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Effective magnetic SUðNÞ gauge theory with classical ZN flux tubes of intrinsic width 1
M is an effective

field theory of the long-distance quark-antiquark interaction in SUðNÞ Yang-Mills theory. Long-
wavelength fluctuations of the ZN vortices of this theory lead to an effective string theory. In this paper,
we clarify the connection between effective field theory and effective string theory, and we propose a new
constraint on these vortices. We first examine the impact of string fluctuations on the classical dual
superconductor description of confinement. At interquark distances R ∼ 1

M, the classical action for a straight

flux tube determines the heavy quark potentials. At distances R ≫ 1
M, fluctuations of the flux tube axis

~x give rise to an effective string theory with an action Seffð~xÞ, the classical action for a curved flux tube,
evaluated in the limit 1

M → 0. This action is equal to the Nambu-Goto action. These conclusions are
independent of the details of the ZN flux tube. Further, we assume the QCD flux tube satisfies the additional

constraint,
R
∞
0 rdr TθθðrÞ

r2 ¼ 0;where TθθðrÞ
r2 is the value of the θθ component of the stress tensor at a distance r

from the axis of an infinite flux tube. Under this constraint, the string tension σ equals the force on a quark

in the chromoelectric field ~E of an infinite straight flux tube, and the Nambu-Goto action can be represented
in terms of the chromodynamic fields of effective magnetic SUðNÞ gauge theory, yielding a field theory
interpretation of effective string theory.

DOI: 10.1103/PhysRevD.93.054012

I. INTRODUCTION

A. Background

1. Dual superconductor mechanism of confinement

In the dual superconductor mechanism for confinement
[1–3], a dual Meissner effect confines color electric flux to
a narrow flux tube connecting a quark-antiquark pair and,
as a consequence, the energy of the pair increases linearly
with their separation, confining the quarks in hadrons.
The Abelian Higgs model is an example of a relativistic

field theory having confining vortex solutions [4]. The
Uð1Þ gauge symmetry is completely broken by scalar
Higgs fields ϕ, which vanish on the axis of the flux tube
and increase to their nonvanishing vacuum value ϕ0 at large
distances from the vortex. Interpreting the Uð1Þ symmetry
as a magnetic gauge symmetry coupling “dual” potentials
to magnetically charged Higgs fields with magnetic cou-
pling constant g, the flux tube then carries electric flux 2π

g
confining a “quark” and an “antiquark” attached to its
ends [1].

2. Effective field theory of dual superconductivity

Spontaneously broken magnetic SUðNÞ gauge theory,
describing non-Abelian “dual” potentials Cμ coupled to
magnetically charged adjoint representation scalar Higgs
fields ϕi, provides a non-Abelian example of an effective
field theory of the long-distance quark-antiquark interac-
tion in SUðNÞYang-Mills theory [5,6]. “Dual” potentials or

“electric vector potentials” Cμ were first defined kinemat-
ically by Mandelstam [7] in terms of ’t Hooft loops [8],
operators which create vortices of magnetic flux. The
spatial components of the field tensor Gμν, constructed
from the potentials Cμ, determine the color electric

field ~E and the spacetime components, the color magnetic
field ~B. The fields ~E and ~B evaluated at the position of the
quarks can be identified with the corresponding chromo-
dynamic fields of the underlying SUðNÞ Yang-Mills
theory [9].
This effective field theory possesses (i) the SUðNÞ

symmetry of Yang-Mills theory and (ii) the same low
energy spectrum; i.e., it contains no massless particles and
has ZN electric flux tube solutions. The gauge coupling
constant is denoted gm, and the magnitude of the vacuum
value of the Higgs field is denoted ϕ0. The massM ∼ gmϕ0

of the vector particle arising from the non-Abelian Higgs
mechanism determines the flux tube intrinsic width 1

M. The
energy per unit length of the classical flux tube, the string
tension σ ∼ #M2

g2m
.

3. Effective string theory from effective field theory

When the distance R between the quark and antiquark is
much larger than 1

M, long-wavelength fluctuations of the ZN
vortices become important and lead to an effective string
theory of these fluctuations [10]. The action Seffð~xÞ of this
effective string theory equals Sclassð~xÞ, the classical action
for a curved vortex sheet ~x, evaluated in the limit 1

M → 0.
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This action equals the Nambu-Goto action with the
classical string tension. Seffð~xÞ is then equal to the
Nambu-Goto action.

B. Effective string theory

The long-distance qq̄ interaction is usually described by
effective string theory [11–13] with an action Seffð~xÞ in
which the string tension σ is an independent parameter. The
heavy quark potential VðRÞ is an expansion in powers of
1

σR2. The leading terms in this expansion are the linear
potential and the universal Lüscher term [11]:

VðRÞ ¼ σR −
π

12R
þ � � � : ð1Þ

Effective string theory has since been developed exten-
sively. It has been shown [14,15] that consistency with
Poincaré symmetry requires that the expansion of the
ground state heavy quark potential in powers of 1

σR2

coincides to order 1
R5 with the potential generated by

the Nambu-Goto action. (Boundary terms in Seff give
corrections of order 1

R4.)
Since the Nambu-Goto action is the action of the

effective string theory obtained from effective field theory,
this result implies that effective field theory accounts for the
contributions of string fluctuations to the ground state
heavy quark potential to order 1

R5. Higher-order terms in this
long-distance expansion are not taken into account by
effective field theory.

C. The goal of this paper

The purpose of this paper is twofold: (i) to clarify the
connection between effective field theory and effective
string theory, and (ii) to propose a new constraint on the
structure of the QCD flux tube.

D. Impact of string fluctuations on the
flux tube picture

We first examine the impact of string fluctuations on the
classical description of confinement. At distances R ∼ 1

M,
the classical action for a straight flux tube determines the
heavy quark potential VðRÞ. Calculations [16,17] of heavy
quark potentials in the model introduced in [5] were
consistent with early lattice simulations [18] with M ∼
2

ffiffiffi
σ

p
[19].1

At distances R ≫ 1
M, where corrections due to string

fluctuations become important, effective string theory
determines the heavy quark potential. In an intermediate
range of distances between approximately 1

M and 2ffiffi
σ

p both

the flux tube intrinsic width and the effect of string
fluctuations must be taken into account. Both effects were
considered in the recent analysis [22] of lattice simulations
of field distributions surrounding a quark-antiquark pair for
a range of values of their separation.

E. A constraint on the confining flux tubes

The motivation for our constraint is based on the
following expression for the string tension σ, derived in
Sec. IV B and valid for any form of the Higgs potential

VðϕiÞ for which the SUðNÞ
ZN

symmetry of the effective field
theory is completely broken:

σ ¼ 2tr

�
−
2π

gm
Y ~Eðr ¼ 0Þ

�
· êz − 2πτ; ð2Þ

where

2tr

�
−
2π

gm
Y ~Eðr ¼ 0Þ

�
≡ ~F ð3Þ

is the chromodynamic force on a quark in the color field
~Eðr ¼ 0Þ on the axis of an infinite ZN flux tube. (Both the
quark color charge − 2π

gm
Y and the color field ~Eðr ¼ 0Þ have

N components and the trace in (3) is a sum of the products
of these components.) τ is the torque per unit length on any
r, z half plane (θ ¼ constant, r > 0) passing through the
axis of the flux tube (Fig. 1) and is given by

τ≡
Z

∞

0

rdr
TθθðrÞ
r2

; ð4Þ

where TθθðrÞ
r2 is the value of the θθ component of the stress

tensor at a distance r from the flux tube axis (the z axis).
TθθðrÞ defines an azimuthal pressure pðrÞ,

pðrÞ≡ TθθðrÞ
r2

; ð5Þ

and τ is the radial moment of this pressure distribution.
Equation (2) is the work-energy relation for a flux tube.

The work per unit length needed to move a quark along the

FIG. 1. Half plane passing through the axis of the flux tube.
Equation (6) is the condition that the torque per unit length acting
across any such ðr; zÞ plane must vanish as R → ∞.

