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In a previous paper [N. Haque et al., J. High Energy Phys. 05 (2014) 27], we calculated the three-loop
thermodynamic potential of QCD at finite temperature 7" and quark chemical potentials , using the hard-
thermal-loop perturbation theory (HTLpt) reorganization of finite temperature and density QCD. The result
allows us to study the thermodynamics of QCD at finite temperature and finite baryon, strangeness, and
isospin chemical potentials pp, ug, and u;. We calculate the pressure at nonzero up and y; with ug = 0, and
the energy density, the entropy density, the trace anomaly, and the speed of sound at nonzero y; with

up = ps = 0. The second- and fourth-order isospin susceptibilities are calculated at yp = pg = u; = 0.
Our results can be directly compared to lattice QCD without Taylor expansions around p, = 0 since QCD
has no sign problem at yp = ug = 0 and finite isospin chemical potential ;.
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I. INTRODUCTION

Quantum chromodynamics (QCD) in extreme condi-
tions such as high temperature and high density has been
a very active area of research for more than two decades.
The interest in QCD at finite temperature has largely
been spurred by the experimental programs in heavy-ion
collisions at the Relativistic Heavy Ion Collider in
Brookhaven and the Large Hadron Collider at CERN.
One of the goals of these programs is the creation and
study of the quark-gluon plasma—the deconfined phase
of QCD. The equation of state of QCD is essential to the
phenomenology of the quark-gluon plasma. Lattice gauge
theory provides a first-principle method to calculate the
thermodynamic functions of QCD at finite temperature
and zero baryon chemical potential pz. However, at finite
g, QCD suffers from the so-called sign problem, namely
that the fermion determinant is complex. This prevents
one from using standard lattice techniques involving
importance sampling to calculate the partition function
of QCD. One way to circumvent this problem, at least for
small baryon chemical potentials, is to make a Taylor
expansion of the thermodynamic functions around up.
This requires the calculation of the quark-number sus-
ceptibilities evaluated at zero quark chemical potentials,
ug =0.

Perturbative QCD offers an alternative to lattice gauge
theory for the calculations of thermodynamic functions
in the deconfined phase. Invoking asymptotic freedom,
one might expect that perturbation theory works at
sufficiently high temperatures. However, one does not
know a priori how large T must be in order to obtain
a sufficiently good approximation. Using the weak-
coupling expansion in the strong coupling constant g,
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the calculation of the thermodynamic functions has been
pushed to order g®logg both at zero [1] and finite
chemical potential [2-4]. However, a strict perturbative
expansion in g does not converge at temperatures
relevant for the heavy-ion collision experiments. It turns
out that the convergence is very poor unless the temper-
ature is many orders of magnitude larger than the critical
temperature 7. for the deconfinement transition. The
source of the poor convergence is the contributions to
the thermodynamic functions coming from soft momenta
of order gT. The poor convergence of the weak-coupling
expansion suggests that one needs to reorganize the
perturbative series of thermal QCD. For scalar theories,
screened perturbation theory (SPT) has been applied
successfully up to four loops [5-8]. SPT is in part
inspired by variational perturbation theory [9-14]; see
also [15] for a renormalization-group improved reorgani-
zation of the perturbative series. In the case of gauge
theories, using a local mass term for the gluons breaks
gauge invariance, and one needs to generalize SPT.
Hard-thermal-loop perturbation theory (HTLpt) repre-
sents such a generalization and was developed over a
decade ago [16]. Since its invention, HTLpt has been
used to calculate thermodynamic functions through three
loops at zero chemical potential [17-21] as well as finite
chemical potential [22,23]. Depending on the thermo-
dynamic function at hand, the agreement between lattice
simulations and the results from HTLpt is very good
down to temperatures of approximately 7 =250 MeV.
Application of some HTL-motivated approaches can be
found in Refs. [24-35].

While three-color QCD at finite baryon chemical poten-
tial has a sign problem, there are a number of other cases
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where the sign problem is absent. This includes QCD in
a strong magnetic field B, two-color QCD at finite
baryon chemical potential up [36,37], and three-color
QCD at finite isospin chemical potential y; [38]. In this
paper, we will focus on three-color QCD at finite isospin
density. There are a few papers on lattice QCD with
finite isospin chemical potential [39—46]; however, these
mostly focus on the phase transitions themselves and not
on the deconfined phase: In addition to the deconfine-
ment transition, there is an additional transition to a Bose
condensate of pions at sufficiently low temperature T
and sufficiently large isospin chemical potential y; [47].
For T =0, the critical chemical potential for pion
condensation is uj = m,. Moreover, the results of [44]
seem to indicate that the first-order deconfinement
transition at zero isospin density turns into a crossover
at u;/T = 2.5. At sufficiently low temperature and high
isospin chemical potential, i.e. around the phase boun-
dary, HTLpt is unreliable. Thus, at this point in time, we
cannot compare our HTLpt predictions with lattice
Monte Carlo at finite y;. Therefore, our results should
be considered as predictions which can be checked by
future lattice simulations. This is in contrast to three-
color QCD at up = 0, where there is a plethora of lattice
results [48-66] on the thermodynamics of the decon-
fined phase.

