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In a previous paper [N. Haque et al., J. High Energy Phys. 05 (2014) 27], we calculated the three-loop
thermodynamic potential of QCD at finite temperature T and quark chemical potentials μq using the hard-
thermal-loop perturbation theory (HTLpt) reorganization of finite temperature and density QCD. The result
allows us to study the thermodynamics of QCD at finite temperature and finite baryon, strangeness, and
isospin chemical potentials μB, μS, and μI . We calculate the pressure at nonzero μB and μI with μS ¼ 0, and
the energy density, the entropy density, the trace anomaly, and the speed of sound at nonzero μI with
μB ¼ μS ¼ 0. The second- and fourth-order isospin susceptibilities are calculated at μB ¼ μS ¼ μI ¼ 0.
Our results can be directly compared to lattice QCD without Taylor expansions around μq ¼ 0 since QCD
has no sign problem at μB ¼ μS ¼ 0 and finite isospin chemical potential μI .
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I. INTRODUCTION

Quantum chromodynamics (QCD) in extreme condi-
tions such as high temperature and high density has been
a very active area of research for more than two decades.
The interest in QCD at finite temperature has largely
been spurred by the experimental programs in heavy-ion
collisions at the Relativistic Heavy Ion Collider in
Brookhaven and the Large Hadron Collider at CERN.
One of the goals of these programs is the creation and
study of the quark-gluon plasma—the deconfined phase
of QCD. The equation of state of QCD is essential to the
phenomenology of the quark-gluon plasma. Lattice gauge
theory provides a first-principle method to calculate the
thermodynamic functions of QCD at finite temperature
and zero baryon chemical potential μB. However, at finite
μB, QCD suffers from the so-called sign problem, namely
that the fermion determinant is complex. This prevents
one from using standard lattice techniques involving
importance sampling to calculate the partition function
of QCD. One way to circumvent this problem, at least for
small baryon chemical potentials, is to make a Taylor
expansion of the thermodynamic functions around μB.
This requires the calculation of the quark-number sus-
ceptibilities evaluated at zero quark chemical potentials,
μq ¼ 0.
Perturbative QCD offers an alternative to lattice gauge

theory for the calculations of thermodynamic functions
in the deconfined phase. Invoking asymptotic freedom,
one might expect that perturbation theory works at
sufficiently high temperatures. However, one does not
know a priori how large T must be in order to obtain
a sufficiently good approximation. Using the weak-
coupling expansion in the strong coupling constant g,

the calculation of the thermodynamic functions has been
pushed to order g6 log g both at zero [1] and finite
chemical potential [2–4]. However, a strict perturbative
expansion in g does not converge at temperatures
relevant for the heavy-ion collision experiments. It turns
out that the convergence is very poor unless the temper-
ature is many orders of magnitude larger than the critical
temperature Tc for the deconfinement transition. The
source of the poor convergence is the contributions to
the thermodynamic functions coming from soft momenta
of order gT. The poor convergence of the weak-coupling
expansion suggests that one needs to reorganize the
perturbative series of thermal QCD. For scalar theories,
screened perturbation theory (SPT) has been applied
successfully up to four loops [5–8]. SPT is in part
inspired by variational perturbation theory [9–14]; see
also [15] for a renormalization-group improved reorgani-
zation of the perturbative series. In the case of gauge
theories, using a local mass term for the gluons breaks
gauge invariance, and one needs to generalize SPT.
Hard-thermal-loop perturbation theory (HTLpt) repre-
sents such a generalization and was developed over a
decade ago [16]. Since its invention, HTLpt has been
used to calculate thermodynamic functions through three
loops at zero chemical potential [17–21] as well as finite
chemical potential [22,23]. Depending on the thermo-
dynamic function at hand, the agreement between lattice
simulations and the results from HTLpt is very good
down to temperatures of approximately T ≃ 250 MeV.
Application of some HTL-motivated approaches can be
found in Refs. [24–35].
While three-color QCD at finite baryon chemical poten-

