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New constraint on effective field theories of the QCD flux tube
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Effective magnetic SU(N) gauge theory with classical Zy flux tubes of intrinsic width % is an effective
field theory of the long-distance quark-antiquark interaction in SU(N) Yang-Mills theory. Long-
wavelength fluctuations of the Zy vortices of this theory lead to an effective string theory. In this paper,
we clarify the connection between effective field theory and effective string theory, and we propose a new
constraint on these vortices. We first examine the impact of string fluctuations on the classical dual
superconductor description of confinement. At interquark distances R ~ -, the classical action for a straight
flux tube determines the heavy quark potentials. At distances R > ﬁ fluctuations of the flux tube axis
X give rise to an effective string theory with an action S, (X), the classical action for a curved flux tube,
evaluated in the limit i — 0. This action is equal to the Nambu-Goto action. These conclusions are
independent of the details of the Z flux tube. Further, we assume the QCD flux tube satisfies the additional
Top(r)

2

constraint, f0°° rdr T%fr) = 0, where = is the value of the 9 component of the stress tensor at a distance r

from the axis of an infinite flux tube. Under this constraint, the string tension o equals the force on a quark

in the chromoelectric field E of an infinite straight flux tube, and the Nambu-Goto action can be represented
in terms of the chromodynamic fields of effective magnetic SU(N) gauge theory, yielding a field theory

interpretation of effective string theory.
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I. INTRODUCTION
A. Background

1. Dual superconductor mechanism of confinement

In the dual superconductor mechanism for confinement
[1-3], a dual Meissner effect confines color electric flux to

a narrow flux tube connecting a quark-antiquark pair and,
as a consequence, the energy of the pair increases linearly

with their separation, confining the quarks in hadrons.

The Abelian Higgs model is an example of a relativistic
field theory having confining vortex solutions [4]. The
U(1) gauge symmetry is completely broken by scalar
Higgs fields ¢, which vanish on the axis of the flux tube
and increase to their nonvanishing vacuum value ¢, at large
distances from the vortex. Interpreting the U(1) symmetry
as a magnetic gauge symmetry coupling “dual” potentials
to magnetically charged Higgs fields with magnetic cou-
pling constant g, the flux tube then carries electric flux 27”
confining a “quark” and an “antiquark” attached to ifs
ends [1].

1)

2. Effective field theory of dual superconductivity

Spontaneously broken magnetic SU(N) gauge theory,
describing non-Abelian “dual” potentials C, coupled to
magnetically charged adjoint representation scalar Higgs
fields ¢;, provides a non-Abelian example of an effective
field theory of the long-distance quark-antiquark interac-
tion in SU(N) Yang-Mills theory [5,6]. “Dual” potentials or
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“electric vector potentials” C,, were first defined kinemat-
ically by Mandelstam [7] in terms of 't Hooft loops [8],
operators which create vortices of magnetic flux. The
spatial components of the field tensor G,,, constructed
from the potentials CM, determine the color electric

field E and the spacetime components, the color magnetic

field B. The fields E and B evaluated at the position of the
quarks can be identified with the corresponding chromo-
dynamic fields of the underlying SU(N) Yang-Mills
theory [9].

This effective field theory possesses (i) the SU(N)
symmetry of Yang-Mills theory and (ii) the same low
energy spectrum; i.e., it contains no massless particles and
has Zy electric flux tube solutions. The gauge coupling
constant is denoted g,,, and the magnitude of the vacuum
value of the Higgs field is denoted ¢by. The mass M ~ g,,¢,
of the vector particle arising from the non-Abelian Higgs
mechanism determines the flux tube intrinsic width ﬁ The
energy per unit length of the classical flux tube, the string
tension ¢ ~ # "qu.

Im

3. Effective string theory from effective field theory

When the distance R between the quark and antiquark is
much larger than -, long-wavelength fluctuations of the Z,
vortices become important and lead to an effective string
theory of these fluctuations [10]. The action S.(X) of this
effective string theory equals SY*%(%), the classical action
for a curved vortex sheet X, evaluated in the limit ﬁ - 0.

© 2016 American Physical Society
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This action equals the Nambu-Goto action with the
classical string tension. S.(X) is then equal to the
Nambu-Goto action.

B. Effective string theory

The long-distance ¢gg interaction is usually described by
effective string theory [11-13] with an action S (X) in
which the string tension ¢ is an independent parameter. The
heavy quark potential V(R) is an expansion in powers of
g_}ez' The leading terms in this expansion are the linear
potential and the universal Liischer term [11]:

V(R) = 6R - —— + -+ (1)

Effective string theory has since been developed exten-
sively. It has been shown [14,15] that consistency with
Poincaré symmetry requires that the expansion of the
ground state heavy quark potential in powers of #
coincides to order % with the potential generated by
the Nambu-Goto action. (Boundary terms in Sy give
corrections of order %.)

Since the Nambu-Goto action is the action of the
effective string theory obtained from effective field theory,
this result implies that effective field theory accounts for the
contributions of string fluctuations to the ground state
heavy quark potential to order %. Higher-order terms in this
long-distance expansion are not taken into account by
effective field theory.

C. The goal of this paper

The purpose of this paper is twofold: (i) to clarify the
connection between effective field theory and effective
string theory, and (ii) to propose a new constraint on the
structure of the QCD flux tube.

D. Impact of string fluctuations on the
flux tube picture

We first examine the impact of string fluctuations on the
classical description of confinement. At distances R ~ -,
the classical action for a straight flux tube determines the
heavy quark potential V(R). Calculations [16,17] of heavy
quark potentials in the model introduced in [5] were
consistent with early lattice simulations [18] with M ~
2\/c [19].

At distances R > ﬁ where corrections due to string
fluctuations become important, effective string theory
determines the heavy quark potential. In an intermediate

range of distances between approximately ﬁ and \/%; both

'Since SU(3) lattice simulations [20] of pure gauge theory
yield a deconfinement temperature Tc & 0.65/c ~ % there is an
interval of temperatures where we expect that effective magnetic
gauge theory is also applicable in the deconfined phase [21].
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FIG. 1. Half plane passing through the axis of the flux tube.
Equation (6) is the condition that the torque per unit length acting
across any such (r, z) plane must vanish as R — oo.

the flux tube intrinsic width and the effect of string
fluctuations must be taken into account. Both effects were
considered in the recent analysis [22] of lattice simulations
of field distributions surrounding a quark-antiquark pair for
a range of values of their separation.