The paper is organized as follows. In Sec. II, we briefly
discuss finite chemical potentials and the sign problem
of QCD. In Sec. III, we review hard-thermal-loop pertur-
bation theory and the HTLpt thermodynamic potential
through next-next-to-leading order (NNLO). In Sec. 1V,
we present and discuss our numerical results for the
thermodynamic functions. In Sec. V, we summarize and
conclude.

II. PARTICLE DENSITIES, CHEMICAL
POTENTIALS, AND THE SIGN
PROBLEM IN QCD

In massless QCD with N, flavors there are N2 con-
served charges which correspond to the number of
generators of the group SU(N,) x U(1). For each con-
served charge Q;, we can introduce a nonzero chemical
potential u;. However, it is possible to specify the expect-
ation values of different charges simultaneously, only if
they commute. For Ny =2 and N, = 3, this implies that
we can introduce two and three independent chemical
potentials, respectively. These can conveniently be chosen
as the quark chemical potentials 4, which corresponds to
the separate conservation of the number of u, d, and s
quarks. However, any other independent linear combina-
tion of u, is equivalent, and it is customary to introduce
chemical potentials for baryon number ny, isospin n;, and
strangeness 7.
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After having introduced the chemical potentials in the
Lagrangian, the partition function as well as all thermo-
dynamic quantities are functions of the temperature and the
chemical potentials. For example, the corresponding charge
densities n; are given by

OF
i’
where F is the free energy density.

The baryon, isospin, and strangeness densities

ng, n;, and ng can be expressed in terms of the quark
densities ny as

(1)

n,-:

1
np :g("u + ng +ny), (2)
ny=n, —ny, (3)
ng = —n. (4)

Equations (2)—(4) can be used to derive relations between
the corresponding chemical potentials pp, p;, and ug and
the quark chemical potentials y,. Equations (1) and (3) give

ny; = —a—F
Opy
(Z08) (ol iy
Oy Opg Opy Opy Oy Oy

Comparing the second and third lines in Eq. (5), we
infer that

Oy __Opa _
Ouy Oy

1. (6)

Ouy — Ong _ Ops __ 1
5 5 ) Oup ~ O~ Oup ¥
Hy _ OHg Ops _ __ 1 1 1

s~ O 0, and D .1. This g%ves the following
relations between the chemical potentials g, u;, and pug

and the quark chemical potentials

In the same manner, one can show that

1

Hu =3 HB + Uy, (7)
1

Ha = 5/43 —Hi> (8)
1

Hy = 3 HB = Hs: )

In the chiral (Weyl) representation, we can write the Dirac
operator (D + m — u,y,) for three flavors as
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iXt— %/43 — Uy m 0 0 0 0
0 0 m iX —tup+ 0 0
3MB T Hy . (10)
0 0 iXT—Lup + m 0 0
0 0 0 0 m iX —Sup + ps
0 0 O 0 l)(T _%MB +,MS m
where iX = Dy + ic - D. The fermion determinant then becomes
S U )
det(D + m — p,yy) = det | | X +§mB+l,u1 X+§l/48+l/41 +m
(N 1 ,
x det XT—i—gwg—z,ul X—f—gl,uB—z,u, +m
(N (N ,
x det XT—FglﬂB—lﬂS X+§l/43—l/ls +m=|. (11)

The terms proportional to up and ug appear in the same
way in combination with X' and X. Consequently, the
fermion determinant is real only for up = pug = 0. Using
Egs. (7)—(9), this yields the constraints

My + pg =0,
Hs = 0.

Given the two constraints, there is only one independent
chemical potential, for example, the isospin chemical
potential p; = (s, — pg). The fermion determinant re-
duces to
det(B +m — pyy) = det|(X" + ip)) (X + i) + m’]

x det[(X" = iu) (X = ing) + m?]

x det[XTX + m?]. (14)

We conclude that the fermion determinant is real even for

nonzero isospin chemical potential, and this proves that
there is no sign problem for y; # 0.