tial has a sign problem, there are a number of other cases
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where the sign problem is absent. This includes QCD in
a strong magnetic field B, two-color QCD at finite
baryon chemical potential μB [36,37], and three-color
QCD at finite isospin chemical potential μI [38]. In this
paper, we will focus on three-color QCD at finite isospin
density. There are a few papers on lattice QCD with
finite isospin chemical potential [39–46]; however, these
mostly focus on the phase transitions themselves and not
on the deconfined phase: In addition to the deconfine-
ment transition, there is an additional transition to a Bose
condensate of pions at sufficiently low temperature T
and sufficiently large isospin chemical potential μI [47].
For T ¼ 0, the critical chemical potential for pion
condensation is μcI ¼ mπ . Moreover, the results of [44]
seem to indicate that the first-order deconfinement
transition at zero isospin density turns into a crossover
at μI=T ≃ 2.5. At sufficiently low temperature and high
isospin chemical potential, i.e. around the phase boun-
dary, HTLpt is unreliable. Thus, at this point in time, we
cannot compare our HTLpt predictions with lattice
Monte Carlo at finite μI. Therefore, our results should
be considered as predictions which can be checked by
future lattice simulations. This is in contrast to three-
color QCD at μB ¼ 0, where there is a plethora of lattice
results [48–66] on the thermodynamics of the decon-
fined phase.
The paper is organized as follows. In Sec. II, we briefly

discuss finite chemical potentials and the sign problem
of QCD. In Sec. III, we review hard-thermal-loop pertur-
bation theory and the HTLpt thermodynamic potential
through next-next-to-leading order (NNLO). In Sec. IV,
we present and discuss our numerical results for the
thermodynamic functions. In Sec. V, we summarize and
conclude.

II. PARTICLE DENSITIES, CHEMICAL
POTENTIALS, AND THE SIGN

PROBLEM IN QCD

In massless QCD with Nf flavors there are N2
f con-

served charges which correspond to the number of
generators of the group SUðNfÞ ×Uð1Þ. For each con-
served charge Qi, we can introduce a nonzero chemical
potential μi. However, it is possible to specify the expect-
ation values of different charges simultaneously, only if
they commute. For Nf ¼ 2 and Nf ¼ 3, this implies that
we can introduce two and three independent chemical
potentials, respectively. These can conveniently be chosen
as the quark chemical potentials μq, which corresponds to
the separate conservation of the number of u, d, and s
quarks. However, any other independent linear combina-
tion of μq is equivalent, and it is customary to introduce
chemical potentials for baryon number nB, isospin nI , and
strangeness nS.

After having introduced the chemical potentials in the
Lagrangian, the partition function as well as all thermo-
dynamic quantities are functions of the temperature and the
chemical potentials. For example, the corresponding charge
densities ni are given by

ni ¼ −
∂F
∂μi ; ð1Þ

where F is the free energy density.
The baryon, isospin, and strangeness densities

nB, nI , and nS can be expressed in terms of the quark
densities nf as

nB ¼ 1

3
ðnu þ nd þ nsÞ; ð2Þ

nI ¼ nu − nd; ð3Þ

nS ¼ −ns: ð4Þ

Equations (2)–(4) can be used to derive relations between
the corresponding chemical potentials μB, μI , and μS and
the quark chemical potentials μq. Equations (1) and (3) give

nI ¼ −
∂F
∂μI

¼ −
�∂F
∂μu −

∂F
∂μd

�
¼ −

�∂μu
∂μI

∂F
∂μu þ

∂μd
∂μI

∂F
∂μd

�
: ð5Þ

Comparing the second and third lines in Eq. (5), we
infer that

∂μu
∂μI ¼ −

∂μd
∂μI ¼ 1: ð6Þ

In the same manner, one can show that ∂μu∂μB ¼
∂μd∂μB ¼

∂μs∂μB ¼ 1
3
,

∂μu∂μS ¼
∂μd∂μS ¼ 0, and ∂μs∂μS ¼ −1. This gives the following

relations between the chemical potentials μB, μI , and μS
and the quark chemical potentials μq:

μu ¼
1

3
μB þ μI; ð7Þ

μd ¼
1

3
μB − μI; ð8Þ

μs ¼
1

3
μB − μS: ð9Þ

In the chiral (Weyl) representation, we can write the Dirac
operator ðDþm − μqγ0Þ for three flavors as
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0
BBBBBBBBBB@

