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We carry out a global analysis of the experimental data on the χc production cross section and the ratio
σðχc2Þ=σðχc1Þ at the LHC and the Tevatron. The related long-distance matrix elements (LDMEs) at both
leading order (LO) and next-to-leading order (NLO) in the QCD coupling constant are renewed. We also
present the transverse momentum distribution of the χc production cross section and the ratio σðχc2Þ=σðχc1Þ
for several experimental conditions and find that NLO predictions agree with all sets of experimental data.
By contrast, at LO, one cannot explain all the data with a unique value of the color-octet LDME. A brief
analysis of the nonrelativistic QCD scale dependence of the cross sections shows that, for the conditions we
are concerned with in this paper, the dependence can be almost totally absorbed into the LDME.
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I. INTRODUCTION

Since the Large Hadron Collider (LHC) started its run,
many experimental results have come out that have
provided an opportunity to carry out further investigation
of the phenomenology of QCD-based effective theories.
Nonrelativistic QCD (NRQCD) is one of the most suc-
cessful effective theories describing quarkonium produc-
tion and decays [1]. Under the NRQCD framework, the
cross section is factorized into the summation of the
products of the short-distance coefficient (SDC), which
is independent of the quarkonium state and can be
calculated perturbatively, and the long-distance matrix
element (LDME), which only depends on the quarkonium
state and requires the fit of experimental data to extract its
value. The cross section for the process of heavy quarko-
nium H production or decay can be expressed as

dσðHÞ ¼
X
n

dfnhOHðnÞi ð1Þ

where fn is the SDC for the qq state n, and hOHðnÞi is the
LDME of state n for quarkonium H.
NRQCD succeeded in many processes where the color-

singlet (CS) model [2–6] failed; however, it still faces many
challenges. J=ψ polarization at hadron colliders is among
the most puzzling questions that NRQCD encounters.
References [7,8] investigated the polarization of directly
produced J=ψ , while Ref. [9] provided polarization results
for prompt J=ψ hadroproduction, which is the first next-to-
leading-order (NLO) result comparable with experiment.

The three letters employed three sets of LDMEs, which
were obtained from different fit strategies. All of them can
describe J=ψ production, yet none of them can explain all
the polarization measurements. In addition, the universality
of the LDMEs is another challenge. Reference [10] rec-
onciled experimental data of J=ψ production at the
Tevatron and HERA; however, their LDMEs resulted in
unphysical cross sections when employed to J=ψ associ-
ated with a photon production at hadron colliders [11].
Another interesting example is the transverse momentum
(pt) integrated cross sections for the J=ψ hadroproduction.
The theoretical results at QCDNLO obtained with collinear
factorization [12,13] overshoot the experimental data.
Having resummed logðxÞ (where x denotes the Bjorken-x)
and considered the all-twist contributions in the dense side,
Ma and Venugopalan [14] remedied the discrepancy.
However, they did not include the χc and ψ 0 feeddown
contributions. Whether the inclusion of these parts will ruin
the conclusions requires further investigation. Actually,
Ref. [15] has already studied the χc production processes
in which the pt of the χc completely comes from the initial
states. Exploiting the unintegrated gluon distribution, the
authors announced that the color-octet (CO) LDME
for χc is almost an order of magnitude smaller than the
one obtained through the collinear factorization calculations.
Reference [16], however, found that the final-state gluon
emission processes actually dominate the χc hadroproduction
in the midrapidity region. For the above reasons, testing
NRQCD is still an important work.
P-wave quarkonia productions provide an excellent

laboratory to test NRQCD. Above all, at LO in v (the
typical relative velocity of quark and antiquark in quarko-
nium), only one LDME is to be obtained from experiment;
one does not suffer from the entanglement of too many free
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parameters in the fit of experimental data, in contrast to the
J=ψ case [7–10,17,18]. Further, at NLO, the pt distribution

of both 3P½1�
J and 3S½8�1 channels behaves as 1=p4

t in the large
pt region. Higher order corrections cannot exceed this
behavior; thus, one can expect NLO predictions to give a
good precision in this phase space region. In contrast to the
3S½1�1 case, the significance of NNLO correction is still in the
mist. Finally, feeddown from higher excited states to
P-wave quarkonia, say, χc, hc, χb, or hb, can almost be
neglected [e.g., σðψð2sÞ → χc1ð1pÞÞ=σðχc1ð1pÞÞ ∼ 5% at
LHCb [19–21]]. Notice the advantages stated above: we
say the case of χc is “clean”it is much easier to make
definite conclusions in this case than in the J=ψ case.
On the other hand, the study of χc production is not only

