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Through analyzing the BðsÞ charmed decays B0 → D̄0f0ð980Þ and Bs → D̄0f0ð980Þ within the
framework of the perturbative QCD factorization approach and comparing with the current data, we
find that there are two possible regions for the f0ð980Þ − f0ð500Þ mixing angle θ: one is centered at
34°–38° and the other falls into 142°–154°. The former can overlap mostly with one of the allowed angle
regions extracted from the decay B0 → D̄0f0ð500Þ. The branching fractions of Bs decay modes are less
sensitive to the mixing angle compared with those of B decay modes. Especially, for the decay
Bs → D0f0ð980Þ, its branching fraction changes only slightly between ð1.2–1.8Þ × 10−7 when the mixing
angle θ runs from 0° to 180°. All of our results support the picture that the f0ð980Þ is dominated by the two-
quark component in the B decay dynamic mechanism. Furthermore, the ss̄ component is more important

than the qq̄ ¼ ðuūþ dd̄Þ= ffiffiffi
2

p
component. This point is different from f0ð500Þ=σ. Last but not least, our

picture is not in conflict with the popular four-quark explanation.

DOI: 10.1103/PhysRevD.93.054034

I. INTRODUCTION

Up to now the quark-level substructure of scalar mesons
is still not well understood. Especially, the slight scalar
mesons, including f0ð500ÞðσÞ, f0ð980Þ, K�

0ð800ÞðκÞ, and
a0ð980Þ, which form a SU(3) flavor nonet, are considered
as either two-quark states or tetraquark states (diquark and
anti-diquark structure) as originally advocated by Jaffe [1].
Certainly, there are other different SU(3) scenarios about
scalar mesons [2]. If one considers these light scalar
mesons as two-quark states, qq̄ structure, there are experi-
ments which indicate that the heaviest one f0ð980Þ and the
lightest one f0ð500Þ in this SU(3) nonet must have a
mixing

jf0ð980Þi ¼ jss̄i cos θ þ jnn̄i sin θ;
jf0ð500Þi ¼ −jss̄i sin θ þ jnn̄i cos θ; ð1Þ

where jnn̄i≡ ðuūþ dd̄Þ= ffiffiffi
2

p
. For the mixing angle θ, there

are several different values from experimental measure-
ments. A mixing angle θ ¼ 34°� 6° was determined from
the decays J=Ψ → f0ϕ, f0ω, and 31°� 5° or 42°� 7° from
the decays DðsÞ → f0ð980Þπ, f0ð980ÞK, while a range
35° < jθj < 55° was given from the analysis of three body
decay Dþ

s → πþπþπ−. An analysis of f0ð980Þ − f0ð500Þ
mixing by using the light cone QCD sum rules [3] yielded
θ ¼ 27°� 13° and θ ¼ 41°� 11°. The value of θ ∼ 34° or
∼146° was obtained in the decays Bs → J=ψf0ð980Þ,
J=ψσ [4]. Ochs [5] found θ ¼ 30°� 3° by averaging over
several decay processes. The authors of Ref. [6] provided a
limit on the mixing angle θ < 29° at 90% confidence. As
we know, the mixing between f0ð980Þ − σ is something

like that in η − η0, but with many more uncertainties. In
order to explain the K − η0 puzzle, some complex mixing
mechanisms including gluon even ηc meson in η − η0 were
also considered [7–9]. This led people to conjecture that
f0ð980Þ and f0ð500Þ may not be simple quark-antiquark
states, and perhaps there exists a more complicated struc-
ture except the f0ð980Þ − σ mixing.
Recently, the decays BðsÞ → D̄f0ð500Þ, D̄f0ð980Þ were

measured by the LHCb Collaboration [10,11],

BðB0 → D̄0f0ð500ÞÞ
¼ ð11.2� 0.8� 0.5� 2.1� 0.5Þ × 10−5; ð2Þ

BðB0 → D̄0f0ð980ÞÞ
¼ ð1.34� 0.25� 0.10� 0.46� 0.06Þ × 10−5; ð3Þ

BðB0
s → D̄0f0ð980ÞÞ
¼ ð1.7� 1.0� 0.5� 0.1Þ × 10−6; ð4Þ

where the first and the second uncertainties are statistical
and experimental systematic errors, respectively, and the
third uncertainties are from the model-dependent error.
The fourth uncertainties in Eq. (2) and Eq. (3) are from the
normalization B0 → D�ð2010Þ−πþ channel. We see there
exist larger statistical errors in the B0

s decay and the model-
dependent error in the first two B0 decays. By using these
new data, we will try to constrain the mixing angle between
f0ð980Þ and σ through these BðsÞ decays in the perturbative
QCD (pQCD) approach. There was a work about con-
straining the mixing angle through B0

s → J=Ψf0ð980Þ,
J=Ψσ decays [4], but two different approaches were used
in the same decay channel: the factorizable contribution*zhangzhiqing@haut.edu.cn
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and vertex corrections are calculated in the QCD factori-
zation (QCDF) approach, while the hard spectator scatter-
ing corrections are calculated in the pQCD approach. So
one may suspect its rationality and reliability in determin-
ing the mixing angle between f0ð980Þ − σ. The B meson
decays with a D meson involved in the final states have
been studied in the pQCD approach, such as B → DP,DV,
DA [12–15], where P, V, A represent pseudoscalar, vector,
and axial-vector mesons, respectively. Most of the pre-
dictions can well explain the experimental data. While an
explicit calculation for the branching ratio of the decay
B0
s → D̄0f0ð980Þ gives ð3.5þ1.26þ0.56

−1.15−0.77 Þ × 10−5 [16], this is
quite different from the present experimental result. So we
would like to systematically study the decays BðsÞ →
D̄fð980Þ in the pQCD approach, including the Cabibbo-
Kobayashi-Maskawa (CKM) suppressed decays
BðsÞ → Df0ð980Þ. At last, the decays BðsÞ → D̄�fð980Þ,
D�f0ð980Þ are also considered.
The layout of this paper is as follows. In Sec. II, decay

constants and light-cone distribution amplitudes of the
relevant mesons are introduced. In Sec. III, we then analyze
these decay channels using the pQCD approach. The
numerical results and the discussions are given in
Sec. IV. Conclusions are presented in the final part.

