850 13 95.3 23 1625
2 106 28.4 1900 11 113 22 2508
2 92 30.5 1970 9.2 135 21 2694
2 58 31.6 2000 5.7 217 20 2260
2 42 33.6 2070 4.0 309 20 1814
2 80 34.7 2100 7.5 165 20 2466
2 122 37.4 2180 11 112 23 2807
2 106 40.4 2270 9.2 135 22 2604
2 68 43.2 2350 5.7 217 20 2712
2 92 45.7 2420 7.5 165 21 2520
2 26 46.5 2440 2.2 588 20 1320
2 50 47.4 2460 4.0 309 20 2102
2 122 53.3 2610 9.2 134 23 2592
2 80 59.7 2760 5.7 217 20 2650
2 106 60.5 2780 7.5 165 22 2546
2 58 63.7 2860 4.0 310 20 3224
2 142 72.1 3040 9.2 135 24 2833
2 34 72.3 3040 2.2 561 20 1590

(Table continued)
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but all sets of parameters have been investigated and
showed the same behavior. The so created Nr gauge-fixed
gauge copies of any configuration are not necessarily
distinct, which will be addressed below in Sec. IV.
Nonetheless, for every so created gauge copy the

quantities (1), obtained from the links, and the ghost
propagator at the lowest momentum, using the method
described in [73], have been calculated. Note that, in
contrast to [29], the ghost propagator has been determined
using a plane-wave source [73] to reduce statistical
fluctuations, and as the average in color space and over
all possible momentum representations, i.e., the edge
momenta with only one nonvanishing component. This
reduces the consequences of the violation of rotational
symmetry on small lattices. In the course of this inves-
tigation, it has been found that on the largest two-
dimensional lattices the result, within statistical error,
was the same whether this average over momentum
representatives was done or not. This is expected as that
with lower and lower momenta the difference should
diminish as the ghost propagator on every configuration
should have a unique value at zero momentum, though at
finite momentum this need not be the case. Even on the
largest volumes in three and four dimensions, this was not
yet reached, though the difference remains minor, a few
times the statistical error, of the order of a few percent.
Therefore results without averaging, as was done in [29],
would have no qualitative, and almost no quantitative,
impact for the results presented here. Nonetheless, all
results here have been obtained with direction averaging.
These two quantities are kept to characterize the gauge

copy. Of course, it would be desirable to rather keep the full
configurations: Two Gribov copies are only really distinct,
if there is at least a single point where the field configu-
rations differ, up to permitted translations, rotations, and
global color rotations. In practice, it is impossible to check
for all these transformations. Also, the required disk space
is simply not available for the amount of lattice parameters
and statistics employed here. However, it appears that two
different Gribov copies differ appreciably in a finite region
rather than isolated points [79]. Therefore there should also
be a finite difference in many quantities. This should

TABLE I. (Continued)

d N β a−1 [MeV] L [fm] pmin [MeV] Nr Config.

2 92 78.8 3180 5.7 217 21 2650
2 122 80 3200 7.5 165 23 2925
2 68 87.3 3350 4.0 309 20 2790
2 106 104 3650 5.7 216 22 2574
2 42 110 3760 2.2 562 20 1787
2 80 120 3930 4.0 309 20 2656
2 122 138 4210 5.7 217 22 2833
2 50 155 4470 2.2 561 20 2222
2 92 159 4520 4.0 309 21 2606
2 58 209 5190 2.2 562 20 3236
2 106 211 5210 4.0 309 22 2679
2 122 280 6010 4.0 310 23 2624
2 68 287 6090 2.2 563 20 2940
2 80 398 7160 2.2 562 20 2646
2 92 526 8240 2.2 563 21 2557
2 106 698 9490 2.2 562 22 2520
2 122 925 10900 2.2 561 23 2623