III. HARD-THERMAL-LOOP
PERTURBATION THEORY

In this section, we briefly review hard-thermal-loop
perturbation theory. For a detailed discussion, see, for
example, Ref. [23]. Hard-thermal-loop perturbation theory
is a reorganization of perturbation theory for thermal QCD.
The HTLpt Lagrangian density is written as

L= (Loco + Luri)l 5, + ALuTr, (15)

where the HTL improvement term is [67]

[

]y
L =(1—5)1mzw"<”>w
HTL q v-D/,

Sa-amin{on ) 07). 0

and ALyr contains additional HTLpt counterterms. Here
y* = (1,§) is a lightlike four-vector with § being a three-
dimensional unit vector, and the angular bracket indicates an
average over the direction of §. The two parameters m, and
m, can be identified with the Debye screening mass and the
thermal quark mass, respectively, and account for screening
effects. HTLpt is defined by treating & as a formal expansion
parameter. The HTLpt Lagrangian (15) reduces to the QCD
Lagrangian if we set 6 = 1. Physical observables are
calculated in HTLpt by expanding in powers of J, truncating
at some specified order, and setting 6 = 1 in the end. This
defines a reorganization of the perturbative series in which
the effects of m3, and m terms in (16) are included with
leading order but then are systematically subtracted out at
higher orders. Note that HTLpt is gauge invariant order-by-
order in the & expansion, and, consequently, the results
obtained are independent of the gauge-fixing parameter £ (in
the class of covariant gauges we are using). To zeroth order in
0, HTLpt describes a gas of massive gluonic and quark
quasiparticles. Thus, HTLpt systematically shifts the pertur-
bative expansion from being around an ideal gas of massless
particles to being around a gas of massive quasiparticles
which are the appropriate physical degrees of freedom at high
temperature and/or chemical potential.

Higher orders in 6 describe the interaction among these
quasiparticles and involve standard QCD Feynman diagrams
as well as new diagrams generated by the HTL improvement
term. If the expansion in § could be calculated to all orders, the
final result would not depend on mp and m, when we set
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0 = 1. However, any truncation of the expansion in & A. NNLO HTLpt thermodynamic potential
produces results that depend on m;, and m,. As a conse-
quence, a prescription is required to determine mp and m, asa  for the case that each quark f has a separate quark
function of T, p,, and ay. Several prescriptions were dis- chemical potential u, was calculated in [23]. The final
cussed in [20] at zero chemical potential and generalized to  pegult is

finite chemical potential in [23]. We return to this issue below.

|

Q 7dp 1 120 , 240 spag 1 5 15 e
M:——F—Z<1+—ﬁ}+ Mf) = {(1+1 D5+ 1243) - 7(1+12ﬂ})ml)

The QCD free energy to three-loop order in HTLpt

15 A s 15 g(-1)
——(2In=-1-N n3 902, | + 2L (=2 35-32(1— 124 472413 + 13284
5 < n3 (zf)>mD+9 g ]+Nf zf: o ( )C( 1)+ =

- . - . 45 .
+64(—36z,uf&(2,zf)+6(1+8/4]2C)N(1,zf)+31/4f(1+4/4J%)N(0,zf))}—ij(l—i—lZ,u%)
SFQ 21 5 ~2 ritg 4 ~2 ~n2 A
— 96(1+ 12 (I+1245)(5+1247) In—

# () 5 g oo+ 1 i S+ 28 27

1 —
3 H e 8(TH 127 )+ 11200 — o o= (1+127)

—96{88(3,2/) + 12018 (2.27) —2(1 + 2/3)R(1.2/) - iﬁfx(o,zf)}}

T

spag\2 1 5 . N O
+< F ) N_%;[%(]+12M%)(1+12,u§)+90{2(1+75)/l}2c/l§
g
—{R8(G.zp+2,) +RB.2p+2;) +4ia[R(2, 20 +2,) +R8(2.2p +2;)] — 428 (1,25)

~

R R A . A 15 . A .
(RPN 2) = Gy 312 2) = 4N O.57)) = 5 (14127 (20 = 128Gz |

caay\ [Spa, 15 . 235 792 , 1584 A
1+1222)-=—={ (1 In—
+< 37 ) (;:Nf)zf:[zm,)( 1) =g W\t Ay )

144 319< 2040 38640 ) 24yE

1+ 1242)1 1+ 1242
47( + )an+940 319 # 319 17 47 (1+1277)

