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We calculate the inclusive gluon correlation function for arbitrary number of gluons with full rapidity
and transverse momentum dependence for the initial glasma state of the p-p, p-A, and A-A collisions. The
formula we derive via superdiagrams generates cumulants for any number of gluons. Higher order
cumulants contain information on correlations between multiple gluons, and they are necessary for
calculations of higher dimensional ridges as well as flow coefficients from multiparticle correlations.
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I. INTRODUCTION

Hadrons produced in high multiplicity events of A-A,
p-A, and p-p collisions show collective behavior [1,2]. This
collectivity becomes apparent in the dihadron correlation
function, which quantify the collective behavior of the
hadrons in terms of the rapidity difference Δη ¼ η1 − η2
and azimuthal angle differenceΔϕ ¼ ϕ1 − ϕ2. The origin of
some of the contributions to the dihadron correlations are
known. These are jet fragmentation around Δη ∼ Δϕ ∼ 0,
resonance decays, and momentum conservation around
Δϕ ∼ π. When these are subtracted from the dihadron
correlation function, the “double ridge” structure,
cosð2ΔϕÞ, becomes apparent. This shows that the correlation
between hadron pairs becomes maximum when the hadrons
are azimuthally collimated in the same direction orwhen they
are back-to-back. Furthermore, these correlations in the near
and away side are elongated in rapidity difference; the
collimation and anticollimation effects are robust even though
the hadrons are separated in rapidity formultiple units [3–18].
That the correlations are of long range in Δη is attributed

to the boost invariance; the gluons are produced at different
rapidities, which is properly understood in theRegge limit of
the QCD parton evolution. This is in contrast to the Bjorken
limit of QCD, where gluons are emitted while being local in
rapidity (Δη ∼ 0), but they evolve in kT during branching.As
for the “double ridge” structure of the azimuthal correla-
tions, there are currently two major attempts to explain the
collectivity either as a final state (hydrodynamics) or as an
initial state effect (glasma state by gluon saturation). One of
them is a possible hydrodynamical evolution of the hadrons
where the hadrons are affected by radial flow, and they come
out around the relative angles Δϕ ∼ 0 or Δϕ ∼ π [19–24].
The other approach searches for the origin of the collectivity
of hadrons in thevery early stages of collisions. Saturation of
the gluons is expected to create a semihard mean transverse
momentum in the target and projectile, which causes the
emitted gluons to be azimuthally correlated. This is studied

by convolving unintegrated gluon distribution functions
(UGD) from both the target and projectile, and this gives rise
to ridge-type azimuthal correlations in the inclusive double
gluon distribution. The initial correlation of the gluons are
preserved when fragmentation functions are used to obtain
final state hadrons from the correlated gluons [25–29].
The measured dihadron correlations alone are not

enough to settle the dispute regarding the origin of the
collectivity in high multiplicity hadron or nucleus colli-
sions. Also, calculations based on the gluon saturation
suggest that multigluon correlations exhibit strong non-
gaussianity [30]. Therefore, examination of higher order
inclusive distribution functions Cn becomes necessary to
learn better about the true nature of the hadronic collec-
tivity. The Cn’s for hadrons are measurable, and in an
earlier study, we predicted that they would reveal higher-
dimensional ridges [31]. Cn’s are also related to the
observable flow moments vmðnPCÞ, where nPC suggests
that vm is measured from n-particle correlations [7,32,33].
On the experimental side, measurements of multiple hadron
correlations (trihadron, quadrohadron, etc.) in high multi-
plicity p-p, p-A, and A-A collisions are needed.
To study the hadronic correlations at a greater resolution,

we derived triple and quadruple gluon correlations at
arbitrary transverse momentum and rapidity dependence
in [31] in the Gaussian white noise approximation [34–37].
The purpose of this paper is to generalize these calculations
to arbitrary number of gluons and provide a formula that
generates inclusive n-gluon distribution with full transverse
momentum and rapidity dependency. Knowing all cumu-
lants of a distribution is tantamount to knowing the
distribution of the correlated random gluon production,
and this distribution contains a complete information on the
system. Hence, this work provides the solution to the
problem of the gluon production from hadrons or nuclei at
the saturation scale.
The outline of the paper is as follows. We first introduce

the technology of superdiagrams that are used to obtain
explicit expression for the inclusive gluon correlations with*ozonder@uw.edu
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full momentum and rapidity dependence for any number of
gluons. Then we give examples of how superdiagrams
work for triple- and quadruple-gluon correlations, which
were already calculated in an earlier work via regular
glasma diagrams. We also derive, for the first time, the
quintuple-gluon cumulant, C5, via the superdiagram tech-
nique. Finally, we list the superdiagramatic rules and
provide a formula for Cn.