3 8 3.40 874 1.8 669 20 2110
3 14 3.44 887 3.1 395 20 1650
3 20 3.46 894 4.4 280 22 1400
3 26 3.47 897 5.7 216 39 3795
3 36 3.47 897 7.9 156 66 1688
3 32 3.48 900 7.0 176 59 1627
3 36 3.82 1010 7.0 176 66 1491
3 42 3.92 1070 7.9 160 72 1583
3 32 4.10 1100 5.7 216 59 2791
3 42 4.33 1180 7.0 176 71 1447
3 26 4.28 1160 4.4 280 39 1291
3 48 4.38 1200 7.9 157 73 1590
3 36 4.52 1240 5.7 216 66 1496
3 20 4.60 1270 3.1 397 22 1380
3 32 5.09 1430 4.4 280 57 2744
3 42 5.15 1450 5.7 217 71 1621
3 14 5.39 1530 1.8 680 20 1720
3 36 5.64 1610 4.4 281 63 1633
3 26 5.76 1650 3.1 398 30 1334
3 42 6.45 1880 4.4 281 64 1707
3 32 6.91 2030 3.1 398 40 1585
3 48 7.27 2150 4.4 281 70 1535
3 20 7.39 2190 1.8 685 20 1450
3 36 7.69 2290 3.1 399 45 1478
3 42 8.84 2670 3.1 399 46 1592
3 26 9.38 2840 1.8 685 20 1315
3 48 10.0 3050 3.1 399 47 2037
3 32 11.3 3480 1.8 682 20 1417
3 36 12.7 3940 1.8 687 20 1370
3 42 14.6 4570 1.8 683 20 1699
3 48 16.6 5220 1.8 683 20 1877
3 54 18.6 5880 1.8 682 21 1832
3 60 20.6 6540 1.8 685 22 2044

4 14 2.179 889 3.1 396 27 1082
4 10 2.181 894 2.2 553 20 1450
4 6 2.188 908 1.3 908 20 1620
4 18 2.188 908 3.9 315 54 1615
4 18 2.279 1140 3.1 396 54 2248

(Table continued)

TABLE I. (Continued)

d N β a−1 [MeV] L [fm] pmin [MeV] Nr Config.

4 14 2.311 1250 2.2 556 27 1033
4 22 2.349 1400 3.1 398 76 1488
4 10 2.376 1520 1.3 939 20 1450
4 18 2.395 1610 2.2 559 40 1258
4 22 2.457 1960 2.2 558 50 1242
4 14 2.480 2120 1.3 943 20 1225
4 18 2.552 2720 1.3 945 20 1175
4 22 2.609 3330 1.3 948 20 1355
4 26 2.656 3930 1.3 947 21 1335
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therefore be sufficient to distinguish two copies. This will
be discussed more next.

IV. GRIBOV COPIES

A. Distinguishing Gribov copies

The most basic question is how many Gribov copies
there are [5,29,40,60,63]. However, as noted, to distinguish
two Gribov copies from each other in practical calculations
is a nontrivial problem. In principle, it would be necessary
to check at each space-time point for differences, within
the numerical accuracy, taking all possible global trans-
formations into account. Already the memory limitations
are prohibitive in practice for any appreciable number of
Gribov copies.
Here, another approach is used. In principle, two Gribov

copies will in general differ also in at least one gauge-
dependent correlation function, which can be considered as
the moments of the configuration. Thus, knowledge of the
gauge-dependent correlation functions can also be used to
characterize a Gribov copy. But, again, in practice only a
finite number of them can be calculated. And if only a finite
number is compared, then it is by far not clear whether two
distinct Gribov copies will also be distinct in this limited
set. In practice, so far almost always only one function at a
single momentum value, mostly (1), had been used. Here,
following up the investigations on complete gauge fixing in
[5,29,45,46], for the first time a systematic investigation
will be performed using two quantities simultaneously,

F ¼ −
1

V

Z
ddxAa

μAa
μ ¼ 1 −

1

Nc

X
x;μ

trUμðxÞ;

b ¼ ~Z3

1

dNc

X
i

GaaðpðiÞ2minÞ;

where G is the ghost dressing function [5,73], and the
renormalization constant ~Z3 is different from only one in
fourdimensions, andwillusuallydropoutbelow, sincemostly
ratioswill be considered.2 If it used explicitly, it is obtained by
requiring ~Z3Gðð2 GeVÞ2Þ ¼ 1. The sum is over all possible
directions for theminimal edgemomentum.Effectively, this is
a projection of the Gribov region to a two-dimensional space
with coordinates F and b. In principle also F, as a composite
operator, requires renormalization [80].
In the following, two Gribov copies will be considered to

be distinct if their difference in F or b exceeds a certain
threshold ϵ. Hence, some Gribov copies, which are differ-
ent, will not be recognized as such. Thus, all results which