important itself for phenomenological concerns, but also
provides an opportunity for precise study of J=ψ phenom-
enology (e.g., Ref. [9] indicates that χc feeddown contri-
bution is essential to the study of J=ψ polarization). Many
theoretical works on χc production have been published.
The authors of Refs. [22–25] obtained LDME for χc
production at LO and employed them to the prediction
of prompt J=ψ hadroproduction and/or polarization. Ma
et al. [26] presented the first NLO study of χc hadropro-
duction and gave a favorable choice of the LDME for χc
production. Li et al. [27] calculated χc production asso-
ciated with a cc pair at hadron colliders. Shao et al. [28,29]
provided a detailed study on the polarization of hadropro-
duced χc and χc-generated J=ψ ; at the same time, they
compared the theoretical prediction with some of the recent
experimental data [30–32]. Likhoded et al. [33] calculated
χc hadroproduction at LO in αs and extracted both the CS
and CO LDMEs from the fit of the experimental data,
where their CS LDME is several times larger than the value
obtained by the potential model and higher order terms in
v2 contribute significantly.
This paper is devoted to the theoretical predictions of χc

hadroproduction, for one thing, as an alternative test of
NRQCD. Recently, a number of experiment results have
come out from the LHC collaborations, among which are
many measurements on the χc yield and the ratio
σðχc2Þ=σðχc1Þ. This paper will answer the question of
whether a single LDME can explain all the experimental
data. For another thing, the popular values of the LDMEs
for χc production, both at LO and NLO, were all given
before these experimental results were published; they are
out of date. This paper will provide a detailed analysis on
the determination of the LDMEs and reasonable values of it
at both LO and NLO. Finally, as suggested in Ref. [34], we
also observe the NRQCD scale dependence of the cross
sections to determine whether NLO prediction stands up.
This paper is organized as follows. Section II gives a

brief introduction to the NRQCD framework for χc
hadroproduction calculation. In Sec. III, we present the
parameter choices in our numerical computation and an
analysis to see whether the NRQCD scale dependence is

severe. In Sec. IV, we present the results of the fit and the
values of the LDMEs at both LO and NLO and investigate
the universality of the LDMEs in detail. Section VI is a
concluding remark.

II. χ c PRODUCTION IN NRQCD FRAMEWORK

This section provides quite a brief review of the NRQCD
formulas for the calculation of χc production. We do not
discuss in detail how the equations are derived. Interested
readers can refer to some relative references, e.g., [34,35].
For χc production at LO in v, Eq. (1) can be written as

dσðχcJÞ ¼ df3P½1�
J
hOχcJð3P½1�

J Þi

þ df3S½8�
1

ð2J þ 1ÞhOχc0ð3S½8�1 Þi: ð2Þ
The value of CS LDME can be evaluated through [1]

hOχcJð3P½1�
J Þi ¼ 9

2π
ð2J þ 1ÞjR0

pð0Þj2; ð3Þ

where R0
pð0Þ is the derivative of the wave function of the

related quarkonium with respect to the radius at the origin.
The calculation of f3S½8�

1

has been described in detail in
many of our previous papers; see, e.g., [36]. To evaluate
f3P½1�

J
, we notice that it is independent of the long-distance

asymptotic states and replace χcJ in Eq. (2) with a cc state
3P½1�

J , so that we obtain

dσð3P½1�
J Þ ¼ df3P½1�

J
hO3P½1�

J ð3P½1�
J Þi þ df3S½8�

1

hO3P½1�
J ð3S½8�1 Þi;

ð4Þ

where we have used the relation hO3P½1�
J ð3S½8�1 Þi ¼

ð2J þ 1ÞhO3P½1�
0 ð3S½8�1 Þi. We should keep in mind that

Eq. (4) is to extract CS SDC, which is expanded in αs.

