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The pion-photon transition form factor is studied by employing two types of sum rules: light cone sum
rules (LCSR) and anomaly sum rules (ASR). By comparing the predictions for the pion-photon transition
form factor, obtained from these two approaches, the applicability limit of the LCSRs at low momenta is
determined. Reciprocally, the ASR threshold dependence on the momentum was extracted using our
LCSR-based method in combination with two different types of pion distribution amplitudes and found
that at higher Q2 it approaches a constant.
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I. INTRODUCTION

The measurement of the transition form factor
(TFF) FπγðQ2Þ at 4 < Q2 < 40 GeV2 by the BABAR
Collaboration [1] in 2009 has showed very unexpected
results: although at Q2 < 10 GeV2 the collected data are
in agreement with previous experiments, the trend of
the measured TFF at Q2 ≳ 10 GeV2 strongly exceeds the
predicted asymptotic limit [2,3]. This is given by

Fasy
πγ ðQ2Þ ¼

ffiffiffi
2

p
fπ

Q2
þOð1=Q4Þ; ð1Þ

and deviations from it are challenging the validity of the
factorization property of hard exclusive processes within
quantum chromodynamics (QCD). On the other hand, the
more recent data of the Belle Collaboration [4] of the year
2012 do not indicate such a large growth of the scaled
TFF at high Q2. This significant difference in the data
trend, stimulated a number of theoretical investigations of
the TFF at various momentum transfers Q2 some ques-
tioning the validity of the BABAR data, e.g., [5], while
other proposals attempting to rationalize this peculiar
TFF behavior, for example, [6,7].
Perturbative quantum chromodynamics (pQCD) in the

leading-order (LO) approximation of the collinear factoriza-
tion approach to the pion TFF predicts [2,3]: Q2FπγðQ2Þ ¼
ð ffiffiffi

2
p

fπ=3Þ
R
1
0 dxφ

ð2Þ
π ðx;Q2Þ=x ¼ ð ffiffiffi

2
p

fπ=3Þhx−1iπ , where

φð2Þ
π ðx; μ2Þ is the pion distribution amplitude (DA) of

twist two encoding the nonperturbative partonic interactions.

This important relation imposes a crucial constraint on the
profile of the pion DA in terms of its inverse moment
and holds in any theoretical framework based on collinear
QCD factorization—see [8] for a comprehensive discussion.
However, it is not known at which momentum value,
“asymptotia” is effectively reached and the TFF starts to
scale with Q2.
Expressing the DA in terms of the conformal

Gegenbauer expansion,

φð2Þ
π ðx; μ2Þ ¼

X∞
n¼0;2;4;…

anðμ2ÞψnðxÞ; ð2Þ

where ψnðxÞ ¼ 6xð1 − xÞCð3=2Þ
n ð2x − 1Þ with φasy

π ðxÞ ¼
6xð1 − xÞ≡ 6xx̄ are the eigenfunctions of the Efremov-
Radyushkin-Brodsky-Lepage (ERBL) evolution equa-
tion [2,9], one can evolve the TFF at any higher scale Q2 ≥
μ2 by determining the nonperturbative coefficients anðμ2Þ
at the scale of choice. At infinitely large Q2, the pion DA
assumes its asymptotic form φasy

π ðxÞ giving rise to the
asymptotic result for the TFF, viz., Eq. (1), in which all
possible perturbative and nonperturbative corrections are
absent. To account for these corrections at finite Q2 values,
one has to apply more sophisticated approaches, like
lightcone sum rules (LCSR), developed in [10,11] and
applied by Bakulev, Mikhailov, Pimikov, and Stefanis
(BMPS) in [12–18] (see also [19–21]).
In an independent parallel development by Klopot,

