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We calculate the zeros of angular observables P0
4 and P0

5 of the angular distribution of 4-body decay
B → K�ð→ KπÞlþl− where LHCb, in its analysis of form-factor independent angular observables, has
found deviations from the standard model predictions. In the large recoil region, we obtain relations
between the zeros of P0

4, P
0
5 and the zero (ŝ0) of forward-backward asymmetry of lepton pair, AFB. These

relations are independent of hadronic uncertainties and depend only on the Wilson coefficients. We also
construct a new observable, OL;R

T , whose zero in the standard model coincides with ŝ0, but in the presence
of new physics contributions will show different behavior. Moreover, the profile of the new observable,
even within the standard model, is very different from AFB. We point out that precise measurements of these
zeros in the near future would provide a crucial test of the standard model and would be useful in
distinguishing between different possible new physics contributions to the Wilson coefficients.

DOI: 10.1103/PhysRevD.93.054041

I. INTRODUCTION

Rare B decays are mediated by flavor changing neutral
current (FCNC) transitions (e.g. b → s) which are absent in
the standard model (SM) at tree level. The leading
contributions come from one-loop diagrams. Being sup-
pressed by Glashow-Iliopoulos-Maiani mechanism (GIM)
and Cabibbo-Kobayashi-Maskawa (CKM) factors, their
predictions in SM are very tiny. As these processes are very
sensitive to heavy particles in the loops, any effect of new
physics (NP) will show significant deviation from SM
predictions. This makes these decays assets in probing
NP. So far data collected on rare B-decays by dedicated
experiments (LHCb, B-factories) are in excellent agreement
with the predictions of SM. The data have been used to
retrieve information on flavor structure of possible new
physics and to put stringent constraints on beyond Standard
Model (BSM) scenarios, but expectations of looking for any
definitive hints of NP have not met with success. The results
seem to be consistent with the Cabibbo-Kobayashi-
Maskawa mechanism of the SM [1]. However, recent data
on angular observables of 4-body distribution in the process
[B → K�ð→ KπÞlþl−] indicate a plausible change in this
situation. LHCb has measured several angular observables
as a binned function of the dilepton invariant mass squared
(q2). The data indicate some tension with the SM [2]. These
discrepancies might be a result of statistical fluctuations or
inevitable theoretical uncertainties inherent to the calcula-
tion of these observables [3]. One has to wait for more
experimental data and a more careful analysis of theoretical
uncertainties to clear the smoke. Assuming that these
discrepancies are solely due to NP effects, there have been

attempts in the literature to resolve this tension between
theory and the experimental side (see for example [4]).
In this paper, we study some of the angular observables

P0
4,P

0
5,AFB and a newobservable,whichwecallOL;R

T ,with a
different approach.We look at the zeros of these observables.
The expressions, under certain reasonable assumptions, are
more or less independent of theoretical uncertainties, and
depend solely on the short distanceWilson coefficients, and
thus have very clean predictions in SM. Precise measure-
ment of these quantities gives certain relations (experimen-
tally testable) among the Wilson coefficients and therefore
provides tests of short-distance physics. The most favored
solutions to the present data explaining these deviations
generally indicate towards new physics in the Wilson
coefficient (Ceff

9 ) of the semileptonic operator O9 [5].
Since these zeros essentially probe new contributions to
the Wilson coefficients, their experimental measurement in
the near future can be worthwhile.
We proceed as follows. In the next section, we recall the

effective Hamiltonian for b → slþl−. We discuss the 4-body
angular distribution of B → K�ð→ KπÞlþl− and various
observables in the large energy recoil limit. In Sec. III, we
calculate zeros of the observables P0

4, P
0
5, O

L;R
T and obtain

correlations among them. In Sec. IV,we give SMpredictions
for the zeros of the considered observables and discuss the
implications of the zeros and their correlations in providing
the new constraints on the BSM scenarios. The NP sensi-
tivity of these zeros is discussed in detail. Finally, we
summarize the results of this paper in Sec. V.

II. ANGULAR OBSERVABLES OF B → K�lþl−
IN THE LARGE RECOIL LIMIT

The basic framework to study rare FCNC decays is that
of the effective Hamiltonian which is obtained after
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integrating out the heavy degrees of freedom. The rare
decay B → K�lþl− is governed by the effective
Hamiltonian,

Heff ¼−
4GFffiffiffi

2
p V�

tsVtb

X
i

ðCiðμÞOiþC0
iðμÞO0

iÞþH:c:; ð1Þ

where contribution of the term ∝ VubV�
us

VtbV�
ts
is neglected. Oi are

the effective local operators and CiðμÞ are called Wilson
coefficients evaluated at scale μ. The factorization scale μ
distinguishes between short distance physics (above scale
μ) and long distance physics (below scale μ). The Wilson
coefficients encode information about heavy degrees of
freedom which have been integrated out while matrix
elements of local operators Oi dictate the low energy
dynamics (for a review, see [6]). The operators contributing
significantly to the process B → K�lþl− in SM are

O7 ¼
e

16π2
mbðs̄ασμνRbαÞFμν;

O9 ¼
e2

16π2
ðs̄αγμLbαÞðl̄γμlÞ;