As a result, the quantities hO3P½1�
J ð3P½1�

J Þi and hO3P½1�
J ð3S½8�1 Þi

should also be evaluated perturbatively, and the value of αs
in them should be in accordance with that in the SDCs. The
left- and right-hand side of Eq. (4) should keep those terms
up to the same order as in the perturbative expansion. The
evaluation of dσ3P½1�

J
follows the ordinary procedure: writing

the squared amplitudes through reading Feynman diagrams
and multiplying it by the flux density and the phase

space unit. Both dσ3P½1�
J

and hO3P½1�
J ð3S½8�1 Þi are infrared

(IR) divergent, and the IR divergences from the two
quantities cancel each other.
We adopt the two-cutoff phase space slicing method [37]

and find that the cross section excluding the terms (denoted
as dσS) corresponding to the squared real-correction dia-
grams, in which a gluon connects the quarkonium (as
displayed in Fig. 1), integrated over the gluon soft region is
free of divergence. We denote this finite part of the cross
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section as dσF. Neglecting the finite terms proportional to
the size of the small region, dσS can be expressed as

dσSð3P½1�
J Þ ¼ −

αs
3πm2

c
usϵ

N2
c − 1

N2
c

df3S½8�
1

hO3P½1�
J ð3P½1�

J Þi; ð5Þ

where Nc is 3 for SU(3) gauge field and

usϵ ¼
1

ϵIR
þ E

p
ln

�
Eþ p
E − p

�
þ ln

�
4πμ2

sδ2s

�
− γE −

1

3
; ð6Þ

with E and p being the energy and absolute value of
momentum of χc, respectively, γE the Euler’s constant, and
μ the scale to complement the dimension. δs is an arbitrary
positive number small enough to provide the soft approxi-
mation with sufficient accuracy.
Up to the order maintained in our calculation, the

transition rate of cc state 3S½8�1 into 3P½1�
J can be calculated

in the dimensional regularization scheme as

hO3P½1�
J ð3S½8�1 ÞiNLO ¼ −

αs
3πm2

c
ucϵ

N2
c − 1

N2
c

hO3P½1�
J ð3P½1�

J ÞiLO;

ð7Þ

where ucϵ is defined as

ucϵ jμΛ ¼ 1

ϵIR
− γE −

1

3
þ ln

�
4πμ2

μ2Λ

�
ð8Þ

and

ucϵ jMS ¼
1

ϵIR
− γE þ 5

3
þ ln

�
πμ2

μ2Λ

�
ð9Þ

in the μΛ-cutoff (in which μΛ is the upper bound of the
integrated gluon energy) and MS renormalization scheme,
respectively. μΛ is a scale rising from the renormalization of
the LDME.
Substituting Eqs. (7) and (5) into Eq. (4), we can solve

the SDC for 3P½1�
J as

dfNLO
3P½1�

J

¼ dfF
3P½1�

J

−
αs

3πm2
c

N2
c − 1

N2
c

uϵdfLO3S½8�
1

; ð10Þ

where

uϵ ¼ usϵ − ucϵ ; ð11Þ

the expressions of which for the μΛ-cutoff and MS
renormalization scheme are

uϵjμΛ ¼ E
p
ln

�
Eþ p
E − p

�
þ ln

�
μ2Λ
sδ2s

�
− 2þ 2lnð2Þ ð12Þ

and

uϵjMS ¼
E
p
ln

�
Eþ p
E − p

�
þ ln

�
μ2Λ
sδ2s

�
; ð13Þ

respectively.
Both of the terms on the right-hand side of Eq. (10) are

finite. Now, all the short-distance coefficients are IR
divergence free; then the components for calculating the
cross section for χc hadroproduction are well defined.
Substituting Eq. (10) into Eq. (2), we obtain the complete

expression of the cross section for χc production:

dσNLOðχcJÞ¼ dσFðχcJÞ−
αs

3πm2
c

N2
c−1

N2
c

uϵhOχcJð3P½1�
J ÞidfLO

3S½8�
1

þð2Jþ1ÞhOχc0ð3S½8�1 ÞidfNLO
3S½8�

1

: ð14Þ

III. NUMERICAL CALCULATION AND THE
ANALYSIS ON μΛ DEPENDENCE

To calculate σð3S½8�1 Þ and σð3P½1�
J Þ, we apply our Feynman

diagram calculation package (FDC) [38] to generate the
entire needed FORTRAN source.
Before we present the numerical results, we should

comment on obtaining the CO LDME. Focusing on the
last two terms in the right-hand side of Eq. (14), one can
notice that, if μΛ varies its value, in order to fit the cross