E. A constraint on the confining flux tubes

The motivation for our constraint is based on the
following expression for the string tension o, derived in
Sec. IV B and valid for any form of the Higgs potential

V(¢;) for which the SZ(NM symmetry of the effective field

theory is completely broken:

2 -
o =2t [—” YE(r = 0)] ‘e, — 2, (2)
I
where
2r - -
2tr[——YE(r:0)] =F (3)
I

is the chromodynamic force on a quark in the color field

-

E(r = 0) on the axis of an infinite Zy flux tube. (Both the
quark color charge — ;—” Y and the color field E (r =0) have
N components and the trace in (3) is a sum of the products
of these components.) 7 is the torque per unit length on any
r, z half plane (@ = constant, r > 0) passing through the
axis of the flux tube (Fig. 1) and is given by

o T
T E/ rdr 092(”)’ (4)
0 r
where T"fz(’) is the value of the #0 component of the stress

tensor at a distance r from the flux tube axis (the z axis).
Tgo(r) defines an azimuthal pressure p(r),

p(r =00, )

and 7 is the radial moment of this pressure distribution.
Equation (2) is the work-energy relation for a flux tube.
The work per unit length needed to move a quark along the
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flux tube axis is 7 - é,. The work per unit length required to
remove the field energy in a sector Af of the flux tube while
maintaining the quark-antiquark separation is —Afz, so that
—2z7 is required to remove all the field energy. The flux
tube energy per unit length o is then the sum (2) of these
two contributions to the work per unit length.

The torque per unit length 7 is a new long-distance
parameter of effective field theory relating the string
tension to the color field on the flux tube axis via (2).
We assume that the value 7 = 0 characterizes the structure
of the QCD flux tube, distinguishing it from the flux tubes
arising from other field theories: i.e.,

= /°° rar Lol (6)
0

2
If the constraint (6) is met, then by (2) the string tension ¢ is
equal to the force on a quark in the chromoelectric field
E(r =0) on the axis of an infinite flux tube:

2 .
0:2tr[——ﬂYE(r:0)} e,=F-2,. (1)
G

Our conjecture is that the equivalent conditions (6) and (7)
characterize the QCD flux tube.

Condition (6) means that the work per unit length
required to remove the field energy available after a
quark-antiquark pair have been separated by a distance
R approaches 0 in the limit R > ﬁ Then the long-distance
heavy quark potential 6R becomes equal to the work F -
Reé_ needed to_separate the quark-antiquark pair a distance
R in the field E(r = 0) on the axis of an infinite flux tube,
which is condition (7).

F. Outline of this paper

In Sec. II, we provide the background and notation used
in the paper, and we discuss Zy flux tubes and their
coupling to a quark-antiquark pair. We review the transition
from effective field theory to effective string theory [10] in
Sec. III and discuss the interplay between the width due to
string fluctuations and the intrinsic width of the flux tube.

In Sec. IV, we derive a generalization of (2) to curved
vortex sheets X to obtain an expression for S%5(X), the
classical action for the vortex sheet X determining the action
of the effective string theory. We use this expression in
Sec. V, where we impose our constraint (6) on flux tubes.
Making use of Poincaré invariance, we then obtain a
representation of the Nambu-Goto action as an integral
over the chromodynamic force on the vortex sheet. This
representation is the generalization of (7) to curved vortex
sheets, and gives a field theory interpretation of effective
string theory.

In Sec. VI, we examine this picture in a particular SU(3)
example [5] where explicit classical Z; flux tube solutions
have been found. The constraint 7 = 0 fixes the value of a
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parameter x in the Higgs potential of the non-Abelian
theory. This parameter plays the role of the Landau-
Ginzburg parameter of the Abelian Higgs model. In the
Summary we discuss the possibility of testing the con-
jecture (6) using lattice simulations.

II. EFFECTIVE MAGNETIC SU(N)
GAUGE THEORY

We consider effective field theories coupling magnetic
SU(N) gauge potentials C,, to adjoint representation scalar
fields ¢,. The gauge coupling constant is g,,. The magnetic
gauge potentials C,, and Higgs fields ¢, are elements of the
Lie Algebra of SU(N). We use a timelike metric: C, =

-

(Co.—C) =>_,CiT,, ¢; =) ,piT,, where the T, =
Ao/2 are the fundamental representation generators
normalized so that

2trTaTb = 5ab' (8)

The effective Lagrangian is

1
'Ceff(C;u ¢1) =2t <_ZGWGW + % (Du¢i)2> - V(¢i)v

©)

with
G, =90,C,-09,C,—ig,[C,.C,). (10)

and
Dﬂ¢i = 8]4¢i - igm[C/u d’i}' (11)

The components of the field tensor G* define color electric
and magnetic fields £ and B:

1
Ef = EeklmGlmv

Bf = GX0, (12)
V(¢;) is an SU(N) invariant Higgs potential which has an
absolute minimum at a nonvanishing value ¢;, of the Higgs
fields such that in the confining vacuum,

C, =0,

bi = bio (13)

the %(N) symmetry is completely broken and all particles
N . . .

become massive. The number of Higgs fields and the form

of the Higgs potential are otherwise unspecified. In Sec. VI,

we will write down a specific SU(N) Higgs potential for

which explicit Z; flux tube solutions were found.”

*For a general discussion of magnetic vortices in non-Abelian
gauge theory, see [23].
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A. Zy electric flux tubes

Effective magnetic gauge theory has electric Zy flux
tube solutions for which, at large distances r from the flux
tube axis, C,, and ¢; approach a gauge transformation Q(6)
of the vacuum fields [23]:

C—>L

0 ~1(0)0,2(0).

bi(x) = Q71(0)hi0(0).
(14)

In order that the Higgs field be single valued on any path
encircling the z axis, the matrix Q~!(0 = 27)Q(0 = 0)
must commute with all the ¢;, and, since the gauge
symmetry is completely broken, must be an element of
Zy: Q0 =27x) = exp(27ik/N)Q(O =0), k=0,1,2, ...,
N-1.

We can choose a gauge where Q is Abelian. For a Zy
flux tube with k = 1, we take

Q(6) = exp(i6Y), (15)

where Y is a diagonal matrix. Its first N — 1 elements =
1/N and its Nth element = —(N — 1)/N. (There are N
physically equivalent coupling choices for Y related to each
other by a gauge transformation [23]). With the choice (15)
for Q(6),

—-0,0

C,— gﬂ Y, as r — oo, (16)
so that
- 1.
C——¢yY. as r - . (17)
gm"

Integrating C around a path at large r surrounding the z axis
gives

- - 2 /
exp (igm]{C-dl> = exp(27iY) = exp(%), (18)

reflecting the one unit of Zy electric flux passing through
the xy plane.

We assume that there is a classical solution where
the gauge potential C is everywhere proportional to the
matrix Y:

C = C(r)e,Y. (19)

The flux tube electric field (12) also lies along the Y
direction in color space:

sy g A 1d(rC(r))
E(r)=-VxC = Ye.,

(20)
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The Higgs fields ¢; have the form

= Q71 (0)¢i(r)(6), where ¢;(r) = i,

r — 0.

