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This is the second paper of the series aimed at understanding the ensemble of instanton-dyons, now with
two flavors of light dynamical quarks. The partition function is appended by the fermionic factor, ðdetTÞNf ,
and Dirac eigenvalue spectra at small values are derived from the numerical simulation of 64 and 128
dyons. Those spectra show a clear chiral symmetry breaking pattern at high dyon density.
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I. INTRODUCTION

A. Instanton-dyons and confinement

At high temperatures QCD matter is in the form of a
quark-gluon plasma (QGP) state, which is weakly coupled
because of the asymptotic freedom phenomenon. The
topological solitons to be discussed below have large
action S ¼ Oð1=αsÞ ≫ 1 and are therefore strongly sup-
pressed, ∼ expð−SÞ. However, as T decreases toward the
deconfinement transition, the coupling grows and such
objects become important.
The nontrivial configurations of interest are instantons

[1], which in the Euclidean finite temperature formulation
are known as calorons. Such solutions have been gener-
alized to the case of nonzero expectation values of the
Polyakov loop by Lee-Li-Kraan-van Baal in Refs. [2,3] and
are known as LLKvB calorons. An important novel feature
of these solution was the realization of instanton substruc-
ture: each LLKvB caloron consists of Nc objects, known as
instanton dyons (or instanton monopoles).
The color confinement phenomenon has many manifes-

tations, and thus many definitions. In this series of papers
we focus on one particular aspect of it, namely on the shift
of the vacuum expectation value of the Polyakov loop from
its “trivial value” hPi ≈ 1 at high T to small hPi ≈ 0 at
T < Tc. Multiple numerical simulations in the framework
of lattice gauge theory have documented such a shift, as
well as modification of the effective potential VðP; TÞ with
T leading to it. Since contributions of the quarks (and
nondiagonal gluons) to thermodynamical quantities are
proportional to (powers) of hPi, vanishing of it, effectively
switches off quark-gluon plasma contributions. So, in
papers of this series we focus on the calculation of this
effective potential and on the deconfinement phase tran-
sition phenomenon.
Another manifestation of confinement is a disordering of

large Wilson loops. It has been argued in [4] that an
ensemble of instanton dyons can generate the expected area
law. However, this issue is rather subtle and depends on the
infrared tails of the soliton fields, which are modified by
screening effects and thus are not robust enough to be

conclusive. One more approach to the confinement issue is
reached via the static quark potentials, which do exist at any
T and were extensively studied on the lattice. We intend to
calculate those in our approach later. Finally, a classic
formulation of confinement includes absence of color
degrees of freedom from vacuum spectra, at T ¼ 0.
Addressing it directly is not possible for the type of models
we discuss, since the calorons and instanton dyons them-
selves become difficult to use at sufficiently low T.
The idea that the effective potential of the Polyakov loop

P is due to the backreaction of the instanton dyons goes
back to Diakonov and collaborators [5], who provided the
first estimates indicating how this may happen, but were
unable to prove it. Using the so-called “double-trace
deformation of Yang-Mills theory,” at large N on
S1 × R3, Unsal and Yaffe [6] argued that there can be
confining behavior, with unbroken center symmetry, even
in weak coupling. This construction was extended by Unsal
and collaborators [7–9] to a class of deformed super-
symmetric theories with soft supersymmetry breaking. In
such a setting, with weak coupling and an exponentially
small density of the dyons, the minimum of the potential is
at the confining value of P induced by the repulsive
interaction in the dyon-antidyon pairs (called bions by
the authors). The supersymmetry was needed to cancel the
perturbative Gross-Pisarski-Yaffe-Weiss (GPYW) holon-
omy potential, which otherwise favors trivial value
hPi ¼ 1. Sulejmanpasic and one of us [10] have proposed
a simple model, with “repulsive cores” in the dyon-
antidyon channel, which can generate confining VðPÞ at
certain temperature Tc in pure gauge theory.
To evaluate the free energy of the instanton-dyon

ensemble we performed numerical simulations for pure
gauge SUð2Þ theory, in the first paper of this series [11], to
be below referred as I. The essential element was inclusion
of dyon-antidyon interactions, determined in the previous
paper [12] using a gradient flow method. A similar
conclusion has been recently reached by Liu, Shuryak
and Zahed [13] using analytic mean field theory. It however
uses the mean field approximation which is only applicable
for high enough dyon density, or T < Tc.
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B. Quarks in the instanton-dyon ensemble

