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The coupled quark Dyson-Schwinger and meson Bethe-Salpeter equations in rainbow-ladder truncation
for spin-0 mesons are solved in the Wigner-Weyl phase in the chiral limit and beyond, retaining only the
ultraviolet finite terms of the phenomenologically most successful Maris-Tandy interaction. This allows
one to reveal and discuss the scalar and pseudoscalar meson masses in a chirally symmetric setting without
additional medium effects. Independent of the current-quark mass, the found solutions are spacelike, i.e.,
have negative squared masses. The current-quark mass dependence of meson masses, leptonic decay
constants and chiral condensate are illustrated in the Wigner-Weyl phase.
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I. INTRODUCTION

The major mass fraction of visible matter in the universe
originates in the nonperturbative momentum regime of
quantum chromodynamics (QCD). There is consensus that
dynamical chiral symmetry breaking (DχSB) and/or con-
finement dynamically generate hadron masses that are
several orders of magnitude larger than the current masses
of the underlying valence constituents. However, the
interrelation of DχSB and confinement is nowhere near
understood and has recently been discussed in [1–4] within
a lattice-regularized QCD (LQCD) approach. While non-
observable color charges and the nondegeneracy of chiral-
ity partners are clearly associated with confinement and
DχSB,1 respectively, dynamically generated hadron masses
are attributed to either the first or the second. If confinement
and DχSB are tantamount and equivalent to each other,
such a distinction is, of course, meaningless, and an
underlying mechanism causing both might be conceivable.
In any case, investigating the origin of mass is one way to
approach this issue.
Therefore, future and existing large-scale experiments

aim at studying the properties of visible matter under
extreme conditions, i.e., large temperatures and/or den-
sities, e.g., [5,6], also in order to reveal if and how DχSB
and confinement are related to each other and if the
mechanisms that are believed to generate the hadron
properties are compatible with the physics observed there.
Here a phase transition or crossover toward the chirally
symmetric and deconfined phase is anticipated. In turn the
properties of matter under extreme conditions, in particular
under chiral symmetry restoration, are also theoretically
widely discussed. An interesting aspect of this endeavor is
the question, what would be the properties of matter under

the restoration of chiral symmetry isolated from density or
temperature effects?
Poincaré covariant and symmetry preserving calcula-

tions of the hadron spectrum within a combined Dyson-
Schwinger (DS) equation and Bethe-Salpeter (BS) equation
approach [7–9] generate the crucial nonperturbative quark
mass dressing that suffices to explain the nonexotic [10,10–
21] and study the exotic [22–25] hadron spectrum. Though
this quark mass dressing is not an observable quantity, it is a
valuable intuition building ingredient. Here the axial-vector
Ward-Takahashi identity (AVWTI) ensures compliance
with chiral symmetry and its dynamical breakdown at all
energy scales [26–28]. For a reliable hadron phenomenol-
ogy it is thus a crucial constraint. In view of this,
investigating hadron properties in a world that is initially
chirally symmetric within the DS-BS approach seems
natural. A chirally symmetric scenario without density
and temperature might be considered as the simplest
approximation to the complicated dynamics governing
the QCD phase diagram, which still exhibits a phase
transition. In particular, such a scenario might show if
restoration of chiral symmetry is sufficient for deconfine-
ment.2 Deviations from the results and predictions of such a
scenario are then attributed to medium effects.
Furthermore, the presented approach allows one to study
the effect of explicit chiral symmetry breaking and to
compare it to DχSB effects.
In the chiral quark mass limit, the pion would be

massless in the Nambu-Goldstone (NG) phase of chiral
symmetry. Its finite mass stems from the small explicit
current-quark masses. It is much smaller and clearly
separated from the next heavier meson, the ρ meson.
While the mass of the latter can intuitively be understood
by the large finite dynamically generated quark masses, the
pion, with the same quark content, is so light due to its
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nature as a pseudo-Goldstone boson. The latter must
necessarily exist in the spectrum if chiral symmetry is
spontaneously broken. From this perspective it is by no
means clear what the pion mass would be in the Wigner-
Weyl (WW) phase of chiral symmetry, where neither
significant dynamical quark masses are generated nor the
need for massless Goldstone bosons arises.
Experimentally, the pion dynamics and the pion mass in