_%<1+11516H>§<(_1>> ;gzi((_‘)) Z{fo(o 2)+ (5—9222)8(1,2,)

mg 315 132 ,\, A
+ 144ip,8(2,z/) +52x(3,zf)]} — +—{ <1 +— ) In~

mp 4 7 M)
9 132 2 QM
— (1412 14+—=p% ) +28 7 ANLO 17

Doy mmm( 1500 ) +3Nep) b | + 0, (17)
where QO — _dr 5 . By = puy/2nT, A= A/2aT, and fipy = mp/22T. The QCD Casimir numbers are ¢, = N,
dy=N;-1,sp=N;/2,dr =N Nf, and s,r = Cpsy with Cp = (N2 —1)/2N,. The sums over f and g include all
quark ﬂavors 2y =1/2—ifiy, and QYN o is the pure-glue contribution

QM 15 caay [ 15 45 135 495 ( A, 5

ZINNLO 1 = 2253 B i In=2

Q P R S R R L I R L

caa\2[ 45 165/ A, 72 84 6 748(=1)  19¢(=3)
( ) Lrﬂa__( 7_ﬁmm’)_5_ﬁyrﬁ€(—l)jLﬁC(—3))

79 2
ln —I—}/E+ln2—71T1>th]. (18)
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In Eq. (17), the functions R(z) and R(n, z) appear. These
are defined as

R(z) = ¥(z) + ¥(z"), (19)
R(n.z) = '(=n.2) + (=1)""'(=n.2%).  (20)
where
{'(x.y) = 0.:L(x.y). (21)
W(z) = ?/((3 . (22)

Here {(x,y) is the Riemann zeta function and I'(z) is the
digamma function.

B. Mass prescription

In order to complete a calculation in HTLpt, we must
have a prescription for the mass parameters m; and m,
appearing in the HTL Lagrangian. A variational prescrip-
tion seems natural; i.e., one looks for solutions of
J

ca; A 1
A2 :E{CA + 4% <5 —|—22y5+221n79> +FZ|:SF(1 +122) +

Iy

A

2

A S50 A
N F%s N
+2(7+ 132Mf) lnE + 4N(zf)> + v (1+ 12uf) (1 - 2ln5 + &(Zf))

The effect of the in-medium quark mass parameter m, in
thermodynamic functions is small, and following Ref. [20],
we take m, = 0.

IV. NUMERICAL RESULTS

In this section, we present our results for the NNLO
HTLpt thermodynamic functions at finite temperature 7 and
isospin chemical potential y;, and up = pg = 0. We empha-
size that all thermodynamic functions can be calculated for
nonzero values of the three independent chemical potentials.

A. Running coupling and scales

In Ref. [20], we showed that the renormalization of
the three-loop HTLpt free energy is consistent with the
standard one-loop running of the strong coupling constant
[69,70]. Using a one-loop running is therefore self-
consistent and will be used in the remainder of this paper.'
In this case, the running coupling a,(A) is given by

(26)

'In our previous paper [23], we used one-loop running as well
as three-loop running to gauge the sensitivity of our results.
Generally, our three-loop HTLpt predictions were rather insen-
sitive to whether we used one-loop or three-loop running.
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0

oy Q(T, a5, mp,my,pty, 6 =1) =0, (23)
0

a—qu(T, oy, mp, my, fy, 6 =1) = 0. (24)

However, in some cases the resulting gap equations only
have complex solutions and one must look for other
prescriptions. Inspired by dimensions reduction, one equa-
tes the mass parameter mp with the mass parameter of three-
dimensional electric QCD in [68]. This mass can be
interpreted as the contribution to the Debye mass from
the hard scale 7 and is well defined and gauge invariant
order-by-order in perturbation theory. This prescription was
used in Ref. [23] and will be used in the remainder of the
paper as well. Originally, the two-loop perturbative mass
was calculated in Ref. [68] for zero chemical potential;
however, Vuorinen has generalized it to finite chemical
potential. The resulting expression for 71, is [2,3]

CASFQg
127

<(9 +13243) +22(1 + 1247)y

3 85,pa
2

(1+ 12,2})} } (25)

[
with 7 = In(A?/A2 ) and by = (11, — 2N)/127. We fix
the scale Ay;g by requiring that o (1.5 GeV) = 0.326 which
is obtained from independent lattice measurements [71].
For one-loop running, this procedure gives Agg =
176 MeV.

For the renormalization scale we use separate scales,
A, and A,, for purely gluonic and fermionic graphs,
respectively. We take the central values of these
renormalization ~ scales to be A, =2zT and
A=A, = 27r\/T2 + (uf +2u7)/(Nyz?). In all plots,
the thick lines indicate the result obtained using these
central values, and the light-blue band indicates the
variation of the result under the variation of both of these
scales by a factor of 2, e.g.,, #T < A, <4xT. For all
numerical results below we use ¢4 = N, =3 and Ny = 3.

