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We investigate the medium modification of the generalized vector form factors of the nucleon, which
include the electromagnetic and energy-momentum tensor form factors, based on an in-medium modified
π-ρ-ω soliton model. We find that the vector form factors of the nucleon in nuclear matter fall off faster than
those in free space, which implies that the charge radii of the nucleon become larger in nuclear medium
than in free space. We also compute the corresponding transverse charge densities of the nucleon in nuclear
matter, which clearly reveal the increasing of the nucleon size in nuclear medium.
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I. INTRODUCTION

Understanding the electromagnetic form factors (EMFFs)
of the nucleon has been one of the most important issues in
hadronic physics, since they reveal the internal quark
structure of the nucleon. While the EMFFs of the nucleon
have been studied well over several decades, their precise
data were obtained only recently by measuring the transverse
and longitudinal recoil proton polarizations [1–11]. These
new experimental data have drawn a great deal of attention
both experimentally and theoretically (see recent reviews and
references therein [12–15]). In the meanwhile, form factors
of the nucleon can be defined as Mellin moments of the
corresponding generalized parton distributions (GPDs) that
unveil novel aspects of the internal structure of the nucleon
[16–19] (see also the following reviews [20–22]). This new
definition of the form factors enables one to get access to the
energy-momentum tensor form factors (EMTFFs) and the
tensor form factors via the GPDs, which cannot be otherwise
directly measured experimentally. In this definition, the
energy-momentum tensor form factors can be also under-
stood as the second Mellin moments of the isoscalar vector
GPDs of the nucleon.
The Fourier transforms of the generalized vector form

factors of the nucleon including the EMFFs and the
EMTFFs in the transverse plane, as viewed from a light
front frame moving toward a nucleon, makes it possible to
see how the charge densities of quarks are distributed
transversely [23,24]. These are called transverse charge
densities and they provide correctly a probability of finding
quarks inside a nucleon in the transverse plane. Transverse
charge densities inside both the unpolarized and polarized

nucleons have been already investigated within empirical
methods [25,26] and specific models [27–30].
Furthermore, it is of equal importance to examine how

the EM structure of the nucleon is changed in nuclear
matter. Studying the EMFFs of the nucleon in nuclear
medium provides a new perspective on EM properties of
the nucleon modified in nuclei [31–39]. In fact, the first
experimental study of deeply virtual Compton scattering on
(gaseous) nuclear targets (H, He, N, Ne, Kr, Xe) was
reported in Ref. [40]. While uncertainties of the first
measurement are so large that one is not able to observe
nuclear modifications of the nucleon structure, future
experiments will provide more information on medium
modifications of the EM properties of the nucleons.
In the present work, we want to investigate the nucleon

EMFFs and the transverse charge densities of quarks
inside a nucleon in nuclear matter within the framework of
an in-medium modified soliton model with explicit π-ρ-ω
degrees of freedom. The model has certain virtues: it is
simple but respects the chiral symmetry and its sponta-
neous breaking. Moreover, one can easily extend it
including the influence of the surrounding nuclear envi-
ronment to the nucleon properties based on modifications
of the meson properties in nuclear medium [41,42]. In this
context, the EMTFFs of the nucleon, which are yet
another of the fundamental form factors that are related
to the generalized EMFFs, have been investigated in free
space [43,44] and in nuclear matter within the chiral
soliton approaches [45,46]. The results have explained
certain interesting features of the modifications of nucleon
properties in nuclear matter such as the pressure and
angular momentum. Indeed, we will also show in this
work how the EM properties of the nucleon are changed in
nuclear matter in a simple manner. We will also see that
the transverse charge densities expose noticeably how the
distribution of quarks undergo changes in the presence of
nuclear medium.
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The present paper is organized as follows: In Sec. II, we
briefly explain the general formalism of the π-ρ-ω soliton
model modified in nuclear medium. In Sec. III, we describe
how one can compute the generalized vector form factors
within this framework. In Sec. IV, we present the results
from the present work and discuss them. The final section is
devoted to the summary and the conclusion.