indicate a sensitivity to the choice of Gribov copies yields
only a lower limit to this sensitivity, even if all Gribov
copies of any given residual gauge orbit would be deter-
mined. So, the value of ϵ has to be set carefully. For a
properly renormalized quantity, ϵ could be the numerical
accuracy, which is usually significantly less than the
machine precision, giving possible cancellations in the
sums and imprecisions in the gauge-fixing process.
However, the values of both F and b drift due to

renormalization as well as discretization and finite-volume
effects. Thus, at fixed numerical accuracy two originally
distinct Gribov copies could appear equal if the lattice
settings are changed, because their difference will no longer
be resolvable.
To study this behavior, a useful option is to determine for

all Nr Gribov copies of a given gauge orbit their distance
with respect to each other. For any of the two distinction
parameters D ¼ F, b it is therefore useful to investigate the
relative difference of their values for two Gribov copies i
and j on the same orbit

ΔD ¼ jDi −Djj
j⟪D⟫j ;

 FΔ
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FIG. 1. Difference of distinction parameter, either F (top panel)
or b (bottom panel), for different Gribov copies on the same orbit
in two dimensions, for various lattice spacings and volumes,
normalized to the orbit and Gribov copy averaged value.

2Note that this implicitly assumes that renormalization con-
stants do not differ depending on the selection of Gribov copies.
At least within achievable statistical errors, this should be the case
if the renormalization is performed at sufficiently large momenta
where the influence of Gribov copies is negligible for the ghost
propagator [5].
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where ⟪D⟫ is for now the averaged value of both orbit and
copies. Note that both distinction parameters are global
color invariants and are also isotropically lattice averaged.
Any global color rotation, translation, or rotation therefore
does not change their values, even on a single configura-
tion. Taking the ratio removes any kind of trivial kinematic
factors, lattice spacing factors, and, provided the renorm-
alization is performed at sufficiently large momenta,
multiplicative renormalization factors.
The results are shown in Figs. 1–3. For this purpose, the

results are binned in e-folds. The first observation is a large
gap between a structure and the bin of lowest value. In fact,
for all elements of the lowest bin the difference is zero
within numerical accuracy. Thus, for all purposes these
Gribov copies have the same value of their respective
distinction parameters. Given the large gaps involving
many orders of magnitude, where the bins are in fact
unpopulated, it can be safely assumed that the equality is
not just numerical coincidence, but indeed true, and thus
these are the same Gribov copies. The remaining Gribov
copies can be considered to be distinct.
Interestingly, there are Gribov copies which are only

indistinct with respect to one parameter, but not with

respect to the other.3 Predominantly, the copies are indis-
tinct in F, but different in b, depending on the lattice
parameters about 102–103 more frequently. This shows that
b is a finer distinction of Gribov copies than F.
Concerning the distribution for the true Gribov copies,

the differences in ΔF show some dependency on volume
and discretization, especially in two dimensions, and a
somewhat asymmetric distribution, centered at about
10−3–10−4 for large volumes. The difference seems to
shrink with increasing volume and discretization; i.e., the
distinction between two Gribov copies becomes less. This
is to be expected if Gribov copies indeed tend to differ only
over some finite patch of space-time [79].
The situation for the distinction parameter b is interest-

ing. For small volumes, it shows a double-peak structure,
which becomes less pronounced for larger volumes, and at
fixed volumes for finer discretization. The second peak is at
substantially smaller differences. It appears reasonable that
they may arise by so-called lattice Gribov copies [81], i.e.,
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FIG. 2. Difference of distinction parameter, either F (top panel)
or b (bottom panel), for different Gribov copies on the same orbit
in three dimensions, for various lattice spacings and volumes,
normalized to the orbit and Gribov copy averaged value.
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FIG. 3. Difference of distinction parameter, either F (top panel)
or b (bottom panel), for different Gribov copies on the same orbit
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3This was not seen in [29], and erroneously assumed not to be
the case. The reason is that a much lower cut has been used to
define two Gribov copies as equal there. Thus, the present, much
more precise, results supersede those of [29].
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artificial Gribov copies introduced due to the lattice
approximation itself, which vanish in the thermodynamic
limit. At any rate, they are a small effect in three and four
dimensions, but not in two. Though the distinction is
relatively clear when considering the relative values, the
approach taken here will be to take such additional Gribov
copies merely as an additional finite-volume effect, rather
than attempting to treating them separately. Aside from this
second peak, the peak at large Δb is only very slightly
dependent on volume and discretization, but shows a
notable asymmetry toward smaller values.
Finally, the number of indistinct Gribov copies quickly

diminishes with both larger volumes and finer discretiza-
tions, though in two dimensions this is still a large fraction.
From now on, only Gribov copies distinct in both param-
eters will be considered and be denoted by ng to distinguish
them from the search space size Nr.