FIG. 1. Typical diagrams where the soft gluon connects to the quarkonium.
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section dσNLOðχcÞ to the experimental data, the LDME in
the last term should change accordingly, which is to say, the
dependence on μΛ is partly absorbed into the CO LDME. If
we proceed with our calculation to infinite order in αs, the
μΛ dependence can be totally absorbed into the CO LDME.
Consequently, this scale actually can be any positive value
holding the convergence of αs expansion. If our results
significantly depend on μΛ, the dropped terms in higher
orders must contribute significantly, and the calculation up
to this order does not reach a sufficient accuracy. Up to
NLO, the condition of μΛ independence requires

αs
3πm2

c

N2
c − 1

N2
c

dfLO
3S½8�

1

∝ dfNLO
3S½8�

1

; ð15Þ

as well as that the proportional ratio should be universal for
all the processes. We define a quantity

r ¼
dfNLO

3S½8�
1

dpt
=
�
αs
3π

N2
c − 1

N2
c

dfLO
3S½8�

1

dpt

�
; ð16Þ

to determine whether the μΛ dependence is severe. If r is
constrained in a small range throughout the whole pt region
for all the processes, we know for sure the dependence on
μΛ can be absorbed into the LDME and vice versa. In this
paper, we provide the values of the CO LDME for different
renormalization schemes and μΛ choices.
In the numerical calculation, we have the following

common choices of parameters: jR0
pð0Þj2 ¼ 0.075 GeV5

[39] for both LO and NLO calculation, andmc ¼ 1.5 GeV.
The soft cutoff δs independence is checked in the calcu-
lation and δs ¼ 0.001 is used. Since the energy scale of
most of the phase space region exceeds b-quark mass,
ΛQCDjnf¼5 ¼ 0.226 GeV is used. We employ CTEQ6M
[40] as the parton distribution function (PDF) and two-loop
αs running for up-to-NLO calculation, and CTEQ6L1 [40]
and one-loop αs running for LO. The renormalization
and factorization scales are chosen as μR ¼ μf ¼
m⊥ ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4m2
c þ p2

t

p
.

In our fit, we exclude the pt < 7 GeV data points. This is
because, for one thing, relativistic correction contributes a
part proportional to the QCD LO SDC, when pt is larger
than about 7 GeV [41]; this part can be complemented by
modifying the values of the LDMEs, while below 7 GeV,
this is not true. For another thing, the logðxÞ terms might
ruin the perturbative expansion in this region [14,42].

To extract the CO LDME, we employ all the existing data
on χc hadroproduction except for those in Ref. [43], which
measured the fraction of the J=ψ hadroproduction cross
section through the χc feeddown to the prompt one.
Reference [44] provided the prompt J=ψ hadroproduction
cross section with the same center-of-mass energy and
rapidity range. However, the pt’s of the two sets of data
do not coincide. Thus, we cannot extract the exact central
values and error bars of the χc hadroproduction cross sections
and consequently we cannot use these data directly. For this
reason, we give up using them in our fit. There are six sets of
data involved in our analysis. All of them are listed in Table I.
Except for the datamentioned above,we also noticed another
set of data (denoted as E3A), which was published in
Ref. [31]. Since the data in E3 are the updated version of
those in E3A, we do not use E3A for fit; however, we plot
them in the figures for reference.
In Refs. [20,30,32,45] (corresponding to E1–E4), the

values of pt are given for the J=ψ generated from χc
feeddown, in accordance with which we should do the so-
calledpt shift asp