Oganesian, and Teryaev (KOT) [22–25], it was shown that
the photon transition form factors of pseudoscalar mesons
can be studied by means of anomaly sum rules (ASRs)
which are based on the dispersive representation of the
axial anomaly. This procedure is closely connected to
the treatment of the vector-vector-axial triangle graph
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amplitude [26–28], in which the axial current is assumed to
represent the pion and the two vector currents represent
the real and the virtual photon. The key element of the
ASR method is that it does not rely upon the factorization
hypothesis and, in this sense, it is directly related to the first
principles of QCD and the dynamical chiral symmetry
breaking (DCSB) and the concomitant mass generation of
hadrons. In addition, KOT have extended the analytic
continuation of the ASRs (and herewith the TFF compu-
tation) to the timelike region [29]. This is particularly
important because the low-momentum timelike regime is
unreachable in the conventional pQCD approach.
In this paper we want to compare the two approaches,

i.e., ASRs vs LCSRs, and match their predictions for the
pion-photon TFF. The scope of the analysis is to identify
the treacherous points of each of these methods and
determine their accuracy limits. The paper is organized
as follows. In the next two sections, we will briefly recall
the basic ingredients of both methods, starting with the
LCSRs in Sec. II and continuing with the ASRs in Sec. III.
The comparison of the predictions obtained with the
two methods will be addressed in Sec. IV, while Sec. V
is devoted to our conclusions.

II. LCSR APPROACH

The behavior of the TFF can be obtained from a detailed
formalism (called in the following BMPS for short),
developed in a series of papers [12–18,30]. This formalism
combines the dispersive approach of LCSRs pioneered in
[10,11] (see also [20,21,31]) with QCD sum rules which
employ nonlocal condensates (NLC)s [32–38]. The NLC
QCD SRs are used to derive the pion DA, while the LCSRs
serve our purpose twofold: first, to take into account the
hadronic content of the low-virtuality photon and second,
to incorporate contributions from QCD perturbation theory
and higher-twist corrections. Within QCD, the pion-photon
transition form factor for two off-shell photons Fγ�γ�π0 is
given by the matrix element

Z
d4ze−iq1·zhπ0ðPÞjTðJμðzÞJνð0ÞÞj0i

¼ iϵμναβqα1q
β
2F

γ�γ�π0ðQ2; q2Þ; ð3Þ

where Jμ is the quark electromagnetic current and both
photons are assumed to have finite virtualities q21 ¼
−Q2 ≫ q22 ¼ q2 > 0. The LCSR [10,11] for this matrix
element reads

Q2Fγ�γ�πðQ2; q2Þ

¼
ffiffiffi
2

p

3
fπ

�
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Z
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�
ρ̄ðQ2; xÞ dx

x

þ
Z

x0

0

ρ̄ðQ2; xÞ Q2dx
x̄Q2 þ xq2

�
: ð4Þ

Here, the integration limits are defined by x0 ¼ Q2=
ðQ2 þ sρÞ and s ¼ x̄Q2=x, where sρ ≃ 1.5 GeV2 is the
effective threshold in the vector channel, and M2 is the
Borel parameter, with mρ ¼ 0.77 GeV denoting the physi-
cal mass of the ρ meson. The first term in this equation
takes into account the large-distance effects of the photon
with the small virtuality q2—the so-called hadronic content
of the photon. Though the virtuality of this photon will be
set equal to zero (q2 ¼ 0), given that we are interested in
the transition form factor with one virtual (Q2) and one real
photon, such a general form is useful, because the Taylor
expansion with respect to the small parameter q2 ¼ 0
allows one to estimate the uncertainty due to a finite
virtuality of the quasireal photon in comparing with the
experimental data (see [18]). The main theoretical ingre-
dient in the above sum rule is the spectral density
ρ̄ðQ2; xÞ ¼ ðQ2 þ sÞρpertðQ2; sÞ, where

ρpertðQ2; sÞ ¼ 1

π
ImFγ�γ�π0ðQ2;−s − iεÞ

¼ ρtw-2 þ ρtw-4 þ ρtw-6 þ � � � : ð5Þ

The leading-twist spectral density was studied up to the
next-to-next-to-leading order (NNLO) level of pQCD, i.e.,
ρtw-2 ¼ ρLO þ ρNLO þ ρNNLOβ0

þ � � �, albeit only the β0 part
of the NNLO term is known [39] (see also [5]). For the
next-to-leading-order (NLO) term ρNLO, we employ the
expression computed in [5] with the correction pointed out
in [20], whereas the leading-order contribution is given by
the Born term. To compute the spectral density, one takes
recourse to the hard-scattering amplitudes, which are
calculable within pQCD as a series expansion in terms
of the coupling parameter asðμ2RÞ ¼ αsðμ2RÞ=ð4πÞ, where μ2R
is the renormalization scale. In the works of the BMPS
team, the renormalization and the factorization scale have
been identified and set equal to Q2. This choice avoids the
appearance of scheme-dependent numerical coefficients
which play no important role in our considerations. All
said, the leading twist-two expression for the pion-photon
TFF has the perturbative expansion