a WW phase realization without additional medium effects
is not known and, most probably, will never be known.
Nevertheless, in view of the unclear interrelation of con-
finement and DχSB, in particular qualitative statements that
are not interfered with additional medium effects, such as
collisional broadening, are most enlightening and guide
expectations. Calculations within the Nambu–Jona-Lasinio
model at nonzero temperature and baryon density [29,30]
point to a (monotonically) increasing pion mass. In [31] the
question about the ρ meson properties in a scenario that is
chirally symmetric in vacuum has been posed and answered
for the first time within QCD sum rules (QSRs).
Similar investigations regarding the spectrum of spin-1

and 2 mesons, as well as nucleons, in such a scenario have
recently been performed in [32–34], where the authors
observed a new SU(4) symmetry in the hadron spectrum.
Within these studies, no spin-0 mesons have been found in
the meson spectrum. In the same spirit one may employ the
phenomenologically successful, symmetry preserving,
coupled DS-BS approach to probe the effect of exclusive
chiral symmetry restoration on hadronic properties as such
and, in particular, disentangled from many-body effects. In
particular, this approach is genuinely Poincaré covariant
and, thus, correctly reflects the related phenomena in the
hadron spectrum, whatever these might be. As the WW
spectrum is experimentally unknown and guidance is
missing from this side, such a Poincaré covariant approach
is well justified. Early studies with the same scope have
also been done in [35], and references therein, for sim-
plified confining models. This is feasible because the
coupled DS-BS approach naturally entails solutions in
the WW phase. Note that the WW phase solution to the
rainbow ladder (RL) truncated DS-BS equation approach is
as valid and consistent as the NG solution. In this spirit, it
has the advantage that it does not require a deformation of
the theory contrary to current QSR or LQCD based
approaches. On the other hand, one is forced to employ
a model interaction rather than a first principle QCD
calculation. Nevertheless, because the Maris-Tandy (MT)
model, on which the employed Alkofer-Watson-Weigel
(AWW) model [12] is based, is phenomenologically very
successful with a solid and well-founded relation to QCD,
enlightening results are found.
In Secs. II and III the quark DS and meson BS equations

in RL truncation together with the employed AWW model
interaction are presented. Results are presented and dis-
cussed in Sec. IV with conclusions in Sec. V.

II. QUARK DS EQUATION

The employed DS equation in rainbow truncation for the
nonperturbative quark propagator reads

SðpÞ−1 ¼ Z2ðiγ · pþ Z4mqÞ þ ΣðpÞ; ð1aÞ

ΣðpÞ ¼ CF

Z
Λ

q
Gððp − qÞ2ÞDf

μνðp − qÞγμSðqÞγν; ð1bÞ

where the Casimir color factor is given as CF ¼
ðN2

c − 1Þ=2Nc and the number of color degrees of freedom
isNc ¼ 3. ΣðpÞ is called the quark self-energy or mass shift
operator, and Df

μνðlÞ ¼ ðδμν − lμlν=l2Þ is the transversal
projector part of the free gluon propagator in the Landau
gauge. The model interaction l2Gðl2Þ algebraically replaces
the gluon propagator dressing function and is intended to
imitate the combined effects of omitted quark-gluon vertex
terms, gluon propagator dressing function, and running

coupling.
R
Λ
q ¼ R

Λ d4q
ð2πÞ4 is a translationally invariant regu-

larized integration measure with regularization scale Λ
[26]. Z2 and Z4 are quark wave function and quark mass
renormalization constants, whereas the quark gluon-vertex
renormalization constant is absorbed in the model inter-
action Gððp − qÞ2Þ. The current-quark mass is denoted
by mq.
With the decompositions

SðpÞ−1 ¼ iγ · pAðp2Þ þ Bðp2Þ ¼ Zðp2Þðiγ · pþMðp2ÞÞ
¼ ½−iγ · pσVðp2Þ þ σSðp2Þ�−1; ð2Þ

Eq. (1) defines a system of inhomogeneous, nonlinear,
singular, coupled Fredholm integral equations of the
second kind for the propagator dressing functions A and
B. Depending upon details of the specific interaction, e. g.,
strength, multiple solutions exist. Most commonly two
different solution strategies are employed: fixed-point
iteration and optimization algorithms.
Solutions in the chiral limit with nonzero chiral quark

condensate are identified as solutions in the NG phase.
Those with zero chiral condensate are assumed to be
solutions in the WW phase.3 Furthermore, we assume that
the transition from one solution in a certain phase of chiral
symmetry to another solution in the same phase but for a
different current-quark mass is continuous in the current-
quark mass mq. This allows one to identify solutions in the
WW phase beyond the chiral limit. Finally it is assumed
that the gluon and quark-gluon dynamics is not affected by
a transition to the chirally symmetric phase or that the
corresponding corrections are at least sufficiently small to