J=ψ
t ≈ pχcJ

t mJ=ψ=mχcJ .Herewe choose [47]
mJ=ψ ¼ 3.097 GeV, mχc0 ¼3.415GeV, mχc1 ¼3.510GeV,
and mχc2 ¼ 3.556 GeV, which are different from Ref. [9],
wheremJ=ψ andmχc are 3.1 GeVand 3.5 GeV, respectively.
The branching ratios [47] are 1.27%, 33.9%, and 19.2% for
χc0;1;2 to J=ψ , respectively.
Before we carry out the fit, we shall first investigate

whether r defined in Eq. (16) is universally a constant to
hold the μΛ independence. E2 and E3 are in the same
experimental condition, as are E5 and E6; accordingly,
there are four conditions to present. For these experimental
conditions, the values of r are presented in Fig. 2. We can
see that, except for E2 (as well as E3), for all three
conditions, r is almost a constant, ranging from about
104 to 118, as pt varies from 4 GeV to 36 GeV. As we
expected in the introductory section that NLO results
should provide a sufficiently precise prediction, the μΛ
dependence cannot be severe. For E2, the situation is a little
worse (r ranges from 132 to 105), yet, not so bad to ruin the
results. We can now expect that, for E1 and E4–E6, the
theoretical prediction should be in good agreement with
the experiment, and if we carry out the fit by employing the
four sets of data individually, we should obtain almost
the same results of the values of the LDME. For E2 and E3,
the theoretical prediction might agree with the experiment
qualitatively.

TABLE I. All the sets of data used in our fit.

Abbreviation E1 E2 E3 E4 E5 E6

Center-of-mass energy (TeV) 1.96 7 7 7 7 7
Rapidity range jyj < 1.0 2.0 < y < 4.5 2.0 < y < 4.5 jyj < 1.0 jyj < 0.75 jyj < 0.75
Collaboration CDF [30] LHCb [20] LHCb [45] CMS [32] ATLAS [46] ATLAS [46]
Content σðχc2Þ=σðχc1Þ χc cross section σðχc2Þ=σðχc1Þ σðχc2Þ=σðχc1Þ χc1 cross section χc2 cross section
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r is not always a constant up to NLO precision. As an
example, for hc hadroproduction, r varies significantly for
different experimental conditions and phase space regions.
Interested readers can refer to Ref. [34], in which the
detailed results for hc hadroproduction are presented.

IV. NUMERICAL RESULTS AND COMPARISON
TO THE EXPERIMENTAL DATA

We present the values of the CO LDME extracted
from the fit of each set of the experimental data at both
LO and NLO, and see if they correspond with one another.FIG. 2. The value of r defined in Eq. (16) as a function of pχc

t .
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FIG. 3. The pt distribution of χc production at the Tevatron and LHC. The blue and black curves are for LO and NLO, respectively.
The experimental data are taken from Refs. [20,46].

GLOBAL ANALYSIS OF THE EXPERIMENTAL DATA ON … PHYSICAL REVIEW D 93, 054033 (2016)

054033-5



In the rest of this paper, we abbreviate hOχc0ð3S½8�1 Þi
as O × 10−3 GeV3.
For LO calculation,

OLO
E1 ¼ 0.24� 0.13; OLO

E2 ¼ 1.26� 0.03;

OLO
E3 ¼ 0.19� 0.06; OLO

E4 ¼ 0.13� 0.05;

OLO
E5 ¼ 1.22� 0.07; OLO

E6 ¼ 0.67� 0.07; ð17Þ

and the χ2=d:o:f. are 6.4, 0.0078, 1.1, 0.69, 0.11, and 0.43,
respectively.
For NLO calculation, as μΛ ¼ mc in μΛ-cutoff renorm-

alization scheme,

ONLO
E1 ¼ 1.97� 0.17; ONLO

E2 ¼ 2.34� 0.06;

ONLO
E3 ¼ 2.28� 0.06; ONLO

E4 ¼ 2.00� 0.07;

ONLO
E5 ¼ 2.03� 0.05; ONLO

E6 ¼ 2.04� 0.06; ð18Þ

and the χ2=d:o:f. are 2.8, 0.034, 0.18, 0.17, 0.068, and 0.35,
respectively.
To begin with, we can see that, for all the conditions

except for E2, the χ2 for NLO is smaller than that for LO.
Moreover, for E1 and E4–E6, the obtained values of the CO
LDME for NLO are almost the same (O ranges from 1.97
to 2.04). As we analyzed in the previous section, we do not
expect theoretical prediction for E2 and E3 to agree with
the experiment in high precision; however, even for E2 and
E3, the obtained values of the CO LDME are very close to
those for E1 and E4–E6. By contrast, for the values of O
obtained for the LO range from 0.13 to 1.26, the largest is