1Since SUð3Þ lattice simulations [20] of pure gauge theory
yield a deconfinement temperature TC ≈ 0.65

ffiffiffi
σ

p
∼ M

3
there is an

interval of temperatures where we expect that effective magnetic
gauge theory is also applicable in the deconfined phase [21].
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flux tube axis is ~F · êz. The work per unit length required to
remove the field energy in a sectorΔθ of the flux tube while
maintaining the quark-antiquark separation is −Δθτ, so that
−2πτ is required to remove all the field energy. The flux
tube energy per unit length σ is then the sum (2) of these
two contributions to the work per unit length.
The torque per unit length τ is a new long-distance

parameter of effective field theory relating the string
tension to the color field on the flux tube axis via (2).
We assume that the value τ ¼ 0 characterizes the structure
of the QCD flux tube, distinguishing it from the flux tubes
arising from other field theories: i.e.,

τ≡
Z

∞

0

rdr
TθθðrÞ
r2

¼ 0: ð6Þ

If the constraint (6) is met, then by (2) the string tension σ is
equal to the force on a quark in the chromoelectric field
~Eðr ¼ 0Þ on the axis of an infinite flux tube:

σ ¼ 2tr

�
−
2π

gm
Y ~Eðr ¼ 0Þ

�
· êz ¼ ~F · êz: ð7Þ

Our conjecture is that the equivalent conditions (6) and (7)
characterize the QCD flux tube.
Condition (6) means that the work per unit length

required to remove the field energy available after a
quark-antiquark pair have been separated by a distance
R approaches 0 in the limit R ≫ 1

M. Then the long-distance
heavy quark potential σR becomes equal to the work ~F ·
Rêz needed to separate the quark-antiquark pair a distance
R in the field ~Eðr ¼ 0Þ on the axis of an infinite flux tube,
which is condition (7).

F. Outline of this paper

In Sec. II, we provide the background and notation used
in the paper, and we discuss ZN flux tubes and their
coupling to a quark-antiquark pair. We review the transition
from effective field theory to effective string theory [10] in
Sec. III and discuss the interplay between the width due to
string fluctuations and the intrinsic width of the flux tube.
In Sec. IV, we derive a generalization of (2) to curved

vortex sheets ~x to obtain an expression for Sclassð~xÞ, the
classical action for the vortex sheet ~x determining the action
of the effective string theory. We use this expression in
Sec. V, where we impose our constraint (6) on flux tubes.
Making use of Poincaré invariance, we then obtain a
representation of the Nambu-Goto action as an integral
over the chromodynamic force on the vortex sheet. This
representation is the generalization of (7) to curved vortex
sheets, and gives a field theory interpretation of effective
string theory.
In Sec. VI, we examine this picture in a particular SUð3Þ

example [5] where explicit classical Z3 flux tube solutions
have been found. The constraint τ ¼ 0 fixes the value of a

parameter κ in the Higgs potential of the non-Abelian
theory. This parameter plays the role of the Landau-
Ginzburg parameter of the Abelian Higgs model. In the
Summary we discuss the possibility of testing the con-
jecture (6) using lattice simulations.

II. EFFECTIVE MAGNETIC SUðNÞ
GAUGE THEORY

We consider effective field theories coupling magnetic
SUðNÞ gauge potentials Cμ to adjoint representation scalar
fields ϕi. The gauge coupling constant is gm. The magnetic
gauge potentials Cμ and Higgs fields ϕi are elements of the
Lie Algebra of SUðNÞ. We use a timelike metric: Cμ ¼
ðC0;−~CÞ ¼ P

aC
a
μTa, ϕi ¼

P
aϕ

a
i Ta, where the Ta ¼

λa=2 are the fundamental representation generators
normalized so that

2trTaTb ¼ δab: ð8Þ

The effective Lagrangian is

LeffðCμ;ϕiÞ ¼ 2tr

�
−
1

4
GμνGμν þ

1

2
ðDμϕiÞ2

�
− VðϕiÞ;

ð9Þ

with

Gμν ¼ ∂μCν − ∂νCμ − igm½Cμ; Cν�; ð10Þ

and

Dμϕi ¼ ∂μϕi − igm½Cμ;ϕi�: ð11Þ

The components of the field tensorGμν define color electric
and magnetic fields ~E and ~B:

Ek ¼ 1

2
ϵklmGlm; Bk ¼ Gk0: ð12Þ

VðϕiÞ is an SUðNÞ invariant Higgs potential which has an
absolute minimum at a nonvanishing value ϕi0 of the Higgs
fields such that in the confining vacuum,

Cμ ¼ 0; ϕi ¼ ϕi0; ð13Þ

the SUðNÞ
ZN

symmetry is completely broken and all particles
become massive. The number of Higgs fields and the form
of the Higgs potential are otherwise unspecified. In Sec. VI,
we will write down a specific SUðNÞ Higgs potential for
which explicit Z3 flux tube solutions were found.2

2For a general discussion of magnetic vortices in non-Abelian
gauge theory, see [23].
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A. ZN electric flux tubes

Effective magnetic gauge theory has electric ZN flux
tube solutions for which, at large distances r from the flux
tube axis, Cμ and ϕi approach a gauge transformation ΩðθÞ
of the vacuum fields [23]:

Cμ →
i
gm

Ω−1ðθÞ∂μΩðθÞ; ϕiðxÞ → Ω−1ðθÞϕi0ΩðθÞ:
ð14Þ

In order that the Higgs field be single valued on any path
encircling the z axis, the matrix Ω−1ðθ ¼ 2πÞΩðθ ¼ 0Þ
must commute with all the ϕi0 and, since the gauge
symmetry is completely broken, must be an element of
ZN : Ωðθ ¼ 2πÞ ¼ expð2πik=NÞΩðθ ¼ 0Þ, k ¼ 0; 1; 2;…;
N − 1.
We can choose a gauge where Ω is Abelian. For a ZN

flux tube with k ¼ 1, we take

ΩðθÞ ¼ expðiθYÞ; ð15Þ

where Y is a diagonal matrix. Its first N − 1 elements ¼
1=N and its Nth element ¼ −ðN − 1Þ=N. (There are N
physically equivalent coupling choices for Y related to each
other by a gauge transformation [23]). With the choice (15)
for ΩðθÞ,

Cμ →
−∂μθ

gm
Y; as r → ∞; ð16Þ

so that

~C →
1

gmr
êθY; as r → ∞: ð17Þ

Integrating ~C around a path at large r surrounding the z axis
gives

exp

�
igm

I
~C · d~l

�
¼ expð2πiYÞ ¼ exp

�
2πi
N

�
; ð18Þ

reflecting the one unit of ZN electric flux passing through
the xy plane.
We assume that there is a classical solution where

the gauge potential ~C is everywhere proportional to the
matrix Y:

~C ¼ CðrÞêθY: ð19Þ

The flux tube electric field (12) also lies along the Y
direction in color space:

~EðrÞ ¼ − ~∇ × ~C ¼ −
1

r
dðrCðrÞÞ

dr
Yêz; ð20Þ

The Higgs fields ϕi have the form

ϕi ¼ Ω−1ðθÞϕiðrÞΩðθÞ; where ϕiðrÞ → ϕi0; r → ∞:

ð21Þ

In order that the flux tube have finite energy, the Higgs
fields ϕi, for which ½Cμ;ϕi� ≠ 0, must vanish on the flux
tube axis r ¼ 0.
The vector mass M generated by the Higgs condensate,

which determines the intrinsic width 1
M of the flux tube, is

obtained by replacing ϕi by ϕi0 and Cμ by Y in (9), is

M2 ¼ g2m
X
i

2tr½iY;ϕi0�2
2trY2

: ð22Þ

B. Coupling of ZN flux tubes to quarks

Classical ZN vortices of magnetic SUðNÞ
ZN

gauge theory
carrying one unit of ZN flux couple to a quark-antiquark
pair in the fundamental representation of SUðNÞ via a Dirac
string Gs

μν, carrying color charge 2π
gm
Y, which is nonvanish-

ing on some line connecting the pair.
Long-wavelength fluctuations of the axis of the flux tube

sweep out a spacetime surface ~xμðσ; τÞ bounded by the loop
Γ formed by the world lines of the quark and antiquark at
the ends of the vortex. We assume that the classical solution
Cμ having a vortex on the sheet ~xμðσ; τÞ is also proportional
to the matrix Y:

Cμ ¼ Cμðx; ~xÞY: ð23Þ

(For SUð3Þ, we have obtained an explicit solution (96), (97)
where Cμ has the form (23) with Y ¼ λ8ffiffi

3
p .)