In this paper we include quarks, fermions in the
fundamental color representation, to the instanton-dyon
ensemble. Those will be referred to as “dynamical quarks,”
since the so-called fermionic determinant will be included
in the ensemble measure.
The topological objects, instantons and instanton dyons,

have a certain number of four-dimensional zero modes
prescribed by the topological index theorems. Topology
ensures that any smooth deformation of the objects them-
selves does not shift fermonic eigenvalues from zero.
When the ensemble of topological solitons is dense

enough, the fermionic zero modes can collectivize and
produce the so-called zero mode zone (ZMZ). For an
ensemble of instantons this phenomenon has been studied
in great detail in the 1980’s and 1990’s; for a review see
[14]. The main physical phenomenon associated with ZMZ
is the spontaneous breaking of the SUðNfÞ chiral sym-
metry, “chiral breaking” for short.
In the case of the SUð2Þ gauge group there are only two

types of instanton dyons, calledM and L types (also known
as BPS and “twisted” or KK ones); their electric and
magnetic charges are given in Table I. Physical (antiperi-
odic in time direction) fermions have zero modes on the L
dyons. The zero modes produce the simplest effect of the
dynamical fermions—binding of the L̄L dyon pairs into
“molecules,” studied by Shuryak and Sulejmanpasic [15].
The first numerical simulations with fermions were done by
Faccioli and Shuryak [16], who studied 1, 2 and 4 flavor
theory with the SUð2Þ color: they found chiral symmetry
breaking in the first two cases, but the last one, Nf ¼ 4

appeared marginal. Many technical aspects of our paper
follows their setting.
Recent work by Liu, Shuryak and Zahed [17] was also

devoted to the role of quarks in the dense confining
instanton-dyon ensemble. Their basic conclusion is that
in this regime the quark condensate, signaling chiral
symmetry breaking, satisfies certain universal gap equa-
tion, which has nonzero solutions provided the number of
quark flavors Nf < 2Nc. So, the border case for two colors
is Nf ¼ 4, which is also a near-critical one according
to Ref. [16].
In the present paper we focus on the simplest case with

the spontaneous breaking of chiral symmetry, with only
two quark flavors Nf ¼ 2. The central issue addressed is
interrelation between confinement and chiral symmetry
breaking.

The paper is structured as follows: in Sec. II we describe
the physics of the fermionic zero modes and the technical
tool—the hopping matrix—used to evaluate the determi-
nant. We then explain the general setting of the interactions
in Sec. III. After that we show how the chiral condensate is
obtained from the eigenvalue distribution in Sec. IVand the
mass gap is discussed in Sec. IV C. The data sets used and
how they were analyzed is explained in Sec. V. We end with
the physical results in Sec. VI, where we show, among
other, the Polyakov loop and the chiral condensate’s
dependence on temperature.

II. THE ZERO MODE ZONE

The term dynamical quarks in the title implies inclusion
of the fermionic determinant in the measure for gauge field
configurations. The main approximation made by us—
similar to what was done in the instanton ensemble—is that
the set of all fermionic states is translated to the subspace
spanned by zero modes.
The fermionic determinant can be viewed as a sum of

closed fermionic loops with “hopping amplitudes” between
dyons and antidyons. Since sectors that are self-dual or
anti-self-dual have its eigenvalues protected, then the
overlap of L and L dyons or L̄ and L̄ dyons have to be
zero. The resulting form of the “hopping matrix” is

T̂≡
�

0 Tij

−Tji 0

�
: ð1Þ

Each of the entries in Tij is a “hopping amplitude” for a
fermion between the ith L-dyon and the jth L-antidyon.
The diagonal matrix elements are zero, and therefore a
single or many infinitely separated dyons will have zero
determinant and “veto” such configurations. However,
nonzero nondiagonal hopping matrix elements make the
determinant nonzero.
The only modification of the partition function used in

this paper relative to that in I is the fermonic factor

ðdetðT̂ÞÞNf : ð2Þ
Basically, detðT̂Þ can be seen as a set of loop diagrams,
connecting all L-dyons and antidyons of the ensemble. It
can either be dominated by short loops, including small
number (2, …) dyons, to be referred to as a “molecular
regime,” or by very long loops, including finite fraction of
the ensemble (“collectivized regime”). The former has
unbroken and the latter broken chiral symmetry. It is the
purpose of our simulations to determine, as a function of
the dyon density, the weights of such short and long loops.
We define the individual hopping amplitude as the

matrix element of the Dirac operator between different
zero-mode eigenfunctions

Tij ¼ hijD= jji; ð3Þ

TABLE I. Quantum numbers of the four different kinds of the
instanton dyons of the SU(2) gauge theory. The two rows are
electric and magnetic charges.