m iX − 1
3
μB − μI 0 0 0 0

iX† − 1
3
μB − μI m 0 0 0 0

0 0 m iX − 1
3
μB þ μI 0 0

0 0 iX† − 1
3
μB þ μI m 0 0

0 0 0 0 m iX − 1
3
μB þ μS

0 0 0 0 iX† − 1
3
μB þ μS m

1
CCCCCCCCCCA
; ð10Þ

where iX ¼ D0 þ iσ ·D. The fermion determinant then becomes

detðDþm − μqγ0Þ ¼ det

��
X† þ 1

3
iμB þ iμI

��
X þ 1

3
iμB þ iμI

�
þm2

�

× det

��
X† þ 1

3
iμB − iμI

��
X þ 1

3
iμB − iμI

�
þm2

�

× det

��
X† þ 1

3
iμB − iμS

��
X þ 1

3
iμB − iμS

�
þm2

�
: ð11Þ

The terms proportional to μB and μS appear in the same
way in combination with X† and X. Consequently, the
fermion determinant is real only for μB ¼ μS ¼ 0. Using
Eqs. (7)–(9), this yields the constraints

μu þ μd ¼ 0; ð12Þ
μs ¼ 0: ð13Þ

Given the two constraints, there is only one independent
chemical potential, for example, the isospin chemical
potential μI ¼ 1

2
ðμu − μdÞ. The fermion determinant re-

duces to

detðDþm − μqγ0Þ ¼ det½ðX† þ iμIÞðX þ iμIÞ þm2�
× det½ðX† − iμIÞðX − iμIÞ þm2�
× det½X†X þm2�: ð14Þ

We conclude that the fermion determinant is real even for
nonzero isospin chemical potential, and this proves that
there is no sign problem for μI ≠ 0.

III. HARD-THERMAL-LOOP
PERTURBATION THEORY

In this section, we briefly review hard-thermal-loop
perturbation theory. For a detailed discussion, see, for
example, Ref. [23]. Hard-thermal-loop perturbation theory
is a reorganization of perturbation theory for thermal QCD.
The HTLpt Lagrangian density is written as

L ¼ ðLQCD þ LHTLÞjg→ ffiffi
δ

p
g þ ΔLHTL; ð15Þ

where the HTL improvement term is [67]

LHTL ¼ ð1 − δÞim2
qψ̄γ

μ

�
yμ

y ·D

�
ŷ
ψ

−
1

2
ð1 − δÞm2

DTr

�
Gμα

�
yαyβ

ðy ·DÞ2
�

ŷ
Gμβ

�
; ð16Þ

and ΔLHTL contains additional HTLpt counterterms. Here
yμ ¼ ð1; ŷÞ is a lightlike four-vector with ŷ being a three-
dimensional unit vector, and the angular bracket indicates an
average over the direction of ŷ. The two parametersmD and
mq can be identified with the Debye screening mass and the
thermal quark mass, respectively, and account for screening
effects. HTLpt is defined by treating δ as a formal expansion
parameter. The HTLpt Lagrangian (15) reduces to the QCD
Lagrangian if we set δ ¼ 1. Physical observables are
calculated in HTLpt by expanding in powers of δ, truncating
at some specified order, and setting δ ¼ 1 in the end. This
defines a reorganization of the perturbative series in which
the effects of m2

D and m2
q terms in (16) are included with

leading order but then are systematically subtracted out at
higher orders. Note that HTLpt is gauge invariant order-by-
order in the δ expansion, and, consequently, the results
obtained are independent of the gauge-fixing parameter ξ (in
the class of covariant gaugeswe are using). To zeroth order in
δ, HTLpt describes a gas of massive gluonic and quark
quasiparticles. Thus, HTLpt systematically shifts the pertur-
bative expansion from being around an ideal gas of massless
particles to being around a gas of massive quasiparticles
which are the appropriate physical degrees of freedomat high
temperature and/or chemical potential.
Higher orders in δ describe the interaction among these

quasiparticles and involve standard QCD Feynman diagrams
as well as new diagrams generated by the HTL improvement
term. If the expansion in δ could be calculated to all orders, the
final result would not depend on mD and mq when we set
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δ ¼ 1. However, any truncation of the expansion in δ
produces results that depend on mD and mq. As a conse-
quence, a prescription is required to determinemD andmq as a
function of T, μq, and αs. Several prescriptions were dis-
cussed in [20] at zero chemical potential and generalized to
finite chemical potential in [23].We return to this issue below.