3Note that in general a zero chiral condensate is necessary but
not sufficient for chiral symmetry realizations. See also the
discussion in Sec. IV.
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give reasonable qualitative results when neglected. Clearly,
because of the coupling of the gluon propagator and quark-
gluon vertex to the quark propagator (see, e.g., [36,37] or
[38,39] for an intuitive model), this is an approximation. Up
to now, the gluon propagator in WW phase is unknown.
The phenomenologically most successful model within

the RL truncated DS-BS approach to the meson spectrum is
the MT model developed in [11] with the most recent
applications to a comprehensive meson phenomenology in
[10,18,19,22]. It consists of an infrared part and an ultra-
violet part. The latter is crucial to ensure the proper
perturbative limit of the running coupling in QCD.
However, it is of minor qualitative importance for meson
spectroscopy [12,40]. In particular, it can be neglected
when mainly qualitative aspects are investigated, as in the
scope of the current investigation.
The AWW parametrization [12] of the interaction reads

Gðq2Þ ¼ 4π2D
q2

ω2
e−

q2

ω2 : ð3Þ

It is ultraviolet finite, all renormalization constants are
equal to one, and the limit Λ → ∞ can be taken initially. In
particular, it obeys a chirally symmetric solution of Eq. (1)
if mq ¼ 0, which can easily be obtained by employing
B0ðpÞ ¼ 0 as the initial function for a fixed-point iteration.
It features MðpÞ ¼ 0 with AðpÞ ≠ 0; cf. Fig. 1 for a
comparison to the chiral NG phase solution and the
employed parameters. Both dressing functions have the
same asymptotic behavior in the WW phase as in the NG
phase. WhileMðpÞ in the WW phase significantly deviates
from its NG phase, AðpÞ differs only below ≈1 GeV.
Among others, the Newton-Krylov root finding method

[41], which is suitable for large scale optimizations, can be

used to find solutions in the WW phase beyond the chiral
limit as well [42,43]. Figure 1 depicts the WW solution for
different bare current-quark massesmq up to a critical mass
mcr

q ¼ 31 MeV, above which no solution in the WW phase
has been found for the employed set of parameters in the
present setup. The quark mass functions MðpÞ resemble
roots at ≈1 GeV and deviate significantly from each other.
Again, the propagator functions AðpÞ only deviate signifi-
cantly below ≈1 GeV from each other. The characteristic
excess of this function at ≈1 GeV remains unaffected.
Consequently, even in the chiral limit and WW phase a
simple constituent quark picture or the modeling of quark
bound states by virtue of free quark propagators is not
applicable or justified in the light quark sector. Finally, both
figures resemble the relevance of the 1 GeV scale for DχSB
and its restoration. However, the rigorous interrelation of
the characteristic DχSB scale and the critical current-quark
mass mcr

q within this model remains unknown.

III. MESON BS EQUATION

To respect the fundamental symmetries of the underlying
interaction, the kernels of DS and BS equations must
satisfy the AVWTI. This can be shown to be true for the RL
truncated DS-BS approach. The RL truncated homo-
geneous meson BS equation reads

Γðp;PÞ ¼ −CFZ2
2

Z
Λ

q
Gððp − qÞ2ÞDf

μνðp − qÞ

× γμS1ðqþÞΓðq;PÞS2ðq−Þγν; ð4Þ

with q� ¼ q� ½1=2� ðη − 1=2Þ�P and Γðp;PÞ is the
Bethe-Salpeter amplitude (BSA). In what follows, the
momentum partitioning parameter is set to η ¼ 1=2.