The Higgs fields ϕi, for which ½Y;ϕi� ≠ 0, contribute to
the magnetic current density, the source of the potential Cμ,
and must vanish on ~xμðσ; τÞ. We choose a gauge where the
surface swept out by the Dirac string coincides with the
vortex sheet ~xμðσ; τÞ. The corresponding Dirac polarization
tensor Gs

μν ¼ Gs
μνðx; ~xÞ is [24]

Gs
μνðx; ~xÞ ¼−

1

2
ϵμναβ

Z
dτ

Z
dσ

ffiffiffiffiffiffi
−g

p
tαβδðx− ~xðσ;τÞÞ2π

gm
Y;

ð24Þ

where g is the determinant of the induced metric gab,

gab ¼
∂ ~xμ
∂ξa

∂ ~xμ
∂ξb ; ξ1 ¼ τ; ξ2 ¼ σ; ð25Þ

~xμðξÞ≡ ~xμðσ; τÞ is a parametrization of the vortex sheet,
and

tαβ ¼ 1ffiffiffiffiffiffi−gp
�∂ ~xα
∂τ

∂ ~xβ
∂σ −

∂ ~xα
∂σ

∂ ~xβ
∂τ

�
ð26Þ
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is the tensor specifying the orientation of the surface
~xμðσ; τÞ in four-dimensional spacetime. It is invariant under
a reparametrization of the surface ~xμ and normalized so
that tαβtαβ ¼ −2.
The action S½Cμ;ϕi� describing field configurations

having a vortex on the sheet ~xμðσ; τÞ coupling the dual
potential (23) to Gs

μν is

S½Cμ;ϕi� ¼
Z

dxLeffðCμ;ϕi; Gs
μνðx; ~xÞÞ; ð27Þ

where the Lagrangian LeffðCμ;ϕi; Gs
μνðx; ~xÞÞ is obtained by

replacing, in the Lagrangian (9), the dual field strength
tensor Gμν by

Gμν ¼ ∂μCν − ∂νCμ þ Gs
μνðx; ~xÞ: ð28Þ

(The nonlinear term −igm½Cμ; Cν� in (10) does not con-
tribute to the field tensor (28) in the gauge where the
classical solution (23) is Abelian.)
After having partially fixed the gauge by the choice (23),

the action (27) has a residual invariance under the Abelian
gauge transformation Ω ¼ exp½iΛðxÞY�:

Cμ → Cμ −
1

gm
∂μΛðxÞY; ϕi → Ω−1ϕiΩ: ð29Þ

III. EFFECTIVE FIELD THEORY

The ’t Hooft loop acting in effective magnetic gauge
theory creates a vortex of electric flux, and its expectation
value determines the Wilson loop WðΓÞ of Yang-Mills
theory, calculated in magnetic gauge theory. WðΓÞ is the
partition function of the effective field theory in the
presence of a Dirac string; i.e., WðΓÞ is a path integral
over all field configurations Cμ;ϕi having a vortex on any
surface ~xμðσ; τÞ bounded by the loop Γ formed from the
world lines of a quark-antiquark pair [9],

WðΓÞ ¼
Z

DCμDϕi expði½SðCμ;ϕiÞ þ Sgf�Þ; ð30Þ

where SðCμ;ϕiÞ is the action (27), while Sgf is a gauge
fixing term. The path integral (30) is cut off at a scale Λ,
which must be less than the mass of the lightest glue ball,
the lightest particle which has been integrated out in
obtaining Leff . Λ must also be somewhat greater than
the vector massM in order to resolve distances of the order
of the flux tube radius.
Identification of the partition function (30) and the

Wilson loop WðΓÞ implies that the expectation value of
the field tensor Gμν at the position of the quarks can be
identified with the corresponding expectation values of the
color fields of Yang Mills theory [9]. (For a static quark-
antiquark pair separated by a distance R, the loop Γ is a
rectangle in the zt plane andWðΓÞ, evaluated in the limit as

the elapsed time T → ∞, determines the static heavy quark
potential VðRÞ.)
We now briefly summarize the results of [10], where the

field theory path integral (30) was transformed into a
partition function of an effective string theory of vortices.

A. From effective field theory to effective
string theory

To transform WðΓÞ into a path integral over vortex
sheets ~xμðξÞ, we carry out the functional integration in two
stages:
(1) We first fix the location ~xμðξÞ of a particular vortex.

We integrate over field configurations in (30)
having a vortex on this particular surface. The
integration over these configurations is proportional
to eiSeffð~xÞ, defining the action of the effective string
theory Seffð~xÞ, and the constraint on this integration
introduces a Fadeev-Popov determinant into the
functional integral (30).
The one-loop calculation of (30) in an expansion

around the classical solution includes a contribution
from field modes generated by moving the position
of the vortex. This contribution is cancelled by the
Fadeev-Popov determinant, so that only massive
modes contribute to the one-loop integration. Since
(30) is cut off at a scale Λ which is only slightly
larger than the mass M of the vector particle, the
lightest particle in the effective field theory, the one-
loop corrections to WðΓÞ are negligible at the
distance scales ∼ 1

M described by effective field
theory. Seffð~xÞ can then be approximated by
Sclassð~xÞ, the value of the action at the classical
configuration ðCclass

μ ðx; ~xÞ;ϕclass
i ðx; ~xÞÞ minimizing

the action (27) for a fixed position ~xμðξÞ of the
vortex:

Seffð~xÞ ≈ Sð~x; Cclass
μ ðx; ~xÞ;ϕclass

i ðx; ~xÞÞ≡ Sclassð~xÞ:
ð31Þ

(2) We then integrate over all surfaces ~xμðξÞ.
We choose a particular parametrization of ~xμ in

terms of the amplitudes f1ðξÞ and f2ðξÞ of the two
transverse fluctuations of the vortex sheet,

~xμ ¼ xμðξ; f1ðξÞ; f2ðξÞÞ; ð32Þ

This gives WðΓÞ the form of a path integral of an
effective string theory of vortices:

WðΓÞ ¼
Z

Df1Df2Δ expðiSeffð~xÞ; ð33Þ

where
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Δ≡Det

�
ϵμναβffiffiffiffiffiffi−gp ∂xμ

∂f1
∂xν
∂f2

∂ ~xα
∂ξ1

∂ ~xβ
∂ξ2

�
ð34Þ

is the determinant produced by gauge fixing the
reparametrization symmetry. The path integral rep-
resentation (33) for WðΓÞ is invariant under repar-
ametrizations of the vortex sheet ~xμðξÞ, and is
restricted to wavelengths longer than 1

Λ.
The action of the effective string theory Seffð~xÞ is the

action (31) of the effective magnetic gauge theory evaluated
at a classical solution for a curved vortex sheet ~x. Since the
contribution of string fluctuations to the heavy quark
interaction determined by the path integral (33) is appli-
cable only for quark-antiquark separations R ≫ 1

M, in this
integral the action Sclassð~xÞ must be evaluated in the limit
1
M → 0, i.e., Seffð~xÞ ¼ Sclassð~xÞj 1

M¼0. In this limit, Sclassð~xÞ
depends only upon a single-dimensional parameter, the
classical string tension σ, and by Poincaré symmetry it must
equal the Nambu-Goto action SNGð~xμÞ:

Sclassð~xÞj 1
M¼0 ¼ SNGð~xμÞ

≡ −σ
Z

d2ξ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gð~xμðξÞÞ

p
: ð35Þ

The action of the effective string theory obtained from
effective field theory is then the Nambu-Goto action. Since
deviations from the Nambu-Goto action give contributions
to the ground state heavy quark potential that fall off faster
than 1

R5 [14,15], effective field theory describes the expan-
sion of ground state heavy quark potential to order 1

R5.
Higher-order terms in this long-distance expansion are not
taken into account by effective field theory and are not
considered in this paper.
With the use of analytic regularization to renormalize

Seffð~xÞ no additional dimensional parameters appear in the
resulting static potential VðRÞ, and the string tension σ
retains its classical value as the energy per unit length of the
flux tube [25].
For a loop Γ describing the motion of a quark-antiquark

pair separated by a fixed distance and rotating with constant
angular velocity, WðΓÞ determines the leading semi-
classical correction to the classical formula for meson
Regge trajectories [26].

B. Width from string fluctuations

For distances much larger than 1ffiffi
σ

p , string fluctuations

determine the flux tube width and lead to a logarithmic
increase of the mean square width w2ðR=2Þ of the flux tube
at its midpoint [27];

w2ðR=2Þ ¼ d − 2

2πσ
log

R
r0

: ð36Þ

( 1r0 can be interpreted as the cutoff Λ of the effective field

theory. Fluctuations of wavelengths less than 1
Λ produce a

divergent contribution to w2ðR=2Þ.)
This prediction has been tested by very accurate lattice

simulations [28] of the mean square flux tube width in
d ¼ 2þ 1 SUð2Þ Yang-Mills theory extending to distan-
ces R ≈ 36ffiffi

σ
p . These simulations gave excellent agreement

with the prediction (36) for distances R > 1.5ffiffi
σ

p with the

choice r0 ¼ 0.364ffiffi
σ

p corresponding to a value of Λ ∼ 2.75
ffiffiffi
σ

p
≈

1.4M. However for distances R < 1.5ffiffi
σ

p the lattice simulations

of w2ðR=2Þ lie above the leading-order prediction (36) of
effective string theory. This excess may be interpreted as a
manifestation of the flux tube intrinsic width at qq̄
separations R < 1.5ffiffi

σ
p .