B. Counting Gribov copies

The second problem is that there are usually many
Gribov copies expected. This is also observed here.
Especially in larger volumes and higher dimensions, in
most cases an increase in Nr also increases the expectation
value Ng ¼ hngi of the number of found genuine copies ng
per orbit. Therefore, to find the number of Gribov copies,
the results should be extrapolated to Nr → ∞.
To investigate the dependence of Ng on Nr, the results

are shown in Figs. 4–6. The results show that for suffi-
ciently large volumes and higher dimensions each increase
of the search space size increases the number of genuine
Gribov copies, yielding eventually an (almost) linear
dependence. For smaller volumes and dimensions, the
dependence is less than linear, can be well fitted by power
laws, and thus shows no saturation with search space size.
Furthermore, the exponents become closer and closer to
one, the finer the discretization and the larger the volumes,

rN

2 4 6 8 10 12 14 16 18 20 22 24

g
N

0

2

4

6

8

10

12

14

Number of genuine Gribov copies in 2 dimensions

FIG. 4. Number of genuine Gribov copies Ng as a function of
the search space size Nr in two dimensions. Symbols have the
same meaning as in Fig. 1. Error bars are smaller than the
symbol sizes.
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approaching one. Thus, the extrapolation gives a linear
dependency in the thermodynamic limit. Hence, no
extrapolation is meaningful either at fixed lattice param-
eters or to the thermodynamic limit, as they all yield an
infinite number of Gribov copies. Thus, the only statement
which can be made is that, even in small volumes, the
number of genuine Gribov copies is very large. This is in
line with results from attempts to explicitly count Gribov
copies on tiny lattices [60,63].
There is one remarkable observation, when investigating

closer the dependence of the number of genuine Gribov
copies found at a fixed search space size as a function of
dimensionality, physical volume, and discretization, shown
in Figs. 7–9. It is visible that in two dimensions the number
of genuine Gribov copies found is a slowly increasing
function of volume, and only very weakly dependent, if at
all, on the discretization. Especially at large volumes, the
number is essentially fixed as a function of lattice discre-
tization. This is not true in three and four dimensions,

where the number of genuine Gribov copies quickly
increases with both physical volume and lattice discretiza-
tion. Especially at large volumes every new Gribov copy is
distinct, even on very coarse lattices. This is even more
pronounced in four dimensions than in three dimensions.
This indicates that the first Gribov region in two dimen-
sions may be different from the ones in three and four
dimensions. This would add to the list of features in which
two dimensions appear to be different from higher dimen-
sions [5]. However, since Gribov copies are a pure gauge
effect, it seems unlikely to be related to the absence of
dynamics in two dimensions. Whatever the reason, it is
likely to be something which is entirely due to the gauge
structure.
The question is whether the impossibility to, even by

extrapolation, count the number of Gribov copies limits the
possibility to assess the impact of Gribov copies, especially
if gauge-fixed quantities can nonetheless be extrapolated,
or whether it is just possible to give lower limits to their
variation under an increase of the search space size. To
investigate this problem, as an example in Figs. 10–12 the
quantities

δD ¼ hminDi
hmaxDi ;
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FIG. 8. Plot of Nr − Ng at fixed search space size Nr ¼ 20 as a
function of discretization and volume in three dimensions. Points
not displayed are zero within numerical accuracy.
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function of discretization and volume in four dimensions. Points
not displayed are zero within numerical accuracy.
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which is the width of the discrimination parameter corridor,
are shown. Again, the ratio ensures that all trivial factors
drop out. The results show initially a very strong depend-
ence on the search space size, but then start to flatten out.
Above Nr ≈ 10, the behavior can be fitted rather well with
the function