II. DECAY CONSTANTS AND
DISTRIBUTION AMPLITUDES

For the wave function of the heavy BðsÞ meson, we take

ΦBðsÞ ðx; bÞ ¼
1ffiffiffiffiffiffiffiffi
2Nc

p ðPBðsÞ þmBðsÞ Þγ5ϕBðsÞ ðx; bÞ: ð5Þ

Here only the contribution of the first Lorentz structure
ϕBðsÞ ðx; bÞ is taken into account, since the contribution of

the second Lorentz structure ϕ̄BðsÞ is numerically small [17]
and can be neglected. For the distribution amplitude
ϕBðsÞ ðx; bÞ in Eq. (5), we adopt the following model:

ϕBðsÞ ðx; bÞ ¼ NBðsÞx
2ð1 − xÞ2 exp

�
−
M2

BðsÞx
2

2ω2
b

−
1

2
ðωbbÞ2

�
;

ð6Þ

where ωb is a free parameter and is taken to be ωb ¼
0.4� 0.04ð0.5� 0.05Þ GeV for BðBsÞ in numerical cal-
culations, and NB ¼ 101.445 (NBs

¼ 63.671) is the nor-
malization factor for ωb ¼ 0.4 (0.5). For the Bs meson, the
SU(3) breaking effects are taken into consideration.
As for the wave functions of the D meson, we use the

form derived in Ref. [18],

Z
d4ω
ð2πÞ4 e

ik·ωh0jc̄βð0ÞuγðωÞjD̄0i

¼ −
iffiffiffiffiffiffiffiffi
2Nc

p ½ðPD þmDÞγ5�γβϕDðx; bÞ; ð7Þ

Z
d4ω
ð2πÞ4 e

ik·ωh0jc̄βð0ÞuγðωÞjD̄�0i

¼ −
iffiffiffiffiffiffiffiffi
2Nc

p ½ðPD� þmD�ÞϵL�γβϕL
D� ðx; bÞ; ð8Þ

where ϵL is the longitudinal polarization vector. In this
work only the longitudinal polarization component is used.

Here we take the best-fitted form ϕð�Þ
D from B to charmed

meson decays derived in [12] as

ϕDðx;bÞ ¼
fD

2
ffiffiffiffiffiffiffiffi
2Nc

p 6xð1− xÞ½1þCDð1−2xÞ�exp
�
−ω2b2

2

�
:

ð9Þ

For the wave function ϕDs
ðx; bÞ, it has the similar expres-

sion as ϕDðx; bÞ except with different parameters and is
given as follows: fD ¼ 204.6 MeV, fDs

¼ 257.5 MeV,
and CDðsÞ ¼ 0.5 (0.4), ωDðsÞ ¼ 0.1 (0.2) [19]. For the wave
function ϕD�

ðsÞ
ðx; bÞ, we take the same distribution ampli-

tude with that of the pseudoscalar meson DðsÞ because of
their small mass difference, except with different decay
constants fD� ¼ 270 MeV and fD�

s
¼ 310 MeV [20].

Since the neutral scalar meson f0ð980Þ cannot be pro-
duced via the vector current, we have hf0ðpÞjq̄2γμq1j0i ¼ 0

[the abbreviation f0 denotes the f0ð980Þ for simplicity].
Taking the f0ð980Þ − σ mixing into account, the scalar
current hf0ðpÞjq̄2q1j0i ¼ mSf̄S can be written as

hfn0jdd̄j0i ¼ hfn0juūj0i ¼
1ffiffiffi
2

p mf0
~fnf0 ;

hfs0jss̄j0i ¼ mf0
~fsf0 ; ð10Þ

where fðn;sÞ0 represent the quark flavor states for the nn̄ and ss̄
components of the f0 meson, respectively. As the scalar
decay constants ~fnf0 and ~fsf0 are very close [21], we can

assume ~fnf0 ¼ ~fsf0 and denote them as f̄f0 in the following.
The twist-2 and twist-3 light-cone distribution ampli-

tudes (LCDAs) for the different components of f0ð980Þ are
defined by

hf0ðpÞjq̄ðzÞlqð0Þjj0i

¼ 1ffiffiffiffiffiffiffiffi
2Nc

p
Z

1

0

dxeixp·zfpΦf0ðxÞ þmf0Φ
S
f0
ðxÞ

þmf0ðnþn− − 1ÞΦT
f0
ðxÞgjl; ð11Þ
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where we assume fn0ðpÞ and fs0ðpÞ are the same and denote
them as f0ðpÞ, and nþ and n− are lightlike vectors: nþ ¼
ð1; 0; 0TÞ, n− ¼ ð0; 1; 0TÞ. The normalization of the dis-
tribution amplitudes are related to the decay constants,

Z
1

0

dxΦf0ðxÞ ¼
Z

1

0

dxΦT
f0
ðxÞ ¼ 0;

Z
1

0

dxΦS
f0
ðxÞ ¼ f̄f0

2
ffiffiffiffiffiffiffiffi
2Nc

p : ð12Þ

The twist-2 LCDA Φf0ðxÞ can be expanded in terms of
Gegenbauer polynomials as

Φf0ðxÞ ¼
1

2
ffiffiffiffiffiffiffiffi
2Nc

p f̄f06xð1− xÞ
�
B0 þ

X
m¼1

BmC
3=2
n ð2x− 1Þ

�
;