C. The intrinsic width of the flux tube

The intrinsic width produces an uncertainty of order 1
M in

the position of the vortex, so that for quark-antiquark
separations R ∼ 1

M string fluctuations do not contribute to
the path integral (30). The Wilson loop (30) can then be
replaced by its minimum value, fixed by the value of the
classical action for a flat vortex sheet connecting a static
quark-antiquark pair.WðΓÞ then yields VclassðRÞ, the heavy
quark potential in the classical approximation.
Recent very accurate lattice simulations [22,29] of field

and energy distributions in SUð3Þ flux tubes find values of
the intrinsic width characterizing these distributions that
corresponds to a massM of approximately 900 MeV. Since
M ∼ 2

ffiffiffi
σ

p
, there is an interval of intermediate distances

R ∼ 1
M lying in the range where the predictions of effective

field theory at the classical level are not washed out by
string fluctuations. (The lattice simulations of heavy quark
potentials [18], were carried out at these distances.) In this
interval, denoted [EFT] in Fig. 2, the classical flux tube
picture should be manifest, while effective string theory
should be used in the distance range R > 2ffiffi

σ
p (denoted

[EST] in the figure).
Effective string theory must be used to fit more recent

simulations [30] of heavy quark potentials for values of R
extending to 1.2 fm > 2ffiffi

σ
p . In the intermediate range of

distances depicted in Fig. 2 both the flux tube intrinsic

FIG. 2. Schematic showing approximate domains of applicabil-
ity of effective field theory (EFT) (solid blue line) and effective
string theory (EST) (red dashed line).
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width and the effect of string fluctuations must be taken
into account.

IV. THE CLASSICAL ACTION
FOR SUðNÞ VORTICES

We now obtain a representation for the classical action of
curved vortex sheets and a corresponding representation for
flat sheets. We will use these representations, together with
Poincaré invariance, to obtain information about the
classical action of a general vortex sheet from the action
of a flat sheet.
Equation (31) gives the action Seffð~xμÞ of the effective

string theory as the action (27) of the effective field theory,
evaluated at a classical solution having a vortex at ~xμ. To
find the nonperturbative contribution to this action we
separate Cμ into a perturbative contribution CD

μ and a
nonperturbative contribution cμ:

Cμ ¼ CD
μ þ cμ ¼ ðCD

μ ðx; ~xÞ þ cμðx; ~xÞÞY: ð37Þ

The perturbative vector potential CD
μ gives the Maxwell

field Gμν
MAX of the external qq̄ pair generated by the

coupling of the dual potentials to Gs
μν [24]:

Gμν
MAX ¼ ∂μCDν − ∂νCDμ þGsμν: ð38Þ

The corresponding dual field tensor Gμν assumes the
form

Gμν ¼ Gμν
MAX þ Gμν

class; ð39Þ

where

Gμν
classðx; ~xÞ ¼ ∂μcν − ∂νcμ ¼ ð∂μcνðx; ~xÞ − ∂νcμðx; ~xÞÞY;

ð40Þ

is the nonperturbative field tensor satisfying the classical
equation of motion:

∂νG
νμ
class ¼ igm½ϕi;Dμϕi�≡ jμ; ð41Þ

defining the magnetic current density jμ. For consistency,
the non-Abelian Higgs fields ϕi must have a color structure
such that jμ is also proportional to the matrix Y.
The action (27), evaluated at the classical solution,

separates into the sum:

S½Cμ;ϕi; ~xμ� ¼ SMAXðΓÞ þ Sclassð~xμÞ; ð42Þ

where SMAXðΓÞ is (up to a color factor) the Maxwell action,
and Sclassð~xμÞ is the nonperturbative contribution to the
action:

Sclassð~xÞ ¼
Z

dx

�
2tr

�
−
1

4
Gμν

classGμνclass þ
1

2
ðDμϕiÞ2

�

− VðϕiÞ
�
: ð43Þ

(The classical action is related to the Hamiltonian:
−∂S=∂t ¼ H [31].)
Using the equation of motion (41) in (43) to write

2Sclassð~xÞ, and subtracting Sclassð~xÞ in the original
form, gives

Sclassð~xÞ ¼
Z

dx

�
2tr

�
−
1

2
Gs

μνG
μν
class þ Cμjμ þ

1

4
Gμν

classGμνclass þ
1

2
ðDμϕiÞ2

�
− VðϕiÞ

�
: ð44Þ

(There is also a term on the right-hand side of (44)
proportional to GMAX

μν Gμν
class, which vanishes after integra-

tion by parts and use of Maxwell’s equations.) Then, use of
the identity

tr

�
Cμjμ þ

1

2
ðDμϕiÞ2

�
≡ tr

�
1

2
ð∂μϕiÞ2 −

½igmCμ;ϕi�2
2

�

ð45Þ

to rewrite (44) gives the following representation of the
classical action:

−Sclassð~xÞ ¼
Z

dx2tr

�
1

2
Gs

μνG
μν
class

�
þ Sgð~xÞ − Sϕð~xÞ;

ð46Þ

where

Sgð~xÞ ¼
Z

dx2tr

�
−
1

4
Gμν

classGμνclass −
g2m½Cμ;ϕi�2

2

�
; ð47Þ

and

Sϕð~xÞ ¼
Z

dx

�
2tr

ð∂μϕiÞ2
2

− VðϕiÞ
�
: ð48Þ
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The first term in (46),

Z
dx2tr

�
1

2
Gs

μνG
μν
class

�
¼ −

1

4

Z
dτ

Z
dσ

ffiffiffiffiffiffi
−g

p
ϵμνλα2tr

�
2π

gm
YGμν

classðx; ~xjxμ¼~xμðσ;τÞÞ
�
tλαðσ; τÞ≡

Z
dτWðτÞ; ð49Þ

the integrated work required to separate the quark-antiquark pair along the vortex sheet ~xμðσ; τÞ in the fully developed field
Gμν

classðx; ~xÞ, and the second term,

Sgð~xÞ − Sϕð~xÞ ¼
Z

dx

�
2tr

�
−
1

4
Gμν

classGμνclass −
g2m½Cμ;ϕi�2

2

�
−
�
2tr

ð∂μϕiÞ2
2

− VðϕiÞ
��

; ð50Þ

is the net additional integrated field energy available from the process of creating the vortex sheet, i.e. it is the difference
between −Sclassð~xÞ, the integrated work needed to separate the quarks in the developing color fields, and the corresponding
integrated work

R
dτWðτÞ in the fully developed chromodynamic field Gμν

class.
With a parametrization where ∂ ~x0

∂σ jτ ¼ 0, (49) takes the form:

Z
dx2tr

�
1

2
Gs

μνG
μν
class

�
¼

Z
dτ

Z
dσ

∂~~x
∂σ · ~Fclassðσ; τ; ~xÞ

�∂ ~x0
∂τ

�
; ð51Þ

where

~Fclassðσ; τ; ~xÞ≡ 2tr

�
−
2π

gm
Yð~Eclassðx; ~xÞ þ ~v × ~Bclassðx; ~xÞÞ

�
jxμ¼~xμðσ;τÞ; ð52Þ

Ek
classðx; ~xÞ ¼

1

2
ϵklmðGlm

classðx; ~xÞÞ; Bk
classðx; ~xÞ ¼ Gk0

classðx; ~xÞ ð53Þ

are the classical chromoelectric and chromomagnetic fields, and

~vðσ; τÞ ¼ ∂~~xðσ; τÞ
∂τ = ∂ ~x0

∂τ ð54Þ

is the velocity of the sheet.