II. GENERAL FORMALISM

We start from the in-medium modified effective chiral
Lagrangian with the π, ρ, and ωmeson degrees of freedom,
where the nucleon arises as a topological soliton [47].
The Lagrangian has the form

L� ¼ L�
π þ L�

V þ L�
kin þ L�

WZ; ð1Þ

where the corresponding terms are expressed as

L�
π ¼

f2π
4
Trð∂0U∂0U†Þ − αp

f2π
4
Trð∂iU∂iU†Þ

þ αs
f2πm2

π

2
TrðU − 1Þ; ð2Þ

L�
V ¼ f2π

2
Tr½Dμξ · ξ† þDμξ

† · ξ�2; ð3Þ

L�
kin ¼ −

1

2g2VζV
TrðF2

μνÞ; ð4Þ

L�
WZ ¼

�
Nc

2
gω

ffiffiffiffiffi
ζω

p �
ωμ

ϵμναβ

24π2

× TrfðU†∂νUÞðU†∂αUÞðU†∂βUÞg: ð5Þ

Here the asterisk designates medium modified quantities.
The SU(2) chiral field is written as U ¼ ξ†LξR in unitary
gauge, and the field-strength tensor and the covariant
derivative are defined, respectively, as

Fμν ¼ ∂μVν − ∂νVμ − i½Vμ; Vν�; ð6Þ

DμξLðRÞ ¼ ∂μξLðRÞ − iVμξLðRÞ; ð7Þ

where the vector field Vμ includes the ρ-meson and
ω-meson fields, i.e. ρμ and ωμ, respectively, expressed as

Vμ ¼
gV

ffiffiffiffiffi
ζV

p
2

ðτ · ρμ þ ωμÞ ð8Þ

with the Pauli matrices τ in isospin space.
Note that in Eqs. (3), (4), and (8) the subscript V

generically stands for both the ρ-meson and the ω-meson
and for compactness we keep the generic form of those
expressions. One can separate Eqs. (3) and (4) into the
ρ- and ω-meson parts using the definitions (6), (7), and (8).

Then gV designates gρ for the ρ meson or gω for the
ω:Nc ¼ 3 is the number of colors.
The input parameters of the model in Eqs. (2)–(5) can be

classified into two different classes: the parameters fπ , mπ ,
gρ, gω, and Nc are related to the corresponding observables
in free space, while αp, αs, and ζV are pertinent to
properties of pionic atoms and infinite and homogenous
nuclear matter.1

In free space, in-medium parameters are all set equal to
one: αp ¼ αs ¼ ζω ¼ ζρ ¼ 1 and the other parameters are
fixed by using either experimental or empirical data on the
pion and the vector mesons [48]. The pion decay constant
and mass are taken to be fπ ¼ 93 MeV andmπ ¼ 135 MeV
(the neutral pion mass). The values of the coupling constants
for the ρ and ω mesons are given respectively as gρ ¼ 5.86
and gω ¼ 5.95. The Kawarabayashi-Suzuki–Riazuddin-
Fayyazuddin (KSRF) relation connects them to the
masses of the vector mesons, i.e. mρ ¼ 770 MeV and
mω ¼ 782 MeV, as follows

2f2πg2ρ ¼ m2
ρ; 2f2πg2ω ¼ m2

ω: ð9Þ

In general, the parameters αp, αs, and ζV stand for the
medium functionals which are the essential quantities in the
present work. They depend on the nuclear matter density ρ
and are defined as

αpðρÞ ¼ 1 − 4πc0ρ=η
1þ g004πc0ρ=η

;

αsðρÞ ¼ 1 − 4πηb0ρm−2
π ;

ζVðρÞ ¼ exp

�
− γnumρ

1þ γdenρ

�
: ð10Þ

They provide crucial information on how the nuclear-
matter environment influences properties of the single
soliton [47]. The η is a kinematic factor defined as
η ¼ 1þmπ=mN ≃ 1.14. The values of the empirical
parameters b0 ¼ −0.024m−1

π and c0 ¼ 0.09m−3
π are taken

from the analysis of pionic atoms and the data on low-
energy pion-nucleus scattering. The g00 ¼ 0.7 denotes the
Lorentz-Lorenz factor that takes into account the short-
range correlations [49].
The additional parameters γnum and γden are introduced

phenomenologically to reproduce the saturation point at
normal nuclear matter. Two different models have been
discussed in the framework of the present approach [47], in
order to introduce a nuclear modification in the present
soliton approach, which we will briefly explain here. In
Model I, one neglects the small mass difference of the ρ
and ω mesons in free space (mω ¼ mρ ¼ 770 MeV,

1ζV denotes also a generic form for both ζρ and ζω which
appear in the corresponding ρ- and ω-meson parts of the
Lagrangian.
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gω ¼ gρ ¼ 5.86) and assumes that the KSRF relation still
holds in nuclear matter

2f2πg2ρζρ ¼ m�2
ρ ¼ m�2

ω ; ζρ ¼ ζω ≠ 1: ð11Þ

In Model II, on the other hand, we remove the degeneracy
of the vector meson masses in free space (mρ ≠ mω ¼
782 MeV, gρ ≠ gω ¼ 5.95), and instead of Eq. (11) assume
that the KSRF relation is valid only for the ρ meson, with
the ω meson kept as in free space:

2f2πg2ρζρ ¼ m�2
ρ ≠ m�2

ω ; ζρ ≠ 1; ζω ¼ 1: ð12Þ

These two different models are devised to implement
possible ways of nuclear modification. We take into
account the possibility that the ρ and ω meson degrees
of freedom could respond differently to a nuclear environ-
ment [50,51]. The effects of the ω-mesons are mainly
limited to the inner core of the nucleon. Therefore, the two
variants of the model describe the situation that the inner
core of the nucleon is more (Model I) or less (Model II)
affected by medium effects. The latter is a plausible
scenario, at least around the normal nuclear matter density.
In practice, these two models yield comparable results

in many respects. A notable (and in our context important)
difference, however, is the description of the incompress-
ibility of symmetric nuclear matter: Model I yields a
smaller value of the incompressibility, while Model II
produces a larger one. It means that Model II gives a stiffer
nuclear binding energy and agrees better with the data (see
explanations in Ref. [47]). In both models the values of
γnum and γden are fitted to reproduce the coefficient of the
volume term in the empirical mass formula aV ≈ 26 MeV.
Although this is larger than the experimental value
aexpV ≈ 16 MeV, the relative change of the in-medium
nucleon mass is reproduced correctly (See Eq. (12) in
Ref. [47] and the corresponding explanation.). In Model I
we have γnum ¼ 2.390m−3

π and γden ¼ 1.172m−3
π , whereas

in Model II we employ γnum ¼ 1.970m−3
π and γden ¼

0.841m−3
π . For further details on these two models in

relation to nuclear matter properties, and to the classical
and quantum solution in free space and in nuclear matter
we refer to Refs. [46,47]. In the next section we concen-
trate on generalized form factors and the corresponding
transverse charge densities.

III. GENERALIZED VECTOR FORM FACTORS
AND TRANSVERSE CHARGE DENSITIES

The generalized vector form factors of the nucleon can
be defined as the matrix element of a vector operator as
follows:

hNðp0;sÞjψ̄ð0ÞγfiDμ1 � � � iDμngψð0ÞjNðp;sÞi

¼ ūðp0;s0Þ
� Xn
i¼0;even

�
γfμΔμ1 � � �ΔμiPμiþ1 � � �PμngAnþ1;iðΔ2Þ

−iΔασ
αfμ

2MN
Δμ1 � � �Δμi P̄μiþ1 � � �P̄μngBnþ1;iðΔ2Þ

�

þΔμΔμ1 � � �Δμn

MN
Cnþ1;0ðΔ2Þ

���
nodd

	
uðp;sÞ; ð13Þ

where Dμ
i denotes the covariant operator in quantum

chromodynamics (QCD) and the braces “fg” stand for
the symmetrization. HereΔμi and the Pμi are the momentum
transfer and the average of the momenta defined respectively
as Δμi ¼ p0μi − pμi and Pμi ¼ ðp0μi þ pμiÞ=2; uðp; sÞ and
ūðp0; s0Þ designate the spinor of the nucleon; Anþ1;iðΔ2Þ,
Bnþ1;iðΔ2Þ, and Cnþ1;0ðΔ2Þ represent the generalized vector
form factors (GVFFs) that are related to the Mellin moments
of the GPDs, which are given as

Z
1

−1
xnHðx; ξ; tÞ ¼

Xn
i¼0;even

ð−2ξÞiAnþ1;iðΔ2Þ

þ ð−2ξÞnþ1Cnþ1;0ðΔ2Þjn;odd;Z
1

−1
xnEðx; ξ; tÞ ¼

Xn
i¼0;even

ð−2ξÞiBnþ1;iðΔ2Þ

− ð−2ξÞnþ1Cnþ1;0ðΔ2Þjn;odd: ð14Þ
Here Hðx; ξ; tÞ and Eðx; ξ; tÞ are the twist-2 vector GPDs.
The usual Dirac and Pauli form factors are identified as the
leading GVFFs:

F1ðΔ2Þ ¼ A1;0ðΔ2Þ; F2 ¼ B1;0ðΔ2Þ; ð15Þ

which are defined as the matrix element of the electromag-
netic current:

hNðp0; s0Þjψ̄ð0ÞγμQ̂ψð0ÞjNðp; sÞi

¼ ūðp0; s0Þ
�
γμF1ðΔ2Þ þ i

σμνΔν

2MN
F2ðΔ2Þ

	
uðp; sÞ: ð16Þ

The nucleon matrix elements of the symmetric EMT
operator are parametrized in terms of the EMTFFs as
follows [17,52]:

hNðp0; s0ÞjT̂μνð0ÞjNðp; sÞi

¼ ūðp0; s0Þ
�
M2ðΔ2ÞPμPν

MN

þ JðΔ2Þ iðPμσνρ þ PνσμρÞΔρ

2MN

þd1ðΔ2ÞΔμΔν − ΔμνΔ2

5MN

	
uðp; sÞ: ð17Þ
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Similarly, the EMTFFs are related to the second moments
of the vector GPDs and in a such way related to the GVFFs
in the next-to-leading order (NLO) as follows:

A2;0ðΔ2Þ ¼
Z

1

−1
dxxHðx; 0;Δ2Þ ¼ M2ðΔ2Þ;

B2;0ðΔ2Þ ¼
Z

1

−1
dxxEðx; 0; tÞ ¼ 2JðΔ2Þ −M2ðΔ2Þ;

C2;0ðΔ2Þ ¼ 1

5
d1ðΔ2Þ: ð18Þ

In this work we want to examine the modification of the
EMFFs and the EMTFFs of the nucleon in nuclear medium.
Let us first consider the EMFFs of the nucleon. In the Breit
frame one has Δ ¼ ð0;ΔÞ and p0 ¼ −p. Since it is more
convenient to introduce the positive definite square of the
momentum transfer Q2 ¼ −Δ2 > 0 to describe the form
factors, we will use it from now on. The Sachs EMFFs GE
and GM of the nucleon are expressed in terms of the Dirac
and Pauli form factors:

GEðQ2Þ ¼ F1ðQ2Þ þ Q2

4M2
N
F2ðQ2Þ ð19Þ

GMðQ2Þ ¼ F1ðQ2Þ þ F2ðQ2Þ; ð20Þ

which can be represented respectively as the Fourier
transforms of the charge and current densities

GEðQ2Þ ¼
Z

d3reiΔ·rJ0ðrÞ;

GMðQ2Þ ¼ mN

Z
d3reiΔ·r½r × JðrÞ�3: ð21Þ

Here J0 and J denote respectively the charge and current
densities. Note that the EM current Jμ is defined as the sum
of the baryonic current Bμ and the third component of the
isovector current Vμ. The final expressions for the in-
mediummodified isoscalar and isovector FFs are derived as

GS
EðQ2Þ ¼ − m�2

ω

3
ffiffiffi
ζ

p
g

Z
∞

0

r2j0ðQrÞωðrÞdr; ð22Þ

GS
MðQ2Þ ¼ −

m�2
ω

3
ffiffiffi
ζ

p
g

MN

λ�
2π

Z
∞

0

r2
j1ðQrÞ
Qr

ϕðrÞdr; ð23Þ

GV
EðQ2Þ ¼ 4π

λ�

Z
∞

0

j0ðQrÞ
�
fπr2

3

�
4sin4

F
2
þ ð1þ 2 cosFÞξ1 þ ξ2

�
þ g

ffiffiffi
ζ

p
8π2

ϕF0sin2F
	
dr; ð24Þ

GV
MðQ2Þ ¼ 8π

3
MN

Z
∞

0

r2
j1ðQrÞ
Qr

�
2f2π

�
2sin4

F
2
− 2ð1 − αpÞ

1

4
sin2F −G cosF

�
þ 3g

ffiffiffi
ζ

p
4π2

ωF0sin2F
	
; ð25Þ

where the detailed expressions for the profile functions,
ωðrÞ, ϕðrÞ, FðrÞ, ξ1ðrÞ, and ξ2ðrÞ, can be found in
Ref. [47]. The proton and neutron EMFFs are expressed
in terms of the isoscalar and isovector FFs

Gp;n
E;MðQ2Þ ¼ GS

E;MðQ2Þ þ τ3GV
E;MðQ2Þ; ð26Þ

where τ3 is the eigenvalue of τ̂3 for a given nucleon isospin
state. At the zero momentum transfer (Q2 ¼ 0) the EMFFs
are normalized as

Gp
Eð0Þ ¼ 1; Gn

Eð0Þ ¼ 0; Gp;n
M ð0Þ ¼ μp;n: ð27Þ

Since we already have studied the EMTFFs in nuclear
matter within the present approach [46], we refer to
Ref. [46] for details.
Once we obtain the EMFFs and the EMTFFs of the

nucleon, we can proceed to derive the transverse quark
charge densities inside a nucleon, which show how the
charges and magnetizations of the quarks are distributed
in the transverse plane inside a nucleon [23,53].