M M̄ L L̄

e 1 1 −1 −1
m 1 −1 −1 1
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where i and j are zero modes belonging to ith L and jth L̄
dyons. If the gauge field in the Dirac operator is a sum of
two solitons, using the equations of motion for both zero
modes, one can reduce the covariant derivative to the
ordinary derivative.
Including a mass term, changes the hopping matrix by a

constant m times the identity matrix.

III. THE GENERAL SETTING

The setup is almost the same as in our paper I [11], with
the difference being the inclusion of the fermionic deter-
minant in the zero-modes approximation. This factor
creates an additional fermion-induced interaction between
the L type dyons.
The dimensionless holonomy ν ¼ v=ð2πTÞ is related to

the expectation value of the Polyakov loop through the
(SUð2Þ) relation

P ¼ cosðπνÞ: ð4Þ
We seek to minimize the free energy

f ¼ 4π2

3
ν2ν̄2 − 2nM ln

�
dνe
nM

�
− 2nL ln

�
dν̄e
nL

�
þ Δf; ð5Þ

where the first term is the perturbative Gross-Pisarski-
Yaffe-Weiss holonomy potential, the next terms contain
semiclassical independent dyon contributions, with

dν ¼ Λ

�
8π2

g2

�
2

e
−ν8π2

g2 ν
8ν
3
−1=ð4πÞ ð6Þ

and Δf ≡ − logðZchangedÞ= ~V3 is defined via the partition
function studied numerically:

Zchanged ¼
1

~V2ðNLþNMÞ
3

Z
D3x detðGÞ expð−ΔDDDðxÞÞ:

×
Y
i

λ
Nf

i : ð7Þ

The last factor is the fermionic determinant, now written as
the product of all eigenvalues of the hopping matrix Tij.
Further explanation of G and ΔDDD can be found in

[11], and we therefore just present their expressions here
without too many comments:

G ¼ δmnδij

 
4πνm − 2

X
k≠i

e−MDTjxi;m−xk;mj

Tjxi;m − xk;mj

þ 2
X
k

e−MDTjxi;m−xk;p≠mj

Tjxi;m − xk;p≠mj

!

þ 2δmn
e−MDTjxi;m−xj;nj

Tjxi;m − xj;nj
− 2δm≠n

e−MDTjxi;m−xj;nj

Tjxi;m − xj;nj
: ð8Þ

Dyon two-point interaction ΔDDD is a sum over all the
different dyon to dyon combinations,

ΔDDD ¼
X
j>i

ΔSDiDj
; ð9Þ

where ΔSDiDj
is the correction to the action between dyon i

and dyon j. If the two dyons are a dyon and its antidyon, we
have for distances larger than x0

ΔSDD̄ ¼ −2
8π2ν

g2

�
1

x
− 1.632e−0.704x

�
e−MDrT

x ¼ 2πνrT: ð10Þ

For the rest of the combinations we have

ΔSDD ¼ 8π2ν

g2

�
−e1e2

1

x
þm1m2

1

x

�
e−MDrT

x ¼ 2πνrT; ð11Þ

where the charge is given by Table I. For distances smaller
than x0 we have a core between dyon pairs of the types LL,
MM, L̄ L̄, M̄ M̄, LL̄ and MM̄:

ΔSDD ¼ νV0

1þ exp ½σTðx − x0Þ�
ð12Þ

x ¼ 2πνrT; ð13Þ

where x0 is the size of the dyons core. In this paper we work
with x0 ¼ 2, just as in our earlier paper I. It is important to
note that for M type dyons one has to use ν and for L type
dyons one has to use ν̄ ¼ 1 − ν.