fðNrÞ ¼ 1 −
Na

r

bþ cNa
r
¼Nr ~∞

1 −
1

c
; ð2Þ

which has a finite limit. Therefore an extraction of mean-
ingful quantities is possible, even if the search space is not
large enough to get close to the asymptotic value. In fact,
approaching the asymptotic value of 0.9950 up to 0.9955
(0.9951) for L ¼ 3.9 fm at a ¼ 0.22 fm in four dimensions
for δF would require, according to the fit, Nr ≈ 220ð2500Þ,
which is rather large. The same functional form and the
same statements also apply to Δb.
Interestingly, occasionally small jumps are seen. These

originate if a single Gribov copy has a strong impact on the
final result, indicating that the statistics at this search space
size is, in principle, not large enough. These exceptional
Gribov copies [30,73,82] originate from the fact that the
distributions in Figs. 1–3 are non-Gaussian and have long
tails. This effect diminishes with an increase in the number

of genuine Gribov copies, and thus on larger volumes and
finer discretizations, at least in more than two dimensions.
Nonetheless, this shows that it is, in principle with
sufficient statistic and a finite search-space size, possible
to find meaningful results, and not only limits.
To continue the example, the limits obtained from (2) as

a function of physical volume and lattice spacing are shown
in Fig. 13. The strongest systematic effects in the fits occur
due to the exceptional configurations, giving rise to the
strongest deviations from the trend. This surfaces in the
plots of Fig. 13 as occasional dips. This problem is
strongest in two dimensions, where the number of genuine
Gribov copies is comparatively small, and a single excep-
tional configuration can have a large impact.
While the limit of δF does show some indication of

tending to 1 at large volumes and finite discretizations, and
thus indicating indeed that the minima become more
degenerate as in Abelian gauge theory [78] and as expected
due to the general arguments [36,68], the situation for δb is
quite different. In this case, δb tends to smaller values for
larger and, in three and four dimensions, finer lattices.
However, the results do not permit a stable extrapolation,
and therefore it is impossible to decide whether it may tend
to zero or not. However, in three and four dimensions a
value of zero, indicating a divergence in hmaxbi, is not
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FIG. 11. The discrimination parameter corridor width δF (top
panel) and δb (bottom panel) in three dimensions. Symbols have
the same meaning as in Fig. 2. Error bars are smaller than the
symbol sizes.
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favored in the current understanding of the first Gribov
region as well as from direct calculations of the ghost
dressing function [5,28,67,74]. But in two dimensions this
appears to be the case [74,83–87].

C. Orbit dependence

A major question for constructing complete Landau
gauges is whether the properties of the residual gauge

orbit are gauge-orbit independent [5,29,39,45]. Especially,
consider some expectation value

hOi ¼
R
DADgOeiðSþSgfÞR
DADgeiðSþSgfÞ

O gauge-invariant
¼

R
DAOeiS

R
DgeiSgfR

DAeiS
R
DgeiSgf

;
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where A denotes the integral over gauge orbits and g the
integral over all admitted Gribov copies of the specified
residual gauge orbits. For any permissible gauge, the
separated integral over the gauge-fixing condition has to
cancel, at least formally, for a gauge-invariant observable.
However, if the integral becomes orbit dependent, then in
the expectation value every factor from the gauge-fixing
part is weighted by the observable,4 and therefore the result

may not cancel, yielding an invalid gauge condition. Thus
an admissible gauge condition must have on every orbit (up
to a measure-zero contribution) the same weight, such that
the gauge-fixing factor can be pulled out. This can be
achieved either by having a gauge condition which has
intrinsically the same weight on every orbit or by having an
orbit-dependent normalization factor to achieve this.5 For
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FIG. 14. The number of orbits with the same number of genuine Gribov copies in two dimensions (top panel), three dimensions
(middle panel), and four dimensions (bottom panel). Symbols are the same as in Figs. 1–3.

4If O ¼ 1, it would still work; the problem arises if the
observable becomes orbit dependent.