(21)

In order that the flux tube have finite energy, the Higgs
fields ¢;, for which [C,. ¢;] # 0, must vanish on the flux
tube axis r = 0.

The vector mass M generated by the Higgs condensate,
which determines the intrinsic width ﬁ of the flux tube, is
obtained by replacing ¢; by ¢,y and C, by Y in (9), is

2tr lY ¢10
= . 22
mz 2trY2 (22)

B. Coupling of Zy flux tubes to quarks

Classical Z, vortices of magnetic ( ) gauge theory
carrying one unit of Zy flux couple to a quark -antiquark
pair in the fundamental representation of SU(N) via a Dirac
string G,,, carrying color charge ;” Y, which is nonvanish-
ing on some line connecting the pair.

Long-wavelength fluctuations of the axis of the flux tube
sweep out a spacetime surface X (o, 7) bounded by the loop
I' formed by the world lines of the quark and antiquark at
the ends of the vortex. We assume that the classical solution
C, having a vortex on the sheet ¥ (o, 7) is also proportional
to the matrix Y:

C, = C,(x. %Y. (23)

(For SU(3), we have obtained an explicit solution (96), (97)
where C, has the form (23) with ¥ = \’1/—%.)

The Higgs fields ¢;, for which [Y, ¢;] # 0, contribute to
the magnetic current density, the source of the potential C,,,
and must vanish on ¥* (o, 7). We choose a gauge where the
surface swept out by the Dirac string coincides with the
vortex sheet ¥# (o, 7). The corresponding Dirac polarization
tensor Gy, = G, (x,X) is [24]

2
”mﬁ/df/dm/ gt*’5(x — x(0,7)) Ty,

m

(24)

,,(x X

where ¢ is the determinant of the induced metric g,

0+ 0%,

- 2
85“8@’” f =0, (25)

Y9ab = fl =1,

(&) = ¥(0,7) is a parametrization of the vortex sheet,
and

o 0% O
P (@%ﬁi@) (26)
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is the tensor specifying the orientation of the surface
X*(o, 7) in four-dimensional spacetime. It is invariant under
a reparametrization of the surface X* and normalized so
that 1%, = 2.

The action S[C,,¢,] describing field configurations
having a vortex on the sheet ¥(o,7) coupling the dual
potential (23) to G,, is

S[C, ] = / dxLor(Cp .Gl 5)). (27)

where the Lagrangian L. (C,. ¢;, G;, (x, X)) is obtained by
replacing, in the Lagrangian (9), the dual field strength
tensor G,, by

G, = 8,C,—0,C, + G, (x. 7). (28)

(The nonlinear term —ig,,[C,,C,] in (10) does not con-
tribute to the field tensor (28) in the gauge where the
classical solution (23) is Abelian.)

After having partially fixed the gauge by the choice (23),
the action (27) has a residual invariance under the Abelian
gauge transformation Q = exp[iA(x)Y]:

c,—C, —iaﬂA(x)Y,

m

¢ — Q7 hQ. (29)

III. EFFECTIVE FIELD THEORY

The ’t Hooft loop acting in effective magnetic gauge
theory creates a vortex of electric flux, and its expectation
value determines the Wilson loop W(I') of Yang-Mills
theory, calculated in magnetic gauge theory. W(I') is the
partition function of the effective field theory in the
presence of a Dirac string; i.e., W(I') is a path integral
over all field configurations C,,, ¢; having a vortex on any
surface ¥*(o,7) bounded by the loop I' formed from the
world lines of a quark-antiquark pair [9],

W(r) = / DC, D, exp(i[S(C, ) + S, (30)

where S(C,, ;) is the action (27), while S, is a gauge
fixing term. The path integral (30) is cut off at a scale A,
which must be less than the mass of the lightest glue ball,
the lightest particle which has been integrated out in
obtaining L. A must also be somewhat greater than
the vector mass M in order to resolve distances of the order
of the flux tube radius.

Identification of the partition function (30) and the
Wilson loop W(I') implies that the expectation value of
the field tensor G,, at the position of the quarks can be
identified with the corresponding expectation values of the
color fields of Yang Mills theory [9]. (For a static quark-
antiquark pair separated by a distance R, the loop I is a
rectangle in the z¢ plane and W (I"), evaluated in the limit as
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the elapsed time 7" — oo, determines the static heavy quark
potential V(R).)

We now briefly summarize the results of [10], where the
field theory path integral (30) was transformed into a
partition function of an effective string theory of vortices.

A. From effective field theory to effective
string theory

To transform W(I') into a path integral over vortex
sheets ¥ (&), we carry out the functional integration in two
stages:

(1) We first fix the location ¥#(&) of a particular vortex.

We integrate over field configurations in (30)
having a vortex on this particular surface. The
integration over these configurations is proportional
to eS1(®) | defining the action of the effective string
theory S, (X), and the constraint on this integration
introduces a Fadeev-Popov determinant into the
functional integral (30).

The one-loop calculation of (30) in an expansion
around the classical solution includes a contribution
from field modes generated by moving the position
of the vortex. This contribution is cancelled by the
Fadeev-Popov determinant, so that only massive
modes contribute to the one-loop integration. Since
(30) is cut off at a scale A which is only slightly
larger than the mass M of the vector particle, the
lightest particle in the effective field theory, the one-
loop corrections to W(I') are negligible at the
distance scales Nﬁ described by effective field
theory. S.;(X) can then be approximated by
Slass(x), the value of the action at the classical
configuration (Cg(x, X), 5% (x, X)) minimizing
the action (27) for a fixed position ¥#(£) of the
vortex:

Sar(F) & S(E, G (1. ). 45195 (x. 7)) = 5% ().
(31)

(2) We then integrate over all surfaces ¥*(&).
We choose a particular parametrization of ¥ in
terms of the amplitudes f'(£) and f?(&) of the two
transverse fluctuations of the vortex sheet,

&= x"(E f1(E). f2(8)), (32)

This gives W(I') the form of a path integral of an
effective string theory of vortices:

W(r) = / DFDRAxp(iSu(®).  (33)

where
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A = De | et Ox* Ox¥ 9x* OxP
\/—afl afZ fl 852

is the determinant produced by gauge fixing the

reparametrization symmetry. The path integral rep-

resentation (33) for W(I') is invariant under repar-

ametrizations of the vortex sheet x#(£), and is
restricted to wavelengths longer than %

The action of the effective string theory S.g;(X) is the
action (31) of the effective magnetic gauge theory evaluated
at a classical solution for a curved vortex sheet x. Since the
contribution of string fluctuations to the heavy quark
interaction determined by the path integral (33) is appli-
cable only for quark-antiquark separations R > i in this

1ntegral the action S5 (%) must be evaluated in the limit
3 = 0, ie Segr(¥) = S9(%)]1 . In this limit, $95(%)

depends only upon a single-dimensional parameter, the
classical string tension ¢, and by Poincaré symmetry it must
equal the Nambu-Goto action Syg(¥):

SClass( )|' =0 = SNG(X”)

E_G/ &/ —g(#(2). (35

The action of the effective string theory obtained from
effective field theory is then the Nambu-Goto action. Since
deviations from the Nambu-Goto action give contributions
to the ground state heavy quark potential that fall off faster
than -1 [14,15], effective field theory describes the expan-
sion of ground state heavy quark potential to order R*
Higher-order terms in this long-distance expansion are not
taken into account by effective field theory and are not
considered in this paper.