A. NNLO HTLpt thermodynamic potential

The QCD free energy to three-loop order in HTLpt
for the case that each quark f has a separate quark
chemical potential μf was calculated in [23]. The final
result is

ΩNNLO

Ω0

¼ 7

4

dF
dA

1

Nf

X
f

�
1þ120

7
μ̂2fþ

240

7
μ̂4f

�
−
sFαs
π

1

Nf

X
f

�
5

8
ð1þ12μ̂2fÞð5þ12μ̂2fÞ−

15

2
ð1þ12μ̂2fÞm̂D

−
15

2

�
2 ln

Λ̂
2
−1−ℵðzfÞ

�
m̂3

Dþ90m̂2
qm̂D

�
þ s2F
Nf

�
αs
π

�
2X

f

�
15

64

	
35−32ð1−12μ̂2fÞ

ζ0ð−1Þ
ζð−1Þ þ472μ̂2fþ1328μ̂4f

þ64ð−36iμ̂fℵð2;zfÞþ6ð1þ8μ̂2fÞℵð1;zfÞþ3iμ̂fð1þ4μ̂2fÞℵð0;zfÞÞ


−
45

2
m̂Dð1þ12μ̂2fÞ

�

þ
�
sFαs
π

�
2 1

Nf

X
f

5

16

�
96ð1þ12μ̂2fÞ

m̂2
q

m̂D
þ4

3
ð1þ12μ̂2fÞð5þ12μ̂2fÞ ln

Λ̂
2

þ1

3
þ4γEþ8ð7þ12γEÞμ̂2fþ112μ̂4f−

64

15

ζ0ð−3Þ
ζð−3Þ −

32

3
ð1þ12μ̂2fÞ

ζ0ð−1Þ
ζð−1Þ

−96f8ℵð3;zfÞþ12iμ̂fℵð2;zfÞ−2ð1þ2μ̂2fÞℵð1;zfÞ− iμ̂fℵð0;zfÞg
�

þ
�
sFαs
π

�
2 1

N2
f

X
f;g

�
5

4m̂D
ð1þ12μ̂2fÞð1þ12μ̂2gÞþ90f2ð1þ γEÞμ̂2fμ̂2g

−fℵð3;zfþ zgÞþℵð3;zfþ z�gÞþ4iμ̂f½ℵð2;zfþ zgÞþℵð2;zfþ z�gÞ�−4μ̂2gℵð1;zfÞ

− ðμ̂fþ μ̂gÞ2ℵð1;zfþ zgÞ− ðμ̂f− μ̂gÞ2ℵð1;zfþ z�gÞ−4iμ̂fμ̂2gℵð0;zfÞgg−
15

2
ð1þ12μ̂2fÞ

�
2 ln

Λ̂
2
−1−ℵðzgÞ

�
m̂D

�

þ
�
cAαs
3π

��
sFαs
πNf

�X
f

�
15

2m̂D
ð1þ12μ̂2fÞ−

235

16

	�
1þ792

47
μ̂2fþ

1584

47
μ̂4f

�
ln
Λ̂
2

−
144

47
ð1þ12μ̂2fÞ lnm̂Dþ319

940

�
1þ2040

319
μ̂2fþ

38640

319
μ̂4f

�
−
24γE
47

ð1þ12μ̂2fÞ

−
44

47

�
1þ156

11
μ̂2f

�
ζ0ð−1Þ
ζð−1Þ −

268

235

ζ0ð−3Þ
ζð−3Þ −

72

47
½4iμ̂fℵð0;zfÞþð5−92μ̂2fÞℵð1;zfÞ

þ144iμ̂fℵð2;zfÞþ52ℵð3;zfÞ�


þ90

m̂2
q

m̂D
þ315

4

	�
1þ132

7
μ̂2f

�
ln
Λ̂
2

þ11

7
ð1þ12μ̂2fÞγEþ

9

14

�
1þ132

9
μ̂2f

�
þ2

7
ℵðzfÞ



m̂D

�
þΩYM

NNLO

Ω0

; ð17Þ

where Ω0 ¼ − dAπ2T4

45
, μ̂f ¼ μf=2πT, Λ̂ ¼ Λ=2πT, and m̂D ¼ mD=2πT. The QCD Casimir numbers are cA ¼ Nc,

dA ¼ N2
c − 1, sF ¼ Nf=2, dF ¼ NcNf, and s2F ¼ CFsF with CF ¼ ðN2

c − 1Þ=2Nc. The sums over f and g include all
quark flavors, zf ¼ 1=2 − iμ̂f, and ΩYM