FIG. 1. Propagator functions Aðp2Þ (left panel) and Mðp2Þ (right panel) along the real axis obtained from Newton-Krylov
optimization for different initial functions B0ðp2Þ at ω ¼ 0.5 GeV and D ¼ 16.0 GeV2 in the WW phase for mq ¼ 0 (solid red curve),
mq ¼ 10 MeV (dashed blue curve), mq ¼ 20 MeV (dash-dotted green curve), and mq ¼ 30 MeV (dotted magenta curve). Solutions in
the NG phase are depicted in black with line styles that correspond to the WW phase.
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The solution strategy and covariant basis follow
Refs. [44–47]. The BS amplitude is expanded in a finite
set of covariants Tnðp;P; γÞ, which specify the quantum
numbers J and P, according to

Γðp;PÞ ¼
X
n

Γnðp2; cos∢ðP; pÞ;P2ÞTnðp; P; γÞ; ð5Þ

with Γnðp2; cos∢ðP; pÞ;P2Þ being the partial amplitudes.
Canonical normalization, leptonic decay constants,
residual, and (generalized) Gell-Mann–Oakes–Renner
(GMOR) relation are evaluated according to [11].
Having the propagator functions in the WW phase for

zero current-quark mass at disposal, one can solve the BS
equation in the WW phase and obtain an explicit value of
the bound state mass. As in [35], the lowest bound state
mass where the J ¼ 0-BS equation (4) in the chiral
limit and the parameters of Fig. 1 can be solved is
found at spacelike masses M2 ¼ −0.1172 GeV2 ¼
−ð342.1 MeVÞ2, which are called tachyonic solutions.
For timelike bound state momenta, the BS equation
integration domains of the quark propagators extend to
the complex plane, and the analytical structure must be
accounted for [45,48]. For spacelike momenta, the inte-
gration domain is limited to the positive real axis where no
nonanalytical behavior has been observed in the WW
phase and the solution of the coupled DS-BS system is
straightforward.
As argued in [49] the WW (tachyonic) solution corre-

sponds to a maximum of the effective action. Therefore, the
squared mass must be negative and signals the instability of
the chirally symmetric ground state. An arbitrary small
disturbance drives the system from the WW realization to
the NG realization. Conversely, if a stable chirally sym-
metric phase is to be realized at high densities and/or
temperatures, the here neglected medium effects must, thus,
eliminate all tachyonic solutions.
For completeness it is noted that the result for the NG

pseudoscalar bound-state mass is Mπ ¼ 137 MeV with
fπ ¼ 94.1 MeV, and the NG scalar bound-state mass is
Mσ ¼ 645 MeV for mq ¼ 5 MeV and the parameters as
in Fig. 1.

IV. RESULTS AND DISCUSSION

The analytic properties of the quark propagator may be
analyzed as in [45] by Cauchy’s argument principle or
utilizing a Newton-Krylov root finding method. In the NG
phase, the quark propagator has a tower of complex
conjugated poles off the real axis [45]. In the WW phase,
the pole that is closest to the origin, i.e., the first relevant
pole for timelike bound states, can be found at
q2 ≈ −0.225 × 10−3 GeV2, i.e., on the real axis and rather
close to the origin. It corresponds to a maximal accessible
quarkonia bound-state mass ofM ≈ 30 MeV if the pole has
to be kept outside of the integration domain in Eq. (4).

Within the momentum region −1 GeV2 ≤ Rep2 ≤ 0,
jImp2j ≤ 1 GeV2 no complex conjugated poles (off the
real axis) have been found. Furthermore, apart from σV, all
propagator functions for mq ¼ 5 MeV [cf. Eq. (2)] have
inflection points below 3 GeV2 in the WW phase. Such
inflection points have been argued in, e.g., [50], to be
sufficient for confinement. Clearly, for mq ¼ 0 the propa-
gator functions Bðp2Þ, Mðp2Þ, and σSðp2Þ have no inflec-
tion points in the WW phase.
The fact that the chiral limit WW solution is compatible

with a realization of chiral symmetry, i.e., Eq. (4) gives
identical BS matrices and BS amplitudes for chiral partner
mesons and degenerate mass spectra, can be seen in a
twofold way.
First, the chiral condensate, which is given within the

employed model (3) for the gluon propagator by [51,52]

h∶q̄q∶i ¼ −
3

4π2

Z
∞

0

d2ll2σSðl2Þ; ð6Þ

is zero, because BðpÞ ¼ 0. In the NG phase a value of
h∶q̄q∶i ¼ ð−251 MeVÞ3 is obtained for the employed set
of parameters, which is in agreement with the (traditional)
GMOR relation