O10 ¼
e2

16π2
ðs̄αγμLbαÞðl̄γμγ5lÞ: ð2Þ

Here, α, β are the color indices, L, R ¼ ð1∓γ5Þ
2

represent
chiral projections and mb is the b-quark mass. The primed
operators come with flipped helicity. Their contribution
within SM is either severely suppressed or not present. The
effective coefficient of operator O9 is given by

Ceff
9 ¼ C9 þ YðŝÞ. Here s is lepton invariant mass (q2)

and ŝ ¼ s=m2
B. YðŝÞ contains contributions from one-loop

matrix elements of operators O1;2;3;4;5;6. The functional
form of YðŝÞ can be found in [7]. Due to YðŝÞ, Ceff

9 is not
real but has a small imaginary part. In the analytic relations
below, YðŝÞ is neglected and all the Wilson coefficients are
assumed real, but for numerical calculations we include
YðŝÞ in Ceff

9 . As we will see, this turns out to be a good
working approximation.
To calculate observables for the B → K� process, one

needs to calculate matrix elements of the local operators
Oi’s. These matrix elements are generally expressed in
terms of seven form factors V, A0, A1, A2, T1, T2 and T3.
These form factors are calculated via nonperturbative
methods like QCD sum rules on the light cone [8].
Working in the QCD factorization framework and heavy
quark and large recoil limit, all seven form factors can be
written in terms of only two independent universal factors:
ξ⊥ and ξ∥ [9]. The two sets of form factors are related to
each other as (see for example [10])

ξ⊥ ¼ mB

mB þmK�
Vðq2Þ;

ξ∥ ¼
mB þmK�

2E
A1ðq2Þ −

mB −mK�

mB
A2ðq2Þ: ð3Þ

The angular distribution of B → K�ð→ KπÞlþl− offers
experimentally accessible observables which are indepen-
dent of form factors and hence theoretically cleaner. The
fully differential decay distribution is given by [11]

d4Γðb → K�ð→ KπÞlþl−Þ
dq2d cos θK�d cos θldϕ

¼ 9

32π
Jðq2; θl; θK� ;ϕÞ

¼ Js1sin
2θK� þ Jc1cos

2θK� þ ðJs2sin2θK� þ Jc2cos
2θK�Þ cos 2θl

þ J3sin2θK�sin2θl cos 2ϕþ J4 sin 2θK� sin 2θl cosϕþ J5 sin 2θK� sin θl cosϕ

þ ðJs6sin2θK� þ Jc6cos
2θK� Þ cos θl þ J7 sin 2θK� sin θl sinϕ

þ J8 sin 2θK� sin 2θl sinϕþ J9sin2θK�sin2θl sin 2ϕ;

¼
X
i

Jiðq2Þfðθl; θK� ;ϕÞ ð4Þ

The angular coefficients Jiðq2Þ are expressed in terms of complex transversity amplitudes AL;R
⊥;0;∥, At and As. Forml ≠ 0, we

have [11]

Js1 ¼
ð2þ β2l Þ

4
½jAL⊥j2 þ jAL

∥ j2 þ ðL → RÞ� þ 4m2
l

q2
ReðAL⊥AR�⊥ þ AL

∥A
R�
∥ Þ;

Jc1 ¼ jAL
0 j2 þ jAR

0 j2 þ
4m2

l

q2
½jAtj2 þ 2ReðAL

0A
R�
0 Þ� þ β2l jAsj2;

Js2 ¼
β2l
4
½jAL⊥j2 þ jAL

∥ j2 þ ðL → RÞ�;
Jc2 ¼ −β2l ½jAL

0 j2 þ ðL → RÞ;
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J3 ¼
1

2
β2l ½jAL⊥j2 − jAL

∥ j2 þ ðL → RÞ�;

J4 ¼
β2lffiffiffi
2

p ½ReðAL
0A

L�
∥ Þ þ ðL → RÞ�;

J5 ¼
ffiffiffi
2

p
βl

�
ReðAL

0A
L�⊥ Þ − ðL → RÞ − mlffiffiffiffiffi

q2
p ReðAL

∥A
�
s þ AR

∥A
�
sÞ
�
;

Js6 ¼ 2βl½ReðAL
∥A

L�⊥ Þ − ðL → RÞ�;
Jc6 ¼ 4βl

mlffiffiffiffiffi
q2

p Re½AL
0A

�
s þ ðL → RÞ�;

J7 ¼
ffiffiffi
2

p
βl

�
Im

�
AL
0A

L�
∥ − ðL → RÞ þ mlffiffiffiffiffi

q2
p ImðAL⊥A�

s þ AR⊥A�
s

��
;

J8 ¼
1ffiffiffi
2

p β2l ½ImðAL
0A

L�⊥ Þ þ ðL → RÞ�;

J9 ¼ β2l ½ImAL�
∥ AL⊥Þ þ ðL → RÞ�; ð5Þ

where

βl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
l

q2

s
: ð6Þ

Note that As contributes only when scalar operators are taken into account. In this paper, we do not consider contributions
from scalar operators. However, for the sake of generality, we have included As in the expressions of Jiðq2Þ. Also, we have
dropped the explicit q2 dependence of the transversity amplitudes for notational simplicity. At the leading order in 1=mb and
αs, the transversity amplitudes read