NNLO is the pure-glue contribution

ΩYM
NNLO

Ω0

¼ 1 −
15

4
m̂3

D þ cAαs
3π

�
−
15

4
þ 45

2
m̂D −

135

2
m̂2

D −
495

4

�
ln
Λ̂g

2
þ 5

22
þ γE

�
m̂3

D

�

þ
�
cAαs
3π

�
2
�
45

4m̂D
−
165

8

�
ln
Λ̂g

2
−
72

11
ln m̂D −

84

55
−

6

11
γE −

74

11

ζ0ð−1Þ
ζð−1Þ þ

19

11

ζ0ð−3Þ
ζð−3Þ

�

þ 1485

4

�
ln
Λ̂g

2
−
79

44
þ γE þ ln 2 −

π2

11

�
m̂D

�
: ð18Þ
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In Eq. (17), the functions ℵðzÞ and ℵðn; zÞ appear. These
are defined as

ℵðzÞ ¼ ΨðzÞ þΨðz�Þ; ð19Þ
ℵðn; zÞ ¼ ζ0ð−n; zÞ þ ð−1Þnþ1ζ0ð−n; z�Þ; ð20Þ

where

ζ0ðx; yÞ ¼ ∂xζðx; yÞ; ð21Þ
ΨðzÞ ¼ Γ0ðzÞ

ΓðzÞ : ð22Þ

Here ζðx; yÞ is the Riemann zeta function and ΓðzÞ is the
digamma function.

B. Mass prescription

In order to complete a calculation in HTLpt, we must
have a prescription for the mass parameters mD and mq
appearing in the HTL Lagrangian. A variational prescrip-
tion seems natural; i.e., one looks for solutions of

∂
∂mD

ΩðT;αs; mD;mq; μq; δ ¼ 1Þ ¼ 0; ð23Þ

∂
∂mq

ΩðT; αs; mD;mq; μq; δ ¼ 1Þ ¼ 0: ð24Þ

However, in some cases the resulting gap equations only
have complex solutions and one must look for other
prescriptions. Inspired by dimensions reduction, one equa-
tes the mass parametermD with the mass parameter of three-
dimensional electric QCD in [68]. This mass can be
interpreted as the contribution to the Debye mass from
the hard scale T and is well defined and gauge invariant
order-by-order in perturbation theory. This prescription was
used in Ref. [23] and will be used in the remainder of the
paper as well. Originally, the two-loop perturbative mass
was calculated in Ref. [68] for zero chemical potential;
however, Vuorinen has generalized it to finite chemical
potential. The resulting expression for m̂2

D is [2,3]

m̂2
D ¼ αs

3π

	
cA þ c2Aαs

12π

�
5þ 22γE þ 22 ln

Λ̂g

2

�
þ 1

Nf

X
f

�
sFð1þ 12μ̂2fÞ þ

cAsFαs
12π

�
ð9þ 132μ̂2fÞ þ 22ð1þ 12μ̂2fÞγE

þ 2ð7þ 132μ̂2fÞ ln
Λ̂
2
þ 4ℵðzfÞ

�
þ s2Fαs

3π
ð1þ 12μ̂2fÞ

�
1 − 2 ln

Λ̂
2
þ ℵðzfÞ

�
−
3

2

s2Fαs
π

ð1þ 12μ̂2fÞ
�


: ð25Þ

The effect of the in-medium quark mass parametermq in
thermodynamic functions is small, and following Ref. [20],
we take mq ¼ 0.

IV. NUMERICAL RESULTS

In this section, we present our results for the NNLO
HTLpt thermodynamic functions at finite temperature T and
isospin chemical potential μI , and μB ¼ μS ¼ 0. We empha-
size that all thermodynamic functions can be calculated for
nonzero values of the three independent chemical potentials.