f2πM2
π ¼ −2mqh∶q̄q∶i: ð7Þ

The leptonic decay constant of the pion within the AWW
model is

fπ
3

¼
Z
q

Tr½γ5γ · Pχ0−ðq;PÞ�ffiffiffi
2

p
P2

����
P2¼−M2

π

; ð8Þ

with

χ0
−ðq;PÞ≡ S1ðqþÞΓ0−ðq;PÞS2ðq−Þ

and Γ0−ðq;PÞ the pion’s BSA. Equation (7) can be
extended to the above mentioned generalized GMOR
relation [26–28]

fπM2
π ¼ 2mqrπ; ð9Þ

where the residue of the pion mass pole in the pseudoscalar
vertex of the AWW model is given by [26,27]

irπ ¼
Z
q

Tr½γ5χ0−ðq;PÞ�ffiffiffi
2

p
����
P2¼−M2

π

: ð10Þ

Equation (9) is valid for all current-quark masses and
pseudoscalar states. Thus, it provides a natural definition
of the chiral condensate that is valid beyond the chiral
limit [28,53],

h∶q̄q∶i≡ −fπrπ: ð11Þ

As the chiral condensate transforms nontrivially under
the chiral transformation group, the vanishing of the chiral
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condensate is a necessary requirement for restoration of the
symmetry. However, strictly speaking the vanishing of an
order parameter, which is qualified as such solely by means
of its transformation properties, is merely a necessary but
not sufficient requirement for the realization of a symmetry.
The realization of other symmetries or complicated
medium effects may lead to vanishing condensates as well,
which has been discussed in some detail for four-quark
condensates in [54,55]. A rather drastic example has
recently been discussed in [56,57]. In this spirit, determi-
nation of the phase transition temperature and/or density by
virtue of the vanishing chiral condensate (6) only gives a
lower bound as all nontrivially transforming condensates
must be zero in the chirally symmetric phase. In view of
this, an accidental simultaneous vanishing of all such
condensates with increasing temperature and/or density
would indicate a systematic interrelation among these
condensates which is up to now not known. Within the
context of open flavor chiral partner QSRs [58–61],
considering a zero chiral condensate as a sufficient con-
dition for chiral symmetry restoration, in the sense that no

nontrivially transforming condensate points to a larger
restoration temperature/density, corresponds to the claim
that the lowest spectral moment of chiral partner spectra is
the last one to vanish with respect to increasing temper-
ature/density.4 There is no proof of such a claim up to now.
Second, it can be seen by degeneracy of the solutions to

the BS equation for chiral partners simply by the fact that
the quark mass functions are zero. In RL truncation it can
be shown that the BS equation integral kernels for scalar
and pseudoscalar mesons only differ by terms proportional
to quark mass functions MðpÞ [44]. Since the chiral limit
BS equations for scalar and pseudoscalar mesons are,
therefore, identical in the WW phase, the BS amplitudes
and, hence, any observables are, too. Strictly speaking
degeneracy of the spin-0, or any other subset of the meson

FIG. 2. Nonzero parts of the pseudoscalar BS partial amplitudes in the WW phase for mq ¼ 5 MeV, ω ¼ 0.5 GeV, and
D ¼ 16.0 GeV2. All other parts are ⪅10−14.

4As the chiral condensate is the nontrivially transforming
condensate with the lowest mass dimension, such a scenario
seems indeed natural or at least tempting. However, scenarios
with DχSB and zero chiral condensate have been discussed some
time ago in [62–64] and recently again in [65].
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spectrum, alone is again, as in the case of nontrivially
transforming condensates, not a sufficient but only a
necessary requirement for chiral symmetry. All chiral
partner spectral densities must be degenerate. However,
as can be seen from chiral partner QSRs [61,66] the spectra
of chiral partners can be degenerate only if a complete
hierarchy of nontrivially transforming condensates is zero.
In particular, it has been explicitly demonstrated that if,
e.g., scalar and pseudoscalar open flavor mesons are
degenerate within the scope of QSRs, the same holds true
for vector and axial-vector open flavor mesons [61].
In Figs. 2 and 3 the nonzero parts of the complex

canonically normalized partial amplitudes for scalar and
pseudoscalar mesons in the WW phase at mq ¼ 5 MeV are
exhibited. The major nonzero amplitudes, Γ1, are very
similar in both channels. The other amplitudes drastically
differ. Note that imaginary and real parts of some partial
amplitudes interchange their roles; i.e., what is zero in one
channel is nonzero in the other. This is related to the
particular choice of covariants and P2 being spacelike. For