Ftw-2
γ�γ�π0 ∼ ½TLO þ asðμ2ÞTNLO þ a2sðμ2ÞTNNLOβ0

þ � � ��
⊗ φð2Þ

π ðx; μ2Þ; ð6Þ

where ⊗ ≡ R
1
0 dx. The TFF is dominated by the first

nontrivial perturbative term proportional to TNLO and the
twist-four contribution. On the other hand, the overall
uncertainties have various sources. These are: (i) uncertain-
ties related to the particular pion DA model adopted,
(ii) twist-four uncertainties, (iii) estimated uncertainties
related to the twist-two contribution at the NNLOβ0 level,
and (iv) uncertainties induced by the twist-six term.
The latter two uncertainties are taken into account by
means of their sum because for M2 ≈ 0.75 GeV2 they are
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comparable in size and have a relatively small magnitude
but enter with opposite signs [16]. For larger values of the
Borel parameter around M ¼ 1.5 GeV2, as used for in-
stance in the LCSR analysis in [20], the uncertainties
related to the twist-six term turn out to be small.
For definiteness, we use for the calculation of the TFF

the family of the pion DAs determined in [30] with the
help of QCD sum rules with NLCs and the nonlocality
parameter λ2q ¼ 0.4 GeV2. In addition, we also employ the
short-tailed platykurtic pion DA, which was more recently
derived and discussed in [8,40,41] using the same NLC
QCD SR method but with a slightly larger value of the
nonlocality parameter, notably, λ2q ¼ 0.45 GeV2. The
platykurtic model DA is unimodal, like the asymptotic
DA, but is much broader than this and has its tails (x ¼ 0,
1) suppressed like the classic bimodal BMS DA. It
combines intrinsically the characteristic features of the
x-distribution of the valence quark in the pion bound state
being subject to DCSB—as described via Dyson-
Schwinger (DS) equations [42,43]—with correlations
induced by NLCs in a nontrivial vacuum which give rise
to a finite vacuum quark virtuality. The first effect, related
to the mass dressing of the confined quark propagator,
causes a broad (unimodal) downward concave shape of
the DA with enhanced tails, while the second effect tends
to suppress the endpoint regions and create two separated
peaks. The reasons why the endpoint-regions of the pion
DA should be suppressed, has been discussed in detail
long ago in connection with the pion wave function and
Sudakov suppression, see e.g., [44,45], and more recently
in [8,40] having recourse to the synchronization properties
of nonlinear oscillators. These issues are, however, out-
side the scope of the present investigation. In our
estimates, shown in graphical form farther below, the
BMS model DA is used to obtain the central TFF
prediction, while the validity range of the BMS DAs
[30] serves as a measure to estimate the involved intrinsic
errors. Note that the “platykurtic” prediction for the pion-
photon TFF almost coincides with that derived with the
BMS model DA [40,41]. Both types of DAs provide very
good agreement with the contemporary data—except
those of BABAR above 10 GeV2. Similar predictions were
recently derived in [46] using a twist-two pion DA with
endpoint suppression within a light-front field-theory
model. A light-front formulation was also consistently
employed in [47] and found to describe both FπγðQ2Þ
and FπðQ2Þ in the spacelike region in agreement with
experiment for constituent quark masses in the range
220–250 MeV.

III. ASR APPROACH

In this section we briefly recall the main points of the
ASR approach. This method relies upon the analysis of
the vector-vector-axial current triangle graph amplitude

Tαμνðq1; q2Þ

¼
Z

d4xd4yeiðq1·xþq2·yÞh0jTfJ3α5ð0ÞJμðxÞJνðyÞgj0i;

ð7Þ

where q1 and q2 are the momenta of the two photons, J3α5
is an isovector axial current, and Jμ and Jν denote the
electromagnetic currents. In what follows, we limit ourselves
to the case when one of the photons is on-shell (q22 ¼ 0).
It is convenient to write the tensor decomposition of this

correlator in the form (see [28] for details)