5Note that additional complications may arise if the ability of
the algorithm used in a lattice calculation to find Gribov copies
would depend on the properties of the gauge orbits. This
complication will be ignored here.
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gauge-dependent quantities, this problem is present as well,
but there it would still be possible to define this as part of an
(odd) gauge-fixing prescription. But for gauge-invariant
observables, there is no choice.
Any gauge condition built upon selecting Gribov

copies will be intrinsically orbit independent if it has
the same integrated weight on every orbit and every

orbit has the same number of Gribov copies. To estimate
the situation, the distribution of genuine Gribov copies
for different orbits is shown in Fig. 14. In two
dimensions, the resulting structure is, except for the
smallest lattices, extremely broad, with a maximum
wandering toward a larger number of genuine copies.
The result is thus far from conclusive. In higher
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FIG. 15. Boundary structure of the Gribov region in two dimensions, based on the found and identified genuine Gribov copies. Open
red circles are elements of the horizon, subject to the approximations and assumptions made in the text. Open blue triangles belong to the
FMR. Filled black circles possibly belong to both; see text for details. The different panels show results for different discretizations and
physical volumes.
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dimensions, the distribution rather quickly becomes
narrower. However, the maximum quickly tends to
the size of the search space, as seen previously. It
can therefore not be excluded that the distribution would
remain broad if the search space were larger. Thus, the
results are not really conclusive also in higher dimen-
sions. The only thing that can be stated is that with the
given search space size there is at least no explicit
disagreement with the hypothesis that in the thermody-
namic limit the number of Gribov copies on different
orbits only differ by an irrelevant number. But it is clear
that on a finite lattice, and especially in two dimensions,

the orbit dependence must be taken duly into account if
a gauge should average over the residual gauge orbit.6
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FIG. 16. Boundary structure
of the Gribov region in three
dimensions, based on the
found and identified genuine
Gribov copies. Open red
circles are elements of the
horizon, subject to the approx-
imations and assumptions
made in the text. Open blue
triangles belong to the FMR.
Filled black circles possibly
belong to both; see text for
details. The different panels
show results for different
discretizations and physical
volumes.

6Note that minimal Landau gauge, which averages over the
whole gauge orbit with a flat weight by picking a random Gribov
copy is not affected by this problem, as the averaging over the
number of copies is automatically correct when selecting only a
single representative. That is the same mechanism why finite-
statistics lattice simulation do not need to worry about the size of
the gauge orbit for gauge-invariant observables, where it is tacitly
assumed that all gauge orbits have the same size, i.e., the same
number of Gribov copies up to a measure zero difference.
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V. STRUCTURE OF THE FIRST GRIBOV REGION

After having statements about the Gribov copies, this
second part focuses on the properties of the Gribov region.
Three separate features will be addressed, which have been
investigated in the past. These are the boundary of the
Gribov region, the so-called Gribov horizon, the interior of
the region, and finally the fundamental modular region.

A. The boundary of the first Gribov region

One subject which has been of particular interest
[36,61,62,67,68] has been the boundary of the first
Gribov region, i.e., the Gribov copies for which the
Faddeev-Popov operator has a zero eigenvalue [8].
This boundary is expected to have a nonregular shape

[36,61,62,67]. The actual Gribov horizon has as elements
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FIG. 17. Boundary structure of the Gribov region in four dimensions, based on the found and identified genuine Gribov copies. Open
red circles are elements of the horizon, subject to the approximations and assumptions made in the text. Open blue triangles belong to the
FMR. Filled black circles possibly belong to both; see text for details. The different panels show results for different discretizations and
physical volumes.
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field configurations, and therefore it is defined in an infinite-
dimensional space. Here, it will again be projected down to a
two-dimensional one, parametrized by the two parameters7 b
and F, now evaluated on single configurations. Since finite-
dimensional spaces have different properties than infinite-
dimensional ones, and especially two-dimensional ones, this
may yield substantially different structures.
In a finite volume, the Gribov region is actually smaller

than the one at infinite volume, as in a finite volume the
Faddeev-Popov operator has no genuine zero modes. To
identify the actual boundary thus requires one to assume
that the lowest eigenvalue at finite volume is also signifying
the Gribov copy which will become the boundary element

in an infinite volume, and not, e.g., the one at the next to
smallest. This corresponds to the assumption of the absence
of level crossing. Especially on large volumes, this appears
to be a reasonable assumption.
The next problem is that b is not in one-to-one

correlation with this smallest eigenvalue. However, avail-
able lattice data seem to indicate that it tends to become so
toward the infinite-volume limit [34,66,67,74]. It will
therefore be assumed in the following that choosing the
largest b rather than the smallest eigenvalue will at most
increase the finite-volume effects, and will yield the same
result in the infinite-volume limit.
The resulting shapes of the boundaries are shown in

Figs. 15–17.8 Of course, given that only a small subset of
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FIG. 18. The Gribov region in two dimensions, based on the found and identified genuine Gribov copies. Every point is one Gribov
copy. The different panels show results for different discretizations and physical volumes.