AL;R
⊥ ¼

ffiffiffi
2

p
NmBð1 − ŝÞ

�
ðCeff

9 þ C0eff
9 Þ∓ðC10 þ C0

10Þ þ 2
m̂b

ŝ
ðCeff

7 þ C0eff
7 Þ

�
ξ⊥ðEK� Þ; ð7Þ

AL;R
∥ ¼ −

ffiffiffi
2

p
NmBð1 − ŝÞ

�
ðCeff

9 − C0eff
9 Þ∓ðC10 − C0

10Þ þ 2
m̂b

ŝ
ðCeff

7 − C0eff
7 Þ

�
ξ⊥ðEK�Þ; ð8Þ

AL;R
0 ¼ −

Nmb

2m̂K�
ffiffiffî
s

p ð1 − ŝÞ2½ðCeff
9 − C0eff

9 Þ∓ðC10 − C0
10Þ þ 2m̂bðCeff

7 − C0eff
7 Þ�ξ∥ðEK� Þ; ð9Þ

At ¼
Nmb

m̂K�
ffiffiffî
s

p ð1 − ŝÞ2½C10 − C0
10�ξ∥ðEK� Þ: ð10Þ

In the above expressions,

N ¼
�

G2
Fα

2

3 × 210π5m3
B
jVtbV�

tsj2q2λ1=2βl
�
1=2

: ð11Þ

Here, λ ¼ m4
B þm4

K� þ q4 − 2ðm2
Bm

2
K� þm2

K�q2 þm2
Bq

2Þ,
m̂b ¼ mb=mB, and EK� is the energy ofK� meson. Terms of
Oðm̂2

K� Þ have been neglected. However, it is worth mention-
ing that these relations hold only in the kinematic region
1 < q2 ðGeV2Þ < 6,which isprecisely the regionof interest.
There are in total 24 angular coefficients [Jiðq2Þ and J̄iðq2Þ].
The charge-parity (CP) conjugated coefficients J̄i [corre-
sponding to CP conjugate mode of B → K�ð→ KπÞlþl−]

are given by Ji with the weak phases conjugated.
The full angular analysis of B → K�ð→ KπÞlþl− offers
opportunities to construct observables which are insensitive
to form factors as much as possible and therefore
are theoretically cleaner and have high sensitivity to NP
effects [11,12].

III. ZEROS OF ANGULAR OBSERVABLES
AND RELATIONS IN SM

The zero crossing of the forward backward asymmetry of
the lepton pair (ŝ0) is known to be highly insensitive to
form factors. This was first pointed out in [13] where a
number of form-factor models were considered and was
noted that the value of ŝ0 is practically independent of
hadronic form factors. Later Ali et al. [14] in their analysis
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showed that ŝ0 depends on the Wilson coefficients and
ratios of form factors and in the heavy quark limit and large
EK� ∼OðmB=2Þ, the hadronic uncertainties in ratios of
form factors drop out, and ŝ0 essentially depends on a
combination of short distance parameters only. This leads
to a nearly model-independent relation between the Wilson
coefficients. The position of the zero crossing is thus
heralded as a test of SM.
In SM, ŝ0 is given by [14]

ReðCeff
9 ðŝ0ÞÞ ¼ −2

m̂b

ŝ0
Ceff
7

1 − ŝ0
1þ m̂2

K� − ŝ0
∼ −2

m̂b

ŝ0
Ceff
7 :

ð12Þ

Note that existence of zero from the above Eq. (12)
necessarily requires the condition Sign½ReðCeff

9 ÞCeff
7 � ¼

−1 to be satisfied. For NP models where Ceff
7 has the

same sign as Ceff
9 , there will then be no zero crossing.

The LHCb collaboration [15]1 has measured the zero of
forward-backward asymmetry of the lepton pair to be q20 ¼
4.9� 0.9 GeV2 which, within errors, is consistent with SM
predictions. The SM predictions for ŝ0 typically lie in
the range ð3.7–4.3Þ GeV2 which in units normalized by
mass of B-meson (ŝ¼q2=m2

B) translates to range
(0.13–0.16) and have relative uncertainties below 10%
level [10,17,18].
The value of zero ŝ0 can be easily obtained from

integrated q2 angular observable, AFB. In terms of the
angular coefficients ðJiðq2ÞÞ, AFB is defined as

AFB ¼ −
3

4

R
dq2ðJ6s þ J̄6sÞR

dq2ðdΓ=dq2 þ dΓ̄=dq2Þ : ð13Þ

To calculate ŝ0, we use the expressions of the transversity
amplitudes given in Eqs. (7)–(10), which are valid in the
large recoil region. We retain contributions of helicity-
flipped Wilson coefficients so that analysis done includes a
subset of NP models involving primed Wilson coeffi-
cients.2 We now discuss the angular variables of interest
and work in the basis where SM operators are augmented
with their helicity flipped counterparts. The expressions
below clearly show the power of the zero-crossing point of
these angular observables to probe different NP scenarios.
The zero crossing of any observable is easily obtained by
equating the numerator to zero. From Eq. (13), we obtain