IV. EIGENVALUE DISTRIBUTIONS
AND THE CHIRAL CONDENSATE

The Banks-Casher relation for the chiral condensate tells
us that, in the infinite volume limit, the chiral condensate
for massless fermions is proportional to the density of
eigenvalues at zero value,

jhψ̄ψij ¼ πρðλÞλ→0;m→0;V→∞: ð14Þ

For any system with a finite volume, the typical size of
small eigenvalues is of size 1=V and the density will always
be 0 at λ ¼ 0 and m ¼ 0. We see this behavior in our
ensemble as seen for zero mass in Figs. 1 and 2. We also
find that a finite mass as in Figs. 3 and 4 has the effect of
allowing eigenvalues around zero, and if the mass is large
enough, smooth the maximum of the eigenvalue distribu-
tion into the region around λ ¼ 0.
To understand finite volume effects on the distribution,

one may study those using the chiral random matrix theory;
for review see [18]. In principle, using expressions obtained

INSTANTON-DYON ENSEMBLE WITH TWO DYNAMICAL … PHYSICAL REVIEW D 93, 054029 (2016)

054029-3



in this framework one can recover the value of the chiral
condensate in the infinite volume case.
We will be determining the chiral condensate by two

different methods:
(i) The first one is based on the part of the eigenvalue

distributions with the smallest λ. It requires an

understanding of both the finite volume and quark mass
effects on the distribution. This understanding we obtain
from analytic random matrix results. We explain this
approach in Sec. IVA.
Vanishing of the condensate is used to define the

ensemble parameters corresponding to chiral symmetry
breaking transition, Tψ̄ψ .
(ii) The second strategy we will use is based on the

determination of the so-called gap width in the distribution,
near λ ¼ 0: we will refer to it as Tgap. This approach is
explained in Sec. IV C.
Ideally, both critical temperatures should coincide,

defining the location of the chiral symmetry breaking Tχ .

A. The finite size effects

To understand the scaling of the finite volume effects we
performed simulations for 64 and 128 dyons, at the same
density. (The volume of the sphere with 128 dyons being 2
times larger than the sphere of the 64 ones.) The quark mass
in both simulations were set to zero. The resulting
eigenvalue distributions are shown in Fig. 5.
We fit the distribution of the eigenvalues with the form

taken from random-matrix theory [18] for the SUð2Þ gauge
group for massless fermions given by

ρðxÞ ¼ VΣ2

�
x
2
ðJ2ðxÞ2 − J1ðxÞJ3ðxÞÞ

þ 1

2
J2ðxÞ

�
1 −

Z
x

0

dtJ2ðtÞ
��

; ð15Þ

where x ¼ λVΣ1 and Jn is the Bessel function. Both the
scaling factor VΣ1 and the overall factor VΣ2 should be
proportional to the value of the chiral condensate Σ. In the
limit V → ∞ the formula gives ρð0Þ ∝ VΣ2 as required.
Ideally, the parameter values for two different volumes

should agree. When the fits for different volumes were
done, we found that the values for parameter Σ2 agree very

FIG. 1. Eigenvalue distribution for nM ¼ nL ¼ 0.47, NF ¼ 2
massless fermions at S ¼ 7.

FIG. 2. Eigenvalue distribution for nM ¼ nL ¼ 0.08, NF ¼ 2
massless fermions at S ¼ 7.

FIG. 3. Eigenvalue distribution for nM ¼ nL ¼ 0.47, NF ¼ 2
m ¼ 0.01 fermions at S ¼ 7.

FIG. 4. Eigenvalue distribution for nM ¼ nL ¼ 0.08, NF ¼ 2
m ¼ 0.01 fermions at S ¼ 7.
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well indeed. (This is related to the fact that the height of the
distributions on the right-hand side of Fig. 5 do agree.)
Note that the main difference between the two distribu-

tions is a shift to the left for bigger volume. This is expected
in larger volume clusters of a condensate inside which
quark propagation gets larger, and the eigenvalues smaller.
The formula, from random matrix theory, prescribes a
particular “mesoscopic” scaling with the volume. However,
the fit by this formula produces values of Σ1 which are not
the same. This indicates that, at least our smaller volume, is
not yet in the range in which the expected large volume
scaling applies.
The physics behind this behavior is as follows: there are

basically two components of the ensemble, generating two
different dependencies on the volume. As we already
mentioned in the introduction, there is collectivized dyons,
producing the condensate, and dyon-antidyon pairs. The
former component produces eigenvalue distribution shift-
ing with the volume, while the latter contribution is volume
independent.
The existence of two components lead us to construct

a value of Σ out of all four parameters of the fit
given by

Σ ¼ Σ2ð2Σ128
1 =Σ64

1 − 1Þ: ð16Þ

In the case of only almost zero modes, from the
collectivized dyons, doubling the volume should double

VΣ1. In the opposite case of only dyon-antidyon pairs, VΣ1

should be unchanged. As can be seen in Fig. 5 the situation
is sometimes in between the two extremes. The expression
(16) is an interpolation between the two regimes. This
resulting value of Σ will be used in the plots to follow, such
as showing the temperature dependence of the condensate.
We showΣ2, 2Σ128

1 =Σ64
1 − 1 andΣ for the results in Sec.VI A

in Fig. 6.
As the density increases, it is seen how the scaling

becomes closer and closer to that of the volume, as
expected from Eq. (15), such that the limit to infinite
volume gives the chiral condensate as ρð0Þ.