Tαμνðq1; q2Þ ¼ F1εαμνρq
ρ
1 þ F2εαμνρq

ρ
2

þ F3q1νεαμρσq
ρ
1q

σ
2 þ F4q2νεαμρσq

ρ
1q

σ
2

þ F5q1μεανρσq
ρ
1q

σ
2 þ F6q2μεανρσq

ρ
1q

σ
2; ð8Þ

where the coefficients Fj¼Fjðq21;q22;p2;m2Þ, p¼q1þq2,
j ¼ 1;…; 6 are the corresponding Lorentz invariant ampli-
tudes, constrained by current conservation and Bose
symmetry. Note that the latter includes the interchange
μ↔ν; q1↔q2 in the tensor structures and q21↔q22 in the
arguments of the scalar functions Fj. In what follows, we
limit ourselves to the case when one of the photons is
on-shell (q22 ¼ 0).
It was shown in [28] that the invariant amplitude F3

satisfies the unsubtracted dispersion relation pertaining to the
subtraction of the axial-current divergence. (This seemingly
controversial situation is due to the extra factor q21 in the
current divergence.) Using this unsubtracted dispersion
relation, the dispersion representation of the axial anomaly
for any virtual photon amounts to the ASR [28]

Z
∞

0

A3ðs;Q2;m2
i Þds ¼

1

2π
NcC; ð9Þ

whereNc ¼ 3 is the number of colors,C ¼ 1

3
ffiffi
2

p is the charge

factor, andmi are the quark masses. HereQ2 ¼ −q21 denotes
the momentum transfer of the virtual photon, whereas A3 is
the imaginary part of the invariant amplitude F3.
Although the spectral density A3ðs;Q2;m2Þ can in

principle comprise both, perturbative as well as nonper-
turbative corrections, Eq. (9) is an exact expression and
receives on its right-hand side neither perturbative correc-
tions, by virtue of the Adler-Bardeen theorem [48], nor
nonperturbative contributions, the latter due to ’t Hooft’s
principle [49].1

To establish a relation of the above spectral density to the
pion-photon TFF, we propose to saturate the three-point
correlation function by means of resonances, notably, the

1It is worth mentioning that the first-order correction ∝ αs
to the integrand itself is zero—at least in the massless limit,
see [50–52].
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pion state plus a continuum of all higher resonances. Then,
assuming the validity of the global quark-hadron duality,
we can express the contribution of all higher resonances as
that part of the total integral in the ASR, i.e., the integral
over the same spectral density A3ðs;Q2;m2Þ, which starts
from some lower limit s0. Note that, in general, s0 can
depend on Q2 and has the meaning of the pion duality
interval. Taking into account that the pion resonances
contribute via the pion-photon TFF, i.e., Eq. (3), and
recalling that the original ASR is given in terms of
Eq. (9), we finally obtain the following SR

πfπFπγðQ2Þ ¼ 1

2π
NcC −

Z
∞

s0

A3ðs;Q2;m2
i Þds: ð10Þ

Here, the pion decay constant fπ is defined as the matrix
element h0jJα5ð0ÞjMðpÞi ¼ ipαfπ and the pion-photon
TFF FπγðQ2Þ is given by Eq. (3).
The contribution to the spectral density A3ðs;Q2;m2Þ for

a given flavor q is [28],

AðqÞ
3 ðs;Q2;m2

qÞ ¼
e2q
2π

1

ðQ2 þ sÞ2
�
Q2Rþ 2m2

q ln
1þ R
1 − R

�
;

ð11Þ

where Rðs;m2
qÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

q

s

q
mq is the quark mass for

flavor q. Neglecting the quark mass, we obtain from
(10) and (11) the following expression for the pion-photon
TFF,

FπγðQ2Þ ¼ 1

2
ffiffiffi
2

p
π2fπ

s0ðQ2Þ
s0ðQ2Þ þQ2

; ð12Þ

where fπ ¼ 0.134 MeV is the pion decay constant.
Note that the ASR relation is valid for any value of Q2

(given that the total integral does not depend on it). But, in
addition, also relation (12) is valid for all Q2 values, hence
defining an exact property of the TFF. On the most basic
level, one obviously recovers for Q2 ¼ 0 the chiral limit

1

2
ffiffi
2

p
π2fπ

FπγðQ2 ¼ 0Þ ¼ 1. Moreover, the continuation of

(12) from the spacelike region to the timelike domain can
also be performed [29]. This procedure does not violate the
exactness of the ASR, viz., Eq. (9), provided one assumes
that s0 has the most general form which allows for a
dependence on the momentum transfer [53]. Let us assume
that, though s0 resembles the so-called continuum thresh-
old parameter in QCD sum rules, it may vary withQ2—like
in the KOTapproach. In addition, it may also have different
values in the two- and three-point correlators. Be that as it
may, as long as we do not fix the form of s0ðQ2Þ, the ASR
result for the pion-photon TFF given by Eq. (12) remains an
exact relation. One has to fix the form of s0ðQ2Þ only if
one is interested in the numerical value of this quantity.