The transverse charge density inside an unpolarized
nucleon is defined as the two-dimensional Fourier trans-
form of the Dirac form factor:

ρch ¼
1

ð2πÞ2
Z

d2qeiq·bF1ðQ2Þ ¼
Z

∞

0

dQ
2π

QJ0ðQbÞF1ðQ2Þ

¼
Z

∞

0

dQ
2π

QJ0ðQbÞGEðQ2Þ þ τGMðQ2Þ
1þ τ

; ð28Þ

where b designates the impact parameter, i.e., the distance
in the transverse plane to the place where the density is
being probed, and J0 denotes the Bessel function of order
zero [25,54]. The anomalous magnetization density in the
transverse plane [54,55] is defined as

ρm ¼ −b d
db

ρ2ðbÞ ¼ b
Z

∞

0

dQ
2π

Q2J1ðQbÞF2ðQ2Þ; ð29Þ

where ρ2ðbÞ is directly given by the two-dimensional
Fourier transform of the Pauli form factor:
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ρ2ðbÞ ¼
Z

∞

0

dQ
2π

QJ0ðQbÞF2ðQ2Þ: ð30Þ

Assume that the nucleon is transversely polarized along
the x axis. Then the polarization of the nucleon can be
expressed in terms of the transverse spin operator of the
nucleon S⊥ ¼ cosφSêx þ sinφSêy, so that the transverse
charge density inside a transversely polarized nucleon is
written as [26]

ρTðbÞ ¼ ρch − sinðφb − φSÞ
1

2MN
ρmðbÞ; ð31Þ

where the angle φb is defined in the position vector b
that stands for the impact parameter or the transverse
distance from the center of the nucleon in the transverse
plane b ¼ bðcosφbêx þ sinφbêyÞ.
Since the EMTFFs are identified as the generalized

vector FFs in the isocalar channel, one can also define the
transverse isoscalar densities in the case of the EMTFFs,
which takes the following form:

ρ20ðbÞ ¼
Z

∞

0

dQ
2π

QJ0ðQbÞA2;0ðQ2Þ: ð32Þ

When the nucleon is polarized along the x axis in the
transverse plane, the transverse isoscalar density inside the
polarized nucleon is defined as

ρ20;TðbÞ ¼ ρ20ðbÞ − sin ðϕb − ϕSÞ

×
Z

∞

0

Q2dQ
4πMN

J1ðQbÞB2;0ðQ2Þ: ð33Þ

IV. RESULTS AND DISCUSSIONS

In this section we present the numerical results of the
form factors and related observables and discuss their
physical implications.

A. Electromagnetic form factors and transverse
charge densities

We first show the results for the traditional charge and
magnetization radii and the magnetic moments of the
proton and the neutron. Table I lists them in free space
calculated within two different models. It is already well
known that the π-ρ-ω soliton model overestimates the
magnetic moments of the nucleon. On the other hand, the
results of the traditional charge and magnetization radii of
the proton are in good agreement with the experimental
data. Note that there is almost no difference between model
I and model II in free space, as expected.
If the nucleon is embedded into nuclear medium, then its

properties undergo the changes due to the interaction with
the surrounding environment. The results listed in Table II
demonstrate possible medium modifications of the EM

radii and the magnetic moments of the nucleons at normal
nuclear matter density. The size of the proton charge radius
in medium turns out to be larger than that in free space.
Both the results from Model I and Model II show similar
tendencies. It indicates that the nucleon tends to bulge out
in nuclear medium. On the other hand, Model I and Model
II yield different results. While the neutron charge radius
from Model I is almost the same as that in free space, its
magnitude from Model II is drastically increased. In fact,
the neutron radius is a rather difficult observable to describe
theoretically because it comes from the subtraction between
the isoscalar and isovector FFs [see Eq. (26)]. As will be
discussed later, the traditional charge density of the neutron
is very different from the transverse charge density. In
addition, the medium effects affect strongly the radial
dependence of the neutron charge distribution in compari-
son with the proton one. Thus, it is difficult to draw any
conclusion about the changes of the neutron size in
medium, based on the traditional neutron charge density.
However, we will soon see that the transverse charge
density inside a nucleon will clearly show that both the
proton and the neutron swell in nuclear medium. The
magnitudes of the magnetic moments of both the proton
and the neutron become quite larger in nuclear medium
than in free space by approximately 40%, as shown in
Table II. The medium effects turn out to be even larger on
the neutron magnetic moment than the proton one as
observed in the results of their ratio jμ�p=μ�nj. The reason
can be found in the fact that the magnetization density

TABLE I. The electromagnetic properties of the nucleons in
free space. The magnetic moments of the proton and the neutron
are given in the unit of the nuclear magneton (μN).