B. The effect of the quark mass

Nonzero quark mass moderates the distribution of the
smaller eigenvalues. Furthermore, for λ < m the fermions
are effectively decoupled, and thus the distributions should
be the same as for a quenched (no dynamical quarks)
theory. The latter is known to produce a singularity at
λ → 0 observed in the instanton liquid simulations and on
the lattice already in the mid-1990’s.
Our simulations with the mass 0.01 produce eigenvalue

distributions shown in Figs. 3 and 4. Note that, in contrast
to the zero mass case, one finds a peak near zero
eigenvalue. Eigenvalues outside of the range of the mass,
λ > m behave as in the massless case, as can be seen by
comparing to Figs. 1 and 2. In the range of λ ¼ m the
distribution is smoothed due to the singularity at λ → 0.
The same behavior is seen on the lattice [19], even when a
gap appears.

C. Gaps of the eigenvalue distribution

At high temperatures—or very dilute dyon ensembles, in
our model—the chiral symmetry remains unbroken. As it

FIG. 5. The points are the eigenvalue distribution for 64 (blue
circles) and 128 (red squares) dyons at S ¼ 8 and density of
dyons nM ¼ 0.33, nL ¼ 0.20, NF ¼ 2. The curves are the fit with
Eq. (15) with Σ2;64 ¼ 1.30� 0.06 and Σ2;128 ¼ 1.28� 0.06 and
the scaling as Σ1;64 ¼ 0.79� 0.05 and Σ1;128 ¼ 0.51� 0.04 for
these two cases, respectively. The lower purple line is the
difference between the two fits. Equation (16) gives
Σ ¼ 0.38� 0.13, while the maximum of the difference between
the two curves gives Σ ¼ 0.3 after normalizing the difference
(Note: This approach of using the maximum of the difference
between the two volumes has not been used to analyze the data,
but is simple used here to visualize the effect.)

FIG. 6. Σ2 (blue circle), 2Σ128
1 =Σ64

1 − 1 (red square) and Σ
(purple triangle) as a function of input action S ¼ 8π2=g2 for the
results in Sec. VI A. It is observed how the rise in Σ2 and
2Σ128

1 =Σ64
1 − 1 are correlated, while 2Σ128

1 =Σ64
1 − 1 goes to zero

for higher S while Σ2 does not.
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has been shown in multiple lattice simulations, in this case
the Dirac eigenvalue distribution develops a finite gap,
between λ ¼ 0 and the point where the eigenvalue distri-
bution starts to rise. Vanishing of this gap therefore
provides another way of observing the location of the
chiral symmetry breaking. Not to confuse it with the critical
temperature obtained from the other method, we call this
temperature for Tgap.
The procedure used is explained by an example shown in

Fig. 7: we fit the distribution by a straight line, and use its
intersection with the x-axis as the measure for the gap.
The fact that a gap appears means that the lowest

excitations are not massless.

V. DATA AND ANALYSIS

The setting has already been explained above. An
“update cycle” is defined as a sequence of Metropolis
updates of all coordinates of all dyons. Each “run”
consisted of 4000 such update cycles, out of which the
typical thermal relaxation time was of the order of 500
cycles. The “useful data” selected were the mean action
values collected for the last 1000 cycles.
The free energy of the model, depending on its param-

eters, is determined from the integrated expectation value of
the action hSðλÞi, following a standard approach:

e−FðλÞ ¼
Z

Dxe−λS ð17Þ

Fð1Þ ¼
Z

1

0

hSðλÞidλþ Fð0Þ: ð18Þ

An example of the lambda dependence is illustrated in
Fig. 8. The quick descent in the expectation value of the
action at small λ required more measurement points in the
range λ < 0.1. Therefore we had a step size of 1=90 until
λ ¼ 0.1, while for larger lambda the step size is increased to

0.1. These values, shown in the upper two rows of Table II,
constitute of 19 runs.
The next three rows of Table II correspond to three

parameters of the model used for free energy minimization.
(Those are the value of the holonomy ν, the radius of the
system defining the total dyon density and the number of
M-type dyons NM.) This three-dimensional space was
canned systematically, in a lattice form defined by min
and max values and a step defined in the Table. This was
done for all values of two remaining “input parameters,” the
Debye mass Md and classical action S. This gives 67200
different combinations.