Since our final result for the thermodynamic potential
(17) and the thermodynamic functions that are derived from
it are expansions in my /T and m,/T, we cannot push our
results to very high values of y;; the Debye mass in Eq. (25)
depends on the quark chemical potentials y;. An estimate
for thereliability of HTLptis that mp = ¢gT. If T < \/§,uf/7r,
the ys-dependent term of m, just starts to dominate over the
T-dependent term. Thus we consider y; < #T as reasonable.
For temperatures down to 150 MeV, we decide to err on the
safe side and use y; no larger than 400 MeV.
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B. Pressure where A includes both A, and A,. The pressure can be

The pressure of the quark-gluon plasma can be obtained
directly from the thermodynamic potential (17)

obtained using our general expression Eq. (17) for nonzero
values of upg and u; and for g = 0 using Eqgs. (7)-(9).

For

simplicity, we are presenting here the NNLO HTL pressure

P(T. A, . go pis) = QT A, . s 1) (27) only at the nonzero value of y; and for pp = ug =0
|

Pano _ 7dr 1 240 ., 480\ spa; 1[5 15 o
17 v \N 5N+ 14452 4+ 288)14) —— (N, + 24
Po 4dAN/ = 7 Uy +—— 7 i p Nf 8( r+ 7+28837) 2( 72447 )m
15 A A s )
‘7<2Nf1n5—1\’f+2(210g2+75) 2&(zl))m%+9o ]+NL;<_>

15 (-1
[6 {35Nf—3210g2 32(Nf—1—24A2)4;<( ))+944 1265604 —384(12i,8(2.2;)

N o N 45 N
(148N (1,27) = i (1 +4u%>x<o,z,>>}—7mD<Nf+z4u%>]

spag\2 1 5
N, +24)
+<7[>Nf16{96( it )

A

A N,
3(5Nf+144 +2884f) In 5+ L(1412y)

¢'(=3)_16 21 1oy & (=)
73N, (N (1+1647) - 12 )C(—l)

8
—E(l IN;+12022)log2 — 192{8R(3,2;) + 12ia,R(2,2;) = 2(1 +2a2)R(1,2;) - iﬁ,N(O,zl)}]

8
+16(7 + 12y 2 + 2244} —W(SNZf —21N;+54)
o

Spag 2 1 )
D

N 220 R0+ 2] (L) + R 220 + R (L 20) + IR0}
15 . A . Caly )\ [ SFa; 15 .
—T(Nf—l—24y%)<2Nfln§—Nf—|—2(210g2+}/E)—2R(z1))mD] + ( 3 ) (ﬂ'Nf> |:2ﬁ1D (N;+2447)

235{( 1584 3168 ) A 144 319( 4080 77280 )
Nf In—

16 47 +47 2~ a7 Wy 24 logrn + 0 310 A1 T 319 A

247 J(-1) 1 {(=3) , 111
- = 235(268Nf—273)c( 3 235002
144

m2 315 264 A
_4_7[4m,x(0,z,)+(5—92ﬁ%)x(1,z,)+144iﬁ,x(2,z,)+52x(3,z,)]}+90—+T{<Nf+714,>1 5

(N +240}) = - (22Nf +15+62403)

11 4 9 264 ,\ 2 o
241 Z(28(z)) —4In2) phnp | +-DNLO
+= (Nf+ i — 11) +14<Nf+ A )+7( (z;)—4In )}mD}jL Q

as

(28)

In Fig. 1, we show the NNLO pressure obtained using  the pressure curves converge at a temperature of approx-

HTLpt as a function of T normalized to that of an ideal gas ~ imately 800 MeV.

of massless particles for y; = 200 MeV, up = 0 (left) and

u; =200 MeV, up =400 MeV (right). The pressure is an C. Energy density
increasing function of 7', but stays well below the ideal-gas
value even for the highest temperatures shown.

In Fig. 2, we show the normalized NNLO pressure of
HTLpt as a function of T for four different values of the
isospin chemical potential x;. We notice that the pressure is P P oP P
an increasing function of y; for fixed temperature and that &= Tﬁ + Hq W -P= ar T A oy =P,

q

energy density £ by the Legendre transform
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1.0

[ll loop a; ; ;\E:”() MeV l

1; =200 MeV
up =0 MeV

P/ Pideal

NNLO HTLpt

200 400 600 300 1000
T [MeV ]

FIG. 1.
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1.0—= T T T T
1y =200 MeV [Tloop a3 Ay -=176 MeV |
up =400 MeV
0.8} ]
= -4
=
&
~
& J
0.2F E
NNLO HTLpt
0.0

200 400 600 800 1000

T [MeV]

The pressure normalized to that of an ideal gas of massless particles as a function of 7. The left part is for y; = 200 MeV,
up = 0, and the right part is for u; = 200 MeV, up = 400 MeV.