7Note that in very few cases, usually at most one Gribov copy
in the entire statistics for a given lattice setup, the inversion used
to determine b [73] did not converge and yielded a negative value
of b. These cases have been dropped here.

8First, similar plots for the Gribov horizon can be found in
[5,34], but without a detailed analysis of other structures and
studies of systematic effects.
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genuine Gribov copies is found, this can only be a lower
limit to the actual horizon, which encloses the displayed
horizon.
Once the volume is sufficiently large enough, the rough

shape of the horizon in these coordinates is wedgelike.
Especially extreme values of b correspond to average
values of F, while extreme values of F correspond to
comparatively small values in b. Of the expected non-
regular shapes nothing is observed, as expected in a finite-
dimensional space. However, as expected after projection,
the boundary is such that the interior is connected and
the region convex, like the full region itself [36,88]. Its
finiteness [36,88] is evident, but this is trivially so on any
finite lattice. There is actually very little difference between
the different dimensionalities visible.
It can be expected that there should also be degenerate

copies on the horizon; i.e., more than one Gribov copy of
any residual gauge orbit can reside on the boundary. This
has been seen even for explicit examples [89,90]. It is also
found here; i.e., there are genuine copies with the same
value of b but a differing value of F. The number of such
Gribov copies is extremely small, and quickly diminishes
with increasing volume, being at the 1% level for the largest
volumes displayed in dimensions different from two, and at

the 10% level for two dimensions. However, this is most
likely rather an effect from not finding all Gribov copies
with increasing volume than that their number actually
diminishes. Those found do show a tendency to cluster at
comparatively small values of b. This is also visible when
projecting the Gribov horizon to its coordinates, as is
shown in Figs. 21–23 below.

B. The fundamental modular region

There is another interesting concept in the structure of
the first Gribov region, the fundamental modular region
[36,72]. It is defined as the set of all Gribov copies for
which F has an absolute minimum on the residual gauge
orbit. This region is, in a sense, minimal, as every gauge
orbit, which passes through its interior does so at most once
[12], but there may be multiple passages on the boundary
for topologically inequivalent copies [11,12].
Just like the first Gribov region, the FMR is convex,

bounded, and contains the origin. It is therefore completely
contained inside the first Gribov region. On a finite volume
it is actually expected to be completely inside the interior,
while in the infinite-volume limit its boundary and the
Gribov horizon should have some overlap [36,88].

b
1 10

F

3Gribov region for a=0.030 fm and V=(1.8 fm)

b
-110 1 10

F

-0.898

-0.896

-0.894

-0.892

-0.89

3Gribov region for a=0.22 fm and V=(4.4 fm)

b
1 10 210

F

3Gribov region for a=0.092 fm and V=(4.4 fm)

b
1 10 210

F

-0.9235

-0.923

-0.9225

-0.922

-0.9215

3Gribov region for a=0.17 fm and V=(7.9 fm)

-0.9868

-0.9866

-0.9864

-0.9862

-0.9585

-0.958

-0.9575

-0.957

FIG. 19. The Gribov region in three dimensions, based on the found and identified genuine Gribov copies. Every point is one Gribov
copy. The different panels show results for different discretizations and physical volumes.
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The FMR is also shown in Figs. 15–17. It exhibits the
expected convexity. It is found to be located at small values
of b, but it is not concentrated at particular values of F. The
former is somewhat expected, as it should reside in the
interior of the Gribov region at finite volume [36].
However, since the FMR should be located at the absolute
minimum of F, it is somewhat surprising to see that it is not
concentrated at particularly small values of F. This implies
that the actual absolute minimum value of F appears to vary
strongly between orbits. None of these observations appear
to depend strongly on either dimensionality or discretiza-
tion. Some effect is seen for different physical volumes, but
since the number of Gribov copies so strongly rises it is not
possible to make a definite statement whether this is a
genuine effect.
Though there is no overlap of the FMR boundary and the

horizon in a finite volume, there are points which at the
same time have the largest value of b and the smallest value
of F. However, the number of points found in this way
diminishes quickly with volume. Those which are found
are located in two dimensions at rather small b, but tend to
larger b values in higher dimensions and larger volumes.
Again, it is not possible to identify whether this is an