ŝ0 ¼ −2
ðC10Ceff

7 − C0
10C

0
7Þ

ðC10Ceff
9 − C0

10C
0
9Þ
m̂b: ð14Þ

Within SM (C0
i → 0), dependence on C10 cancels out and

the expression reduces to Eq. (12), sensitive to the ratio of
Ceff
7 and Ceff

9 .
The angular observables P0

5 and P0
4 both have zero-

crossing point in their mass spectrum. The value of zero
crossing for both lies in the “theoretically clean” low-q2

region; interestingly the same region where LHCb has
measured deviation from SM prediction for angular observ-
ables P0

5.
Observable P0

5 is related to angular coefficients J5
through the following relation:

P0
5 ¼

R
dq2ðJ5 þ J5Þ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
R
dq2ðJ2s þ J2sÞ

R
dq2ðJ2c þ J2cÞ

q : ð15Þ

The numerator of P0
5 in the massless lepton limit is

proportional to ½ReðAL
0A

L�⊥ Þ − ðL↔RÞ�. Then the zero of
P0
5, in the low-recoil region, is given by the following

combination of short-distance parameters:

ŝP5

0 ¼ ðCeff
7 þ C0

7ÞðC0
10 − C10Þ

½C10Ceff
9 − C0

10C
0
9 þ ðCeff

7 − C0
7ÞðC10 þ C0

10Þm̂b�
m̂b:

ð16Þ
The zero of P0

5 turns out to be insensitive to hadronic form
factors similar to the zero of AFB. In the SM limit, C10

dependence disappears and the expression reduces to a very
simple relation between the value of zero and the Wilson
coefficient Ceff

7 and Ceff
9 ,

ŝP5;SM
0 ¼ −

Ceff
7

Ceff
9 þ Ceff

7 m̂b
m̂b: ð17Þ

Interestingly enough, we find that within SM, the zero of
P0
5 can be written solely in terms of ŝ0: zero of AFB

ŝP5;SM
0 ¼ ŝSM0 =2

1 − ŝSM0 =2
: ð18Þ

We find this correlation between zero of AFB and that of P0
5

an important result. Equation (18) can be expanded in a
Taylor series and dropping out terms of order OððŝSM0 =2Þ2Þ
and higher, the relation predicts that zero of P0

5 is
approximately half of the value of ŝ0 in SM.
A similar analysis can also be done for observable P0

4. In
terms of angular coefficients Ji0s, observable P0

4 is written
as

P0
4 ¼

R
dq2ðJ4 þ J̄4Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−
R
dq2ðJ2s þ J̄2sÞ

R
dq2ðJ2c þ J̄2cÞ

q : ð19Þ

The numerator of P0
4 is ∝ ½ReðAL

0A
L�
∥ Þ þ ðL↔RÞ�. Using

expressions (8) and (9) for transversity amplitudes AL
0 and

AL
∥ , we find zero of P0

4 to be

1The LHCb collaboration has recently updated its measured
value: q20 ¼ 3.7þ0.8

−1.1 [16].
2We reiterate that in the analytic relations, we assume Ci’s to

be real but retain the complex nature in numerical analysis.
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ŝP4

0 ¼ −2
ðCeff

7 − C0
7Þ½Ceff

9 − C0
9 þ 2ðCeff

7 − C0
7Þm̂b�

½ðCeff
9 − C0

9Þ2 þ ðC10 − C0
10Þ2 þ 2ðCeff

7 − C0
7ÞðCeff

9 − C0
9Þm̂b�

m̂b: ð20Þ

The expression is again very “clean” and has a nontrivial
dependence on short-distance parameters in the large recoil
region. In the SM limit, this relation yields

ŝP4;SM
0 ¼ −2

Ceff
7 Ceff

9 þ 2ðCeff
7 Þ2m̂b

C2
10 þ ðCeff

9 Þ2 þ 2Ceff
7 Ceff

9 m̂b
m̂b: ð21Þ

The zero of P0
4 can also be written in terms of ŝ0 only as

ŝP4;SM
0 ¼ ŝSM0 ð1 − ŝSM0 Þ

ð2 − ŝSM0 Þ : ð22Þ

Again using the fact that the value of ŝ0 is very small
compared to unity, we find the value of zero of P0

4 to be
approximately half of ŝ0, similar to the case ofP0

5. However,
if we keep effects of higher order terms in ŝ0, the value of
zero ofP0

5 and that ofP
0
4 turns out be a bit larger and smaller

than ŝSM0 =2 respectively and the leading effect is of order
ðŝ0Þ2. From the experimental point of view, this accuracy is
currently not there and therefore the effect can be safely
neglected. The correlation between zeros of AFB, P0

4, P
0
5 is

quite intriguing since in a chosen optimal basis of observ-
ables, AFB, P5

0 and P0
4 are independent observables and

there is no a priori reason for their zero-crossing points to
develop this dependence on each other.
With enough data available, one would be able to

perform a full angular analysis of the final state distribution
in the decay B → K�ð→ KπÞlþl− and this would allow
complete determination of the K� spin amplitudes.
Therefore one can use the spin amplitudes to design
observables which are sensitive to specific NP and have
relatively controlled theoretical uncertainties. With this in
mind, we propose a new CP conserving observable which
we call OL;R

T . It has the following form:

OL;R
T ¼ jAL⊥j2 þ jAL

∥ j2 − ðL↔RÞ
8ðJ2s þ J̄2sÞ

: ð23Þ

This new observable is constructed out of both parallel and
perpendicular spin amplitudes of K� and has not been
explored before in the literature. The ratio of amplitudes
is chosen such that theoretical uncertainties due to the
hadronic form factors cancel at the leading order. The
profile of OL;R

T also has a zero in the low-q2 region. In a
basis where SM operator structure is augmented with right-
handed currents, the zero of OL;R

T has NP sensitivity differ-
ently from that of AFB. Its zero-crossing point occurs at

ŝ
OL;R

T
0 ¼ −2

ðC10Ceff
7 þ C0

10C
0
7Þ

ðC10Ceff
9 þ C0

10C
0
9Þ
m̂b: ð24Þ

The expressions ŝ0 [Eq. (14)] and ŝ
OL;R

T
0 [Eq. (24)] have some

interesting features. By definition, observables AFB and
OL;R

T have nonidentical dependence on invariant mass ŝ and
therefore vary differently as a function of ŝ. But within SM,
in spite of the different profiles, the values of zero crossings,

ŝSM0 and ŝ
OL;R

T ;SM
0 , are degenerate.However, in the presence of

helicity flipped operators, the positions of zero-crossing
shift in a dissimilar fashion and the degeneracy gets lifted.
This rather utilitarian feature can be used to probe contri-
butions from helicity flipped operators once the values of ŝ0

and ŝ
OL;R

T
0 are known experimentally with good precision.

Let us remark that all the expressions and relations
obtained above have been worked out under the hypothesis
of no scalar and tensor contributions. Observables AFB, P0

4

and the proposed new observable ŝ
OL;R

T
0 are blind to the

presence of scalar/tensor contributions. Therefore,
the expressions for zeros will remain unaltered even in
the presence of these new contributions. Observable P0

5,
however, does receive contributions from the scalar com-
ponent of K�-spin amplitudes. But the sensitivity to this
contribution is highly suppressed (m2

μ=q2 is the suppression
factor) and in the limit of massless leptons limit, which we
have entertained in this paper, these contributions vanish.

IV. CONSTRAINING NEW PHYSICS

All the Wilson coefficients are real in this analysis, i.e.,
NP does not introduce any new weak phase in the Wilson
coefficients and we assume that the sign of C7 is as in the
SM.Wewill ignore NP scenarios where C7 and C9 have the
same sign. The expressions of zeros of these observables
depend only on the Wilson coefficients, practically inde-
pendent of form factors, thereby leading to theoretically
clean predictions. To calculate these zeros, we use
C9 ¼ 4.2297, C10 ¼ −4.2068, Ceff

7 ¼ −0.2974 [19] at
scale mb. Other input parameters are mpole

b ¼4.80GeV,
GF ¼ 1.166 × 10−5, mB¼5.280GeV, mK� ¼ 0.895 GeV,
mμ ¼ 0.106 GeV, α ¼ 1=129, and αs ¼ 0.21.
In Table I, we give the numerical values of zeros of the

observables in the SM. The values in the second column are
obtained using the relations in Eqs. (14), (18), (22), and
(24). To compare with the exact predictions in the SM and
to have a consistency check of these relations, we also
calculate values of these zeros in the SM using the form
factors and retaining YðŝÞ in Ceff

9 , which we had ignored for
obtaining analytic relations among the zeros. We use the
form factors calculated in [8] using the light-cone sum rule
and tabulate the results in the third column of Table I
whereas in the last column we tabulate the same results
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using form factors as in Beneke et al. [9]. As is evident, the
two sets of form factors yield very similar values, thereby
confirming that these zeros are (almost) independent of
form factors. Clearly, the employed analytic relations yield
values close to those when no approximations are made,
showing the robustness of these relations. All the zeros lie
in the low-q2 region, where form factors are known with
relatively greater precision. At leading order, soft form
factors cancel precisely and predictions of zeros are clean.
Largest corrections to the values of zeros come from form-
factor uncertainties when next-to-leading order effects are
included (as noted in [20] for the case of ŝ0). The typical
error on form factors is∼10%–12% (see [8]). Assuming the
size of errors in all the form factors of the same order, we
find the relative uncertainties in our estimates of these zeros
to be of order ∼30%. So far experimentally as well as
theoretically only ŝ0 has received attention. The experi-
mental value of ŝ0 has large relative uncertainties (of order
35%) [15,16]. Though we have ignored OðαsÞ contribu-
tions in favor of obtaining form-factor insensitive correla-
tions among the zeros, our theoretical estimate of ŝ0 is still
competitive with the experimental value with current
precision as discussed above. The zeros and the relations

among them can be used to constrain the Wilson coef-
ficients in the following ways:

(i) Under the hypothesis of no NP-induced right-
handed currents and real Wilson coefficients, all
the zeros including that of the new observable OL;R

T
are functions of Ceff

7 and Ceff
9 only. With the

magnitude of Ceff
7 stringently constrained from

branching ratio of decay B → K�γ (and B → Xsγ),
the zeros provides new information on Ceff

9 .
(ii) Some of the zero-crossing points are sensitive to the

right-handed currents (more details below). These
contributions can be probed once the precise mea-
surements of zero crossings are made.