ð13Þ

with the decay constant f̄f0 ¼ 0.18� 0.015 GeV [22]. It
is noticed that all the even Gegenbauer momentums
vanish due to the charge conjugation invariance. As for
the odd Genbauer momentums, only the first term is kept
and the value of the coefficient is taken as B1 ¼ −0.78�
0.08 [21]. For the twist-3 LCDA, we also take the first
term of the Gegenbauer expansion, i.e. the asymptotic
form,

ΦS
f0
ðxÞ ¼ 1

2
ffiffiffiffiffiffiffiffi
2Nc

p f̄f0 ; ΦT
f0
ðxÞ ¼ 1

2
ffiffiffiffiffiffiffiffi
2Nc

p f̄f0ð1 − 2xÞ:

ð14Þ

III. THE PERTURBATIVE QCD CALCULATION

The weak effective Hamiltonian Heff for the charmed
BðsÞ decays BðsÞ → D̄f0ð980Þ, D̄�f0ð980Þ, is composed
only by the tree operators and given by

Heff ¼
GFffiffiffi
2

p V�
cbVuq½C1ðμÞO1ðμÞ þ C2ðμÞO2ðμÞ�; ð15Þ

where the tree operators are written as

O1 ¼ ðc̄αbβÞV−AðD̄βuαÞV−A;
O2 ¼ ðc̄αbαÞV−AðD̄βuαÞV−A; ð16Þ

where D represents dðsÞ. These decays with larger CKM
matrix elements (say the b̄ → d̄ transition, jVcbVudj ¼
0.04) are called CKM allowed decays. Another kind of
decays BðsÞ → D0f0, D�0f0, Dþ

ðsÞf0, D
�þ
ðsÞf0 with smaller

CKM matrix elements (in the case of b → d transition,
jVubVcdj ¼ 0.00093) are called CKM suppressed decays,
and the corresponding weak effective Hamiltonian is
given as

Heff ¼
GFffiffiffi
2

p V�
ubVcq½C1ðμÞO1ðμÞ þ C2ðμÞO2ðμÞ�: ð17Þ

Here we take the decay B0 → D̄0f0 as an example, whose
leading-order Feynman diagrams are shown in Fig. 1. The
Feynman diagrams in the first row are for the emission
types, where Figs. 1(a) and 1(b) are the factorizable
diagrams, Figs. 1(c) and 1(d) are the nonfactorizable ones,
and their amplitudes are written as

F D̄
B→f0

¼ 8πCFM4
BfD

Z
1

0

dx1dx2

Z
∞

0

b1db1b2db2ϕBðx1; b1Þ½ð1þ x2Þϕf0ðx2Þ þ rfð1 − 2x2Þðϕs
f0
ðx2Þ þ ϕt

f0
ðx2ÞÞ�

× EeðtaÞheðx1; x2ð1 − r2DÞ; b1; b2ÞStðx2Þ þ 2rfϕfsðx2ÞEeðtbÞheðx2; x1ð1 − r2DÞ; b2; b1ÞStðx1Þ�; ð18Þ

FIG. 1. Diagrams contributing to the B0 → D̄0f0ð980Þ decay.
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MD̄
B→f0

¼ 32πCfm4
B=

ffiffiffiffiffiffiffiffiffi
2NC

p Z
1

0

dx1dx2dx3

Z
∞

0

b1db1b3db3ϕBðx1; b1ÞϕDðx3; b3Þ

× f½ðx3 − 1Þϕf0ðx2Þ þ rf0x2ðϕs
f0
ðx2Þ − ϕt

f0
ðx2ÞÞ − 4rf0rcrDϕ

s
f0
ðx2Þ�

×EenðtcÞhcenðx1; x2ð1 − r2DÞ; x3; b1; b3Þ þ EenðtdÞhdenðx1; x2ð1 − r2DÞ; x3; b1; b3Þ
× ½ðx2 þ x3Þϕf0ðx2Þ − rf0x2ðϕs

f0
ðx2Þ þ ϕt

f0
ðx2ÞÞ�g; ð19Þ

with the mass ratios rf0 ¼ mf0=MB, rD ¼ mD=MB, and rc ¼ mc=MB. The evolution factors evolving the scale t and the
hard functions of the hard part of factorization amplitudes are listed as

EeðtÞ ¼ αsðtÞ exp½−SBðtÞ − Sf0ðtÞ�; ð20Þ

EenðtÞ ¼ αsðtÞ exp½−SBðtÞ − Sf0ðtÞ − SDðtÞjb1¼b2 �; ð21Þ

heðx1; x2; b1; b2Þ
¼ K0ð

ffiffiffiffiffiffiffiffiffi
x1x2

p
mBb1Þ½θðb1 − b2ÞK0ð

ffiffiffiffiffi
x2

p
mBb1ÞI0ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2mBb2

p
Þ þθðb2 − b1ÞK0ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2mBb2

p
ÞI0ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2mBb1

p
Þ�; ð22Þ

hjenðx1; x2; x3; b1; b3Þ ¼ ½θðb1 − b3ÞK0

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1x2ð1 − r2DÞ

q
mBb1

�
I0
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x1x2ð1 − r2DÞ
q

mBb3
�

þðb1 ↔ b3Þ�
 K0ðAjmBb3Þ for A2

j ≥ 0

iπ
2
Hð1Þ

0

� ffiffiffiffiffiffiffiffi
jA2

j j
q

mBb3
�

for A2
j ≤ 0

!
; ð23Þ

with the variables A2
jðj ¼ c; dÞ listed as

A2
c ¼ r2c − ð1 − x1 − x3Þðx2ð1 − r2DÞ þ r2DÞ; ð24Þ

A2
d ¼ ðx1 − x3Þx2ð1 − r2DÞ: ð25Þ

The hard scale t and the expression of the Sudakov factor in
each amplitude can be found in the Appendix. As we know,
the double logarithms αsln2x produced by the radiative
corrections are not small expansion parameters when the
end-point region is important. In order to improve the
perturbative expansion, threshold resummation of these