With the use of analytic regularization to renormalize
Seit(X) no additional dimensional parameters appear in the
resulting static potential V(R), and the string tension &
retains its classical value as the energy per unit length of the
flux tube [25].

For a loop I' describing the motion of a quark-antiquark
pair separated by a fixed distance and rotating with constant
angular velocity, W(I') determines the leading semi-
classical correction to the classical formula for meson
Regge trajectories [26].

B. Width from string fluctuations

1
ﬁs
determine the flux tube width and lead to a logarithmic
increase of the mean square width w?(R/2) of the flux tube
at its midpoint [27];

For distances much larger than string fluctuations

d—2. R
log—. (36)
o 4]

w?(R/2) =

PHYSICAL REVIEW D 93, 054012 (2016)
EFT EST

FIG. 2. Schematic showing approximate domains of applicabil-
ity of effective field theory (EFT) (solid blue line) and effective
string theory (EST) (red dashed line).

(rlO can be interpreted as the cutoff A of the effective field

theory. Fluctuations of wavelengths less than % produce a
divergent contribution to w?(R/2).)

This prediction has been tested by very accurate lattice
simulations [28] of the mean square flux tube width in
d=2+1 SU(2) Yang-Mills theory extending to distan-

ces R zf/—%. These simulations gave excellent agreement

with the prediction (36) for distances R > 1—\;; with the

choice ry = & \3/§4 corresponding to a value of A ~ 2.75,/o~

1.4M. However for distances R < \/— 3 the lattice simulations

of w*(R/2) lie above the leading-order prediction (36) of
effective string theory. This excess may be interpreted as a
manifestation of the flux tube intrinsic width at gg

separations R < \1/5

C. The intrinsic width of the flux tube

The intrinsic width produces an uncertainty of order <= 1in
the position of the vortex, so that for quark- anthuark
separations R ~ % string fluctuations do not contribute to
the path integral (30). The Wilson loop (30) can then be
replaced by its minimum value, fixed by the value of the
classical action for a flat vortex sheet connecting a static
quark-antiquark pair. W(I") then yields V°!4(R), the heavy
quark potential in the classical approximation.

Recent very accurate lattice simulations [22,29] of field
and energy distributions in SU(3) flux tubes find values of
the intrinsic width characterizing these distributions that
corresponds to a mass M of approximately 900 MeV. Since
M~ 2\/_ there is an interval of intermediate distances
R ~ 4 lying in the range where the predictions of effective
field theory at the classical level are not washed out by
string fluctuations. (The lattice simulations of heavy quark
potentials [18], were carried out at these distances.) In this
interval, denoted [EFT] in Fig. 2, the classical flux tube
picture should be manifest, while effective string theory

should be used in the distance range R > —= (denoted
[EST] in the figure).

Effective string theory must be used to fit more recent
simulations [30] of heavy quark potentials for values of R
extending to 1.2 fm > f In the intermediate range of

distances depicted in Fig. 2 both the flux tube intrinsic
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width and the effect of string fluctuations must be taken
into account.

IV. THE CLASSICAL ACTION
FOR SU(N) VORTICES

We now obtain a representation for the classical action of
curved vortex sheets and a corresponding representation for
flat sheets. We will use these representations, together with
Poincaré invariance, to obtain information about the
classical action of a general vortex sheet from the action
of a flat sheet.

Equation (31) gives the action S.;(%#) of the effective
string theory as the action (27) of the effective field theory,
evaluated at a classical solution having a vortex at x*. To
find the nonperturbative contribution to this action we
separate C, into a perturbative contribution C; and a
nonperturbative contribution c,,:

C,=CP+c,=(CP

(x,X) + ¢, (x,X))Y. (37)
The perturbative vector potential C,? gives the Maxwell
field Gij,x Of the external gg pair generated by the
coupling of the dual potentials to G, [24]:
Gl = O*CPY — *CP¥ + G, (38)
The corresponding dual field tensor G* assumes the
form

PHYSICAL REVIEW D 93, 054012 (2016)
(x,X) = Hc? =t = (0¥ (x, X) — D cH(x,X))Y,
(40)

G

class

is the nonperturbative field tensor satisfying the classical
equation of motion:

a,G”"

class

= lgm[¢l7D”¢l] Ejﬂ’ (41)
defining the magnetic current density j#. For consistency,
the non-Abelian Higgs fields ¢; must have a color structure
such that j* is also proportional to the matrix Y.

The action (27), evaluated at the classical solution,
separates into the sum:

S[Cy i 3] = SMAX(D) + Sl (), (42)
where SMAX(T") is (up to a color factor) the Maxwell action,
and S°%5(¥#) is the nonperturbative contribution to the
action:

sy - [ af] -

-V}

v

1
classGﬂvclass + 5 (Du¢i)2
(43)

(The classical action is related to the Hamiltonian:

-8S/0t = H [31].)

Gt = Gllilfl/AX"_ G’C‘ESS, (39) Using the equation of motion (41) in (43) to write
25°3s(%), and subtracting S$9*%(X) in the original
where form, gives
Selass(x) = [ dx{2 lG“' G C, " L G ! D,p:)? Vv 44
(X) - X tr _5 uv ™ class + /4.] + Z class 7 pvclass + E( /4¢i) - (¢l) . ( )

(There is also a term on the right-hand side of (44)
proportional to GyA*G" ., which vanishes after integra-
tion by parts and use of Maxwell’s equations.) Then, use of

the identity

2 _ [igmcw ¢i]2)

ol i+ 5D ) =5 0 -

(45)

to rewrite (44) gives the following representation of the
classical action:

1
—S°1353<)~C) — /detr(EG;DGZII;SS> + Sg(i) - S¢(56)’

(46)
where
~ 1 v 931 [Cw ¢i]2
5,(%) = / dx2ir {—chlasscﬂycms - f} (47)
and
2
Syp(x) = /dx [2&% - V(qﬁ,»)]. (48)