This may eventually entail some inaccuracy, like in the
KOT approach.
On the pretext that s0 is a continuum threshold parameter,

we may suppose that in first approximation s0 is a constant.
With this assumption, s0 can be determined from Eq. (12) in
the limitQ2 → ∞ of the spacelike ASR (see [22]). As in the
asymptotic limit, the validity of the factorization theorem
should be completely restored, so that one easily obtains
s0 ¼ 4π2f2π ≃ 0.67 GeV2. This expression coincides with
the one found earlier from a two-point correlator analysis in
[54] and is also close to the numerical value estimated using
two-point sum rules [55]. In this way, we find that the
Brodsky-Lepage interpolation formula [3] (which corre-
sponds to the one-loop approximation of the ASR) holds in
the timelike region as well.2 It is also worth mentioning that
an expression similar to Eq. (12) was derived in [57] by
employing an extension of vector-meson dominance ideas to
include higher resonances in combination with the correct
large-Q2 behavior of the TFF.
In this paper we want to scrutinize the assumption that s0

can be supposed to be close to a constant. To this end, we
will assume that s0 is some arbitrary (but smooth) function
of Q2 and then compare the ASR relation for the TFF,
cf. (12), with the predictions obtained within the BMPS
LCSR-based analysis in [15,16,18].

IV. INTERPLAY BETWEEN LIGHTCONE
AND ANOMALY SUM RULES

In this section, we will work out the connection between
the two sum-rule approaches considered above. Our com-
parative analysis will be carried out in three steps:
(1) Presuming that the threshold s0ðQ2Þ is some definite

(but unknown) function of the momentum, we
estimate its value by comparing (12) with (4)
within the validity range of the LCSR approach
(Q2 ≳ 1 GeV2). The outcome of this comparison is
shown in Fig. 1. The various lines correspond to
different contributions, taken into account step by
step by means of LCSRs. Their meaning is ex-
plained from top to bottom. Line one (dotted) shows
the LO result, while the next lower one (dashed)
illustrates an analogous result when also the NLO
term has been included in the TFF. The third line
(dashed-dotted) represents the prediction which
includes only the LO term and the twist-four con-
tribution, with the NLO term being excluded.
Finally, the lowest curve (thick solid) displays the
total result which comprises the NLO radiative
contribution as well as the twist-four term. In
addition, also the limiting case s0 ¼ 0.67 GeV2,
obtained from ASRs under the assumption that s0

2The similarity between the Brodsky-Lepage interpolation
formula in the spacelike region and the vector-dominance model
in the timelike region is well known, see, e.g., [56].
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is constant, is shown in the form of a horizontal
dashed line. The analysis was carried out using two
different models for the pion DA: the bimodal BMS
DA [30] (green lines) and the short-tailed platykurtic
DA [41] (red lines—always below the green ones).
One observes from this figure that below

2–3 GeV2 the various curves start to deviate sig-
nificantly from each other calling for more detailed
considerations to be addressed in the next item. On
the other hand, it is worth noting that above
Q2 ≳ 3 GeV2, s0ðQ2Þ starts to scale with Q2 and
has a constant magnitude that depends on the actual
approximation of the LCSR. Let us note that the total
result for both, the BMS pion DA and the platykurtic
DA, leads to a s0 value rather far from the constant
0.67 GeV2 used in the KOT approach—even in the
intermediate region Q2 < 10 GeV2. On the other
hand, in the NLO approximation of the LCSR
(LOþ NLO without twist 4 contribution), expres-
sions (12) and (4) numerically coincide, thus con-
firming the assumption that s0 is close to a constant.
The explanation of this coincidence will be dis-
cussed shortly.