logarithms to all order is needed, which leads to a quark jet
function

StðxÞ ¼
21þ2cΓð3=2þ cÞffiffiffi

π
p

Γð1þ cÞ ½xð1 − xÞ�c; ð26Þ

with c ¼ 0.32. It is effective to smear the end-point
singularity with a momentum fraction x → 0. This factor
will also appear in the factorizable annihilation type
amplitudes.
The amplitudes for the Feynman diagrams in the second

row can be obtained by the Feynman rules and are given as

MD̄
ann ¼ 32πCfm4

B=
ffiffiffiffiffiffiffiffiffi
2NC

p Z
1

0

dx1dx2dx3

Z
∞

0

b1db1b3db3ϕBðx1; b1ÞϕDðx3; b3ÞfEanðteÞheanðx1; x2; x3; b1; b3Þ½x3ϕf0ðx2Þ

þrDrf0ððx2 − x3 − 3Þϕs
f0
ðx2Þ þ ðx2 þ x3 − 1Þϕt

f0
ðx2ÞÞ�þEanðtfÞhfanðx1; x2; x3; b1; b3Þ½ðx2 − 1Þϕf0ðx2Þ

þrDrf0ðð1þ x3 − x2Þϕs
f0
ðx2Þ þ ðx2 þ x3 − 1Þϕt

f0
ðx2ÞÞ�g; ð27Þ

F D̄
ann ¼ −8πCffBm4

B

Z
1

0

dx2dx3

Z
∞

0

b2db2b3db3ϕDðx3; b3Þf½ð1 − x2Þϕf0ðx2Þ − 2rf0rD

× x2ϕt
f0
ðx2Þ þ 2rDrf0ðx2 − 2Þϕs

f0
ðx2Þ�EafðtgÞhafðx3; ð1 − x2Þð1 − r2DÞ; b3; b2Þ

þEafðthÞhafðx2; x3ð1 − r2DÞ; b2; b3Þ½−x3ϕf0ðx2Þ þ 2rDrf0ðx3 þ 1Þϕs
f0
ðx2Þ�g: ð28Þ

Similarly, FD̄
annðMD̄

annÞ are the (non)factorizable annihilation type amplitudes, where the evolution factors E evolving the
scale t and the hard functions of the hard part of factorization amplitudes are listed as
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EanðtÞ ¼ αsðtÞ exp½−SBðtÞ − SDðtÞ − Sf0ðtÞjb2¼b3 �; ð29Þ

EafðtÞ ¼ αsðtÞ exp½−SDðtÞ − Sf0ðtÞ�; ð30Þ

hjanðx1; x2; x3; b1; b3Þ ¼ i
π

2
½θðb1 − b3ÞHð1Þ

0

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2x3ð1 − r2DÞ

q
mBb1

�
J0
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2x3ð1 − r2DÞ
q

mBb3
�

þðb1 ↔ b3Þ�
 K0ðLjmBb1Þ for L2

j ≥ 0

iπ
2
Hð1Þ

0

� ffiffiffiffiffiffiffiffi
jL2

j j
q

mBb1
�

for L2
j ≤ 0

!
; ð31Þ

hafðx2; x3; b2; b3Þ ¼
�
i
π

2

�
2

Hð1Þ
0 ð ffiffiffiffiffiffiffiffiffi

x2x3
p

mBb2Þ½θðb2 − b3ÞHð1Þ
0 ð ffiffiffiffiffi

x3
p

mBb2ÞJ0ð ffiffiffiffiffi
x3

p
mBb3Þ þ ðb2 ↔ b3Þ�; ð32Þ

where the definitions of L2
jðj ¼ e; fÞ are written as

L2
e ¼ r2b − ð1 − x3Þð1 − ð1 − x2Þð1 − r2DÞ − x1Þ; ð33Þ

L2
f ¼ x3ðx1 − ð1 − x2Þð1 − r2DÞÞ: ð34Þ

The functions Hð1Þ
0 , J0, K0, I0, which appear in the upper

hard kernel he, h
j
en, h

j
an, haf, are the (modified) Bessel

functions, which are obtained from the Fourier transfor-
mations of the quark and gluon propagators. Combining the
above amplitudes, one can easily write down the total decay
amplitudes of each considered channel,

AðB0 → D̄0f0ð980ÞÞ ¼
GFffiffiffi
2

p V�
cbVudðFD̄

B→f0
a2 þMD̄

B→f0
C2

þMD̄
annC2 þ FD̄

anna2Þ; ð35Þ

AðB0 → D0f0ð980ÞÞ ¼
GFffiffiffi
2

p V�
ubVcdðFD

B→f0
a2 þMD

B→f0
C2

þMf0
annC2 þ Ff0

anna2Þ; ð36Þ

AðB0
s → D̄0f0ð980ÞÞ ¼

GFffiffiffi
2

p V�
cbVusðFD

B→f0
a2 þMD

B→f0
C2

þMD
annC2 þ FD

anna2Þ; ð37Þ

AðB0
s → D0f0ð980ÞÞ ¼

GFffiffiffi
2

p V�
ubVcsðFD

B→f0
a2 þMD

B→f0
C2

þMf0
annC2 þ Ff0

anna2Þ; ð38Þ

AðBþ→Dþf0ð980ÞÞ¼
GFffiffiffi
2

p V�
ubVcdðFD

B→f0
a1þMD

B→f0
C2=3

þMf0
annC2=3þFf0

anna1Þ; ð39Þ

AðBþ→Dþ
s f0ð980ÞÞ¼

GFffiffiffi
2

p V�
ubVcsðFD

B→f0
a1þMD

B→f0
C2=3

þMf0
annC2=3þFf0

anna1Þ; ð40Þ

and likewise for the corresponding decays with the pseu-
doscalar meson D replaced by the vector meson D�.