054012-7



M. BAKER PHYSICAL REVIEW D 93, 054012 (2016)
The first term in (46),

/dx2tr L G} G’C‘QSS} = /dr/dm/ geﬂ,,,la2tr< YG (x. X ;,;MG,T))) #*(o,7) E/dTW(T), (49)

the integrated work required to separate the quark-antiquark pair along the vortex sheet ¥ (o, 7) in the fully developed field
Gy (x,X), and the second term,

class
S,(¥) — 5,(%) = / dx<2tr [—%G’gﬁmcﬂbm—g’”[ : w il } [Ztr%— V(¢i):|>, (50)

is the net additional integrated field energy available from the process of creating the vortex sheet, i.e. it is the difference
between —S°1%5(%), the integrated work needed to separate the quarks in the developing color fields, and the corresponding
integrated work f dtW(z) in the fully developed chromodynamic field G,

class®

With a parametnzatlon where d" |, =0, (49) takes the form:

/dx2tr -G, G :/dr da—):c-f? s(0,7,%) o (51)

2 Hv ™~ class 96 class\@» > ot ’

where
- 2
Fclass(a’ 7, x) =2tr |:__ Y( class(x x) + v X Bclass(x x)):| |x“=5c“(a,r)7 (52)
Gm

1 - -

E]cclass( ) Eeklm(Gélass (.X X)) B]cclass(x’x) = Glc{gss (X x) (53)

are the classical chromoelectric and chromomagnetic fields, and

) 0%(0,7) | OF° =V E. 57
5(0.7) = %(o,7) [ OX° (54) x C + (57)
ot or
In cylindrical coordinates, gy =1, ¢, =g, =—1,
is the velocity of the sheet. Joo = —1r*, g = det G = —r2, and the components of E are
A. The heavy quark potential in the classical E =- Gro = l% + ES, E, =-— % — _1%’
approximation r r or r r oz
The classical action S%%(), evaluated for a flat vortex (58)
sheet connecting a static quark at x; = % e, and an with
antiquark at X, = —%2_, determines V"*5(R), the approxi-
mation to the heavy quark potential, where string fluctua- Cp = —rC(r,2)Y (59)
tions are neglected. For this sheet the components (24) of 0 O
Gy, (x, X) are given by The Higgs fields ¢; = ¢;(r, z) are independent of @ and .
The decomposition (37) of C, takes the form:
Gi() - O’ Gfm = EelmnEsm’
I A Co=0. C=C"+¢=(CP(r.2)+clr.z))eyY.
E = —g—é(x)é(y)[@(z +R/2)-0(z—R/2)]e.Y. (55) (60)
The vector potential (23) becomes where
C=C(r.z)2yY. Cy=0. (56) €D (rz) = 1 Zz—R)2 Z+R/2 2z
r.z
4xr m
The spatial components of the tensor G,, (28) yield the \/r +(e=R/2)? \/r2+(Z+R/ 219
static chromoelectric field E: (61)
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is the perturbative potential of the quark sources
generated by the Dirac string (55), and c¢(r,z) is the
nonperturbative potential generated by the induced
currents (41).

The color electric field (57) becomes the sum
of a Coulomb field E¢ and a nonperturbative contribution
Eclass:

E = EC(;C, R) + Eclass(}’ R), (62)
where
1 [/ X- X \ 27
_ _' 5= vy,
4 X 1| ix - x2| Gm
Eclaq@(x R) (63)

At large distances Z?Class screens the Coulomb field while
the Higgs fields approach their vacuum values ¢;,, so that
the boundary conditions are

¢ — —CP, Fr— 00 Oor z— 0o.

(64)

i = dios

(42), evaluated for static quarks yields the heavy quark
potential as the sum of a Coulomb potential V€(R) and a
nonperturbative potential V%5(R), where

2zY\2/ 1
MAX __ =T C C R) = =2 - _ -
- VE(R),  VE(R) tf<gm) <4ﬂR>’
(65)
— SIS (%) = TVEass(R), yelass(R) = /d?cToo(fc,R),

(66)

and Tyy(x,R) is the nonperturbative contribution to the
energy density:

Eclass (}’ R)

Too(. R) :ztr[ | GCGEPLY. 4 )i]

2 2
Vei(3))?
+2tr [%} + V(). (67)
(49), evaluated for static quarks, becomes
1 s HY
dx ZtrzGMVGclass = TW(R)’ (68)

where

PHYSICAL REVIEW D 93, 054012 (2016)
R/2 2 R
W(R) = /R/z dz2tr [—g—ﬂ Yé, - E(r =0,z,R)|,
- m
(69)

the work required to separate a quark-antiquark pair a

distance R in the field E (¥, R).
(50), evaluated for static quarks, becomes the relation

Too(X, R)

(5,0 = 5,(0) =1 [ &

Too(r,z, R
= 27T / dzrdrM, (70)
r
where T”(x R) is the 00 component of the stress tensor for

P
finite values of R:

(71) expresses Ty as the difference between a repulsive
gauge contribution and the attractive Higgs contribution
produced by the circulating magnetic currents generated by
the Higgs condensate.

Using (65), (68) and (70) the decomposition (46) of
S¢lass(X) becomes a corresponding decomposition of the
heavy quark potential:

Tyo(X.R)

Velss(R) = W(R) - / i (72)

1. Physical interpretation of the
representation (72) of V'*5(R)

The quantity [ dzrdr=25= T””(”R) is the total torque 7 (R)

acting across any (r,z) plane bounded by the axis of
the flux tube. (See Fig. 1.) Then 7 (R)AO is the work
required to remove the field energy in a sector of the flux
tube of angular width AO between two (r,z) planes
while maintaining the quark-antiquark separation R.
Since the torque is independent of @, the work required
to remove all the field energy while maintaining the quark-
antiquark separation R is just 2z7 (R) = [ dx -5~ T"" CER) 1
7 (R) > 0 (net repulsion) it takes work to remove the field
energy.

The heavy quark potential V#S(R) is the energy
available for doing work when a separated quark-antiquark
pair come together. Equation (72) expresses VI%5(R) as the
difference between W(R), the work necessary to separate

the pair in the fixed field Eclass(}, R), and 277 (R), the work
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necessary to remove the field energy created by their
separation.

B. Limit R - o (R > )
As R - oo,
COlr2) > = e(rz) > C(r),
G (73)
¢i(r.z) = ¢i(r),

> - > 1d(rC(r .
B8 R) = B = -2y,
2r . =
W(R) — 2tr [——YeZ -E(r=0)|R,
Too(X, R) = Too(r).
Tea(;f, R) = Tgy(r). (75)

Vclass(R) — d}TOO(}’ R) - fé)o 277rdrT00(r)R

= oR, (76)
LTy(X, R oo T
22T (R) = / LR / 2nrdr #0)
r 0 r
= 277R; (77)

where 7 is the torque per unit length (4), and

Talr) = 2B + (€t - LY .o

() e

2} ()] g, -

Taking the large R limit of (72), using (75), (76) and (77)
yields Eq. (2), as stated in the Introduction. Equation (2)

links the string tension o to the field E (r = 0) on the axis of
an infinite flux tube via the parameter z, and has the
physical interpretation discussed in the Introduction and in
the previous section.