II. SUPERDIAGRAMS FOR TRIPLE- AND
QUADRUPLE-GLUON GLASMA DIAGRAMS

The inclusive gluon distribution functions Cn’s are
calculated via connected diagrams. Therefore Cn’s are
cumulants, not moments, and they contain information
of the genuine multiparticle gluon correlations as cumu-
lants do not contain disconnected diagrams. The double-,
triple-, and quadruple-gluon cumulants are found by
calculating 4, 16, and 96 connected glasma diagrams,
respectively [31,38]. Using glasma diagrams to calculate
even higher cumulants is impractical. Already for C5, the
number of connected rainbow glasma diagrams to be
calculated becomes 448.
In this section, we introduce the machinery of super-

diagrams; a handful of diagrams that does the job of
hundreds of connected glasma diagrams. With superdia-
grams, one needs to calculate only 2ðn − 2Þ diagrams for
the n-gluon cumulant, Cn. For example, C4 can be easily
obtained by four superdiagrams instead of calculating 96
connected glasma diagrams. For C5, one needs only six
superdiagrams rather than 448 connected glasma diagrams.
Below we show how superdiagrams work for C3 and C4.

The triple-gluon cumulant is given by [31]

C3ðp; q; lÞ ¼
α3sN3

cS⊥
π12ðN2

c − 1Þ5
1

p2⊥q2⊥l2⊥

Z
d2k⊥
ð2πÞ2 ðT 1 þ T 2Þ;

ð1Þ
where Nc is the gluon color factor, S⊥ is the transverse area
of the overlap between the target and projectile, p⊥, q⊥, and
l⊥ are transverse momentum variables of the produced
gluons. The strong coupling constant αs can be taken as
constant, or it can be running with respect to the gluon

transverse momenta. The terms T 1 and T 2 that contain the
UGDs are given by

T 1 ¼Φ2
1;pðk⊥Þ½2×Φ1;qðk⊥Þ�Φ2;pðp⊥−k⊥ÞT A2

; ð2Þ

T 2¼Φ2
2;lðk⊥Þ½2×Φ2;qðk⊥Þ�Φ1;pðp⊥−k⊥ÞT A1

; ð3Þ

T A1;A2
¼ ½Φ1ð2Þ;qðq⊥ − k⊥Þ þ Φ1ð2Þ;qðq⊥ þ k⊥Þ�
× ½Φ1ð2Þ;lðl⊥ − k⊥Þ þ Φ1ð2Þ;lðl⊥ þ k⊥Þ�: ð4Þ

Here the indices 1 and 2 of the UGDs (Φ) refer to nucleus 1
and nucleus 2, and the second letter indices refer to the
rapidity variables. The argument of the UGDs in the
parentheses correspond to the transverse momentum of
the gluons, and k⊥ is the integration variable. The trans-
verse momentum dependence of the UGDs at any order
(n ¼ 3; 4;…) follows a simple pattern [compare
Eqs. (2)–(4) with Eqs. (6)–(8)]. On the other hand, the
rapidity indices of the UGDs are nontrivial. The main
power of the glasma superdiagrams is to readily determine
the rapidity dependence of the cumulant Cn at any order.
According to the conventions we use, p is the momen-

tum and rapidity index of the gluon closest to nucleus 1
(A1) in rapidity evolution, whereas l is the index of the
gluon which is closest to nucleus 2 (A2). From Eq. (2), one
observes that the UGD with the rapidity index p is squared,
whereas in Eq. (3), the UGD with the rapidity index l is
squared since it is the closest one to A2. The rapidity
structure of Eq. (2) can be summarized by the glasma
superdiagrams in Fig. 1. These two superdiagrams re-
present 16 connected glasma diagrams that is necessary to
calculate C3, and they give T 1 and T 2.
The quadruple-gluon cumulant that requires calculation

of 96 glasma diagrams can be produced with four super-
diagrams. The fourth cumulant is given by [31]

C4ðp;q; l;wÞ¼
α4sN4

cS⊥
π16ðN2

c−1Þ7
1

p2⊥q2⊥l2⊥w2⊥

Z
d2k⊥
ð2πÞ2 ðQ1þQ2Þ;

ð5Þ

where

Q1 ¼ Φ2
1;pðk⊥ÞΦ1;qðk⊥Þ½4 × Φ1;lðk⊥Þ þ 2 × Φ1;qðk⊥Þ�Φ2;pðp⊥ − k⊥ÞQA2

; ð6Þ

Q2 ¼ Φ2
2;wðk⊥ÞΦ2;lðk⊥Þ½4 × Φ2;qðk⊥Þ þ 2 × Φ2;lðk⊥Þ�Φ1;pðp⊥ − k⊥ÞQA1

; ð7Þ

QA1ðA2Þ ¼ ½Φ1ð2Þ;qðq⊥ − k⊥Þ þ Φ1ð2Þ;qðq⊥ þ k⊥Þ�½Φ1ð2Þ;lðl⊥ − k⊥Þ þ Φ1ð2Þ;lðl⊥ þ k⊥Þ�
× ½Φ1ð2Þ;wðw⊥ − k⊥Þ þ Φ1ð2Þ;wðw⊥ þ k⊥Þ�: ð8Þ
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Figure 2 shows the two superdiagrams that contributes to
Q1; the two mirror images of these contractions (not shown
in the figure) gives Q2.