1.0

l 1 loop «; ; AK:WG MeV

pp =400 MeV

=

£

&

~

&
—  4;=0 MeV
—_—— =200 MeV

0.2 i 1

eme= ;=300 MeV
..... ;=400 MeV

0 1 1 1 1 1
200 400 600 800 1000

T [MeV]

FIG. 2. The pressure normalized to that of an ideal gas of massless particles as a function of 7" for various values of the isospin
chemical potential y; at ug = pg = 0 (left) and pp = 400 MeV, pg = 0 (right). Here A, = 22T and A, = 22+/T? + (u3 + 243)/ (377)

were used.

where we have used that y; =3 (4, — pg) and p; = 0. In
Fig. 3, we show the energy density as a function of the
temperature for y; = 0 (left) and y; = 200 MeV (right). As
in the case of the pressure, the energy density is an
increasing function of 7 and stays well below the ideal-
gas value for all temperatures.

In Fig. 4, we show the normalized energy density
for four different values of the isospin chemical
potential y;. For u; = 0 or yu; = 200, the energy density
is an increasing function of 7. Note, however, that
there is a minimum for the energy density for low
temperatures and higher values of the isospin
chemical potential. We would like to mention here that
HTLpt probably cannot be trusted at these low temper-
atures with a large chemical potential, and one cannot
attribute any interesting physics to this nonmonotonic
behavior.

Likewise, the curves converge at high temperatures, here
already at approximately 7 = 600 MeV.

D. Trace anomaly
The trace anomaly or interaction measure Z is defined by
the difference

I =E-3P. (30)

For an ideal gas of massless particles, the trace anomaly
vanishes since £ = 3P. For massless particles and nonzero
g, Z is nonzero and is a measure of the interactions in the
plasma.” In Fig. 5, we show the interaction measure as a
function of the temperature for two different values of the

2 .
For nonzero current quark masses mg, Z # 0 even in the
absence of interactions.
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FIG. 3.
right part is for y; = 200 MeV. up = ug = 0 in both plots.
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FIG. 4. The energy density normalized to that of an ideal gas of
massless particles as a function of T for four different values of
the isospin chemical potential and yz = g = 0. Here A, = 22T

and A, = 27\/T? + 2u7/(3x*) were used.
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The energy density normalized to that of an ideal gas of massless particles as a function of 7'. The left part is for y; = 0, and the

isospin chemical potential, p; =0 (left) and u; =
200 MeV (right). The trace anomaly is a decreasing
function of 7, and it converges to zero for large values
of T due to asymptotic freedom.

In Fig. 6, we show the normalized interaction measure as
a function of the temperature 7T for four different values of
the isospin chemical potential y;. As the figure demon-
strates, the curves are essentially identical.

E. Speed of sound
The speed of sound c, is defined by

2 _OP
CToE

C

(31)

In Fig. 7, we show the speed of sound squared ¢ for two
different values of the isospin chemical potential, x; = 0
(left) and p; = 200 MeV (right). The horizontal dotted

line is the ideal-gas value c¢2 =1 As this figure

s = 3
ST |ﬂ1=0 I\I/IeV‘ |1 loop as;/l\bE:]76 ]\I/[eV‘ [#lzzoéMev] [1 Toop a; ; /I\ﬁ=176 I\I/leVl
5 L 4
4t i
4t y
&t ] &
é —— NNLO HTLpt < 3 —— NNLO HTLpt ]
T T
«© 2¢ ©of
1+ 1E
0 1 1 1 1 1 1 1 1 1 1
200 400 600 300 1000 200 400 600 800 1000
T [MeV] T [MeV]

FIG. 5.
1 =200 MeV. ug = pug = 0 in both plots.

Trace anomaly divided by 7% as a function of the temperature T. The left part is for u; = 0, and the right part is for
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demonstrates, the speed of sound is an increasing
function of T.

In Fig. 8, we show the speed of sound squared
c? for four different values of the isospin chemical
potential u;. We notice that the speed of sound is an
increasing function of y; for fixed 7 and that the
curves converge rather quickly, here at approxi-
mately 7 = 400 MeV.