artifact of too few Gribov copies found or a genuine effect,
and should therefore be interpreted, if at all, with great care.
The only remarkable observation is that those common
points lie at large volumes, in three and four dimensions, at
rather large values of b compared to the remainder of the
FMR, while this is not the case in two dimensions.
Thus, in total the Gribov horizon and the FMR are

found to correspond to the expectations. However, there
is a strong correlation between being in the FMR and
having a small value of b, but no correlation between
being either on the horizon or in the FMR with a
particular value of F.
Similarly as before, there are Gribov copies with the

same (lowest) value of F but differing values of b. These
should correspond to degenerate copies on the boundary of
the FMR. In three and four dimensions, this is again
quickly decreasing with increasing volume, again at the 1%
level at the largest volumes displayed, though much larger
on small volumes. Only in two dimensions, this number
remains large, and more-or-less volume independent. These
cases show no preference in their distribution on F, as is
again shown in the projection to the single coordinates
below in Figs. 21–23.
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FIG. 20. The Gribov region in four dimensions, based on the found and identified genuine Gribov copies. Every point is one Gribov
copy. The different panels show results for different discretizations and physical volumes.
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FIG. 21. Projections of the Gribov region to its coordinates b (top two rows) and F (bottom two rows) for various lattice spacings in
two dimensions. Black dots are the full region, open red dots indicate the Gribov horizon, and green open squares are degenerate points
on the Gribov horizon in the projection on b, while the same symbols denote the FMR and degenerate points on the FMR in the
projection on F. Open blue triangles are elements of the common boundary in both projections, and open yellow triangles are degenerate
common points.
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FIG. 23. Projections of the Gribov region to its coordinates b (top two rows) and F (bottom two rows) for various lattice spacings in
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C. The first Gribov region

A final view is now on the first Gribov region as a whole,
in the same manner as in the previous section. Every
genuine Gribov copy found is displayed in Figs. 18–20.
Except for the appearance of many more copies at smaller
values of b, as expected, the shape remains essentially the
same, a wedge, and especially the convexity is still very
well visible. The boundaries are still somewhat frayed,
probably a result of both finite statistics and a finite number
of Gribov copies per orbit.
Interestingly, the full regions sweep out the same range

of F values as the FMR. Thus, the variation of F inside the
FMR and in the full region is actually rather similar.
All of these results are also visible in the projection of

the first Gribov region to the two axes, completing the
tomography, and shown in Figs. 21–23. There, it is
explicitly seen how the horizon saturates the large-b-value
region, but there are still many orbits where it has rather low
values. Also, degenerate points are located at somewhat
lower values of b than nondegenerate ones. At the same
time, the FMR is rather evenly distributed. Interestingly, in
two dimensions almost all FMR points are degenerate
boundary points, and there is almost no interior. That is
very different in dimensions greater than two, where the
degenerate boundary points are much less and seem to be
mainly located at smaller values of F. The common
boundary, including degenerate points, is also shown,
and is mainly located at slightly smaller values of both
b and F than the noncommon boundary points.

VI. SUMMARY

The present study is the first systematic investigation
of the (Landau-gauge) first Gribov region using a two-
dimensional projection, following up the first investigations
in [5,34]. It also demonstrates explicitly that the number of

Gribov copies is very large, actually much larger than
expected. Hence, even on moderately to small lattice
systems, any investigation of Gribov copy effects can only
be considered as statements about lower limits, and extrapo-
lation is necessary.
The explicit tomography of the first Gribov region,

including its most prominent features of the Gribov horizon
and the FMRand its boundary, can hence only be considered
to be something of a sketch. However, this sketch already
reveals many of the properties expected, like the convexity.
It also shows some rather surprising features, especially that
the FMRhas no distinguished tendency to be at small values
ofF, but has even on the largest volumes a strong preference
for small b values. Also, with all due caveats, the common
boundary between FMR and the Gribov region seems to
have a preference for smaller values of both b and F.
This knowledge is a very suitable starting point to

develop various extended gauge conditions, aimed at
emphasizing different properties of gauge-dependent cor-
relation functions along the lines of [5,39–47], essentially
gauge engineering. This permits one, just as in perturbation
theory, to tailor the features of gauge-dependent correlation
function to being technically best suited for further calcu-
lations, e.g., using functional methods [5].
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