A. The heavy quark potential in the classical
approximation

The classical action Sclassð~xÞ, evaluated for a flat vortex
sheet connecting a static quark at ~x1 ¼ R

2
êz and an

antiquark at ~x2 ¼ − R
2
êz, determines VclassðRÞ, the approxi-

mation to the heavy quark potential, where string fluctua-
tions are neglected. For this sheet the components (24) of
Gs

μνðx; ~xÞ are given by

Gs
k0 ¼ 0; Gs

lm ¼ 1

2
ϵlmnEsm;

~Es ¼ −
2π

gm
δðxÞδðyÞ½θðzþ R=2Þ − θðz − R=2Þ�êzY: ð55Þ

The vector potential (23) becomes

~C ¼ Cðr; zÞêθY; C0 ¼ 0: ð56Þ

The spatial components of the tensor Gμν (28) yield the
static chromoelectric field ~E:

~E ¼ − ~∇ × ~Cþ ~Es: ð57Þ

In cylindrical coordinates, g00 ¼ 1, gzz ¼ grr ¼ −1,
gθθ ¼ −r2, g≡ det gμν ¼ −r2, and the components of ~E are

Ez ≡ −
Grθ

r
¼ 1

r
∂Cθ

∂r þ Es
z; Er ≡ −

Gθz

r
¼ −

1

r
∂Cθ

∂z ;

ð58Þ

with

Cθ ¼ −rCðr; zÞY: ð59Þ

The Higgs fields ϕi ¼ ϕiðr; zÞ are independent of θ and t.
The decomposition (37) of Cμ takes the form:

C0 ¼ 0; ~C ¼ ~CD þ ~c≡ ðCDðr; zÞ þ cðr; zÞÞêθY;
ð60Þ

where

CDðr;zÞ¼ 1

4πr

�
z−R=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2þðz−R=2Þ2
p −

zþR=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þðzþR=2Þ2

p
�
2π

gm

ð61Þ
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is the perturbative potential of the quark sources
generated by the Dirac string (55), and cðr; zÞ is the
nonperturbative potential generated by the induced
currents (41).
The color electric field (57) becomes the sum

of a Coulomb field ~EC and a nonperturbative contribution
~Eclass:

~E ¼ ~ECð~x; RÞ þ ~Eclassð~x; RÞ; ð62Þ

where

~EC ¼ 1

4π

�
~x − ~x1
j~x − ~x1j3

−
~x − ~x2
j~x − ~x2j3

�
2π

gm
Y;

~Eclassð~x; RÞ ¼ − ~∇ × ~c: ð63Þ

At large distances ~Eclass screens the Coulomb field while
the Higgs fields approach their vacuum values ϕi0, so that
the boundary conditions are

~c → − ~CD; ϕi → ϕi0; r → ∞ or z → ∞.

ð64Þ

(42), evaluated for static quarks yields the heavy quark
potential as the sum of a Coulomb potential VCðRÞ and a
nonperturbative potential VclassðRÞ, where

−SMAX ¼ TVCðRÞ; VCðRÞ ¼ −2tr
�
2πY
gm

�
2
�

1

4πR

�
;

ð65Þ

−Sclassð~xÞ ¼ TVclassðRÞ; VclassðRÞ ¼
Z

d~xT00ð~x; RÞ;
ð66Þ

and T00ð~x; RÞ is the nonperturbative contribution to the
energy density:

T00ð~x; RÞ ¼ 2tr

�~Eclassð~x; RÞ2
2

þ g2m ~Cð~xÞ2½iY;ϕið~xÞ�2
2

�

þ 2tr

�ð ~∇ϕið~xÞÞ2
2

�
þ VðϕiÞ: ð67Þ

(49), evaluated for static quarks, becomes

Z
dx

�
2tr

1

2
Gs

μνG
μν
class

�
≡ TWðRÞ; ð68Þ

where

WðRÞ ¼
Z

R=2

−R=2
dz2tr

�
−
2π

gm
Yêz · ~Eclassðr ¼ 0; z; RÞ

�
;

ð69Þ

the work required to separate a quark-antiquark pair a

distance R in the field ~Eclassð~x; RÞ.
(50), evaluated for static quarks, becomes the relation

ðSgð~xÞ − Sϕð~xÞÞ ¼ −T
Z

d~x
Tθθð~x; RÞ

r2

¼ −2πT
Z

dzrdr
Tθθðr; z; RÞ

r2
; ð70Þ

where Tθθð~x;RÞ
r2 is the θθ component of the stress tensor for

finite values of R:

Tθθð~x; RÞ
r2

¼ 2tr

�~Eclassð~x; RÞ2
2

þ g2m ~Cð~xÞ2½iY;ϕið~xÞ�2
2

�

−
�
2tr

�ð ~∇ϕið~xÞÞ2
2

�
þ VðϕiÞ

�
: ð71Þ

(71) expresses Tθθ as the difference between a repulsive
gauge contribution and the attractive Higgs contribution
produced by the circulating magnetic currents generated by
the Higgs condensate.
Using (65), (68) and (70) the decomposition (46) of

Sclassð~xÞ becomes a corresponding decomposition of the
heavy quark potential:

VclassðRÞ ¼ WðRÞ −
Z

d~x
Tθθð~x; RÞ

r2
: ð72Þ

1. Physical interpretation of the
representation (72) of VclassðRÞ

The quantity
R
dzrdr Tθθðr;z;RÞ

r2 is the total torque T ðRÞ
acting across any ðr; zÞ plane bounded by the axis of
the flux tube. (See Fig. 1.) Then T ðRÞΔθ is the work
required to remove the field energy in a sector of the flux
tube of angular width Δθ between two ðr; zÞ planes
while maintaining the quark-antiquark separation R.
Since the torque is independent of θ, the work required
to remove all the field energy while maintaining the quark-

antiquark separation R is just 2πT ðRÞ ¼ R
d~x Tθθð~x;RÞ

r2 . If
T ðRÞ > 0 (net repulsion) it takes work to remove the field
energy.
The heavy quark potential VclassðRÞ is the energy

available for doing work when a separated quark-antiquark
pair come together. Equation (72) expresses VclassðRÞ as the
difference between WðRÞ, the work necessary to separate

the pair in the fixed field ~Eclassð~x; RÞ, and 2πT ðRÞ, the work
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necessary to remove the field energy created by their
separation.

B. Limit R → ∞ (R ≫ 1
M)

As R → ∞,

CDðr; zÞ → −
1

gmr
; cðr; zÞ → CðrÞ;

ϕiðr; zÞ → ϕiðrÞ;
ð73Þ

~Eclassð~x; RÞ → ~EðrÞ ¼ −
1

r
dðrCðrÞÞ

dr
Yêz; ð74Þ

WðRÞ → 2tr

�
−
2π

gm
Yêz · ~Eðr ¼ 0Þ

�
R;

T00ð~x; RÞ → T00ðrÞ;
Tθθð~x; RÞ → TθθðrÞ; ð75Þ

VclassðRÞ ¼
Z

d~xT00ð~x; RÞ →
R
∞
0 2πrdrT00ðrÞR

¼ σR; ð76Þ

2πT ðRÞ ¼
Z

d~x
Tθθð~x; RÞ

r2
→

Z
∞

0

2πrdr
TθθðrÞ
r2

R

¼ 2πτR; ð77Þ

where τ is the torque per unit length (4), and

T00ðrÞ ¼ 2tr

�
1

2
~E2ðrÞ þ g2m

�
CðrÞ − 1

gmr

�
2

½iY;ϕi�2
�

þ 2tr

�
1

2

�
dϕiðrÞ
dr

�
2
�
þ VðϕiÞ;

TθθðrÞ
r2

¼ 2tr

�
1

2
~E2ðrÞ þ g2m

�
CðrÞ − 1

gmr

�
2

½iY;ϕi�2
�

− 2tr

�
1

2

�
dϕiðrÞ
dr

�
2
�
− VðϕiÞ: ð78Þ

Taking the large R limit of (72), using (75), (76) and (77)
yields Eq. (2), as stated in the Introduction. Equation (2)

links the string tension σ to the field ~Eðr ¼ 0Þ on the axis of
an infinite flux tube via the parameter τ, and has the
physical interpretation discussed in the Introduction and in
the previous section.
Using the fact that σ is the long-distance force on a

quark,

σ ¼ 2tr

�
−
2π

gm
Y ~Eclass

�
r¼ 0; z¼�R

2
;R

��
· êz; R≫

1

M
;

ð79Þ

we can write (2) in an alternate form:

2tr

�
−
2π

gm
Y ~Eclass

�
r ¼ 0; z ¼ �R

2
;R

��

¼ 2tr

�
−
2π

gm
Y ~Eðr ¼ 0Þ

�
− 2πτêz; R ≫

1

M
: ð80Þ

The field on the axis of an infinite flux tube ~Eðr ¼ 0Þ is
equal to the field of a quark and antiquark,
~Eclassðr ¼ 0; z;RÞ, evaluated in the central region
jzj ≪ R

2
, far from the positions of the quarks.

Consequently, (80) has the equivalent form:

2πτ~ez ¼ 2tr

�
−
2π

gm
Y ~Eclass

�
r ¼ 0; z ¼ �R

2
;R

��

− 2tr

�
−
2π

gm
Y ~Eclassðr ¼ 0; z;RÞ

�
;

jzj ≪ R
2
; R ≫

1

M
: ð81Þ

The torque per unit length τ thus determines the difference

between the value of the field ~Eclass at the positions of the
quarks and its value midway between them. ((81) is an
equivalent characterization of the parameter τ.)