III. RULES FOR SUPERDIAGRAMS

The rules of superdiagrams can be summarized as
follows.
(1) On nucleus A1 (A2), one starts from the rightmost

(leftmost) rapidity index and end at the leftmost
(rightmost) rapidity index on A2 (A1). The first

rapidity site is always visited twice; it is the right-
most (leftmost) site on A1 (A2).

(2) ForCn, theremust ben hoppings on each nucleus. For
example, there are four hoppings on A1 for C4 as
shown in Fig. 2. Also, the line connecting the rapidity
sites should continue by visiting nearest neighbors
without skipping any site. For example, going fromp
directly to l by skipping q is not allowed.

(3) Each site can only be visited twice at maximum.
In light of these rules, one can draw the possible six
superdiagrams for C5. Figure 3 shows three of these
superdiagrams.
Now a multigluon cumulant at any order for n ≥ 4 can be

constructed by the following recipe.
(i) The prefactor and the integral part of Cn shall be in

the form

Cn¼
αnsNn

cS⊥
π4nðN2

c−1Þ2n−1
�Yn

i¼1

1

p2⊥i

�Z
d2k⊥
ð2πÞ2 ðN 1þN 2Þ:

ð9Þ

(ii) N 1 is given by

N 1 ¼ Φ2
1;p1

ðk⊥Þ
�Yn−3
j¼1

Φ2
1;pjþ1

ðk⊥Þ
�

×

�Xn−2
h¼1

2hΦ2
1;phþ1

ðk⊥Þ
�
Φ2;pn

ðp⊥1 − k⊥ÞN A2
:

ð10Þ

N 2 can be obtained from N 1 by making these
changes: replace the nucleus index 1 with 2, and
replace the momentum index pi with pnþ1−i, where
n is the order of the cumulant. For example, one
should change the indices according to p ↔ w and
q ↔ l for C4.

(iii) N A1ðA2Þ that is contained in N 2ð1Þ is given by

N A1ðA2Þ ¼
Yn
m¼2

½Φ1ð2Þ;pm
ðp⊥m − k⊥Þ

þ Φ1ð2Þ;pm
ðp⊥m þ k⊥Þ�; ð11Þ

where n is again the order of the cumulant Cn. For
C4, ðp2; p3; p4Þ ¼ ðq; l; wÞ, and ðp⊥2; p⊥3; p⊥4Þ ¼
ðq⊥; l⊥;w⊥Þ [see Eq. (8)].

Equation (9) together with the definitions given in
Eqs. (10) and (11) is the main result of this paper. Cn
gives inclusive n-gluon distribution, and it quantifies the
correlation of n gluons in transverse momentum and
rapidity. Cn can be used to calculate higher-dimensional
ridges and flow moments vmðnPCÞ from n-particle corre-
lations. In principle, the cumulants Cn can be summed to

pqlw pqlw

FIG. 2. Two glasma superdiagrams that contribute to Q1 given
in Eq. (6), which is part of C4. The other two superdiagrams are
not shown as they are simultaneous horizontal and vertical
reflections of these two superdiagrams.

A1

A2

pql

A1

A2

pql

FIG. 1. Two glasma superdiagrams to determine the rapidity
indices of UGDs in Eqs. (2) and (3). The superdiagram on the left
produces the rapidity indices of the UGDs in T 1 [see Eq. (2)],
whereas the superdiagram on the right is for T 2 [see Eq. (3)].
Whether one begins writing down UGDs starting from A1 (left
figure) orA2 (right figure), the first UGD is always squared, which
is Φ2

1;p when one starts from A1 and Φ2
2;l when one starts from A2.