A. Running coupling and scales

In Ref. [20], we showed that the renormalization of
the three-loop HTLpt free energy is consistent with the
standard one-loop running of the strong coupling constant
[69,70]. Using a one-loop running is therefore self-
consistent and will be used in the remainder of this paper.1

In this case, the running coupling αsðΛÞ is given by

αsðΛÞ ¼
1

b0t
; ð26Þ

with t ¼ lnðΛ2=Λ2

MS
Þ and b0 ¼ ð11cA − 2NfÞ=12π. We fix

the scale ΛMS by requiring that αsð1.5GeVÞ¼ 0.326 which
is obtained from independent lattice measurements [71].
For one-loop running, this procedure gives ΛMS ¼
176 MeV.
For the renormalization scale we use separate scales,

Λg and Λq, for purely gluonic and fermionic graphs,
respectively. We take the central values of these
renormalization scales to be Λg ¼ 2πT and

Λ ¼ Λq ¼ 2π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2 þ ðμ2B þ 2μ2I Þ=ðNfπ

2Þ
q

. In all plots,

the thick lines indicate the result obtained using these
central values, and the light-blue band indicates the
variation of the result under the variation of both of these
scales by a factor of 2, e.g., πT ≤ Λg ≤ 4πT. For all
numerical results below we use cA ¼ Nc ¼ 3 and Nf ¼ 3.
Since our final result for the thermodynamic potential

(17) and the thermodynamic functions that are derived from
it are expansions in mD=T and mq=T, we cannot push our
results to very high values of μI; the Debye mass in Eq. (25)
depends on the quark chemical potentials μf. An estimate

for the reliability ofHTLpt is thatmD ≃ gT. IfT <
ffiffiffi
3

p
μf=π,

the μf-dependent term ofmD just starts to dominate over the
T-dependent term. Thuswe consider μf ≲ πT as reasonable.
For temperatures down to 150 MeV, we decide to err on the
safe side and use μI no larger than 400 MeV.

1In our previous paper [23], we used one-loop running as well
as three-loop running to gauge the sensitivity of our results.
Generally, our three-loop HTLpt predictions were rather insen-
sitive to whether we used one-loop or three-loop running.
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B. Pressure

The pressure of the quark-gluon plasma can be obtained
directly from the thermodynamic potential (17)

PðT;Λ; μu; μd; μsÞ ¼ −ΩðT;Λ; μu; μd; μsÞ; ð27Þ

where Λ includes both Λg and Λq. The pressure can be
obtained using our general expression Eq. (17) for nonzero
values of μB and μI and for μS ¼ 0 using Eqs. (7)–(9). For
simplicity, we are presenting here the NNLO HTL pressure
only at the nonzero value of μI and for μB ¼ μS ¼ 0 as

PNNLO

P0

¼ 7

4

dF
dA

1

Nf

�
Nfþ

240

7
μ̂2I þ

480

7
μ̂4I

�
−
sFαs
π

1

Nf

�
5

8
ð5Nfþ144μ̂2I þ288μ̂4I Þ−

15

2
ðNfþ24μ̂2I Þm̂D

−
15

2

�
2Nf ln

Λ̂
2
−Nfþ2ð2 log2þ γEÞ−2ℵðzIÞ
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m̂D

�
þΩYM

NNLO

Ω0

: ð28Þ

In Fig. 1, we show the NNLO pressure obtained using
HTLpt as a function of T normalized to that of an ideal gas
of massless particles for μI ¼ 200 MeV, μB ¼ 0 (left) and
μI ¼ 200 MeV, μB ¼ 400 MeV (right). The pressure is an
increasing function of T, but stays well below the ideal-gas
value even for the highest temperatures shown.
In Fig. 2, we show the normalized NNLO pressure of

HTLpt as a function of T for four different values of the
isospin chemical potential μI . We notice that the pressure is
an increasing function of μI for fixed temperature and that

the pressure curves converge at a temperature of approx-
imately 800 MeV.

C. Energy density

Once we know the pressure P, we can calculate the
energy density E by the Legendre transform

E ¼ T
∂P
∂T þ μq

∂P
∂μq − P ¼ T

∂P
∂T þ μI

∂P
∂μI − P; ð29Þ
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where we have used that μI ¼ 1
2
ðμu − μdÞ and μs ¼ 0. In

Fig. 3, we show the energy density as a function of the
temperature for μI ¼ 0 (left) and μI ¼ 200 MeV (right). As
in the case of the pressure, the energy density is an
increasing function of T and stays well below the ideal-
gas value for all temperatures.
In Fig. 4, we show the normalized energy density

for four different values of the isospin chemical
potential μI . For μI ¼ 0 or μI ¼ 200, the energy density
is an increasing function of T. Note, however, that
there is a minimum for the energy density for low
temperatures and higher values of the isospin
chemical potential. We would like to mention here that
HTLpt probably cannot be trusted at these low temper-
atures with a large chemical potential, and one cannot
attribute any interesting physics to this nonmonotonic
behavior.