IV. NUMERICAL RESULTS AND DISCUSSIONS
FOR BðsÞ DECAYS

We use the following input parameters for numerical
calculations [19]:

fB ¼ 190 MeV; fBs
¼ 230 MeV;

MB ¼ 5.28 GeV; MBs
¼ 5.37 GeV; ð41Þ

τ�B ¼ 1.638 × 10−12 s; τB0 ¼ 1.519 × 10−12 s;

τBs
¼ 1.512 × 10−12 s; ð42Þ

MD0 ¼ 1.869 GeV; MDþ
s
¼ 1.968 GeV;

MD�0 ¼ 2.007 GeV; MD�þ
s

¼ 2.112 GeV: ð43Þ

For the CKM matrix elements, we adopt the Wolfenstein
parametrization and the updated values A ¼ 0.814, λ ¼
0.22537, ρ̄ ¼ 0.117� 0.021, and η̄ ¼ 0.353� 0.013 [19].

In the BðsÞ-rest frame, the decay rates of BðsÞ →

Dð�Þ
ðsÞf0ð980Þ can be written as

BRðBðsÞ → Dð�Þ
ðsÞf0ð980ÞÞ ¼

τBðsÞ

16πMB
ð1 − r2

Dð�Þ
ðsÞ
ÞA; ð44Þ

where A is the total decay amplitude of each considered
decay, which has been given in the last section.
Using the input parameters and the wave functions as

specified in this section and Sec. II, we give the depend-
encies of the branching ratios BRðB0 → D̄0f0ð980ÞÞ and
BRðBs → D̄0f0ð980ÞÞ on the mixing angle θ shown in
Fig. 2. Combining these two panels, one can find that the
allowed mixing angle lies in the range 135° < θ < 158° at
the large angle region. It is not strange that, as mentioned
before, the large mixing angle θ ∼ 146° is also obtained in
the analysis of Bs → J=ψf0ð980Þ, J=ψσ decays [4]. In the
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following we mainly discuss the region with the mixing
angle less than 90°. For the branching ratio of the decay
B0 → D̄0f0ð980Þ, the experimental value ð1.34� 0.54Þ ×
10−5 with 2.5σ can give a stronger constrain on the mixing
angle, and in the range of 29° < θ < 46°, the central
theoretical values agree well with the data. But if the
theoretical uncertainties are included, the range will
become wider. Although the branching ratio BrðBs →
D̄0f0ð980ÞÞ with large uncertainty cannot give stringent
constrain on the value of the mixing angle, we can get some
hints from the data: If we take the mixing angle θ ¼ 0°, that
is, we consider that the scalar meson f0ð980Þ is composed
entirely of the two-quark component ss̄, the corresponding
branching ratio is about 1.4 × 10−6, which is a little lower
than the experimental value. If we consider the small
mixing with qq̄ ¼ ðuūþ qq̄Þ= ffiffiffi

2
p

, the branching ratio will
get an enhancement for the interference between the two
different kinds of amplitudes from the different quark
components, the maximal value for the branching ratio
can be obtained at the mixing angle θ ¼ 19°, and it arrives
at 1.56 × 10−6 (shown in the right panel of Fig. 2). But if
we take such a small mixing angle, say about 20°, it will
make the branching ratio of the decay B0 → D̄0f0ð980Þ
undershoot the shaded band in the left panel of Fig. 2,
which represents the experimental allowed region. The
mixing angle θ between f0ð980Þ and f0ð500Þ should not be
too large, say larger than 70°. If so, the predicted branching
ratios of both the decays Bs → D̄0f0ð980Þ and B0 →
D̄0f0ð980Þ will deviate from the data even with the large
errors taken into account. So we get the conclusion that the
two-quark component should be dominant for B meson
decays in the dynamic mechanism. Furthermore, the ss̄
component is more important than the qq̄ component. But

it is not in conflict with the dominant four-quark structure
in explaining the mass degeneracy of f0ð980Þ and a0ð980Þ,
and the narrower decay width of f0ð980Þ than that of
f0ð500Þ. In the following, we will discuss the mixing angle
by considering the ratio of branching fractions. There are
some advantages in considering the ratio, because one can
eliminate the systematic errors on the experimental side and
avoid the hadronic uncertainties, such as the decay con-
stants and the Gegenbauer moments of the final states on
the theoretical side. From the data, one can find that the ratio
of these two branching fractions BRðB0→ D̄0f0ð980ÞÞ=
BRðBs→ D̄0f0ð980ÞÞ¼7.88�5.60. Unfortunately, here
the uncertainty is mainly from the statistical error in the
decay Bs → D̄0f0ð980Þ, so the errors of the ratio are not
much improved compared to those of the branching ratio of
each decay mode. Certainly, here we consider a simple
method; maybe there is a much better approach for the
experimentalists to greatly reduce the errors from this ratio.
So we advise the reader to accurately measure this ratio in an
experiment, because it is important to further restrict the
mixing angle θ between f0ð980Þ and f0ð500ÞðσÞ. The ratio
can change in a very large range with the mixing angle
taking different values; especially for θ ¼ 90°, the branching
ratio of Bs → D̄0f0ð980Þ is very small and will be exactly
equal to zero if the contribution from qq̄ ¼ ðuūþ dd̄Þ= ffiffiffi