(2) Let us concentrate on the low-momentum region
below 3 GeV2. Here, the role of higher-order cor-
rections to the LCSR, both perturbative and non-
perturbative, becomes significant, whereas the ASR
result (according to the KOT assumption) does not
change, being Q2 independent. This becomes evi-
dent from the comparison of the LO TFF prediction
with the one which includes the NLO correction,
employing in both cases the BMS DA within the
BMPS framework. As one can see from Fig. 1, the
LO approximation to the LCSR leads to an unreli-
able dependence on Q2, even if the twist-four
contribution is incorporated. It is only when the
NLO term is taken into account that the result
stabilizes, leading to a s0 close to a constant. This
behavior reflects the fact that at such virtualities
perturbative, i.e., radiative, corrections to the LCSR
are vital. It is remarkable that using instead the short-
tailed platykurtic DA, one finds that s0 almost
coincides with the result derived in the KOT ASR
in the entire range of Q2. In contrast, incorporating
only the twist-four contribution renders also this
result worse, remaining bad even after the inclusion
of the NLO term, as already mentioned. In both
cases, the value of s0 decreases appreciably and, as a
result, stability against theQ2 variation gets worse as
well.
One should note, however, that effects stemming

from large-distance dynamics are accounted for by
the anomaly relation itself “as a whole,” implying
that to compare its prediction with that obtained with
LCSRs, one should include in the latter the sum over

the whole infinite series of the nonperturbative
corrections [58]. The absence of a nonperturbative
correction to the ASR according to t’Hooft’s prin-
ciple may indicate that a strong cancellation of
nonperturbative corrections takes place. Indeed,
estimations in [16] show that the next term in the
nonperturbative expansion (the twist-six contribu-
tion) has the opposite sign relative to the twist four
term and should therefore grossly cancel its con-
tribution. Moreover, one may provide additional
arguments that a significant cancellation of the
nonperturbative corrections may indeed take place.
In fact, if one expands the exact ASR result (12) for
the pion TFF in a series in terms of the ratio s0=Q2,
one obtains an expression which could be regarded
as an infinite-series expansion of the nonperturbative
corrections. One can easily see that, for the physi-
cally reliable case of s0 being close to a constant
(or at least a not strongly oscillating function ofQ2),
the series should be an alternating one.
This clearly means that at momentum values

around Q2 ¼ 1–2 GeV2, a strong cancellation of
the perturbative corrections should take place. Thus,
we may come to the conclusion that the ASR result
should be compared with the prediction derived
from the LCSR only when the NLO term is included
while the twist-four contribution is excluded. For
this case one may further conclude from Fig. 1 that
the comparison with the BMPS result (using the
BMS DA) supports the assumption that the pion

Q2

s0 Q2

LO NLO tw4

LO

LO tw4

LO NLO

Asy

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

FIG. 1. Anomaly SR threshold parameter s0ðQ2Þ extracted
from the comparison of the pion-photon TFF obtained from the
anomaly SR and from LCSRs at four levels of accuracy: (i) dotted
lines—LO result; (ii) dashed lines—LOþ NLO; (iii) dashed-
dotted lines—LO with twist four contribution included; (iv) thick
solid line—LOþ NLOþ twist-4. The horizontal dashed line
represents the threshold value s0 ¼ 4π2f2π ≃ 0.67 GeV2. The
green lines show the results for the BMS pion DA model [30],
whereas the red lines display the analogous results for the short-
tailed platykurtic pion DA [41]. Note that from top to bottom, all
red curves appear always below the corresponding green ones.
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duality interval s0ðQ2Þ in the KOT approach is close
to a constant (second line from the top in this figure),
implying that the approximation s0 ¼ 0.67 GeV2 is
reasonable within a 10 percent accuracy. Note that
employing the short-tailed platykurtic pion DA, this
agreement becomes even better. Clearly, this con-
clusion is valid only above Q2 > 1–1.5 GeV2,
where the LCSR approach is reliable.