Global fits to recently updated data on angular analysis
of the B → K�μμ indicate significant tension with the SM
[5]. It has been suggested that solutions having a destruc-
tive NP contribution to C9 or with CNP

9 ¼ −CNP
10 < 0 are in

very good agreement with the data. From this perspective,
the measurement of these zero-crossing points would
provide a very clean and good test of the hypothesis of
the NP contribution to C9. In Fig. 1, we show the
constrained region in C7 and C9 plane in the SM-like
operator basis. The most stringent bounds on C7 come from
decay B → Xsγ. Then the precise measurement of ŝ0
essentially determines the effective coefficient Ceff

9 . The
recently measured value of ŝ0 currently involves large
errors (∼35%) [16]. Therefore, bounds on Ceff

9 are not as
stringent. But a qualitative analysis shows that ŝ0 is
compatible with models having NP contribution to C9.
We also provide a constrained region in the C7–C9 plane
using bounds from the zero of P0

4 and P0
5. To this end, we

employ derived relations between ŝ0 and zeros of P0
4 and

P0
5. Further, we use the experimentally measured value of

ŝ0 as an input to get constraints from zeros of P0
4 and P0

5.
We find that the measurement of these zeros will provide
equally efficient constraints on C9 as drawn from ŝ0. We
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FIG. 1. Constraints on CNP
7 − CNP

9 from zeros of observables AFB (gray), P0
5 (red) and P0

4 (cyan) using analytic relations [Eqs. (14),
(18), (22), and (24)]. The light orange band shows the constraints on the values of C7 from B → Xsγ. The black filled circle shows the
SM point whereas the blue colored “+” in the plots corresponds to the simplest possible NP solutionCNP

9 ¼ −1.5 to explain the observed
tension in the experimental data on b → sμþμ−. The NP solution CNP

9 ¼ −1.5 corresponds to the “BSM1” scenario and has been
discussed in detail later in the text.

TABLE I. Zeros in the SM. In the second column, we quote the
values calculated using Eqs. (14), (18), (22), and (24), while the
third and fourth columns have entries predicted in the SM using
form factors from [8,9], respectively.

Value of zero Exact values of zero crossings

Observable
Using analytic

relations
Using FFs
from [8]

Using FFs
from [9]

AFB 0.128 0.122 0.125
P0
5 0.068 0.069 0.069

P0
4 0.059 0.054 0.056

OL;R
T 0.128 0.122 0.125

GIRISH KUMAR and NAMIT MAHAJAN PHYSICAL REVIEW D 93, 054041 (2016)

054041-6



also note that zero-crossing points of these observables are
rather sensitive to a slight change in the Wilson coefficient
C7 compared to a change in C9 and C10 in the SM-like
basis. For illustrative purposes, we individually varied C7,
C9, andC10 by 15% with respect to their SM value. We find

that the change in C7 causes central values of ŝ0, ŝ
P0
5

0 , ŝ
P0
4

0

and ŝ
OL;R

T
0 to shift by about 15%with respect to the SM value

on the negative side, the change in C9 causes relatively less

shift (about 13%) in ŝ0, ŝ
P0
5

0 , ŝ
P0
4

0 and ŝ
OL;R

T
0 and no shift in ŝ

P0
4

0

while the change in the Wilson coefficient C10 does not

cause any modification in the SM value of the ŝ0, ŝ
P0
5

0 and

ŝ
OL;R

T
0 but shifts the SM value of ŝ

P0
4

0 by a positive 15%.
In Fig. 2, we plot the q2 spectrum of all four observables

(AFB, P0
5, P

0
4 and OL;R

T ) in different NP models along with
SM. On the x-axis, the red interval shows the 1σ allowed
region currently supported by experimental data on ŝ0. In the
plot AFB vs ŝ, the red interval corresponds to experimental
value q20 ¼ 3.7þ0.8

−1.1 GeV2 [16]. Since at present measure-
ments of zeros except AFB are not available, we employ
the correlations in Eqs. (14), (18), (22) and (24) and use the
experimental value of ŝ0 with associated errors to obtain the
values and corresponding errors in the values of other zeros.
As an illustration of howmuch these zeros can constrain the
NP models, we include two scenarios of new physics in our

analysis. First is the often discussed NP scenario which
postulates a new Uð1Þ0 gauge boson. These models, typi-
cally known as Z0 models, have been shown to explain the
observed anomalies inB → K�μμ [21,22].We find that such
models, which have NP contribution to CNP

9 ∼ −1.5, are at
1.1σ tension with the current data on ŝ0. The same tension
translates to the zero of P0

4 as well. The theoretical value of

ŝ
P0
5

0 in this model is at 1.5σ tension with the data while the

value of ŝ
OL;R

T
0 has 1.3σ tension with experimental data.3 We

also show the q2 profile of all four observables with their
zeros in the supersymmetric models (SUSY). The decays
B → ðK;K�Þll are sensitive to the new contributions in these
models and the invariant mass spectrum, forward-backward
asymmetry, and lepton polarizations of these modes can
constrain these models [23]. The variant of SUSY we have
considered corresponds to large tan β with the masses of
superpartners being relatively large. The details of themodel
can be found in [23]. Here we only show that zeros of all
four observables in this model are consistent with the