Model I Model II Experiment

hr2Ei1=2p [fm] 0.93 0.93 0.86

hr2Mi1=2p [fm] 0.87 0.87 0.78

hr2Ein ½fm2� −0.23 −0.23 −0.12
hr2Mi1=2n [fm] 0.88 0.88 0.86
μp ½μN � 3.37 3.39 2.79
μn ½μN � −2.58 −2.61 −1.91
jμp=μnj 1.31 1.30 1.46

TABLE II. The electromagnetic properties of the nucleons in
nuclear medium at normal nuclear matter density ρ0.

Model I Model II

hr�2E i1=2p [fm] 1.17 1.08

hr�2M i1=2p [fm] 1.17 1.14

hr�2E in ½fm2� −0.22 −0.40
hr�2M i1=2n [fm] 1.18 1.17
μ�p ½μN � 5.23 5.41
μ�n ½μN � −4.56 −4.73
jμ�p=μ�nj 1.15 1.14

MODIFICATION OF GENERALIZED VECTOR FORM … PHYSICAL REVIEW D 93, 054016 (2016)

054016-5



becomes broadened in medium, which will be shown soon.
Since the operator of the magnetic moment is proportional
to the distance from the center of the nucleon, the nucleon
magnetic moments in general tend to increase in nuclear
medium. This also indicates indirectly that the nucleon
swells in nuclear matter.
Figure 1 depicts the results for the EMFFs of the proton

and the neutron as functions ofQ2 both in free space and in
nuclear medium. The EMFFs in free space based on the
π-ρ-ω soliton model have been already investigated many
years ago [56]. In Ref. [56], it was shown that the electric
form factor of both the proton and the neutron are in good
agreement even with recent experimental data [57–60].
Since the results for the magnetic moments of the nucleon
are quite overestimated within the present model as shown
in Table I, the magnitudes of the magnetic form factors are
also larger than the data. However, the Q2 dependence of
the magnetic form factors are well explained. The EMFFs
have been investigated within various solitonic models
[28,61–64]. These chiral soliton approaches describe the
Q2 dependence very well in comparison with the exper-
imental data.

We now discuss the main subject of the present work, i.e.,
the medium modification of the EMFFs of the nucleon in
nuclear matter. As was expected from the charge and
magnetic radii of the proton shown in Table II, the
EMFFs of the proton in medium fall off faster than those
in free space as Q2 increases. The general tendency of the
form factors remains almost unchanged in the case of both
Model I and Model II. When it comes to the electric FF of
the neutron, however, the result from Model I is very
different from that obtained from Model II. We already
have seen that Model I and Model II give rather different
results for the neutron charge radii. The difference arises
from the fact that the ω meson is treated in a distinctive way.
In Model I, both the ρ and ω mesons are treated on an equal
footing. That is, both the vector mesons undergo changes in
the same manner. On the other hand, the ω meson is kept to
be the same as in free space in Model II. Since the proton
electric FF is given as the sum of the isoscalar and isovector
form factors as shown in Eq. (26), the difference between
Model I and Model II is marginal (see the results for the
electric FFs of the proton in Fig. 1). However, the neutron
electric FF comes from the subtraction of the isovector FF

FIG. 1. The electric and magnetic form factors of the proton are drawn respectively in the upper-left and upper-right panels, and those
of the neutron are depicted in the lower panels in the same manner as functions ofQ2. The solid curve represents the form factors in free
space, while the dotted and dotted-dashed ones designate, respectively, those from Model I and Model II in nuclear matter.
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from the isoscalar one. Considering the fact that the ρmeson
contributes only to the isovector FF whereas the ω meson
comes into play only in the isoscalar FF, we can easily see
that the changes of both the ρ and ωmesons are more or less
compensated in Model I. However, in Model II, the isoscalar
FF remains intact while the isovector FF is modified, which
leads to the amplication of the electric FF of the nucleon (see
the lower panel of Fig. 1). It is interesting to note that the
results for the neutron from Model I is very similar to those
from Ref. [39]. Considering the fact that the Skyrme term in
Ref. [39] is related to the vector mesons by the resonance
saturation [65], The characteristics of Model I are closer to
the medium-modified Skyrme model in which both the
pion kinetic and Skyrme terms are modified, compared to
Model II.
The results for the transverse charge and magnetization