about ten times the smallest, and there is no common value
for any group of the sets of data; the distribution of the
values is dispersive. We can conclude that no universal
value exists for LO LDME, since up to LO, the precision is
not sufficient to describe all the experiments. We can also
see that the LDME given in Ref. [23] is too large. One
might make wrong conclusions if using that value. The
LDME given in Ref. [25] is much larger than the upper
bound of the series of the values presented above. The large
value of the LDME might lead to overestimation of the
absorption effect (as well as other nuclear matter effects).
Now we carry out a global fit, using all the experimental

data in E1–E6 for LO, and E1 and E4–E6 for NLO, and
obtain

OLO ¼ 0.31� 0.09; ONLO
μΛ ¼ 2.01� 0.04: ð19Þ

The χ2=d:o:f. are 2.4 and 0.47 for LO and NLO, respec-
tively. The consideration is that we trust the precision of the
NLO results for E1 and E4–E6. However, for E2 and E3,
the situation is not clear. Thus, we fit E1 and E4–E6 to
obtain NLO CO LDME as a default value to present our
results, and we employ the LDME to see whether it can
explain the experiment E2 and E3.
Theoretical predictions for the χc production cross

section and the ratio σðχc2Þ=σðχc1Þ are listed in Figs. 3
and 4, respectively. References [20,30,32,45] only provide
results for J=ψpt, while Ref. [46] provides results for both
J=ψ and χc pt. Since our calculations are carried out at χc
pt, for this reason, the distributions for E5 and E6
illustrated in Fig. 3 are with respect to χc pt. Since the
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FIG. 4. The ratio σðχc2Þ=σðχc1Þ as a function of pt at the Tevatron and LHC. The blue and black curves are for LO and NLO,
respectively. The experimental data are taken from Refs. [30–32,45].
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FIG. 5. The LO results for the χc production cross section and the ratio σðχc2Þ=σðχc1Þ as a function of pt at the Tevatron and LHC. The
band corresponds to the LO prediction between the results for O ¼ 0.13 and O ¼ 1.88. The experimental data are taken from
Refs. [20,30–32,45,46].
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FIG. 6. The NLO results for the χc production cross section and the ratio σðχc2Þ=σðχc1Þ as a function of pt at the Tevatron and LHC.
The band corresponds to the NLO prediction between the upper and lower bounds using the eight LDMEs for different renormalization
schemes and the values of μΛ. The experimental data are taken from Refs. [20,30–32,45,46].
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uncertainty of the LDME at NLO is small, we do not draw
the band rising from this uncertainty. However, the uncer-
tainty of the LDME for LO is quite large, but we do not
bother with this matter here. We will provide a more
reasonable band for LO uncertainty later.
We can see from Figs. 3 and 4 that NLO results are in

very good agreement with all the experiments, while LO
results cannot agree with most of the experimental data. As
we mentioned above, for E2 and E3, the NLO calculation
might not be able to provide sufficiently precise results,
since as displayed in Fig. 2 that μΛ dependence is severe for
this experimental condition. This fact might arise from the
large rapidity (denoted as y), since large y eventually
introduces two scales Eχc (the energy of χc) and m⊥.
When y ¼ 4.5, Eχc=m⊥ ≈ 45, which might ruin the per-
turbative expansion. One might resum these terms to
achieve well-converged results.
Since LO results obtained from the default choice of the

LDME cannot provide good predictions, we shall give a
range of the LDME to cover all the experimental data. Here
we choose the range between the upper and lower bound of
the values given in Eq. (17): O ¼ 0.13 ∼ 1.26. We can see
in Fig. 5 that the large band can cover most of the
experimental data, and the upper bound overestimates
the significance of χc feeddown contributions for some
of the conditions. Still, we are not sure whether they are
able to explain new experiments; however, a band pre-
sented for the range given above might cover the exper-
imental data in the sense of statistics. And we know for sure
that a single value of the CO LDME cannot give reasonable
predictions at LO.
At the end of this section, we present the values of the

CO LDME at NLO for different choices of μΛ. For the same
reason, we exclude E2 and E3 data. The LDMEs are listed
as follows:

ONLO
mc

¼ 2.25� 0.04; ONLO
mc=2

¼ 1.68� 0.04;