2
p

is turned off, while BRðB0 → D̄0f0ð980ÞÞ arrives at its
maximal value. Then it will be meaningless for the ratio, not
mentioning the errors. For the sake of comparison, we give
two regions for the mixing angle shown in Fig. 3. If
combining these four panels in Fig. 2 and Fig. 3 together,
one will get two further shrunken mixing angle ranges
22° < θ < 58° and 141° < θ < 158°. In view of the present
large uncertainties from data and theory, it will be difficult to

FIG. 2. Dependencies of the branching ratios BRðB0 → D̄0f0ð980ÞÞ (left) and BRðBs → D̄0f0ð980ÞÞ (right) on the mixing
angle θ. In each panel, the solid (blue) curve represents the central value of the theoretical prediction, and the two dashed (red) curves
correspond to the upper and lower limits. On the left panel, the shaded band shows the allowed region and the horizontal bisector
the central value of BRðB0 → D̄0f0ð980ÞÞ ¼ ð1.34� 0.54Þ × 10−5 for data. On the right panel, for the large uncertainties with the
branching ratio, only the half-width band is given; that is to say, the upper edge line represents the center value of data
BRðBs → D̄0f0ð980ÞÞ ¼ ð1.7� 1.1Þ × 10−6, and the lower edge line represents the experimental lower limit.
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get a unitary value for the mixing angle. But even if more
precise data are available, we still cannot get the unitary
value. This argument might be reasonable that there must be
some influence from other components in f0ð980Þ, such as
gluon, four quark component, and KK̄ threshold effect,
which we cannot handle at present. Nevertheless, one cannot
deny that the two-quark component in f0ð980Þ is dominant
in theB decay dynamic mechanism, and the ss̄ component is
more important than the qq̄ component.
Up to now we still do not analyze the decay B0 → D̄0σ,

although the data of this channel is available. There are
many uncertainties from the decay constant and the LCDAs

of the σ meson. The authors of Ref. [21] assumed that σ has
the similar decay constant and LCDAs as those of f0ð980Þ,
while the authors of Ref. [23] just took the same decay
constant and LCDAs with those of a0ð980Þ. These two sets
of parameters will generate very different results: If using
the former, one will obtain small branching ratios which are
far below the experimental lower limit in all the mixing
angle region, but the predicted branching ratio will overlap
with the data in some angle values by using the latter, which
can be found in Fig. 4. It shows that the decay constant and
LCDAs of σ is closer to those of a0ð980Þ, so they should
have the similar quark components and structure. From
Fig. 4, we find that there also exist two allowed mixing
angle regions 28°–64° and 116°–152°, where the former
region can overlap mostly with the allowed region 22°–58°
obtained from the analysis of B0 → D̄0f0ð980Þ and Bs →
D̄0f0ð980Þ decays. While the two large angle regions have
less coincidence, it seems that the small angle region is
more favored than the large one.
In order to predict other BðsÞ charmed decays, the mixing

angle is taken as two values 34° and 38° (certainly, one can
get similar branching ratios by taking θ ¼ 142° and 154°, if
they cannot be excluded by the future data), one of
which is consistent with θ ¼ 30°� 3° obtained by averag-
ing over several processes [5]. Then the branching ratios
of these CKM suppressed decays B0 → D0f0ð980Þ,
Bs → D0f0ð980Þ, Bþ → Dþf0ð980Þ, and Bþ →
Dþ

s f0ð980Þ are listed in Table I. The pseudoscalar meson
DðsÞ is replaced by the vector mesonD�

ðsÞ in our considering
decays, and the branching ratios of the corresponding
channels are listed in Table II. From our calculations,
we find that the branching ratios of the Bs decays are not
very sensitive to the mixing angle θ; especially for
BRðBs → D0f0Þ, its value changes in the range of

FIG. 4. Dependence of the branching ratio BRðB0 →
D̄0f0ð500ÞÞ on the mixing angle θ. The solid (blue) curve
represents the central value of the theoretical prediction, and
the two dashed (red) curves correspond to the upper and lower
limits. The shaded band shows the allowed region and the
horizontal bisector of the central value of BRðB0 →
D̄0f0ð500ÞÞ ¼ ð11.2� 2.4Þ × 10−5 for data.

FIG. 3. Dependencies of the ratio between BRðB0 → D̄0f0ð980ÞÞ and BRðBs → D̄0f0ð980ÞÞ on the mixing angle θ at different
regions. The shaded band shows the allowed region and the horizontal bisector of the central value of BRðB0 → D̄0f0ð980ÞÞ=BRðBs →
D̄0f0ð980ÞÞ ¼ 7.88� 5.60 for data.
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ð1.2–1.8Þ × 10−7 when the mixing angle varies from
0° to 180°. The reason is as follows: The amplitude from
the ss̄ component has a large imaginary part and a small
real part. It is contrary for the amplitude from the qq̄ ¼
ðuūþ dd̄Þ= ffiffiffi

2
p

component, where the real part is about one
order larger than the imaginary part. When the real and
imaginary parts from the ss̄ and qq̄ ¼ ðuūþ dd̄Þ= ffiffiffi

2
p

amplitudes are mixed through Eq. (1), respectively, the
former (latter) is dominated by the sine (cosine) law, but the
later is stronger than the former, so these two kinds of
contrary change trends make the total amplitude changes in
a much milder cosine curve. The branching ratios of all the
B decay modes are dependent on the mixing angle via sin θ
(maybe with an initial phase), just like the left panel in
Fig. 2, while those of the Bs decay modes are dependent on
the mixing angle via cos θ with an initial phase, just like the
right panel in Fig. 2.