Likewise, the curves converge at high temperatures, here
already at approximately T ¼ 600 MeV.

D. Trace anomaly

The trace anomaly or interaction measure I is defined by
the difference

I ¼ E − 3P: ð30Þ
For an ideal gas of massless particles, the trace anomaly
vanishes since E ¼ 3P. For massless particles and nonzero
g, I is nonzero and is a measure of the interactions in the
plasma.2 In Fig. 5, we show the interaction measure as a
function of the temperature for two different values of the
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FIG. 1. The pressure normalized to that of an ideal gas of massless particles as a function of T. The left part is for μI ¼ 200 MeV,
μB ¼ 0, and the right part is for μI ¼ 200 MeV, μB ¼ 400 MeV.
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FIG. 2. The pressure normalized to that of an ideal gas of massless particles as a function of T for various values of the isospin
chemical potential μI at μB ¼ μS ¼ 0 (left) and μB ¼ 400 MeV, μS ¼ 0 (right). Here Λg ¼ 2πT and Λq ¼ 2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2 þ ðμ2B þ 2μ2I Þ=ð3π2Þ

p
were used.

2For nonzero current quark masses m0, I ≠ 0 even in the
absence of interactions.

THREE-LOOP HARD-THERMAL-LOOP PERTURBATION … PHYSICAL REVIEW D 93, 054045 (2016)

054045-7



isospin chemical potential, μI ¼ 0 (left) and μI ¼
200 MeV (right). The trace anomaly is a decreasing
function of T, and it converges to zero for large values
of T due to asymptotic freedom.
In Fig. 6, we show the normalized interaction measure as

a function of the temperature T for four different values of
the isospin chemical potential μI . As the figure demon-
strates, the curves are essentially identical.

E. Speed of sound

The speed of sound cs is defined by

c2s ¼
∂P
∂E : ð31Þ

In Fig. 7, we show the speed of sound squared c2s for two
different values of the isospin chemical potential, μI ¼ 0
(left) and μI ¼ 200 MeV (right). The horizontal dotted
line is the ideal-gas value c2s ¼ 1

3
. As this figure
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FIG. 4. The energy density normalized to that of an ideal gas of
massless particles as a function of T for four different values of
the isospin chemical potential and μB ¼ μS ¼ 0. Here Λg ¼ 2πT

and Λq ¼ 2π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2 þ 2μ2I =ð3π2Þ

p
were used.
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FIG. 5. Trace anomaly divided by T4 as a function of the temperature T. The left part is for μI ¼ 0, and the right part is for
μI ¼ 200 MeV. μB ¼ μS ¼ 0 in both plots.
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demonstrates, the speed of sound is an increasing
function of T.
In Fig. 8, we show the speed of sound squared

c2s for four different values of the isospin chemical
potential μI . We notice that the speed of sound is an
increasing function of μI for fixed T and that the
curves converge rather quickly, here at approxi-
mately T ¼ 400 MeV.

F. Susceptibilities

Using the thermodynamic potential given by Eq. (28),
we can compute the quark-number susceptibilities. In the
most general case, we have one quark chemical potential μf
for each quark flavor f, which we can organize in an Nf-
dimensional vector μ ¼ ðμu; μd; μs;…; μNf

Þ. The single
quark susceptibilities are defined by

χijk���ðTÞ ¼
∂iþjþkþ���PðT; μÞ
∂μiu∂μjd∂μks � � �

����
μ¼μ0

; ð32Þ

where μ0 is a configuration of quark chemical potentials.
When computing the derivatives with respect to the
chemical potential, we will use μ0 ¼ 0. We treat Λq as
being a constant and only put the chemical potential
dependence of Λq in after the derivatives are taken. We
have done this in order to more closely match the
procedure used to compute the susceptibilities using
resummed dimensional reduction [2] and to ensure that
the susceptibilities vanish when Nf ¼ 0. In the following,
we will use a shorthand notation for the quark suscep-
tibilities by specifying derivatives by a string of quark

flavors using superscript. For example, χuu2 ¼ χ200,
χds2 ¼ χ011, and χuudd4 ¼ χ220. For a three-flavor system
with ðu; d; sÞ quarks with μB ¼ μS ¼ 0, the nth-order
isospin number susceptibility evaluated at μI ¼ 0 is
defined by