F. Susceptibilities

Using the thermodynamic potential given by Eq. (28),
we can compute the quark-number susceptibilities. In the
most general case, we have one quark chemical potential i,
for each quark flavor f, which we can organize in an N -
dimensional vector p = (u,,, fy, ps, ...,,uNf). The single
quark susceptibilities are defined by

i+j ket (T
g () = PR )
Oy OpgOpts - -+ lu=p,

where p is a configuration of quark chemical potentials.
When computing the derivatives with respect to the
chemical potential, we will use gy = 0. We treat A, as
being a constant and only put the chemical potential
dependence of A, in after the derivatives are taken. We
have done this in order to more closely match the
procedure used to compute the susceptibilities using
resummed dimensional reduction [2] and to ensure that
the susceptibilities vanish when N, = 0. In the following,
we will use a shorthand notation for the quark suscep-
tibilities by specifying derivatives by a string of quark
|

_ dA g T2
967

1
75= g T (32N, =3d niyie

PHYSICAL REVIEW D 93, 054045 (2016)

10 T T T T T
1 loop ay; Aﬁ:176 MeV ‘
St
Al
~ o
N
o —  u;=0 MeV
o 4t ceee 1, =200 MeV
~ ema= p; =300 MeV
2t
0 1 1 1 1 1
200 400 600 800 1000
T [MeV]

FIG. 6. Trace anomaly divided by T* as a function of the
temperature 7 for four different values of the isospin chemical

potential and up =pug=0. Here A, =22T and A, =

27/ T?* + 2u? / (37%) were used.

flavors using superscript. For example, x5 = y20,
29 = yo11, and y44dd = y,»,. For a three-flavor system
with (u,d,s) quarks with pp = pug =0, the nth-order
isospin number susceptibility evaluated at u; =0 is
defined by

;_O"P

n = n .
aﬂ[ ;=0

(33)

We can analytically express various order susceptibil-
ities as

16(3 — 61 + T3¢ (3)) — {2(2cA +N) =24

A A
- <1scA =367 +66c475+ 6N ~72log2~361n7 +66¢, 1n§> mg}mg]

dAa?TZ |:24(3 + 2CA)

14472 p

g(=1)

A

A

(=1

~

A
+288c, logriny, — 12 (36cp 43675 = 6N +7210g2 = 6(11cy = 2N,)log 5 ~21¢(3) = (33 4667 + 14<:(3))) A

6(3+2c,) 3

_{(3+2cA)ZJr

4ﬁ’lzD mp

~ +7 <30A(9 + 14y — 16log2) — % (79 — 44y +4n* — 4410g2)

A
—6(6cp +6yp—Np+12l0g2) +2(21cy +22¢5 —6N;) ln§> }rh’D} ,

(34)
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1 duh A d
2h == (4N, = T2 (602 + i) ) — <A 11152 — 5952im3.¢(5) — (576 — 2016m3,¢(3) )il
7 64 3847

A A
+ {72cA - <216yE ~90cy —396¢475 — 36N +432log2 +2161n 7 — 396, 1n5> mD}m’g

A A
- {4cA 2N, — 24 — <15€A + 6N, —T210g2 — 6(6 — 11c,) <yE + 1n5>>ﬁz%}ﬁ1’4

dya? [144

A
Sart |7 = 36+ 21er(5 +4L(3)) + 7275 + 2N, (11 +142(3) + 121n5) —5761log?2
T

fitp

— 11y (17 + 12y +241log2 - 7¢(3) + 1211%) +6(168¢(3) = 932(5) — 62¢,4(5))ip

A

A
+ 3(=36cp — 36y + 6Ny —721og2 + 6(11cy —2Ny) lnE

6(3+2cA) 72
+{_ ( + 2c¢ )+ ACA
mD mD

(3 +2c4)

16ﬁ13D {(3 + 2CA) — 12CA7;1D}7;1/[/)2

+218(3) + ca(33 + 66y, + 14§(3))}ﬁ1’l’) +

342042 ca3+2cs) 1
_{( +2¢0)” a3+ CA)_—<3cA(9+14yE—16log2)+c§(—79+44yE—4n2+44log2)

963  4inp 32
A .
—6(6cp + 6y — Ny + 1210g2) +2(21cy +22¢5 — 6N/) ln§> }mg} , (35)
where
" _ OPmpl 367 + a,4 6(11IN —2N)1n§—546 + N6 — 12yp —241og2 + 7£(3))
D= 8;2% ?1::% = 97[2th s c f D) F f VE g
+ N, (33 + 6675 + 14§(3))H, (36)
2 OYinp L DY PP 6(11cy — 2N )ln]\ S4cp + N (6 — 127, —241og2 + 7(3))
mp = N = m T+ o Cp— ——54c - -
op} |0~ Sax'in, A ) PN vE g

2
+ ¢4(33 4 66y + 14((3))) } - as{12ﬂ<2CA +Ny) + a, (2(5 +22y5)ci +3ca(9 + 14y — 1610g 2)