V. CONCLUSION

In this paper, first we analyze the decays B →
D̄0f0ð980Þ and Bs → D̄0f0ð980Þ carefully in the pQCD
factorization approach and find two possible regions for the
mixing angle θ; one is centered at 34°–38° and the other is
near 142°–154°. If the data of the decay B0 → D̄0σ are also
included, we find that the small angle region is more
favored. Our analyses support that the two-quark compo-
nent in f0ð980Þ is dominant in the B decay dynamic

mechanism, and the ss̄ component is more important than
the qq̄ component. Certainly other components, such as
gluon, the four-quark component, and the KK̄ threshold
effect, may also give some influences. It is noticed that our
picture is not in conflict with the popular explanation of the
dominant four-quark component in f0ð980Þ. Then we
predict the branching ratios of other BðsÞ → DðsÞf0ð980Þ,
D�

ðsÞf0ð980Þ decay channels by fixing θ ¼ 34° and 38°,

respectively, and we find that the branching ratios of Bs
decay modes are less sensitive to the mixing angle
compared with those of B decay modes. Especially, for
the decay Bs → D0f0, its branching ratio changes in a small
region between ð1.2–1.8Þ × 10−7 with the mixing angle θ
running from 0° to 180°.
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TABLE II. Same as Table I except for the decays B → D̄�ðD�Þf0ð980Þ.
34° 38°

BRðB → D̄�0f0Þ½×10−6� 7.40þ2.33þ1.32þ2.32þ0.75
−1.84−1.26−1.78−0.73 8.97þ2.83þ1.60þ2.82þ0.91

−2.23−1.52−2.16−0.89

BRðBs → D̄�0f0Þ½×10−6� 1.63þ0.72þ0.31þ0.48þ0.20
−0.50−0.29−0.38−0.17 1.43þ0.62þ0.27þ0.42þ0.17

−0.44−0.25−0.33−0.15

BRðB → D�0f0Þ½×10−9� 6.48þ3.57þ1.37þ0.64þ0.33
−2.24−1.23−0.56−0.31 7.86þ4.33þ1.66þ0.78þ0.40

−2.72−1.49−0.68−0.37

BRðBs → D�0f0Þ½×10−7� 2.06þ1.79þ0.46þ0.20þ0.20
−0.98−0.41−0.18−0.17 1.94þ1.63þ0.44þ0.19þ0.19

−0.90−0.39−0.17−0.16

BRðBþ → D�þf0Þ½×10−7� 2.07þ0.69þ0.38þ0.16þ0.02
−0.49−0.34−0.15−0.02 2.51þ0.84þ0.46þ0.19þ0.02

−0.60−0.42−0.19−0.03

BRðBþ → D�þ
s f0Þ½×10−6� 5.00þ1.68þ0.94þ0.37þ0.07

−1.21−0.88−0.39−0.06 6.10þ2.04þ1.14þ0.45þ0.08
−1.47−1.06−0.47−0.10

TABLE I. The CP-averaged branching ratios (×10−6) of B → Df0ð980Þ obtained by taking the mixing angle
θ ¼ 34° and 38°, respectively. The first uncertainty comes from the ωb ¼ 0.4� 0.1ð0.5� 0.1Þ for BðBsÞ mesons,
the second and the third uncertainties are from the decay constant f̄f0 ¼ 0.18� 0.015 GeV and the Gegenbauer
moment B1 ¼ −0.78� 0.08 of the f0ð980Þ meson, respectively, and the last one comes from CDðsÞ ¼0.5ð0.4Þ�0.1
for the DðsÞ meson.

34° 38°

BRðB → D0f0Þ½×10−9� 4.45þ2.25þ0.96þ0.71þ0.35
−1.42−0.85−0.63−0.33 5.39þ2.72þ1.16þ0.86þ0.43

−1.71−1.04−0.77−0.41

BRðBs → D0f0Þ½×10−7� 1.32þ1.02þ0.30þ0.21þ0.19
−0.60−0.27−0.20−0.17 1.29þ0.99þ0.29þ0.21þ0.18

−0.55−0.27−0.19−0.16

BRðBþ → Dþf0Þ½×10−7� 1.00þ0.37þ0.16þ0.06þ0.01
−0.26−0.15−0.06−0.01 1.22þ0.45þ0.19þ0.08þ0.01

−0.32−0.18−0.08−0.01

BRðBþ → Dþ
s f0Þ½×10−6� 2.30þ0.96þ0.32þ0.11þ0.07

−0.67−0.30−0.11−0.06 2.97þ1.20þ0.43þ0.16þ0.07
−0.83−0.40−0.15−0.07
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APPENDIX A: DECAY AMPLITUDES

For the CKM suppressed decays, for example, B → D0f0ð980Þ, their Feynman diagrams to leading order will be
different from Fig. 1, especially for the (non)factorizable annihilation diagrams, where the positions of D and f0ð980Þ are
exchanged compared with those of the B → D̄0f0ð980Þ decay. But the factorizable emission diagrams are the same with
each other, so FD