C3 contains multiplication of three UGDs from A1 and another
three from A2. In the superdiagram on the left, three hoppings on
A1 already brings three UGDs, so before reaching l, one has to
move to the other nucleus. Another rule of the superdiagrams is
that one starts from the rightmost index on A1 (p) and ends at the
leftmost index on A2 as in the left superdiagram. There is also the
same number of superdiagrams where one starts from the leftmost
index on A2 and end at the rightmost index on A1 as in the right
superdiagram. Since these two sets of superdiagrams are simulta-
neous horizontal and vertical reflections of each other, in the
following figures, we will only draw the first set of the superdia-
grams where one start from the rightmost index on A1. As for the
hoppings, only next-to-nearing hoppings are allowed; hence,
connecting p to l by skipping q is not allowed.
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find the cumulant generating function, and then the
probability distribution via Laplace transform of this
generating function. We will not make any attempt in this
direction since the UGDs contained in Cn are complicated
functions, and in practice, they are in the form of numerical
tables.
Now we shall check if the recipe given above yields the

correct number of glasma diagrams for C5. At the order
n ¼ 5, N A2

will contain 24 separate terms, so N 1 will
contain ð23 þ 22 þ 2Þ × 24 ¼ 224 terms. N 2 contains the
same number of diagrams, so the total number of connected
diagrams becomes 448.
We shall now check if the cumulant expansion gives the

same number of diagrams. The moments μn
1 can be written

in terms of the cumulants κn

μn ¼
Xn
k¼1

Bn;kðκ1;…; κn−kþ1Þ; ð12Þ

where Bn;k are partial Bell polynomials. The fifth cumulant
κ5 is same as C5, and it can be written in terms of the lower-
order cumulants and the fifth moment μ5

κ5 ¼ μ5 − 5κ4κ1 − 10κ3κ2 − 10κ3κ
2
1

− 15κ22κ1 − 10κ2κ
3
1 − κ51: ð13Þ

Here, μ5 includes all connected and disconnected glasma
rainbow diagrams with five gluons. Subtracting from μ5 the
other terms in the rhs of Eq. (13) gives the connected five
gluon diagrams, which is κ5. A word of caution regarding
the term κ22 is in order [31]. κ2 includes two upper and two
lower rainbow diagrams. However, the term κ22 mixes upper
and lower rainbow diagrams. Such mixings do not occur in
μ5, where the disconnected diagrams are formed either by
the combination of lower or upper rainbow diagrams. So,
since μ5 is already free from mixed diagrams, subtracting
any mixed diagrams from μ5 would result in wrong
counting. We resolve this issue by modifying the term in
Eq. (13) as such

15κ22κ1 →
1

2
15κ22κ1; ð14Þ

so that only the diagrams of the form upper ⊗ upper and
lower ⊗ lower are subtracted from μ5, but not those of the
form lower ⊗ upper or upper ⊗ lower.
The fifth moment μ5 includes all connected and dis-

connected rainbow glasma diagrams at the five gluon level,
and the number of such diagrams is given by 2ð2n − 1Þ!! −
1 [31]. The first factor of 2 accounts for both upper and
lower rainbow diagrams, the term with the double factorial
counts the number of pairings between gluons, and 1 is
subtracted at the end not to double count the maximally
disconnected glasma diagram (κn1), which is shown as
concentric circles [31]. At the order n ¼ 5, there are μ5 ¼
1889 connected and disconnected rainbow diagrams in
total. The numbers of diagrams that each cumulant for
n < 5 contains have been given in Ref. [31]: κ1 ¼ 1,
κ2 ¼ 4, κ3 ¼ 16, and κ4 ¼ 96. From Eq. (13) with the
modification in Eq. (14), we find the number of connected
diagrams for C5

κ5 ¼ 1889 − 5 × 96 − 10 × 16 × 4 − 10 × 16

− 15 ×
1

2
× 42 − 10 × 4 − 1

¼ 448: ð15Þ

This number is the same as what our recipe previously
gave; see the discussion above Eq. (13). This completes the
proof that our formulas given in the recipe Eqs. (9)–(11)
produce the correct number of diagrams.

IV. SUMMARY AND OUTLOOK

We have developed a superdiagramatic technique which
allows calculating the inclusive gluon distributions Cn at
the saturation limit easily bypassing the necessity of
calculating thousands of glasma diagrams. Inclusive gluon
distribution functions contain information on azimuthal and
rapidity correlations between produced gluons in p-p, p-A,
and A-A collisions. Multiple-hadron correlations are mea-
sured in these experiments. These hadronic correlation
functions are used to measure the ridge-type azimuthal
correlations between hadrons as well as flow moments

pqlwz
q plwz pqlwz

FIG. 3. Three glasma superdiagrams that contribute to C5. The other three superdiagrams are not shown as they are simultaneous
horizontal and vertical reflections of these three superdiagrams.

1μn are moments, not “central moments.” In the literature,
sometimes μ0n are used for moments.
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vmðnPCÞ from multiple hadrons. On the theory side,
hadron correlations are calculated by convolving the gluon
correlation functions Cn with fragmentation functions.
Higher dimensional ridges from number of gluons n > 2
and flow moments vm from multiparticle correlations are a
testing ground for different approaches such as hydro-
dynamics and gluon saturation/glasma physics.
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