A. Data analysis

After the integration over lambda is done, the values of
the free energy for each combination of parameters are
determined. The main part of the data analysis is the fit,
defining dependence of the free energy in the three-
dimensional space (of two dyon densities and holonomy)
near its minimum. We therefore fit this set of data with a
three-dimensional parabola

f ¼ ðv − v0ÞMðv − v0Þ þ f0 ð19Þ

which has ten variables. v and v0 are 3D vectors with v
containing the variables holonomy ν, radius r, and number

FIG. 7. The eigenvalue distribution for 64 dyons at S ¼ 7.5,
ν ¼ 0.434, NF ¼ 2, nM ¼ 0.43 and nL ¼ 0.22. A straight line
has been fitted through point 3 to 6 from the left. The gap size is
defined as the cross point with the x-axis.

FIG. 8. A typical example of the expectation values of the
action hSi obtained from the simulation as a function of λ.
Contribution to the free energy from the overall constant Fð0Þ is
not included.

TABLE II. The input parameters used for the final run.

Min Max Step size

λ 0 0.1 1=90
λ 0.1 1.0 0.1
ν 0.175 0.525 0.025
r 1.05 2.00 0.05
NM 16 26 2
Md 3 6 1
S 5 9.5 0.5
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of M dyons NM and v0 describing the correction to the
point that were the minimum. M is a 3 times 3 matrix with
M ¼ MT containing the coefficients for the fit.
This expression was fitted to free energy values of 53 ¼

125 points from a cube, containing five points around the
minimum in each direction. The resulting values of the ten
parameters fitted are used as follows: (i) v0 and its
uncertainties give the values of densities and holonomy
at the minimum, plotted as results below; (ii) the diagonal
component of M in the holonomy direction was converted
into the value of the Debye mass Md. An additional
requirement of the procedure, to make the ensemble
approximately self-consistent, is that the Debye mass from
the fit should be within �0.5 of the used input Debye
mass value.
To obtain the chiral properties—such as the Dirac

eigenvalue distributions and its dependence on dyon
number and volume—we only used the “dominant” con-
figurations for each action S, defined as follows. Since NM
is always an integer, we use the value closest to that
obtained from the fit. The eigenvalue distributions are then
analyzed as explained in Sec. IVA.

VI. PHYSICAL RESULTS

An accurate gauge-independent determination of the
hopping matrix element Eq. (3) is, in general, not a trivial
procedure. While zero modes for a single dyon are well
known, combining a pair ofL and L̄ dyons is not as simple as
it is for instantons: the complication is caused by magnetic
charges and the Dirac strings associated with them, trans-
porting singular magnetic flux to their centers. Ideally those
are invisible pure-gauge artifacts, whose direction is irrel-
evant: but it is not so for simple configurations like the sum
ansatz. “Combing gauge factors,” which appear in the zero
mode wave function, complicate the calculation, although
numerically their effect is relatively small: see more in
Appendix A of [17]. Currently we are working on solving
the Dirac equation for “streamline” configurations defined
in [12], but this work is not yet finished.
As a temporal solution, we use two parametrizations of

the hopping matrix element. We perform simulations with
both sets. The parametrizations themselves are explained in
the Appendix. The physical results are, respectively, split
up into two sections, one for each choice of Tij. Since the
overall constant c0 is unknown, values of c0 have been
chosen, such that the transition happens around S ¼ 7.5.
We are actively trying to obtain c0 from numerical simu-
lations. While the different Tij’s behave similar for large
distances, the behavior is different around zero. This also
means that the constant c0 can be different in the two cases.
For these results c0 was chosen such that the density of L
dyons did not become too small, while having a smooth
Polyakov loop that went to zero in the range of S ¼ 5–10.
The plots below have two scales, on their bottom and

top. The former one shows the “instanton action” parameter

S, one of the major parameters of the model controlling the
diluteness of the ensemble. We also indicate at the top the
corresponding temperature, relative to the critical temper-
ature Tc, chosen as S ¼ 7.5. It should be noted that this is a
choice, and is done in order to set a scale. The real input is
the action S or the coupling constant g. The temperature is
found from the running coupling constant:

SðTÞ¼ 8π2

g2ðTÞ¼ b · ln

�
T
Λ

�
; b¼ 11

3
Nc−

2

3
NF: ð20Þ

This top temperature scale is approximate and should only
be used for qualitative comparison to other models and
lattice data.