distributions inside an unpolarized proton are drawn in the
upper-left and upper-right panels, respectively, with
bx ¼ 0. The medium-modified transverse charge densities
near the center of the proton are reduced drastically but get
larger as b increases. It indicates that the transverse size of

the nucleon becomes larger in nuclear medium. As for the
transverse magnetization densities, we find that the den-
sities in medium are shifted and broadened in comparison
with that in free space. It also implies that the in-medium
nucleon swells relatively to the free space one.
It is already well known that the transverse charge density

inside an unpolarized neutron provides a new aspect on the
structure of the neutron [25,54]. Considering the fact that the
transverse charge density inside a nucleon has a physical
meaning of the probability of finding a quark inside a
nucleon, we can see from the results for the transverse charge
densities inside a neutron, which are depicted in the lower-
left panel of Fig. 2, that the negative charged quarks, i.e.
down quarks are more probably found in the vicinity of the
center of the neutron whereas the positive charged quarks or
up quarks are located in outer regions inside a neutron. This
is very much different from the usual and traditional
understanding of the neutron charge distribution in which
the positive charge is found near the center of the neutron
while the negative charge is placed in outer regions. In
nuclear matter, the transverse charge density inside a neutron

FIG. 2. The transverse charge densities inside an unpolarized proton with bx ¼ 0 are plotted in the upper-left and the upper-right
panels, respectively, and those inside a neutron are depicted in the lower panels in the same manner as functions of the impact parameter
b. The solid curve represents the transverse densities in free space, while the dotted and dotted-dashed ones designate, respectively, those
from Model I and Model II in nuclear matter.
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has the same tendency but the magnitude of the densities is
reduced and is broadened, as shown in the lower-left panel of
Fig. 2. It implies that the size of the neutron is also extended
in nuclear medium. The transverse magnetization density
inside a neutron is similarly modified in nuclear medium as
that inside a proton.
To see the swelling of the nucleon in nuclear matter more

clearly, we define the transverse mean square charge and
magnetization radii of the nucleon as follows

hb2ch;mip;n ¼
Z

d2bb2ρp;nch;mðbÞ; ð34Þ

where the transverse charge density, ρch, and the transverse
magnetization density, ρm are defined in Eq. (28) and
Eq. (29), respectively. The results for the transverse charge
and magnetization radii of the proton and the neutron are
listed in Table III. The transverse mean square charge
radius of the proton in nuclear medium is increased
approximately by 20%. On the other hand, the medium-
modified trnsverse mean magnetization radius of the proton
becomes almost twice as large as that in free space. In the
case of the neutron, the result from Model I shows slightly
smaller than that in free space whereas the result from
Model II is almost about two times larger than that in free

space. As we have already discussed previously, the role of
the ω meson becomes much more influential in the case of
the neutron than in the proton case.
We are now in a position to discuss the results for the

transverse charge density when the nucleon is polarized. As
shown in Eq. (31), the transverse charge density inside a
polarized nucleon becomes deviated from that inside an
unpolarized nucleon by the second term of the right-hand
side of Eq. (31). Figure 3 shows the general feature of the
transverse charge densities inside both the polarized proton
(upper-left panel) and the polarized neutron (upper-right
panel). As was already discussed in Ref. [26], the magnetic
field that makes the nucleon polarized along the x axis
produces an induced electric field along the y axis
according to Einstein’s theory of special relativity [66].
As a result, the transverse charge density inside both the
polarized proton is distorted and shifted in the direction of
the negative y axis. In the case of the neutron, the distortion
of the corresponding density is complicated, since the
anomalous magnetic moment of the neutron is negative and
the transverse charge density inside an unpolarized neutron
has a different feature, compared with the proton case.
Thus, the negative charged quarks inside a neutron is
shifted to the positive y axis and the positive charged quarks
is displaced to the positive y axis, revealing an asymmetric
distortion.
Figure 4 illustrates the medium modification of the

transverse charge densities inside both the polarized proton
and neutron. The general behavior of the transverse charge
densities in nuclear medium is very similar to those in free
space. However, the extension of the nucleon size is
observed in nuclear medium. Examining the results shown
in Fig. 4 the effects due to the polarization of the nucleon
are lessened in nuclear medium. This can be understood
from the medium modification of the transverse charge and
magnetization densities inside an unpolarized nucleon as
shown in Fig. 2. These densities in medium indicate that the

TABLE III. The transverse charge and magnetization radii of
the unpolarized proton and the neutron. The results in free space
and in nuclear matter at normal nuclear matter density, ρ0, are
presented.