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.1

0.0

0.1

0.2

0.3

0.4

s

A FB

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.5

0.0

0.5

1.0

s

P 5

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.5

0.0

0.5

1.0

s

P 4

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.4

0.2

0.0

0.2

0.4

s

O T
L , R

FIG. 2. The q2 spectrum of observables AFB, P0
5, P

0
4 andO

L;R
T in SM (black curve) and two BSM scenarios: Z0 motivated models (blue

curve) and SUSY models (green curve). The Z0 model [21,22] corresponds to CNP
9 ∼ −1.5. The SUSY model (green curve) corresponds

to large tan β with superpartners being heavy [23]. The red interval on the x-axis shows the experimentally allowed 1σ region. We
use ŝ ¼ q2=m2

B.

3Let us remind again that since no actual data is available for
the zeros if P0

4, P
0
5, and OL;R

T , what is meant by data in this
specific context is the values obtained using correlations
[Eqs. (18), (22) and (24)] with ŝ0 as measured by LHCb as an
input.
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experimental data within 1σ. This good agreement between
predictions in the discussed models and the measurement
can be expected given the fact that substantial uncertainties
are affecting the present experimental measurement of these
zeros. Let us remark that the analysis in Fig. 2 for the cases of
P0
5, P

0
4,O

L;R
T is of qualitative nature since the zeros of these

observables have not been measured so far (we again
reiterate that we have used the experimental value of ŝ0
to obtain the “experimentally allowed” red interval for these
observables in Fig. 2). Our purpose here is just to illustrate
that not only the q2 profile, but the precise measurement of
the zero-crossing points can also be used to discriminate
various NPmodels. Once precise measurements of the zeros
are available, the analysis can be donemore precisely and the
relations can certainly provide improved constraints on NP,
especially on the Ceff

9 .
Finally, we investigate the BSM reach of these zeros by

carryingout anumerical studyof ŝ
P0
5

0 , ŝ
P0
4

0 and ŝ
OL;R

T
0 inTable II.

In the SM, their values lie in the large recoil region and
therefore these observables, like zero ofAFB, are expected to
be very clean. These zeros also have sensitivity to BSM
effects inducedbyright-handedcurrents.TheBSMscenarios
wehavechosen inTable II aremotivated from theanalysis [5]
of the updated data on B → K�μμ and are obtained by
allowing variation in a single Wilson coefficient at a time.
The case BSM1 is most favored while the cases BSM2 and
BSM3 are less favorable. The three columns in Table II
correspond to these scenarios as follows:

(i) The scenario BSM1 corresponds to a negative
contribution of −1.5 to the SM value of C9 (shown
in Fig. 1 by the symbol “þ”). This kind of scenario
could, for example, be generated by a Z0 boson
which has vectorlike coupling to muons [24], where
C9 has a nonzero contribution while the NP con-
tribution to the Wilson coefficient C10 vanishes.

(ii) The other two columns correspond to cases where
NP enters in a correlated way in two Wilson
coefficients. The second scenario, BSM2, has new
physics in the SUð2ÞL invariant direction CNP

9 ¼
−CNP

10 and can be realized in Z0 models with the Z0

boson having coupling to left-handed muons [24]. A
scalar leptoquark ϕ transforming as ð3; 3Þ−1=3 under

ðSUð3Þ; SUð2ÞÞUð1Þ with couplings to left-handed
muons can also generate this scenario [25].

(iii) The third scenario stems from new contributions from
helicity-flipped semileptonic operators O0

9 and O0
10.

This case was specifically chosen to show the dis-
tinguishing features of these zeros when only right-
handed currents have new physics contributions.

In each of the BSM scenarios, estimates of uncertainties are
the same as discussed for the SM case. Our numerical

analysis explicitly shows that the observables ŝ
P0
5

0 , ŝ
P0
4

0 and

ŝ
OL;R

T
0 along with ŝ0 can certainly distinguish between the SM
case (SM predictions for zeros are given in Table I) and
different BSMhypotheses.An important pointwewould like
to make here is that from Table II, it is clear that ŝ0 has very

similar values as ŝ
OL;R

T
0 in all scenarios. This is true only when

there is no contribution from right-handed currents (like the
cases BSM1 and BSM2). The values of zero-crossing points
would not be identical when right-handed currents are
invoked (like in the case BSM3). However, the difference

between ŝ0 and ŝ
OL;R

T
0 in the caseBSM3 is arising only beyond

the third decimal place and therefore, at present, can be
neglected in favor of experimental errors. We would like to
draw attention to the fact, as emphasized above also, that not
just the position of the zero of an angular observable but also
the complete profile as a function of ŝ0 is a powerful tool at
hand. This is illustrated in Fig. 2 where one can clearly see

that, though the value of ŝSM0 coincides with ŝ
OL;R

T
0 in the SM,

the q2 spectrums of AFB and OL;R
T are quite different.