A. Parametrization A for Tij

The results in this subsection are for

Tij ¼ v̄c0 exp
�
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11.2þ ðv̄r=2Þ2

q �
: ð21Þ

Minimizing the free energy gives the dominating param-
eters for a specific action S or temperature T. This is done
for Λ ¼ 4 and −Logðc0Þ ¼ −2.60. This gives the holon-
omy, the density, Fig. 9, and Debye mass, Fig. 12. The
dominating configurations have been analyzed using the
methods described in Sec. IV in order to obtain the chiral
condensate, which is shown together with the Polyakov
loop in Fig. 10 and is also compared to the gap in Fig. 11.
We observe a smooth transition towards the zero expect-

ation value of the Polyakov loop P as temperature
decreases. We also observe a nonzero value of the chiral
condensate as temperature decreases. This is a more abrupt
change, though in some way still smooth. Its inflection
point (change of curvature) is found around S ¼ 7.5,

FIG. 9. Parametrization A: The density of the M (blue circles)
and L (red squares) dyons as a function of action S ¼ 8π2=g2 or
temperature T=Tc.
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though the transition happens between S ¼ 6.5–8. Below
S ¼ 7 the results fluctuate around a constant.
The chiral symmetry breaking can also be observed

through the shrinking of the gap around zero as shown
together with the chiral condensate in Fig. 11. Again,
thinking of the inflection points of the two curves, we
conclude from it that the critical temperature for chiral
condensate and the gap do coincide within errors, at the
same S ¼ 6.5–8 point.
Confinement and chiral symmetry are therefore different

phenomena, but are both triggered by the increase in the
density of dyons.

The Debye mass, Fig. 12, as compared to lattice results
[20], is seen to be around 66% too large. This could be due to
the choice of working with a hard core, or it could signal that
the correct value for the size of the core is slightly larger.

B. Parametrization B for Tij

The results in this subsection are for

Tij ¼ v̄c0
e−v̄r=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ v̄r=2

p ð22Þ

with − logðc0Þ ¼ −0.388 and Λ ¼ 3.2.
Just as for the other choice of Tij discussed in the

previous subsection, we obtain the parameters of density,
Fig. 13, holonomy (Polyakov loop Fig. 14), and Debye
mass, Fig. 16, as a function of temperature by minimizing
the free energy. The chiral condensate Figs. 14 and 15, and

FIG. 11. Parametrization A: The gap scaled up 15 times (blue
circles) and the chiral condensate Σ (red squares) as a function of
action S ¼ 8π2=g2 or temperature T=Tc. A clear rise/fall is seen
around S ¼ 7–7.5. We get a critical temperature from S ¼ 6.5–8
for the condensate and S ¼ 6.5–8 for the gap. Σ is scaled by 0.2.
The black constant line is defined in the caption of Fig. 10.

FIG. 12. Parametrization A: Debye mass Md as a function of
action S ¼ 8π2=g2 or temperature T=Tc.

FIG. 13. Parametrization B: The density of theM (blue circles)
and L (red squares) dyons as a function of action S ¼ 8π2=g2 or
temperature T=Tc.

FIG. 10. Parametrization A: The Polyakov loop P (blue circles)
and the chiral condensate Σ (red squares) as a function of action
S ¼ 8π2=g2 or temperature T=Tc. A clear rise is seen around
S ¼ 7.5 for the chiral condensate. Σ is scaled by 0.2. The black
constant line corresponds to the upper limit of Σ under the
assumption that the entire eigenvalue distribution belongs to the
almost-zero-mode zone, i.e. the maximum of Σ2.
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gap width Fig. 15, have been obtained from configurations
with the parameters obtained by minimizing the free
energy. The main difference between the two choices of
Tij comes from the behavior around r ¼ 0. The almost
exponential behavior, as shown in Eq. (22), means that L
dyons become more likely at high densities. The other thing
is that it is harder to make the different elements in Tij of
similar size, which results in a scaling behavior of the chiral
condensate that only becomes around 37%� 10% of the
volume, and not 100% as with the other choice of Tij. This
does not mean that the chiral condensate which we show in
Fig. 14 does not exist, but it does mean that we need a larger

volume in this case to obtain a cleaner result. It also means
that the overlap between almost-zero-modes and dyon-
antidyon pairs was larger.