χIn ≡ ∂nP
∂μnI

����
μ̂I¼0

: ð33Þ

We can analytically express various order susceptibil-
ities as

χI2 ¼
1
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FIG. 6. Trace anomaly divided by T4 as a function of the
temperature T for four different values of the isospin chemical
potential and μB ¼ μS ¼ 0. Here Λg ¼ 2πT and Λq ¼
2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2 þ 2μ2I =ð3π2Þ

p
were used.
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FIG. 7. Speed of sound squared as a function of the temperature T. The left part is for μI ¼ 0, and the right part is for μI ¼ 200 MeV.
μB ¼ μS ¼ 0 in both plots.
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For a three-flavor system consisting of ðu; d; sÞ quarks,
we can express the isospin susceptibilities in terms of the
quark susceptibilities as

χI2 ¼ ½χuu2 þ χdd2 − 2χud2 �; ð38Þ

χI4 ¼ ½χuuuu4 þ χdddd4 − 4χuuud4 − 4χdddu4 þ 6χuudd4 �: ð39Þ

The isospin susceptibilities are expressed in terms of
diagonal (same flavor on all indices) quark susceptibilities or
off-diagonal (different flavor on some or all indices). In
HTLpt, there are off-diagonal susceptibilities arising explic-
itly from some of the three-loop graphs [20,23]. There are
also potential off-diagonal contributions coming from all
HTL terms since the mass parameter mD receives contri-
butions from all quark flavors. However, these contributions
vanish when we evaluate the susceptibilities at μf ¼ 0. In

this case, the HTLpt second- and fourth-order isospin
susceptibilities reduce to

χI2 ¼ 2χuu2 ; ð40Þ

χI4 ¼ ½2χuuuu4 þ 6χuudd4 �: ð41Þ

In Fig. 9, we show the HTLpt predictions for the isospin
second- and fourth-order susceptibilities χI2=T

2 and χI4 as
functions of T. The horizontal dotted lines are the corre-
sponding isospin susceptibilities for an ideal gas, indicated
by the Stefan-Boltzmann limit. The central line for the
second-order susceptibility is almost flat, while the central
line for the fourth-order susceptibility is slowly increasing.

V. SUMMARY

In this paper, we presented results for a number of
thermodynamic functions of QCD at finite temperature T
and finite isospin chemical potential μI using hard-thermal-
loop perturbation theory. The pressure was also calculated
at nonzero baryon chemical potential μB. Our results were
derived from the three-loop thermodynamic potential,
which was computed in Ref. [23] as a function of
temperature and quark chemical potentials. Our final
results depend on two renormalization scales Λg and Λq

which are expected to be approximately 2πT and
2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2 þ ðμ2B þ 2μ2I Þ=ð3π2Þ

p
. In order to gauge the theo-

retical uncertainty associated with the scale choice, we
varied both Λg and Λq by a factor of 2 (light-blue bands in
some figures). We found that most quantities have a sizable
scale variation and, at this moment in time, we do not have
a method to reduce the size of the bands. A solution to this
problem is suggested by the authors of Ref. [15]. In this
approach, dubbed renormalization group optimized pertur-
bation theory, the authors modify standard optimized
perturbation theory or SPT. This is done by changing
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FIG. 9. Second- and fourth-order susceptibilities as functions of the temperature T normalized to T2 and one, respectively. μI ¼
μB ¼ μS ¼ 0 in both plots.
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the added/subtraction mass term, including a finite vacuum
term, and imposing renormalization group invariance on
the pressure. In the case of ϕ4-theory, the result for the
pressure up to two-loop order is very stable and has narrow
bands under a scale variation. Note, however, that some
quantities, e.g., χI4, have very small scale variations for
temperatures T ≳ 400 MeV, and hence HTLpt provides
testable predictions.
Given the relatively good agreement between lattice

results and the predictions of NNLO HTLpt at zero and
finite baryon chemical potential for T ≳ 250 MeV, we
expect that the lattice results at finite μI should fall close
to the central (black) lines predicted herein at high temper-
atures. We are looking forward to lattice measurements of

QCD thermodynamics at finite μI and high temperatures
(with μB ¼ μS ¼ 0) in order to test the predictions made
herein. Since the necessary lattice measurements can be
done without Taylor expansion, they would provide a high-
precision test of NNLO HTLpt.
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