Using the fact that ¢ is the long-distance force on a
quark,

2w - R . 1
0:2tr[—gYECIaSS(rzo,z:iz;Rﬂ ey, R>>M’

m

(79)

PHYSICAL REVIEW D 93, 054012 (2016)

we can write (2) in an alternate form:

2 - R
2tr[——”YEC,ass (;» —0,7= i—;R)]
Im 2

2z - 1
=2tr {—ﬁ YE(r = O)] —2rre,, R> R (80)

The field on the axis of an infinite flux tube E(r = 0) is

equal to the field of a quark and antiquark,
Edass(r =0,z;R), evaluated in the central region
|z| <& far from the positions of the quarks.

Consequently, (80) has the equivalent form:

- 2r - R
2nte, = 2tr [—g—”YEw1SS <r =0,z= :I:E;R>]
m

2
—2tr [—” YE u(r =0,7z; R)] .

R 1
| < —, R>—. 81
ol <3 v (81)

The torque per unit length z thus determines the difference

between the value of the field Eclass at the positions of the
quarks and its value midway between them. ((81) is an
equivalent characterization of the parameter z.)

V. A NEW CONSTRAINT ON THE
QCD FLUX TUBE

We now assume that the value 7 = 0 characterizes the
QCD flux tube and examine the consequences of this
constraint.

If 7 = O the string tension equals the color charge 22y of
the quark multiplied by the field E(r = 0) on the axis of an
infinite Z flux tube [Eq. (7)]; i.e., the force on a quark in
the field of the “string” connecting the pair.

Further, (81) becomes the equality

> R
Eclass (V = O,Z = :l:z,R)

- R 1
= Equs(r=0,z;R), |z|<<§, R>>M’ (82)
so that the field at the positions of the quarks equals the
field in the middle of the flux tube.

_ A nonvanishing value of 7 necessitates a variation of
Eas(r = 0,z; R) along the line connecting the pair. The
condition 7 = 0 allows this field to remain constant for all z
including points close to the positions of the quarks.
(Expressed in this way one might speculate that the
condition 7 =0 imposed on the effective field theory
reflects a flicker of the short distance asymptotic freedom
of the fundamental theory visible in the effective field
theory.)
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A. The action of the effective string theory

Poincaré invariance implies that the action of the
effective string theory obtained from effective field theory
Seit (¥) = S¥3(X) 1o = Sng(¥) for any value of ¢
[Eq. (35)]. We will now show that under the condition
=0, Ss(x )]1 _o has a representation in terms of the
chromodynamic fields of magnetic SU(N) gauge theory.
This will give a field theory interpretation of effective string
theory.

For long straight strings (70) and (77) show that the term
linear in R in S,(X) — S, (X) is proportional to z. Hence, for
curved strings, by Poincaré symmetry the term having the
Nambu-Goto form in S,(X) — S, (%) is also proportional to
7[32]. Thus if 7 = 0, S, (%) — S, (%) does not contain a term
proportional to the Nambu-Goto action, and can be
neglected on the right-hand side of Eq. (46) for S35 (X);
its contribution to S.(X) generates terms in the ground
state heavy quark potential that fall off faster than R;
[14,15]. Then (46) takes the form

Sclass@)%:o:—/detr |:2GI54,,G511;55:|
1
:Z/d'r/dm/—gemmmr
2z Hv Aa
G YGclass( )lx”:,%"(a,r) ! (O-’T)’ (83)

an integral of the field tensor G (x, %) evaluated on the
vortex sheet ¥¥ = ¥ (o, 7). Equation (83) gives the Nambu-
Goto action a representation solely in terms of the chromo-
dynamic fields of the four-dimensional effective field
theory.

Writing (83) in a parametrization where
(51) and (52) gives

. ~0
/dT/dGax Fclass(gv T, ;C) (ax >’ (84)
or

where F’ olass (0, T, X) 18 the chromodynamic force (52) acting
along the string. (84) is the representation of the Nambu-
Goto action in terms of fields and is the generalization of
the relation (7) to curved vortex sheets.

85(0 .
rr |r—» using

Sng (X

B. The relation between fields and surfaces
For a curved vortex sheet Lorentz invariance and repar-
. . . . . j’a ~
ametrization invariance imply that €,,,;,Gefys (X, X)| 1 (6.)

must be proportional to the tensor (26) describing the
orientation of the world sheet ¥ (o, 7):

27 1
2tr <g_ﬂ ! E eﬂldaGélass (x )C) |x"=5€”(o,1)> - O-tﬂl/(a’ T) . (85)

PHYSICAL REVIEW D 93, 054012 (2016)

Consistency of (85) evaluated for a long straight vortex with
(7) fixes the string tension ¢ as the coefficient of 7,, . Taking
into account nonleading terms in i would introduce higher-
dimensional tensors and new parameters on the right-hand
side of (85).

Therefore, to leading order in e the values of the
chromodynamic fields G4, on the vortex sheet are
determined in terms of the string tension ¢ and the
geometry of the vortex sheet. Using (85) in (83) and
the normalization #*¢,, = —2 of the surface tensor yields
the Nambu-Goto action directly.

Expressing (85) in terms of the color electric and
magnetic components (53) of G.  gives the values of

class
the fields E,, and B, on the vortex sheet:

2tr [

2
2tr {gm YB’C‘laSS}

1

= 0t%(0,7),

2n —YE* }

G class i
o

_ tlm 7).
2€klm (0 T)

(86)

=3

We choose 7 = t, 6 = z, and a parametrization ¥*(z, 1) of
the vortex sheet in terms of the two transverse fluctuations
X (z,1),i=1,2:

M(z,1) = x(t,z,% (2, 1), X3 (z,1)). (87)

The color fields evaluated on the vortex sheet are
corresponding functions of z and #:

Eélass('xv i)'x”z}”(lwt) = E 1a§9(Z’ )’ (88)
=B

Bélass (x’ 5‘) |x” =x(z.r) = Pclass (Z [)

Equation (86), with the use of (26) and (87), determines

the fields Eqju(2. 1) and Beu(z. 1) in terms of the trans-
verse fluctuations X, (z,7) for —R/2 < z < R/2:

27Y -, | o Ox
o [_ — Eqass (2. 1) | = ===
Im 1 V-9 0z
2zY - ) c (. O0x.\!
2tr|: I Bcla@%(z t)_ = \/_—g <€Z X at ) ’

2rY - 1 Ox, Ox
2tr [_ * zldss (Z t) = d (A X A) : éz’
I 2,/=g \ Ot 0z

2nY -
2tr [— 0 ass (2, f)_ V=4

The Wilson loop W(I') written in the parametrization
(87) is

(39)

3Relations between fields and surfaces, postulated on the basis
of symmetry, with account taken of nonleading terms and limited
to the positions of the quarks, have been used to calculate heavy
quark potentials [33].
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R/2
/Dx‘leLexp [—w/dt/
R/2

If ¢ = 0 the Nambu-Goto action has the representation (84),
so that the Wilson loop (90) can be used along with the
relations (89) to calculate correlation functions of the fields
E a5 (2, 1) and B, (2, 1) and physical quantities dependent
on them.