We would be able to identify distinctions among differ-
ent NP scenarios more accurately once these zeros are
precisely measured. Experimentally, only ŝ0 has received
attention. We stress that the other zeros are equally
important and should be measured or extracted experimen-
tally, since this could already yield crucial information
about NP, if present. Further, it may happen that some of the
observable profiles (i.e. values in experimentally measured
bins) turn out to be different from SM, as is the case say
with P5

0. In such a situation, a further check would be the
position of the zero. These two pieces of information put
together will clearly point out to any NP present.

TABLE II. Values of zeros compared between different BSM scenarios. Only nonzero NP Wilson coefficients are
shown in each scenario. The values in the parentheses correspond to beyond the third decimal place. See Table I for
values in the SM.

BSM1 BSM2 BSM3

Observable CNP
9 ¼ −1.5 CNP

9 ¼ −CNP
10 ¼ −0.53 C0

9 ¼ C0
10 ¼ −0.10

ŝ0 0.198 0.146 0.127(76)

ŝ
P0
5

0 0.109 0.078 0.067

ŝ
P0
4

0 0.050 0.067 0.061

ŝ
OL;R

T
0 0.198 0.146 0.127(91)
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V. SUMMARY AND CONCLUSIONS

The radiative and semileptonic b → s decays have a
potential sensitivity to effects beyond the SM. With
LHCb’s dedicated efforts to measure the decay B →
K�ll and associated angular observables extensively, the
decay B → K�ll seems to be a promising field to identify
patterns of NP which can be provided by experimental data.
Recent data shows some discrepancies in comparison to
SM predictions but due to uncertainties inherent in the
theoretical calculations of such processes, at present, it is
difficult to infer the same in affirmation. Precise measure-
ments of theoretically clean observables hold the best
chance of unambiguously revealing the presence of physics
beyond the SM, if any. The zero of forward-backward
asymmetry (ŝ0) is known to fall under this category of
observables. But the current measurement is not precise
enough to say anything definitive and is totally consistent
with the SM. It may be useful to have more such
observables measured with precision. In this paper, we
point out that along with ŝ0, the zeros of observables P0

5, P
0
4

andOL;R
T (a new angular observable proposed in this paper)

are suitable candidates in this regard. The zeros of these
observables, like the case of ŝ0, have good theoretical
control over hadronic uncertainties and can provide crucial
tests of the SM. We note that there exist correlations among
zeros of different observables within the SM and the
position of all the zeros is essentially fixed by ŝ0, up to
small corrections. We further use these relations to model-
independently constrain the CNP

7 − CNP
9 plane. To this end,

we define our framework by considering that NP enters in
electromagnetic (O7) and semileptonic operators (O9,O10),
together with their chirally flipped counterparts. We have
assumed the Wilson coefficients to be real, but generali-
zation to complex coefficients is straightforward.
We studied the implications of these zeros onCNP

7 − CNP
9

plane in the SM-like operator basis. The conservative
bounds on CNP

7 are taken from B → Xsγ experimental
data. Owing to the rather large uncertainties in the current
measured value of ŝ0, the constraints on the Wilson
coefficient C9 are rather weak and the deviations of up
to ∼ − 1.5 in C9 are compatible with experimental data
within the 1σ range. Using relations between ŝ0 and zeros

of P0
5 and P0

4, we show that observables ŝ
P0
5

0 , ŝ
P0
4

0 have

equally good sensitivity to C9 and C7 as present in ŝ0. In
addition to the SM-like basis scenario, we further inves-
tigated the cases where operator basis is augmented by
helicity-flipped operators. We note that these observables
are quite sensitive to the effects stemming from BSM
models. This can be observed from the numerical analysis
we performed in Table II and Fig. 2. The analysis clearly
shows that these observables have the capability to dis-
criminate between different BSM models. Especially, the
new proposed observable OL;R

T and its zero are relatively
more sensitive to the scenarios where one only includes the
NP contribution to semileptonic vector operator O9 (e.g.
Z0-model). These scenarios are currently favored by data
over SM (by 3.7σ for CNP

9 ∼ −1.1) as noted in [5]. This
sensitivity can be further exploited to test such scenarios
once more precise data on this new observable as well as on
the zeros of aforementioned observables become available.
To date, only ŝ0 has received attention but we have shown
that zeros of other angular observables also carry important
and complementary information on short-distance param-
eters. We thus hope that these observables will be measured
precisely by the LHCb collaboration and data on these
observables can certainly be used to put stern constraints on
NP. The relations are obtained in the large recoil region in
the large energy limit where theoretical uncertainties are
supposed to be minimal. To the best of our knowledge, this
is the first attempt to use such correlations as a stringent test
of SM itself. A simultaneous accurate determination of
these zeros will surely provide conclusive evidence of any
NP present. Moreover, in a general setting, the zeros by
themselves carry complementary information about the
Wilson coefficients and their measurement together with
the existing data can be used to pinpoint the class of NP
scenarios which can give rise to such predictions. This is

clearly evident from the position of ŝ
OL;R

T
0 which in the

standard model limit yields the same value as ŝ0 but when
the helicity flipped operators are included, leads to com-
plementary information on the Wilson coefficients com-
pared to what was inferred from ŝ0. We also hope that with
more data, not just the position of various zeros, but also the
complete profiles of angular observables will be known
with high precision, which can be used further as a crucial
test of the standard model.
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