(3) To check whether s0 remains constant at small Q2 <
1 GeV2 one should make a more accurate analysis of
the TFF in this region. It is convenient to analyze the
behavior of the pion-photon TFF at q21 ¼ −Q2 → 0

in terms of the ratio R≡ Fπγðq21Þ=Fπγð0Þ. The
dimensionless slope and curvature parameters at
q21 ¼ 0, are defined by a ¼ m2

π∂R=∂q21jq21¼0 and

b ¼ 1
2
m4

π∂2R=∂ðq21Þ2jq21¼0, respectively, and have

for the pion the following values: aπ ¼ m2
π=s0 ¼

0.027 and bπ ¼ m4
π=s20 ¼ 0.73 × 10−3. The slope aπ

was recently determined in [59] by means of Padé
approximants as fitting functions in the analysis of
the spacelike experimental data of the pion-photon
TFF and was found to be aπ ≃ 0.0324. A more
recent dispersive analysis in [60] extracted at van-
ishing momentum transfer the value aπ ≃ 0.0307.
Both results for the slope are (within the range of
the estimated errors omitted here) compatible with
each other and also in good agreement with the
ASR result within the 10% margin of accuracy at
the lower limit discussed before. From (12) one
can easily see that the slope of the TFF at q21 ¼ 0

depends only on the value s0 due to dR=
dq21 ¼ 1=s0. Thus, we can conclude that, though
s0ðq21Þ can be treated as constant to the level of 10
percent precision, a more accurate treatment would
be to start at the value s0 ¼ 0.61 GeV2 for q21 ¼ 0

and approach the asymptotic value s0 ¼ 0.67 GeV2

at the scale −q21 ¼ Q2 ¼ 1–2 GeV2. It is worth
noting that the value s0 ¼ 0.61 GeV2 at q21 ¼ 0

coincides with the ρ-meson mass squared. The slope
aπ can be related to the pion radius by the trivial
relation ðhrπiÞ2 ¼ 6aπ=m2

π (with estimates recently
reviewed in [61]). In this way we find the pion radius
for s0 ¼ 0.61 GeV2 to be 0.62 fm, while for the
asymptotic value s0 ¼ 0.67 GeV2 the result is
slightly smaller and about 0.59 fm. Both values
are in accord with the pion radius derived from
considerations based on the vector-meson domi-
nance, whereas the pion radius extracted from the
Dyson-Schwinger equations (DSE)-based approach
[42] turns out to be somewhat larger, 0.68 fm.
Regarding the curvature parameter bπ at q21 ¼ 0, it

was computed in the works mentioned above and
found to be bπ ≈ 0.0011—see [59,60] for the cor-
responding computational details. Comparing this

value with the ASR result shows that agreement can
be achieved at s0 ¼ 0.61 GeV2 (with q21 ¼ 0),
allowing for the s0 derivative to be negative,
ds0=dq21 ¼ −ds0=dQ2 ¼ −0.25. In summary, it is
reasonable to expect that s0 is 0.61 GeV2 at the zero
point and grows with Q2 up to the asymptotic value
s0 ¼ 0.67 GeV2 at scales on the order of 1–2 GeV2.

(4) It was noted in Ref. [29] that analytic continuation of
the ASR approach to the timelike region leads to a
pole in the TFF at q21 ¼ s0, which is numerically
close to the ρ meson mass squared, i.e.,
m2

ρ ≃ 0.59 GeV2. This pole can be traced back to
the analytic continuation of the ASR into the time-
like domain and arises because in the spacelike
region the TFF is proportional to s0=ðs0 − q21Þ. As a
result, the inverse TFF 1=FðQ2Þ should show a
quasilinear behavior at moderately large Q2.
Furthermore, it should also agree with the well-
known limit of the TFF for two real photons (i.e, the
two-photon pion decay width). Because the LCSRs
are not reliably applicable at very low momenta
below, say, 1 GeV2, it looks promising to compare
the KOT results at low Q2 ¼ −q21 > 0 in the space-
like region with the experimental data and to
consider a possible (linear) interpolation of the
BMS prediction to the well-known limit of the
TFF for two real photons (i.e., the two-photon decay
width, which clearly does not depend on the s0
value). Therefore, we show in Fig. 2 the predictions
for the inverse TFF 1=FðQ2Þ obtained with the KOT
approach with a constant s0 value (solid line) and
also with the BMPS method, contrasting them with
the experimental data at low Q2. The BMPS pre-
dictions are shown by means of a shaded (green)
area which indicates its accuracy range. The slight
excess of the BMS results can be interpreted as a
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FIG. 2. Inverse pion-photon TFF obtained from two different
sum-rule approaches: LCSR (broad green band) and linear
behavior from anomaly SR (dashed line). The experimental data
are taken from CELLO [56]—blue diamonds and CLEO [62]—
black triangles.
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reflection of the small (∼10%) variation of s0ðQ2Þ at
small Q2 and uncertainties originating from the
LCSRs themselves at small Q2 values.