We now describe the picture that results from the
condition 7 = 0 in a particular model.

g(x*(z, t))

(90)

VORTICES IN A PARTICULAR
MODEL

VL. SU(N)

The effective Lagrangian in the model [5] has the form
(9) with three scalar Higgs fields and a Higgs potential
V(¢;) generated from one-loop contributions to the scalar
2-point and 4-point functions in effective SU(N) magnetic
gauge theory:

— ﬂzNZZtr (] L ANA ( <Z¢2¢2>
(tr(z¢2)) Z<tr¢ 0% ) o)

where the parameter > has dimensions of mass squared
and 4 is dimensionless.

In the confining vacuum the Higgs condensate ¢, has
the color structure:

¢10 = ¢0Jx’ ¢20 = ¢0Jy’ ¢30 = ¢0]2? (92)

where J,,J,, and J, are the three generators of the
N-dimensional irreducible representation of the three-
dimensional rotation group corresponding to angular
momentum J = NT_I Since any matrix which commutes
with all three generators J; must be a multiple of the unit
matrix, there is no SU(N) transformation which leaves all
three ¢, SZ(NN)
completely broken.

The Higgs potential has an absolute minimum at ¢; =

¢10 with ¢0 A;)Zﬂ N

energy density of the symmetry breaking vacuum ¢; = ¢;q
and the perturbative vacuum ¢; = 0 is the minimum value
V(¢io) of the Higgs potential:

Zvoe =D 93

A. The classical action for SU(3) vortices
For SU(3),

The difference €y between the

(¢10)

JX:/17, Jy:—/%, JZ:/12’ Y: (94)

45
\/§ ’

PHYSICAL REVIEW D 93, 054012 (2016)

and the vector mass (22) has the value

We make the following ansatz for the -classical
solution:

b= b)) e B ),

b = ol T g T TR,

$3 = P3(x, X) 4y, (96)
C,=C,(x)Y = (CP(x,%) + c,(x,%))Y,

G;wclass = (8”Cy(x) - avcﬂ(x))y = G;wclass(x» i) Y. (97)

There are two other solutions, physically equivalent to (96),

related by gauge transformations taking Y — _r ’;’13

Y > ’1‘2 , corresponding to the other two quark colors [23].
The commutation relations

or

[V, Ay — ide] = 4y — i,
(Y. =As — idy] = —(=45 — id4), [Y. 2] =0 (98)
yield
D = (0, = ign C,x))oh () 1520
(0, + i9,C, ()i () D),
Dyt = (0, + i, (0)a() 22 40
(0, = i, G0 T (0o)

so that the Higgs fields ¢; and ¢, carry Y charge +1 and
that ¢b; carries Y charge 0.

The consistency requirement that the magnetic current
density (41) be proportional to Y forces

$1(x, %) = 3 (x, %) = ¢(x, %), (100)
and yields
j* = 6g, <¢* D) - ;p(x)(w(x»*) v, (101)
where
DM¢(X) = (au - zngﬂ(x))(ﬁ(x) (102)

Using the color ansatz (23) and (96) in (43) and (91),
making use of (100) and subtracting off the vacuum energy
density e, gives S95(%) the form:
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590 = [ ax[3 (=3 Gueas (00
(D, 9(0) (D4(3))

FOBWIRW -Vea)| (103
where
222
V(g b3) = =~ U1 = 40)° + (#3 - 45)°)
141
+ 3 QI + 43 = 3¢5)% (104)
The corresponding field equations are
3”G,°},f‘ss (x,X) = 0"0yc, — 0,0"¢c,
= 6gm <W - gmcy¢*¢> >
(105)
and
. _ 1 sV
_DI‘Dﬂ 45()6) - 45¢*(X) ’
1 6V
—3ﬂ3”¢3(x) = Em (106)

At large distances the Higgs fields are a gauge trans-
formation of the vacuum solution (92). With an appropriate
gauge transformation (29) the field ¢(x,X) can be made
real. The boundary conditions at large distances are then

$(x,%) = o, ¢3(x,X) = oo,

¢, (x.X) - —CP(x,%). (107)

On the vortex sheet (o, 7) where C2 (x, X) is singular
the boundary conditions are:

¢(X )|x“ =¥(o,7) — 0,

3 (%, X)] e —w (o) = finite.

><1

(108)

Equations (105) and (106) were solved for the flat vortex
sheet (55), and the resulting static heavy quark potential
Velass(R) determined in [6].

B. Static flux tube solutions

For the infinite Z5 flux tube the vector potential C has the

form (19) with Y—ﬁ, and the Higgs fields (21) are

obtained by making the gauge transformation Q(6) =
exp[ifY] to the color ansatz (96) with ¢(x,%) =

$3(x.%) = (), d3(x. %) = $3(r);

PHYSICAL REVIEW D 93, 054012 (2016)

exp[—i0Y |, expli0Y] = ¢(r) exp|—if)] #

Ay + il

+ () explio) 75,

exp[_ley}¢2 eXp[laY} = ¢(r) exp[z@] w
Atk

+ ¢(r) exp[—if)]
= ¢3(r)Ay.

2 ’

exp[—i0Y]¢p; explifY] (109)

Then the Higgs fields in the infinite flux tube (109) have the
color structure (96) with

$1(x. %) = ¢5(x,X) = ¢p(x. %) = ¢(r) exp(-i0),
(110)

(109) gives the specific form of (21) for the SU(3) flux

tube in the gauge where C, = C,(x)Y, with Y _’178
Replacing Y by — Y”‘ or by 7Y on the right-hand side

of (23) (correspondlng to the other two quark colors) yields
three physically equivalent vortices, each carrying one unit
of Z; flux, related by SU(3) gauge transformations.