—6(9cr + Np(=1 + 275 +4log2)) + 2(21cy + 22¢2 — 6N,) In g) }(84Nf§(3) —31(2c4 + NG| (37)
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FIG.7. Speed of sound squared as a function of the temperature 7. The left part is for y; = 0, and the right part is for y; = 200 MeV.
ug = pg = 0 in both plots.
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0.35} 1 loop a,; Ag==176 MeV E

0.30 1
° 025 ]
u; =0 MeV
0.20 H; =200 MeV J
=== ;=300 MeV
----- ;=400 MeV
0.15

200 400 600 800 1000

T [MeV]
FIG. 8. Speed of sound squared as a function of the temperature
T for different values of the isospin chemical potential y; and

pp =ps =0. Here Ay =2aT and A, = 27\/T* + 2u}/(37*)

were used.

For a three-flavor system consisting of (i, d, s) quarks,
we can express the isospin susceptibilities in terms of the
quark susceptibilities as

1

x5 = [rs" + x84 — 247, (38)

)(411 — bduuu +)(§ddd _ 4)(2141461 _ 4)(21ddu + 6)(2”‘”}. (39)

The isospin susceptibilities are expressed in terms of
diagonal (same flavor on all indices) quark susceptibilities or
off-diagonal (different flavor on some or all indices). In
HTLpt, there are off-diagonal susceptibilities arising explic-
itly from some of the three-loop graphs [20,23]. There are
also potential off-diagonal contributions coming from all
HTL terms since the mass parameter mp receives contri-
butions from all quark flavors. However, these contributions
vanish when we evaluate the susceptibilities at 4y = 0. In

2.0F=mme——- e ——— e ———— e ———— ]
1.5¢ 1
E
= 1.0t 4
0.5t 1
—  NNLOHTLpt
=== SBlimit
0.0 1 1 1 1 1
200 400 600 800 1000
T [MeV]
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this case, the HTLpt second- and fourth-order isospin
susceptibilities reduce to

)(é = 25", (40)

2= [y + G, (41)
In Fig. 9, we show the HTLpt predictions for the isospin
second- and fourth-order susceptibilities /T2 and y} as
functions of 7. The horizontal dotted lines are the corre-
sponding isospin susceptibilities for an ideal gas, indicated
by the Stefan-Boltzmann limit. The central line for the
second-order susceptibility is almost flat, while the central
line for the fourth-order susceptibility is slowly increasing.

V. SUMMARY

In this paper, we presented results for a number of
thermodynamic functions of QCD at finite temperature T
and finite isospin chemical potential y; using hard-thermal-
loop perturbation theory. The pressure was also calculated
at nonzero baryon chemical potential yg. Our results were
derived from the three-loop thermodynamic potential,
which was computed in Ref. [23] as a function of
temperature and quark chemical potentials. Our final
results depend on two renormalization scales A, and A,
which are expected to be approximately 2z7 and

27\/T? + (43 + 2u3)/(37%). In order to gauge the theo-
retical uncertainty associated with the scale choice, we
varied both A, and A, by a factor of 2 (light-blue bands in
some figures). We found that most quantities have a sizable
scale variation and, at this moment in time, we do not have
a method to reduce the size of the bands. A solution to this
problem is suggested by the authors of Ref. [15]. In this
approach, dubbed renormalization group optimized pertur-
bation theory, the authors modify standard optimized
perturbation theory or SPT. This is done by changing

i o e ]

1.2f

1.1F

< 0.9}
0.8f
0.7¢ —  NNLOHTLpt
———- SBlimit
0.6 1 1 1 1 1
200 400 600 800 1000
T [MeV]

FIG. 9. Second- and fourth-order susceptibilities as functions of the temperature T normalized to 7> and one, respectively. u; =

ug = pg = 0 in both plots.
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the added/subtraction mass term, including a finite vacuum
term, and imposing renormalization group invariance on
the pressure. In the case of ¢*-theory, the result for the
pressure up to two-loop order is very stable and has narrow
bands under a scale variation. Note, however, that some
quantities, e.g., yi, have very small scale variations for
temperatures 7 = 400 MeV, and hence HTLpt provides
testable predictions.

Given the relatively good agreement between lattice
results and the predictions of NNLO HTLpt at zero and
finite baryon chemical potential for 7 = 250 MeV, we
expect that the lattice results at finite y; should fall close
to the central (black) lines predicted herein at high temper-
atures. We are looking forward to lattice measurements of

PHYSICAL REVIEW D 93, 054045 (2016)

QCD thermodynamics at finite x; and high temperatures
(with up = ug = 0) in order to test the predictions made
herein. Since the necessary lattice measurements can be
done without Taylor expansion, they would provide a high-
precision test of NNLO HTLpt.
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