We see from Fig. 2 that the ASR result (solid line) is in
good agreement with the experimental data and exactly
corresponds to the two-photon decay width at Q2 ¼ 0. On
the other hand, the LCSR prediction also conforms with
experiment—starting from about 2 GeV2—and allows for
a linear interpolation of 1=FðQ2Þ to the two-photon decay
width at Q2 ¼ 0. However, the LCSR result for the inverse
TFF 1=FðQ2Þ starts deviating from the linear interpolation
formula at lower momenta in the region 1–1.5 GeV2 where
the LCSRs are supposed to be still reliable. Indeed, a
smooth continuous interpolation (including the derivative)
to the limit of the two-photon decay width is not showing a
linear behavior. This indicates that s0 may deviate from a
constant at small Q2 < 1.5 GeV2 at the level of 10%–20%.
This deviation may be the result of uncertainties of the
LCSR method at small momentum scales currently under
investigation [63], see also [16], where the interplay
between the main NNLO contribution (β0-part) and the
twist-six term is discussed. If this deviation would be
confirmed by further analysis, it would be very interesting
to estimate its analytic form, especially bearing in mind
that, after the analytic continuation to the timelike region
(see Ref. [29]), the deviation from linearity could be related
to the value of the widths of vector mesons. Unfortunately
the current knowledge of the intrinsic uncertainties of the
LCSR predictions in the low Q2 domain is quite limited to
allow a precise estimation of this deviation. We hope that
the dedicated low Q2 analysis of the LCSRs in [63] will
provide more clues.

V. CONCLUSIONS

In this work we performed a comparative analysis of
the pion-photon TFF computed with two different types of
sum rules: LCSRs and ASRs. The first method interpolates
correctly the behavior of the electromagnetic pion-photon
transition form factor for a highly virtual and a real photon
from the ultraviolet limit of QCD down to typical hadronic
scales of about 1–2 GeV, close to the dipole formula. The
second method is based on the chiral anomaly and is exact
even when both photons have vanishing virtualities. The
objective was to match the key parameters of these
approaches in the low-Q2 domain thus, in some sense,
“unifying” their predictions. To this end, we used within the
BMPS LCSR approach two different types of pion DAs.
The classic bimodal BMS DAs [30] and the unimodal
short-tailed platykurtic DA [8,40]. The common key

element of both DAs is the strong suppression of the
kinematic endpoint regions x ¼ 0, 1. This behavior dis-
tinguishes them from many other model DAs, ranging from
the bimodal endpoint-concentrated Chernyak-Zhitnitsky
[64] DA to the recently proposed DSE-based DAs which
have broad unimodal profiles with strongly enhanced tails.
The main results of our analysis have been presented
graphically in Figs. 1 and 2. From the first figure we
observe that the pion-photon TFF, computed with the
platykurtic DA within the LCSR framework, strongly
resembles the analogous result computed with the ASRs.
However, this mutual consistency is best only if the twist-
four contribution in the former calculation is excluded,
arguing that the ASR prediction inherently embodies not
only the first next-to-leading-order twist term, but a whole
series of such contributions. Moreover, from this agreement
one can infer that the threshold parameter s0 in the
ASR approach is a constant with a matching value s0 ¼
0.67 GeV2 at the accuracy level of 10% atQ2 > 1.5 GeV2.
On the other hand, inspection of Fig. 2 reveals that strong
cancellations of the radiative corrections are needed in
order to produce the linear behavior of the displayed
ASR result (dashed line). But, from the other side, if the
observed deviation is real it might indicate a dependence of
s0 on the large photon virtuality Q2. At the same time the
comparison of the ASR results with the fit of the exper-
imental data for the slope and the curvature of the TFF at
q21 ¼ −Q2 ¼ 0, indicates that s0 ¼ 0.61 GeV2, which is
within the estimated error of 10 percent. Thus, from our
combined analysis we find that the value of the pion duality
region s0 is in fact close to a constant and ranges from
0.61 GeV2 at Q2 ¼ 0 to the asymptotic value 0.67 GeV2

reached at the scale 1–2 GeV2. Besides it was found that
the pion radius can be expressed in terms of the pion duality
region s0. For the obtained values of s0 the pion radius was
estimated to be in the interval 0.59–0.62 fm.
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