ONLO
ΛQCD

¼ 0.70� 0.04: ð20Þ

Here we have used MS renormalization scheme (in the
calculation of NLO correction to the CO LDME). The
χ2=d:o:f. are 0.48, 0.46, and 0.42, respectively.
Fitting experimental data at different μΛ’s is actually an

alternative procedure of solving the LDME running equa-
tion, which can be obtained from the renormalization of the
LDME as

μΛ
∂

∂μΛ hO
χcJð3S½8�1 Þi ¼ 2αs

3πm2
c

N2
c − 1

N2
c

hOχcJð3P½1�
J Þi: ð21Þ

As Fig. 2 shows, r is almost a constant for the experimental
conditions in the fit, so we can expect that the LDMEs
listed above would be consistent with Eq. (21). From
Fig. 2 and Eq. (16), the typical value of αs is about 0.09

(at large pt). Employing this value, we find that the LDMEs
in Eq. (20) satisfy Eq. (21).
We also present here the LDME obtained with the

inclusion of E2 and E3, and see whether the results change
much:

ONLO
μΛ ¼ 2.09� 0.04; ONLO

mc
¼ 2.35� 0.04;

ONLO
mc=2

¼ 1.77� 0.04; ONLO
ΛQCD

¼ 0.77� 0.04; ð22Þ

where the subscript μΛ denotes the μΛ-cutoff renormaliza-
tion scheme as well as μΛ ¼ mc, and the subscripts mc,
mc=2 and ΛQCD refer to the MS renormalization scheme,
with μΛ being the corresponding values. The χ2=d:o:f. are
0.51, 0.52, 0.50, and 0.46, respectively. The difference
between the LDMEs fitted by including and excluding E2
and E3 ranges from 4% to 10%. The difference increases as
μΛ gets smaller, which is caused by the different behavior
of r for the four experimental conditions. Including E2 and
E3 enhances the χ2=d:o:f. slightly, which is to say that
theoretical prediction can fit E2 and E3 equally as well as it
fits E1 and E4–E6. Figure 6 presents the comparison of
theoretical predictions for the eight LDMEs to the exper-
imental data. Actually, all eight LDMEs result in good
agreement with the experiment. For E1 and E4–E6, the
bands hold small as pt varies, while for E2 and E3, the
bands get very large in high pt regions, which is to say for
E1, E4–6, and the small pt region in E2 and E3, the μΛ
dependence can be absorbed into the LDMEs, while in the
large pt regions in E2 and E3, the problem of μΛ
dependence becomes severe.
The values of hOχc0ð3S½8�1 Þi at LO obtained in this paper,

which range from 0.00013 GeV3 to 0.00126 GeV3,
are smaller than those in Ref. [23] (ð0.00327�
0.00043Þ GeV3), Ref. [24] (ð0.0019� 0.0002Þ GeV3),
and Ref. [25] (ð0.00187� 0.00025Þ GeV3), which
employed the data obtained through extrapolation carried
out in Ref. [43]. The NLO LDMEs are slightly different
from those obtained in Refs. [9,26], which is due to the
different parameter choices between our paper and those
cited above. With the same parameter choice, we can obtain
exactly the same LDMEs with Refs. [9,26].

V. SUMMARY

In this paper, we calculated χc production cross
sections and the ratio σðχc2Þ=σðχc1Þ at hadron colliders,
and compared the theoretical predictions with the experi-
ment. We presented a detailed analysis on the CO LDMEs
and found that, at LO, there does not exist any universal
value of the CO LDME to explain all the experiments,
while at NLO, the CO LDME obtained from a global fit is
able to explain all the experimental data. At LO, we
obtained the value of O ranging from 0.13 to 1.26 when
fitting individual experiments E1–E6. The upper and
lower bounds of O result in quite a large band, which
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can cover most of the experimental data; however, the
upper bound overestimates the significance of χc feed-
down contributions for some of the experimental
conditions. As for the NLO case, we carried out a
global fit by using eight schemes. Each of them agree
well with the experimental data. We also investigated
the μΛ dependence of the results and found that, for E1,
E4–E6, and the small pt region in E2 and E3, the
dependence on μΛ can be absorbed into the LDMEs,
while for the large pt region in E2 and E3, the problem of

μΛ dependence is relatively severe. One needs to resum
the large log terms rising from large rapidity to achieve
better results. Our work provides a strong support of the
NRQCD effective theory.
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