We rescale the flux tube fields, choosing the flux tube

radius % as the scale of length, making the replacement
MC
o) = g < g
gﬂ’l
M2
#3(r) = dodhs, b5 = —6951 )

and define a rescaled Higgs potential W (¢, ¢3):

! V(¢o¢ Po3)

W(p,p3)= Mg
K'2 2 2 2 2
=500 (12(@#*=1)"+(¢5-1)’]
+72(¢* = 1)+ (5=
_o (@1 @1 (=1 (=)
(111)
with
25 A
oL (112)

Note that with ¢3(r) replaced by 1 in (111), W(¢, ¢3)
becomes £ (452 —1)2, the Higgs potential of the Abelian
Higgs model with Landau-Ginzburg parameter «.
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The rescaled expressions for Toq(r) and 74 (78) are:
e GG ()
w5 () +3(9) W),
4
LG e
() - (%) - wiwa). ary

The rescaled static field equations obtained from

Too(r) are
049) - (e

d¢ 1\2
TE( dr>+¢<c‘;)

+ K2¢[(¢2 - 1) +27—5(¢§ - 1)] =0, (115)

o0(r) =

(114)

and
L d [ dps\ 22 ) .
L (1) + S e - )+ 9 - ] =0,
(116)
with boundary conditions
1
C(r)=—, ¢(r)=1, ¢3(r)=1 asr— oo,
r
C—0, ¢(r)—0, ¢;3(r)— finite as r > 0. (117)

The numerical solution of (114), (115) and (116) shows
that ¢(r) < 1 and ¢3(r) > 1 everywhere; hence the term
coupling ¢ and ¢5 in W (¢, ¢3) is attractive. This additional
attraction reduces the energy of the Z; vortex below that of
the Abelian configuration with ¢;(r) = 1, viewed as an
unstable configuration of the non-Abelian vortex.

Evaluation of (113) at the classical solution yields
expressions for the string tension ¢ and the torque per
unit length 7 as the sum and difference, respectively, of a
gauge contribution ¢,(x) and a Higgs contribution ¢/, (x):

o 4 M? 4 M?
G—A 27rrT00(r)dr—3—2(0'g(K) +0,(x)) 23—20'<K'),

PHYSICAL REVIEW D 93, 054012 (2016)

where

o= [P (L5 (e,
(120)

and

o= (3 (20) () o)
(121)

The condition 7 = 0 becomes ¢,(k) = o, (k).

C. Results for Ty in Z; flux tubes

Figure 3 shows T“"’f(r) = rp(r) evaluated at the classical

solution for three values of x2. The condition (6),
6,(k) = 0,(x), yields k*~0.6, and o(k* =0.6) ~3.1.
(The value of k* = 0.6 lies close to the value k> = 3 used
in [19] in comparing calculations of heavy quark potentials
in this model with lattice simulations [18].) For x? ~ 0.6,
the stress tensor component Tgy(r) =0 at r=r* =1L7.
There is repulsion for r < r*, where Tgy(r) >0, and
attraction for r > r*, where Tyy(r) < 0. It is then natural
to identify r* as a boundary separating the repulsive interior
of the flux tube from its attractive exterior.

(6) is also satisfied by the flux tubes of the Abelian-
Higgs model with x> = % These are BPS states [34]
describing an Abelian magnetic superconductor on the
border between type I and type II. In this situation
Tyo(r) = 0 for all r [35], so that the profile of Tyy(r) does
not reveal a boundary. The difference between the non-
Abelian and Abelian vortices is caused by the additional
attractive interaction among the octet of scalar particles
which breaks the supersymmetry [36] giving rise to the
BPS vortex of the Abelian Higgs model. For «? = 0.6,
where 7 = 0, this additional interaction is approximately
compensated for by the additional gauge repulsion asso-
ciated with the fact that x* > 1.

VII. SUMMARY

A. Relation between effective field theory
and effective string theory

We have started with magnetic SU(N) gauge theory as
an effective field theory of the long-distance heavy quark
interaction in Yang-Mills theory. At interquark distances
R~ ﬁ the classical action for a straight flux tube describes
the heavy quark potential.

When the distance R between the quark and the antiquark
is much larger than the intrinsic width ﬁ of the classical Zy
flux tube, long-distance fluctuations of the axis must be taken
into account and give rise to an effective string theory. To
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leading order in ﬁ the action of the effective string theory

Seie(X) is the classical action for a curved vortex sheet X,
evaluated in the limit 5; — 0. This action is equal to the
Nambu-Goto action with a string tension given by the energy
per length of an infinite straight flux tube.

B. The constraint 7 = 0 and its consequences

We have introduced a new long-distance parameter, the
torque per unit length 7z [Eq. (4)], linking the string tension
to the chromoelectric field on the axis of an infinite straight
flux tube [Eq. (2)]. For large R, the parameter 7 determines
the difference between the chromoelectric field of a quark-
antiquark pair at the positions |z| = +£ of the quarks and
its value at points |z| <% in the middle of the flux
tube [Eq. (81)].

In this paper we have assumed the value 7 = 0 character-
izes the QCD flux tube. Under this constraint the chromo-
dynamic fields £ and B on a curved vortex sheet X are
determined, to leading order in %, in terms of the string
tension [Eq. (89)], and the Nambu-Goto action is expressed
in terms of these fields on x [Eq (84)].

Imposition of the condition 7 = 0 on the flux tubes in a
particular SU(3) model [5] gives a physical picture of these
flux tubes in which the behavior of the moment of the
pressure [Eq. (5)] defines a boundary separating a repulsive
interior from an attractive exterior (Fig. 3).

C. Testing the constraint

Testing our conjecture is a problem. (The fit of early
lattice simulations of heavy quark potentials and flux tube
energy distributions to classical calculations of these
quantities discussed in Sec. VI kept « fixed and, therefore,
provides only a crude test.)

Recent lattice simulations [22,29] of field and energy
distributions can be used to test the consistency of the
condition 7 = 0, taking into account string fluctuations in
the interpretation of the lattice data. The results of these
simulations can be compared with the relations (89)
expressing the fields on the vortex sheet in terms of the
string tension, generalizing (7) to curved sheets.
Comparison with lattice data, of the predicted ratio of
the field at the center of a flux tube to the string tension,
provides the most direct test of the constraint (6). Further
lattice data and analysis is necessary to put strong limits on
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FIG. 3. The torque per unit area, Tyy(r)/r. Red, long dashed,
k2 = 0.5; blue, thick, k2 = 0.59; green, short dashed, k2 =0.8.

7. Testing our conjecture is a problem that remains to be
solved.

D. Discussion

According to the correspondence (89), the world sheet
variables x* of effective string theory are associated with
chromodynamic fields of effective magnetic gauge theory
on this sheet. This association, combined with the corre-
spondence of these fields with the underlying fields of Yang
Mills theory [9], provides a relation between effective
string theory and long-distance Yang Mills theory.

The location of the string can thus be thought of as the
axis of a classical flux tube, and the fields associated with
the string regarded as the classical chromodynamic fields
on that axis. We have shown that this is possible if the flux
tube structure is constrained by the condition 7 = 0. Our
conjecture is that the QCD flux tube has the requisite
structure.

We have obtained the constraint 7 = 0 on the structure of
the QCD flux tube by requiring that no field energy is
created by the separation of a quark-antiquark pair. In this
situation the heavy quark potential, the energy available for
doing work when the pair is released, is equal to the energy
available when the pair is released in the fixed field created
by their separation. The string tension is then equal to the
charge on the quark multiplied by the field on the axis of an
infinite flux tube; i.e., the field of the “string” connecting
the quark and antiquark.
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