V. A NEW CONSTRAINT ON THE
QCD FLUX TUBE

We now assume that the value τ ¼ 0 characterizes the
QCD flux tube and examine the consequences of this
constraint.
If τ ¼ 0 the string tension equals the color charge 2π

gm
Y of

the quark multiplied by the field ~Eðr ¼ 0Þ on the axis of an
infinite ZN flux tube [Eq. (7)]; i.e., the force on a quark in
the field of the “string” connecting the pair.
Further, (81) becomes the equality

~Eclass

�
r¼ 0; z¼�R

2
;R

�

¼ ~Eclassðr¼ 0; z;RÞ; jzj≪ R
2
; R≫

1

M
; ð82Þ

so that the field at the positions of the quarks equals the
field in the middle of the flux tube.
A nonvanishing value of τ necessitates a variation of

~Eclassðr ¼ 0; z;RÞ along the line connecting the pair. The
condition τ ¼ 0 allows this field to remain constant for all z
including points close to the positions of the quarks.
(Expressed in this way one might speculate that the
condition τ ¼ 0 imposed on the effective field theory
reflects a flicker of the short distance asymptotic freedom
of the fundamental theory visible in the effective field
theory.)
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A. The action of the effective string theory

Poincaré invariance implies that the action of the
effective string theory obtained from effective field theory
Seffð~xÞ ¼ Sclassð~xÞj 1

M¼0 ¼ SNGð~xÞ for any value of τ

[Eq. (35)]. We will now show that under the condition
τ ¼ 0, Sclassð~xÞj 1

M¼0 has a representation in terms of the
chromodynamic fields of magnetic SUðNÞ gauge theory.
This will give a field theory interpretation of effective string
theory.
For long straight strings (70) and (77) show that the term

linear in R in Sgð~xÞ − Sϕð~xÞ is proportional to τ. Hence, for
curved strings, by Poincaré symmetry the term having the
Nambu-Goto form in Sgð~xÞ − Sϕð~xÞ is also proportional to
τ [32]. Thus if τ ¼ 0, Sgð~xÞ − Sϕð~xÞ does not contain a term
proportional to the Nambu-Goto action, and can be
neglected on the right-hand side of Eq. (46) for Sclassð~xÞ;
its contribution to Seffð~xÞ generates terms in the ground
state heavy quark potential that fall off faster than 1

R5

[14,15]. Then (46) takes the form

Sclassð~xÞj 1
M¼0¼−

Z
dx2tr

�
1

2
Gs

μνG
μν
class

�

¼1

4

Z
dτ

Z
dσ

ffiffiffiffiffiffi
−g

p
ϵμνλα2tr

×

�
2π

gm
YGμν

classðx; ~xÞjxμ¼~xμðσ;τÞ

�
tλαðσ;τÞ; ð83Þ

an integral of the field tensor Gμν
classðx; ~xÞ evaluated on the

vortex sheet xμ ¼ ~xμðσ; τÞ. Equation (83) gives the Nambu-
Goto action a representation solely in terms of the chromo-
dynamic fields of the four-dimensional effective field
theory.
Writing (83) in a parametrization where ∂ ~x0

∂σ jτ¼0, using
(51) and (52) gives

SNGð~xÞ ¼ −
Z

dτ
Z

dσ
∂~~x
∂σ · ~Fclassðσ; τ; ~xÞ

�∂ ~x0
∂τ

�
; ð84Þ

where ~Fclassðσ; τ; ~xÞ is the chromodynamic force (52) acting
along the string. (84) is the representation of the Nambu-
Goto action in terms of fields and is the generalization of
the relation (7) to curved vortex sheets.

B. The relation between fields and surfaces

For a curved vortex sheet Lorentz invariance and repar-
ametrization invariance imply that ϵμνλαGλα

classðx; ~xÞjxμ¼~xμðσ;τÞ
must be proportional to the tensor (26) describing the
orientation of the world sheet ~xμðσ; τÞ:

2tr

�
2π

gm
Y
1

2
ϵμνλαGλα

classðx; ~xÞjxμ¼~xμðσ;τÞ

�
¼ σtμνðσ; τÞ: ð85Þ

Consistency of (85) evaluated for a long straight vortex with
(7) fixes the string tension σ as the coefficient of tμν. Taking
into account nonleading terms in 1

M would introduce higher-
dimensional tensors and new parameters on the right-hand
side of (85).3

Therefore, to leading order in 1
M, the values of the

chromodynamic fields Gμν
class on the vortex sheet are

determined in terms of the string tension σ and the
geometry of the vortex sheet. Using (85) in (83) and
the normalization tμνtμν ¼ −2 of the surface tensor yields
the Nambu-Goto action directly.
Expressing (85) in terms of the color electric and

magnetic components (53) of Gμν
class gives the values of

the fields ~Eclass and ~Bclass on the vortex sheet:

2tr

�
−
2π

gm
YEk

class

�				
xμ¼~xμ

¼ σt0kðσ; τÞ;

2tr

�
2π

gm
YBk

class

�				
xμ¼~xμ

¼ σ

2
ϵklmtlmðσ; τÞ: ð86Þ

We choose τ ¼ t, σ ¼ z, and a parametrization ~xμðz; tÞ of
the vortex sheet in terms of the two transverse fluctuations
~xi⊥ðz; tÞ, i ¼ 1, 2:

~xμðz; tÞ ¼ xμðt; z; ~x1⊥ðz; tÞ; ~x2⊥ðz; tÞÞ: ð87Þ

The color fields evaluated on the vortex sheet are
corresponding functions of z and t:

~Ei
classðx; ~xÞjxμ≡~xμðz;tÞ ≡ ~Ei

classðz; tÞ;
~Bi
classðx; ~xÞjxμ¼~xμðz;tÞ ≡ ~Bi

classðz; tÞ;
ð88Þ

Equation (86), with the use of (26) and (87), determines
the fields ~Eclassðz; tÞ and ~Bclassðz; tÞ in terms of the trans-
verse fluctuations ~xi⊥ðz; tÞ for −R=2 ≤ z ≤ R=2:

2tr
�
−
2πY
gm

~Ei
classðz; tÞ

�
¼ σffiffiffiffiffiffi−gp ∂~xi⊥

∂z ;

2tr

�
2πY
gm

~Bi
classðz; tÞ

�
¼ σffiffiffiffiffiffi−gp

�
êz ×

∂~x⊥
∂t

�
i
;

2tr

�
−
2πY
gm

~Bz
classðz; tÞ

�
¼ σ

2
ffiffiffiffiffiffi−gp

�∂~x⊥
∂t ×

∂~x⊥
∂z

�
· êz;

2tr

�
−
2πY
gm

~Ez
classðz; tÞ

�
¼ σffiffiffiffiffiffi−gp : ð89Þ

The Wilson loop WðΓÞ written in the parametrization
(87) is

3Relations between fields and surfaces, postulated on the basis
of symmetry, with account taken of nonleading terms and limited
to the positions of the quarks, have been used to calculate heavy
quark potentials [33].
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WðΓÞ¼
Z

D~x1⊥D~x2⊥exp
�
−iσ

Z
dt
Z

R=2

−R=2
dz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gð~xμðz;tÞÞ

p �
:

ð90Þ
If τ ¼ 0 the Nambu-Goto action has the representation (84),
so that the Wilson loop (90) can be used along with the
relations (89) to calculate correlation functions of the fields
~Eclassðz; tÞ and ~Bclassðz; tÞ and physical quantities dependent
on them.
We now describe the picture that results from the

condition τ ¼ 0 in a particular model.

VI. SUðNÞ VORTICES IN A PARTICULAR
MODEL

The effective Lagrangian in the model [5] has the form
(9) with three scalar Higgs fields and a Higgs potential
VðϕiÞ generated from one-loop contributions to the scalar
2-point and 4-point functions in effective SUðNÞ magnetic
gauge theory:

VðϕiÞ ¼ μ2N
X
i

2tr½ϕ2
i � þ

4Nλ

3

�
tr

�X
ij

ϕ2
iϕ

2
j

�

þ 1

N

�
tr

�X
i

ϕ2
i

��
2

þ 2

N

X
ij

ðtrϕiϕjÞ2
�
; ð91Þ

where the parameter μ2 has dimensions of mass squared
and λ is dimensionless.
In the confining vacuum the Higgs condensate ϕi0 has

the color structure:

ϕ10 ¼ ϕ0Jx; ϕ20 ¼ ϕ0Jy; ϕ30 ¼ ϕ0Jz; ð92Þ
where Jx; Jy, and Jz are the three generators of the
N-dimensional irreducible representation of the three-
dimensional rotation group corresponding to angular
momentum J ¼ N−1

2
. Since any matrix which commutes

with all three generators Ji must be a multiple of the unit
matrix, there is no SUðNÞ transformation which leaves all
three ϕi invariant and the dual SUðNÞ