comparison, the nonzero parts of the complex canonically
normalized partial amplitudes in the NG phase at mq ¼
5 MeV for scalar and pseudoscalar mesons are exhibited in
Figs. 4 and 5. The changing pattern is similar but not
identical. For example, imaginary and real parts of all
partial amplitudes interchange their roles. Turning from the
NG to the WW phase in the scalar channel, all but
the fourth partial amplitude switch from vanishing real
to vanishing imaginary part and vice versa. In contrast, in
the pseudoscalar channel, only the first partial amplitude
switches. Furthermore, up to a sign change in Γ0−

4 , all
amplitudes show the same qualitative behavior, in particu-
lar the same symmetries. In the scalar channel, there is no
sign change when passing over from one phase to the other.
In [26] it has been shown that

fπΓ0−

1 ðp2; cos∢ðP; pÞ;P2ÞjP2¼0 ¼ 2Bðp2Þ ð12Þ

follows from the chiral limit AVWTI. As Bðp2Þ is zero in
the chiral limit WW phase solution and the partial

FIG. 3. Nonzero parts of the scalar BS partial amplitudes in the WW phase formq ¼ 5 MeV, ω ¼ 0.5 GeV, andD ¼ 16.0 GeV2. All
other parts are ⪅10−15.
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amplitude Γ0−

1 , as well as all other amplitudes, are not, fπ ¼
0 must hold in order not to violate the AVWTI. Indeed, for
mq ¼ 0 one has fπ⪅10−14 GeV within this study, which
numerically confirms the above conclusion.
In [43,67–69] the WW solution and so-called noded

solutions5 to the DS equation have been used to discuss the
chiral condensate beyond the chiral limit. Linear combi-
nations of the quark propagators have been introduced,
which all generate identical condensates in the chiral limit.
However, because of the nonlinearity of the DS equation, a
linear combination of solutions cannot fulfill the corre-
sponding DS equation and, therefore, does not
represent a self-consistent solution to the given DS
equation.

Having WW solutions for the quark DS equation beyond
the chiral limit at disposal, one is able to study a scenario
only with explicit symmetry breaking in the scope of a
coupled DS-BS approach. Such a scenario reveals the
amount of mass splitting in the parity doublet caused by
finite quark masses, shows the effect of explicit symmetry
breaking on order parameters, and allows for qualitative
discussions related to DχSB, its restoration, and the relation
to confinement. For the scalar and pseudoscalar channels
the masses are shown in Fig. 6. They are spacelike over the
whole current-quark mass region. Moreover, the pseudo-
scalar squared bound state massM2 is even decreasing with
increasing current-quark mass. While the modulus of the
pion mass scarcely changes by 20 MeV for a change of the
current-quark mass of 30 MeV and stabilizes toward mcr

q ,
the (imaginary) scalar mass decreases by more than
120 MeV with a still increasing slope modulus. As
expected, the chiral limit behavior in the WW phase
qualitatively differs significantly from the limit in the
NG phase. In the NG phase a strong current-quark mass

FIG. 4. Nonzero parts of the pseudoscalar BS partial amplitudes in the NG phase (pion) for mq ¼ 5 MeV, ω ¼ 0.5 GeV, and
D ¼ 16.0 GeV2. All other parts are ⪅10−14.

5Solutions of the DS equation in the NG phase do not have
roots along the positive real axis. Solutions in theWW phase have
one root (node). Other solutions have more than one node and are,
therefore, dubbed noded solutions. In analogy to vibrating
strings, they are sometimes referred to as excited solutions [70].
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dependence of the scalar and, even more, the pseudoscalar
bound state mass is observed, whereas the slope of the
bound state mass curve in the WW phase approaches zero
in the chiral limit. Evaluating the formal splitting of scalar
and pseudoscalar mesons at a current-quark mass of mq ¼
5 MeV yields jΔMj ¼ 1.6 MeV, which is tiny as compared
to the splitting of chirality partners due to DχSB (roughly
jΔMj ≈ 350;…; 450 MeV). However, it is of the order of
the mass splitting in the isospin multiplet.
The leptonic decay constant, fπ , in the WW phase is

depicted in Fig. 7. Apparently, fπ rises linearly with mq.
Hence, the current-quark mass dependence in the WW
phase qualitatively differs from the NG phase [28].
Interestingly, the absolute change of fπ of ≈50 MeV is
larger than the corresponding change in the NG phase. For
mq ¼ 5 MeV, fπ ≈ 8.5 MeV, which is ≈9% of its NG
phase value. Note that over the whole current-quark mass
region employed within this study, deviations from the
generalized GMOR, Eq. (9), are of the order 10−3 or below.