Free space Model I Model II

hb2chi1=2p [fm] 0.70 0.90 0.81

hb2mi1=2p [fm] 0.89 1.65 1.67

hb2chin ½fm2� −0.023 −0.015 −0.042
hb2min ½fm2� −0.85 −2.89 −2.89

FIG. 3. Transverse charge densities inside the polarized proton (left panel) and neutron (right panel) in free space.
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size of the nucleon in medium becomes larger and the
effects of the polarization also get diminished.

B. EMT form factors and transverse
energy-momentum densities

Let us now discuss the EMTFFs of the nucleon. Since
the EMTFFs correspond to the generalized isoscalar
VFFs, We do not need to distinguish the proton from
the neutron. The same results hold for the nucleon
embedded into isospin-symmetric nuclear matter. The
situation will change if one introduces the effects of
isospin breaking into the mesonic sector. When one
considers more realistic isospin asymmetric nuclear mat-
ter, one has to compute both the isoscalar and isovector
generalized vector FFs. In this case, the EMTFFs will be
regarded only as a part of the GVFFs. In the present
work, we concentrate only on isopin-symmetric nuclear
medium.
The medium-modified EMTFFs of the nucleon have been

already investigated in Ref. [46] in detail. Thus, we will
discuss here only the transverse charge and magnetization

densities inside a nucleon, which correspond to the
EMTFFs. As shown in Eq. (18), the EMTFFs of the nucleon
are identified as the GVFFs in the NLO, which arise from the
second moments of the vector GPDs. Hence, the transverse
charge and magnetization densities from the EMTFFs
of the nucleon can be regarded as those inside a nucleon
to the NLO.
Figure 5 draws the NLO transverse charge densities

inside both the unpolarized nucleon (left panel), ρ�20 and the
polarized nucleon (right panel), ρ�20;T , with bx fixed to be
zero. Interestingly, the general feature of ρ�20 is almost the
same as ρpch presented in Fig. 2. When the nucleon is
polarized, the ρ20;T is changed drastically, as shown in the
right panel of Fig. 5. However, it can be also easily
understood as we have discussed previously. The induced
electric field will cause the shift of the positive charged
quark to the negative y direction whereas will translate the
negative one to the positive y axis. The strengths of the
NLO transverse charge densities are much decreased in
nuclear medium. In particular, the magnitude of the
negative charge is almost suppressed. Figure 6 depicts

FIG. 4. Transverse charge densities inside the polarized proton (upper panels) and neutron (lower panels) in nuclear medium at normal
nuclear matter density ρ0 from Model I (left panels) and Model II (right panels), respectively.
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FIG. 5. The NLO transverse charge densities inside the unpolarized nucleon, ρ�20, in the left panel, and those inside the polarized
nucleon, ρ�20;T , in the right panel, with bx ¼ 0. The solid curve depicts those in free space, while the dotted and dotted-dashed ones
represent, respectively, those from model I and model II in nuclear matter.

FIG‘. 6. The two-dimensional NLO transverse charge densities inside the polarized nucleon in free space, ρ20;T , (upper panel), and
those inside the polarized nucleon, ρ�20;T , (lower panel). The lower-left panel depicts ρ

�
20;T from Model I and the lower-right panel draws

those from Model II.
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the two-dimensional transverse charge densities inside the
polarized nucleon both in free space and in nuclear matter.
The results show clearly the polarization effects of the
nucleon on the transverse charge densities, as in the right
panel of Fig. 5.

V. SUMMARY AND OUTLOOK

In the present work, we investigated the electromagnetic
form factors of the nucleon in nuclear medium, based on
the π-ρ-ω soliton model. We employed two different
models: Model I was constructed by changing both the
ρ meson and the ω meson in nuclear matter, while in
Model II only the ρ meson undergoes the change but the ω
meson is intact. This difference yielded the very different
results for the neutron electric form factor. We also
discussed the transverse charge and magnetization densities
inside both the unpolarized nucleon and the polarized
nucleon. The densities showed that the nucleon swells in
nuclear matter, which was also the case in the medium-
modified Skyrme model. The effects of the nucleon
polarization turned out to be lessened in nuclear matter.
Finally, we presented the results for the next-to-leading

order transverse charge densities obtained from the energy-
momentum tensor form factors or the generalized vector
form factors of the nucleon.
Based on the π-ρ-ω soliton model, it is also of great

interest to study the spin problem of the nucleon, in
particular, the spin densities of the nucleon [67]. While
the model does not contain any quark degrees of freedom, it
is still possible to study the quark spin distributions inside a
nucleon. The present work will shed light on the spin
structure of the nucleon from a complementary viewpoint
and furthermore on the changes of its spin structure in
nuclear medium. The corresponding work is under way.
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