ZN
gauge symmetry is

completely broken.
The Higgs potential has an absolute minimum at ϕi ¼

ϕi0 with ϕ2
0 ¼ − 9μ2

8ðN2−1Þλ. The difference ϵV between the

energy density of the symmetry breaking vacuum ϕi ¼ ϕi0
and the perturbative vacuum ϕi ¼ 0 is the minimum value
Vðϕi0Þ of the Higgs potential:

ϵV ¼ Vðϕi0Þ ¼
−λ
9
ððNðN2 − 1Þϕ2

0Þ2: ð93Þ

A. The classical action for SUð3Þ vortices
For SUð3Þ,

Jx ¼ λ7; Jy ¼ −λ5; Jz ¼ λ2; Y ¼ λ8ffiffiffi
3

p ; ð94Þ

and the vector mass (22) has the value

M ¼
ffiffiffi
6

p
gmϕ0: ð95Þ

We make the following ansatz for the classical
solution:

ϕ1 ¼ ϕ1ðx; ~xÞ
ðλ7 − iλ6Þ

2
þ ϕ�

1ðx; ~xÞ
ðλ7 þ iλ6Þ

2
;

ϕ2 ¼ ϕ2ðx; ~xÞ
ð−λ5 − iλ4Þ

2
þ ϕ�

2ðx; ~xÞ
ð−λ5 þ iλ4Þ

2
;

ϕ3 ¼ ϕ3ðx; ~xÞλ2; ð96Þ

Cμ ¼ CμðxÞY ¼ ðCD
μ ðx; ~xÞ þ cμðx; ~xÞÞY;

Gμνclass ¼ ð∂μcνðxÞ − ∂νcμðxÞÞY ≡Gμνclassðx; ~xÞY: ð97Þ

There are two other solutions, physically equivalent to (96),
related by gauge transformations taking Y → − Yþλ3

2
or

Y → λ3−Y
2
, corresponding to the other two quark colors [23].

The commutation relations

½Y; λ7 − iλ6� ¼ λ7 − iλ6;

½Y;−λ5 − iλ4� ¼ −ð−λ5 − iλ4Þ; ½Y; λ2� ¼ 0 ð98Þ

yield

Dμϕ1 ¼ ð∂μ − igmCμðxÞÞϕ1ðxÞ
ðλ7 − iλ6Þ

2

þ ð∂μ þ igmCμðxÞÞϕ�
1ðxÞ

ðλ7 þ iλ6Þ
2

;

Dμϕ2 ¼ ð∂μ þ igmCμðxÞÞϕ2ðxÞ
ð−λ5 − iλ4Þ

2

þ ð∂μ − igmCμðxÞÞϕ�
2ðxÞ

ð−λ5 þ iλ4Þ
2

; ð99Þ

so that the Higgs fields ϕ1 and ϕ2 carry Y charge �1 and
that ϕ3 carries Y charge 0.
The consistency requirement that the magnetic current

density (41) be proportional to Y forces

ϕ1ðx; ~xÞ ¼ ϕ�
2ðx; ~xÞ≡ ϕðx; ~xÞ; ð100Þ

and yields

jμ ¼ 6gm

�
ϕ�ðxÞDμϕðxÞ − ϕðxÞðDμϕðxÞÞ�

2i

�
Y; ð101Þ

where

DμϕðxÞ≡ ð∂μ − igmCμðxÞÞϕðxÞ: ð102Þ
Using the color ansatz (23) and (96) in (43) and (91),

making use of (100) and subtracting off the vacuum energy
density ϵV gives Sclassð~xÞ the form:
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Sclassð~xÞ ¼
Z

dx

�
4

3

�
−
1

4
GμνclassðxÞGμν

classðxÞ
�

þ 4ðDμϕðxÞÞðDμϕðxÞÞ�

þ 2∂μϕ3ðxÞ∂μϕ3ðxÞ − Vðϕ;ϕ3Þ
�
; ð103Þ

where

Vðϕ;ϕ3Þ ¼
22λ

3
ð2ðjϕj2 − ϕ2

0Þ2 þ ðϕ2
3 − ϕ2

0Þ2Þ

þ 14λ

3
ð2jϕj2 þ ϕ2

3 − 3ϕ2
0Þ2: ð104Þ

The corresponding field equations are

∂μGclass
μν ðx; ~xÞ ¼ ∂μ∂μcν − ∂ν∂μcμ

¼ 6gm

�
ϕ�∂νϕ − ϕ∂νϕ

�

2i
− gmCνϕ

�ϕ
�
;

ð105Þ
and

−DμDμ�ϕðxÞ ¼ 1

4

δV
δϕ�ðxÞ ;

−∂μ∂μϕ3ðxÞ ¼
1

2

δV
δϕ3ðxÞ

: ð106Þ

At large distances the Higgs fields are a gauge trans-
formation of the vacuum solution (92). With an appropriate
gauge transformation (29) the field ϕðx; ~xÞ can be made
real. The boundary conditions at large distances are then

ϕðx; ~xÞ → ϕ0; ϕ3ðx; ~xÞ → ϕ0;

cμðx; ~xÞ → −CD
μ ðx; ~xÞ: ð107Þ

On the vortex sheet ~xμðσ; τÞ where CD
μ ðx; ~xÞ is singular

the boundary conditions are:

ϕðx; ~xÞjxμ¼~xμðσ;τÞ ¼ 0;

ϕ3ðx; ~xÞjxμ¼~xμðσ;τÞ ¼ finite: ð108Þ

Equations (105) and (106) were solved for the flat vortex
sheet (55), and the resulting static heavy quark potential
VclassðRÞ determined in [6].

B. Static flux tube solutions

For the infinite Z3 flux tube the vector potential ~C has the
form (19) with Y ¼ λ8ffiffi

3
p , and the Higgs fields (21) are

obtained by making the gauge transformation ΩðθÞ ¼
exp½iθY� to the color ansatz (96) with ϕ1ðx; ~xÞ ¼
ϕ�
2ðx; ~xÞ ¼ ϕðrÞ, ϕ3ðx; ~xÞ ¼ ϕ3ðrÞ;

exp½−iθY�ϕ1 exp½iθY� ¼ ϕðrÞ exp½−iθ� λ7 − iλ6
2

þ ϕðrÞ exp½iθ� λ7 þ iλ6
2

;

exp½−iθY�ϕ2 exp½iθY� ¼ ϕðrÞ exp½iθ�−λ5 − iλ4
2

þ ϕðrÞ exp½−iθ�−λ5 þ iλ4
2

;

exp½−iθY�ϕ3 exp½iθY� ¼ ϕ3ðrÞλ2: ð109Þ

Then the Higgs fields in the infinite flux tube (109) have the
color structure (96) with

ϕ1ðx; ~xÞ ¼ ϕ�
2ðx; ~xÞ ¼ ϕðx; ~xÞ ¼ ϕðrÞ expð−iθÞ;

ϕ3ðx; ~xÞ ¼ ϕ3ðrÞ: ð110Þ

(109) gives the specific form of (21) for the SUð3Þ flux
tube in the gauge where Cμ ¼ CμðxÞY, with Y ¼ λ8ffiffi

3
p .

Replacing Y by − Yþλ3
2

or by λ3−Y
2

on the right-hand side
of (23) (corresponding to the other two quark colors) yields
three physically equivalent vortices, each carrying one unit
of Z3 flux, related by SUð3Þ gauge transformations.
We rescale the flux tube fields, choosing the flux tube

radius 1
M as the scale of length, making the replacement

r → r=M; CðrÞ → MCðrÞ
gm

; ϕðrÞ → ϕ0ϕ;

ϕ3ðrÞ → ϕ0ϕ3; ϕ2
0 ¼

M2

6g2m
;

and define a rescaled Higgs potential Wðϕ;ϕ3Þ:

Wðϕ;ϕ3Þ≡ 1

96

Vðϕ0ϕ;ϕ0ϕ3Þ
M4g2m

¼ κ2

200
ð11½2ðϕ2−1Þ2þðϕ2

3−1Þ2�
þ7½2ðϕ2−1Þþðϕ2

3−1Þ�2Þ

¼κ2
�ðϕ2−1Þ2

4
þ9

ðϕ2
3−1Þ2
100

−7
ðϕ2

3−1Þð1−ϕ2Þ
50

�
;

ð111Þ

with

κ2 ≡ 25

9

λ

g2m
: ð112Þ

Note that with ϕ3ðrÞ replaced by 1 in (111), Wðϕ;ϕ3Þ
becomes κ2

4
ðϕ2 − 1Þ2, the Higgs potential of the Abelian

Higgs model with Landau-Ginzburg parameter κ.
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The rescaled expressions for T00ðrÞ and TθθðrÞ
r2 (78) are:

T00ðrÞ ¼
4

3

M4

g2m

�
1

2

�
1

r

�
dðrCÞ
dr

�
2

þ 1

2

�
C −

1

r

�
2

ϕ2

þ 1

2

�
dϕ
dr

�
2

þ 1

4

�
dϕ3

dr

�
2

þWðϕ;ϕ3Þ;

TθθðrÞ
r2

¼ 4

3

M4

g2m

�
1

2

�
1

r

�
dðrCÞ
dr

�
2

þ 1

2

�
C −

1

r

�
2

ϕ2

−
1

2

�
dϕ
dr

�
2

−
1

4

�
dϕ3

dr

�
2

−Wðϕ;ϕ3Þ
�
: ð113Þ

The rescaled static field equations obtained from
T00ðrÞ are

d
dr

�
1

r
dðrCÞ
dr

�
¼

�
C −

1

r

�
ϕ2; ð114Þ

−
1

r
d
dr

�
r
dϕ
dr

�
þ ϕ

�
C −

1

r

�
2

þ κ2ϕ

�
ðϕ2 − 1Þ þ 7

25
ðϕ2

3 − 1Þ
�
¼ 0; ð115Þ

and

−
1

r
d
dr

�
r
dϕ3

dr

�
þ 2κ2

25
ϕ3½7ðϕ2 − 1Þ þ 9ðϕ2

3 − 1Þ� ¼ 0:

ð116Þ

with boundary conditions

CðrÞ→ 1

r
; ϕðrÞ → 1; ϕ3ðrÞ→ 1 as r→∞;

C→ 0; ϕðrÞ→ 0; ϕ3ðrÞ→ finite as r→ 0: ð117Þ

The numerical solution of (114), (115) and (116) shows
that ϕðrÞ < 1 and ϕ3ðrÞ > 1 everywhere; hence the term
coupling ϕ and ϕ3 inWðϕ;ϕ3Þ is attractive. This additional
attraction reduces the energy of the Z3 vortex below that of
the Abelian configuration with ϕ3ðrÞ ¼ 1, viewed as an
unstable configuration of the non-Abelian vortex.
Evaluation of (113) at the classical solution yields

expressions for the string tension σ and the torque per
unit length τ as the sum and difference, respectively, of a
gauge contribution σgðκÞ and a Higgs contribution σhðκÞ:

σ ¼
Z

∞

0

2πrT00ðrÞdr¼
4

3

M2

g2m
ðσgðκÞ þ σhðκÞÞ≡ 4

3

M2

g2m
σðκÞ;
ð118Þ

2πτ ¼
Z

∞

0

2πrdr
TθθðrÞ
r2

¼ 4

3

M2

g2m
ðσgðκÞ − σhðκÞÞ; ð119Þ

where

σgðκÞ ¼
Z

∞

0

2πrdr

�
1

2

�
1

r

�
dðrCÞ
dr

�
2

þ 1

2

�
C −

1

r

�
2

ϕ2

�
;

ð120Þ

and

σhðκÞ ¼
Z

∞

0

2πrdr

�
1

2

�
dϕ
dr

�
2

þ 1

4

�
dϕ3

dr

�
2

þWðϕ;ϕ3Þ
�
:

ð121Þ

The condition τ ¼ 0 becomes σgðκÞ ¼ σhðκÞ.

C. Results for Tθθ in Z3 flux tubes

Figure 3 shows TθθðrÞ
r ≡ rpðrÞ evaluated at the classical

solution for three values of κ2. The condition (6),
σgðκÞ ¼ σhðκÞ, yields κ2 ≈ 0.6, and σðκ2 ¼ 0.6Þ ≈ 3.1.
(The value of κ2 ¼ 0.6 lies close to the value κ2 ¼ 5

9
used

in [19] in comparing calculations of heavy quark potentials
in this model with lattice simulations [18].) For κ2 ≈ 0.6,
the stress tensor component TθθðrÞ ¼ 0 at r≡ r� ¼ 1.7

M .
There is repulsion for r < r�, where TθθðrÞ > 0, and
attraction for r > r�, where TθθðrÞ < 0. It is then natural
to identify r� as a boundary separating the repulsive interior
of the flux tube from its attractive exterior.
(6) is also satisfied by the flux tubes of the Abelian-

Higgs model with κ2 ¼ 1
2
. These are BPS states [34]

describing an Abelian magnetic superconductor on the
border between type I and type II. In this situation
TθθðrÞ ¼ 0 for all r [35], so that the profile of TθθðrÞ does
not reveal a boundary. The difference between the non-
Abelian and Abelian vortices is caused by the additional
attractive interaction among the octet of scalar particles
which breaks the supersymmetry [36] giving rise to the
BPS vortex of the Abelian Higgs model. For κ2 ≈ 0.6,
where τ ¼ 0, this additional interaction is approximately
compensated for by the additional gauge repulsion asso-
ciated with the fact that κ2 > 1

2
.

VII. SUMMARY

A. Relation between effective field theory
and effective string theory

We have started with magnetic SUðNÞ gauge theory as
an effective field theory of the long-distance heavy quark
interaction in Yang-Mills theory. At interquark distances
R ∼ 1

M the classical action for a straight flux tube describes
the heavy quark potential.
When the distanceR between the quark and the antiquark

is much larger than the intrinsic width 1
M of the classical ZN

flux tube, long-distance fluctuationsof the axismust be taken
into account and give rise to an effective string theory. To
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leading order in 1
M the action of the effective string theory

Seffð~xÞ is the classical action for a curved vortex sheet ~x,
evaluated in the limit 1

M → 0. This action is equal to the
Nambu-Goto actionwith a string tension givenby the energy
per length of an infinite straight flux tube.

B. The constraint τ ¼ 0 and its consequences

We have introduced a new long-distance parameter, the
torque per unit length τ [Eq. (4)], linking the string tension
to the chromoelectric field on the axis of an infinite straight
flux tube [Eq. (2)]. For large R, the parameter τ determines
the difference between the chromoelectric field of a quark-
antiquark pair at the positions jzj ¼ � R

2
of the quarks and

its value at points jzj ≪ R
2
in the middle of the flux

tube [Eq. (81)].
In this paper we have assumed the value τ ¼ 0 character-

izes the QCD flux tube. Under this constraint the chromo-
dynamic fields ~E and ~B on a curved vortex sheet ~x are
determined, to leading order in 1

M, in terms of the string
tension [Eq. (89)], and the Nambu-Goto action is expressed
in terms of these fields on ~x [Eq (84)].
Imposition of the condition τ ¼ 0 on the flux tubes in a

particular SUð3Þmodel [5] gives a physical picture of these
flux tubes in which the behavior of the moment of the
pressure [Eq. (5)] defines a boundary separating a repulsive
interior from an attractive exterior (Fig. 3).

C. Testing the constraint

Testing our conjecture is a problem. (The fit of early
lattice simulations of heavy quark potentials and flux tube
energy distributions to classical calculations of these
quantities discussed in Sec. VI kept κ fixed and, therefore,
provides only a crude test.)
Recent lattice simulations [22,29] of field and energy

distributions can be used to test the consistency of the
condition τ ¼ 0, taking into account string fluctuations in
the interpretation of the lattice data. The results of these
simulations can be compared with the relations (89)
expressing the fields on the vortex sheet in terms of the
string tension, generalizing (7) to curved sheets.
Comparison with lattice data, of the predicted ratio of
the field at the center of a flux tube to the string tension,
provides the most direct test of the constraint (6). Further
lattice data and analysis is necessary to put strong limits on

τ. Testing our conjecture is a problem that remains to be
solved.

D. Discussion

According to the correspondence (89), the world sheet
variables ~xμ of effective string theory are associated with
chromodynamic fields of effective magnetic gauge theory
on this sheet. This association, combined with the corre-
spondence of these fields with the underlying fields of Yang
Mills theory [9], provides a relation between effective
string theory and long-distance Yang Mills theory.
The location of the string can thus be thought of as the

axis of a classical flux tube, and the fields associated with
the string regarded as the classical chromodynamic fields
on that axis. We have shown that this is possible if the flux
tube structure is constrained by the condition τ ¼ 0. Our
conjecture is that the QCD flux tube has the requisite
structure.
We have obtained the constraint τ ¼ 0 on the structure of

the QCD flux tube by requiring that no field energy is
created by the separation of a quark-antiquark pair. In this
situation the heavy quark potential, the energy available for
doing work when the pair is released, is equal to the energy
available when the pair is released in the fixed field created
by their separation. The string tension is then equal to the
charge on the quark multiplied by the field on the axis of an
infinite flux tube; i.e., the field of the “string” connecting
the quark and antiquark.
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