B→f0
¼ F D̄

B→f0
. Here we also list other amplitudes of these CKM suppressed decays,

MD
B→f0

¼ 32πCfm4
B=

ffiffiffiffiffiffiffiffiffi
2NC

p Z
1

0

dx1dx2dx3

Z
∞

0

b1db1b3db3ϕBðx1; b1ÞϕDðx3; b3Þ

× f½ðx3 − x1Þϕf0ðx2Þ − rf0x2ðϕs
f0
ðx2Þ − ϕt

f0
ðx2ÞÞ�

×EenðtdÞhdenðx1; x2ð1 − r2DÞ; x3; b1; b3Þ þ EenðtcÞhcenðx1; x2ð1 − r2DÞ; x2; b1; b3Þ
× ½ðx1 − x2 þ x3 − 1Þϕf0ðx2Þ þ rf0x2ðϕs

f0
ðx2Þ þ ϕt

f0
ðx2ÞÞ�g; ðA1Þ

Mf0
ann ¼ 32πCfm4

B=
ffiffiffiffiffiffiffiffiffi
2NC

p Z
1

0

dx1dx2dx3

Z
∞

0

b1db1b3db3ϕBðx1; b1ÞϕDðx3; b3Þ

× fEanðteÞheanðx1; x2; x3; b1; b3Þ½ð1 − rb − x2Þϕf0ðx2ÞþrDrf0ðð2 − 4rb − x2 − x3Þϕs
f0
ðx2Þ − ðx2 − x3Þϕt

f0
ðx2ÞÞ�

þEanðtfÞhfanðx1; x2; x3; b1; b2Þ½x3ϕf0ðx2ÞþrDrf0ððx2 þ x3Þϕs
f0
ðx2Þ þ ðx3 − x2Þϕt

f0
ðx2ÞÞ�g; ðA2Þ

F f0
ann ¼ 8πCffBm4

B

Z
1

0

dx2dx3

Z
∞

0

b2db2b2db2ϕDðx3; b3Þf½ðr2D − 1Þx3ϕf0ðx2Þ

−2rf0rDð1 − r2D þ x3Þϕs
f0
ðx2Þ�Eafðt0gÞhafðx3; ð1 − x2Þð1 − r2DÞ; b3; b2Þ

þEafðt0hÞhafðx2; x3ð1 − r2DÞ; b2; b3Þ½ðx2 − 2rDrcÞϕf0ðx2Þþ2rDrf0ððx2 þ 1Þϕs
f0
ðx2Þ þ ðx2 − 1Þϕt

f0
ðx2Þ�g: ðA3Þ

Here we do not show the amplitudes of the decays
BðsÞ → D̄�ðD�Þf0ð980Þ, because one can obtain them from
those of the decays BðsÞ → D̄ðDÞf0ð980Þ by the substitu-
tions mD → mD� , fD → fD� , ϕD → ϕD� , where the terms
including r2D, rDrf0 , and rDrc were neglected. It is similar
for the decays involving the D�

s meson.

APPENDIX B: HARD SCALES

ta ¼ max

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2ð1 − r2DÞ

q
mB; 1=b1; 1=b2

�
; ðB1Þ

tb ¼ max

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1ð1 − r2DÞ

q
mB; 1=b1; 1=b2

�
; ðB2Þ

tc;d ¼ max

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1x2ð1 − r2DÞ

q
mB;

ffiffiffiffiffiffiffiffiffiffiffi
jA2

c;dj
q

mB; 1=b1; 1=b3

�
;

ðB3Þ

te;f ¼ max

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2x3ð1 − r2DÞ

q
mB;

ffiffiffiffiffiffiffiffiffiffiffi
jL2

e;fj
q

; mB; 1=b1; 1=b3

�
;

ðB4Þ

tg ¼ max

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − x2Þð1 − r2DÞ

q
mB; 1=b2; 1=b3

�
; ðB5Þ

th ¼ t0g ¼ max

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x3ð1 − r2DÞ

q
mB; 1=b2; 1=b3

�
; ðB6Þ

t0h ¼ max
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2ð1 − r2DÞ
q

mB; 1=b2; 1=b3
�
: ðB7Þ

And the SjðtÞðj ¼ B;D; f0Þ functions in Sudakov form
factors in Eqs. (20), (21), (29), and (30) are listed as

SBðtÞ ¼ s

�
x1

mBffiffiffi
2

p ; b1

�
þ 2

Z
t

1=b1

dμ̄
μ̄
γqðαsðμ̄ÞÞ; ðB8Þ

SDðtÞ ¼ s

�
x3

mBffiffiffi
2

p ; b3

�
þ 2

Z
t

1=b3

dμ̄
μ̄
γqðαsðμ̄ÞÞ; ðB9Þ

Sf0ðtÞ ¼ s

�
x2

mBffiffiffi
2

p ; b2

�
þ s

�
ð1 − x2Þ

mBffiffiffi
2

p ; b2

�

þ 2

Z
t

1=b2

dμ̄
μ̄
γqðαsðμ̄ÞÞ; ðB10Þ

where the quark anomalous dimension is γq ¼ −αs=π, and
the expression of the sðQ; bÞ in the one-loop running
coupling constant is used,
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sðQ; bÞ ¼ Að1Þ

2β1
q̂ ln

�
q̂

b̂

�
−
Að1Þ

2β1
ðq̂ − b̂Þ þ Að2Þ

4β21

�
q̂

b̂
− 1

�

−
�
Að2Þ

4β21
−
Að1Þ

4β1
ln

�
e2γE−1

2

��
ln

�
q̂

b̂

�
; ðB11Þ

where the variables are defined by q̂ ¼ ln½Q=ð ffiffiffi
2

p
ΛÞ�, q̂ ¼

ln½1=ðbΛÞ� and the coefficients Að1;2Þ and β1 are

β1 ¼
33 − 2nf

12
; Að1Þ ¼ 4

3
; ðB12Þ

Að2Þ ¼ 67

9
−
π2

3
−
10

27
nf þ

8

3
β1 ln

�
1

2
eγE
�
; ðB13Þ

where nf is the number of the quark flavors and γE the
Euler constant.
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