VII. CONCLUSION

We have performed simulations for ensembles of instan-
ton dyons for the setting with two colors Nc ¼ 2 and two
quark flavors Nf ¼ 2, with variable temperature (coupling
constant). We have simulated the partition function for 64
and 128 dyons, calculated the free energy, and derived the
values of the Polyakov loop, the chiral condensate and the
gaps in the Dirac eigenvalue distributions at the free energy
minimum, for each value of the main external parameter S
defining the dyon density. We also observe gaps in the
eigenvalue distribution which goes close to zero in the same
interval as the inflection point for the chiral transition.
We find that the required condition for both the chiral

symmetry breaking and confinement is basically sufficiently
high density of the dyons. Furthermore, unlike in the case of
pure gauge theory without quarks studied in the previous
paper, the holonomy dependence on the density is smoother.
We do not observe holonomy vanishing, and also the
densities of theM and L type dyons does not become equal,
even at the lowest T we studied. All of these features make
exact determination of Tc difficult and definition dependent.
It is important to note that the repulsive core between the

dyons of the same type is essential for these results. For
the Polyakov loop expectation value, the core ensures that
the holonomy is pushed towards smaller M dyons as
density increases, thus making the Polyakov loop expect-
ation value smaller, instead of creating a clump of only M
dyons. For the chiral condensate it is important to obtain
configurations where the separation from L to L̄ dyons are
of the same size between the closest dyons, such that the
determinant goes from being diagonal dominated between
dyon-antidyon pairs to a collective liquid instead.

FIG. 16. Parametrization B: Debye mass Md as a function of
action S ¼ 8π2=g2 or temperature T=Tc.

FIG. 15. Parametrization B: The gap scaled up 20 times (blue
circles) and the chiral condensate Σ (red squares) as a function of
action S ¼ 8π2=g2 or temperature T=Tc. A fall is seen around S ¼
7 for the gap, while it goes close to zero around S ¼ 5–6.5. At
S ¼ 5–6 the chiral condensate starts to consistently become
different from zero. It should be noted in this case that 2Σ128

1 =Σ64
1 −

1 never becomes larger than 37%� 10%. Σ is scaled by 0.1. The
black constant line is defined in the caption of Fig. 10.

FIG. 14. Parametrization B: The Polyakov loop P (blue circles)
and the chiral condensate Σ (red squares) as a function of action
S ¼ 8π2=g2 or temperature T=Tc. Σ is scaled by 0.1. The black
constant line is defined in the caption of Fig. 10.
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While the model itself can definitely be improved—
especially the hopping matrix elements can be defined
more accurately—the overall mechanism for obtaining
confinement and chiral symmetry breaking appears to be
very solid, and should not be qualitatively affected by small
changes in the interactions. The extensions of the model to
other values of Nc, Nf are straightforward, and we expect
to be able to do so in the near future. Another obvious
direction of improvement is larger systems, better statistical
accuracy and better control over large volume and quark
mass extrapolations.
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APPENDIX: THE HOPPING AMPLITUDES

We follow [15] and use a simple interpolation formula,

Tij ¼ c
e−v̄r=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ v̄r=2

p ; ðA1Þ

where v̄ ¼ 2πT − v. Based on a change of variable it has
been found that the constant c should depend on holonomy
as v̄ which gives

Tij ¼ v̄c0
e−v̄r=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ v̄r=2

p : ðA2Þ

Of course there are many other ways one can choose Tij
such that it in the large r limit on a log scale goes as v̄=2.
We therefore tried to obtain the shape and constant c0 from
doing first order perturbation theory.
By doing a first order correction to the energy, it was found

that the factor cwas dependent on the orientation of theDirac

string, since it was not fixed. The overlap without the gauge
transformation was therefore used to understand the shape.
The integral done was

Z
d3xψðr2Þψðr1Þ

�
Hðr1Þ
2

þ Kðr1Þ
�
; ðA3Þ

whereH andK are the part ofA4 andAi respectively that only
depends on distance and not direction. The shape found to
correspond very well to the integral was

Tij ¼ v̄c0 exp
�
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11.2þ ðv̄r=2Þ2

q �
: ðA4Þ

Wewill therefore also look intowhat kindof effect this choice
of Tij has.
We compare the two choices in Fig. 17.
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