FIG. 5. Nonzero parts of the scalar BS partial amplitudes in the NG phase (sigma) for mq ¼ 5 MeV, ω ¼ 0.5 GeV, and
D ¼ 16.0 GeV2. All other parts are ⪅10−14.

FIG. 6. Bound state masses in the WW phase for equal quarks
in the pseudoscalar (solid curve) and scalar (dashed curve)
channel up to the critical current-quark mass mcr

q ¼ 31 MeV,
ω ¼ 0.5 GeV, and D ¼ 16.0 GeV2.
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Finally, in Fig. 8 the chiral condensate in the WW phase
is depicted beyond the chiral limit [cf. Eq. (11)] and reveals
the impact of explicit chiral symmetry breaking only.
Similar to fπ , it rises linearly with the current-quark mass
up to mq ≈ 25 MeV. Explicit chiral symmetry breaking by
current-quark masses of mq ≈ 30 MeV mimics roughly
40%–50% of the NG phase values for the leptonic decay
constant and chiral condensate. For mq ¼ 5 MeV,

jh∶q̄q∶ij ≈ ð95 MeVÞ3, which is less than 6% of its NG
phase value jh∶q̄q∶ij ≈ ð256 MeVÞ3.

V. CONCLUSIONS AND OUTLOOK

The bound state masses of pseudoscalar and scalar
mesons within the Poincaré covariant, symmetry preserv-
ing, RL truncated DS-BS approach with a model closely
related to the phenomenologically successful MT interac-
tion have been studied in the chiral limit and beyond. The
validity of the AVWTI in the WW phase has been
confirmed. It has been found that the spin-0 states disappear
from the timelike spectrum and become spacelike over the
whole accessible current-quark mass range. Furthermore,
the mass splitting between chirality partners due to explicit
current-quark masses in the WW phase has been quantified
to be of the same order as the experimental splitting in the
NG phase isospin multiplet. Finally, the current-quark mass
dependence of the pion leptonic decay constant and the
chiral condensate in the WW phase has been revealed. A
strong linear dependence of both on the current-quark mass
mq has been found, driving fπ and h∶q̄q∶i in the WW
phase at the critical current-quark mass mcr

q above 40%–
50% of their NG phase values at mq ¼ 5 MeV. Whereas
the difference between the NG and the WW phase
propagators is qualitatively clearly visible in the quark
mass function, Mðp2Þ [or Bðp2Þ], the difference in h∶q̄q∶i
or the observable quantity fπ is less pronounced when
allowing for larger current-quark mass in the WW phase.
In view of the investigation of [31] the extension of the

above presented analysis to excited states, where the effects
of DχSB are suppressed, the spin-1 channel, and beyond, is
in order. It is not expected that higher spin states have
spacelike solutions, either. Similarly, the presented
approach allows for the evaluation of decay properties
on the same footing. Furthermore, based on a phenom-
enological interaction which successfully describes the
hadronic spectrum, the solutions of the DS equation in
the WW phase may be used to determine condensates [72–
74], in particular the symmetric four-quark condensate that
dominates the chirally symmetric QSRs for the ρ meson.
This provides a reliable implicit relation between changes
of chirally symmetric and chirally odd condensates, which
may be employed in a QSR calculation as in [31], and
allows for a more sophisticated analysis.
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FIG. 7. Leptonic decay constant in the WW phase for equal
quarks in the pseudoscalar channel up to the critical current-quark
mass mcr

q ¼ 31 MeV, ω ¼ 0.5 GeV, and D ¼ 16.0 GeV2. The
scalar leptonic decay constant is numerically zero,
fσ⪅10−14 GeV, for all current-quark masses as in the NG
phase [71].

FIG. 8. Chiral condensate in WW phase up to the critical
current-quark mass mcr

q ¼ 31 MeV, ω ¼ 0.5 GeV and
D ¼ 16.0 GeV2.
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