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We examine the efficacy of pion exchange models to simultaneously describe leading neutron
electroproduction at HERA and the d̄ − ū flavor asymmetry in the proton. A detailed χ2 analysis of
the ZEUS and H1 cross sections, when combined with constraints on the pion flux from Drell-Yan data,
allows regions of applicability of one-pion exchange to be delineated. The analysis disfavors several
models of the pion flux used in the literature and yields an improved extraction of the pion structure
function and its uncertainties at parton momentum fractions in the pion of 4 × 10−4 ≲ xπ ≲ 0.05 at a scale
of Q2 ¼ 10 GeV2. Based on the fit results, we provide estimates for leading proton structure functions in
upcoming tagged deep-inelastic scattering experiments at Jefferson Lab on the deuteron with forward
protons.
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I. INTRODUCTION

The importance of pions in the structure and interactions
of nucleons has been known since the discoveries of the
neutron in the 1930s [1] and of the pion itself in the 1940s
[2,3]. Long recognized to be the bosonic mediators of the
long-range part of the nucleon-nucleon force, the role of
pions in nuclear interactions has in recent decades been
codified in the form of chiral effective theory, exploiting the
approximate chiral symmetry properties of the fundamental
QCD Lagrangian.
Despite the tremendous progress made in understanding

the consequences of chiral symmetry breaking for nuclear
and hadron phenomenology [4–6], many aspects of pion
physics still remain elusive. Indeed, the pion presents itself
as a dichotomy, with its simultaneous existence as the
pseudo-Goldstone boson associated with chiral symmetry
breaking in QCD, and as the lightest QCD bound state
composed of quark and gluon (or parton) constituents [7].
The partonic nature of the pion is revealed most clearly in
high-energy processes, which are most efficiently formu-
lated on the light front; on the other hand, the description of
low-energy chiral physics on the light front has historically
been challenging and remains an important area of modern
research [8,9].
From the purely phenomenological perspective, the

study of the consequences of chiral symmetry breaking
and the role of the pion has provided much insight into
the structure of the nucleon, from the electromagnetic
charge distribution of the neutron to the nuclear EMC
effect (modification of nucleon properties in the nuclear
medium). One of the most dramatic consequences of the
nucleon’s pion cloud has been in the flavor structure of the
proton sea, with the finding of a large excess of d̄ quarks in

the proton over ū. First anticipated by Thomas [10] in the
1980s on the basis of the scaling properties of one-pion
exchange in deep-inelastic scattering (DIS) [11], the
empirical observation of a large d̄ − ū asymmetry by the
New Muon Collaboration [12] at CERN, and later even
more conclusively by the E866 Collaboration [13] at
Fermilab, firmly established the relevance of pions for
understanding the partonic structure of the nucleon [14,15].
In the subsequent years, much successful phenomenol-

ogy has been developed in applying pion cloud models to
the nucleon’s nonperturbative structure, although the con-
nection with the underlying QCD theory has not always
been manifest. The difficulty reflects the question of how to
apply effective chiral theory techniques, which are formally
grounded in the symmetries of QCD, to observables
accessible at high energies, where the degrees of freedom
are not those of the effective theories. Recently, however,
progress in linking pionic effects in partonic observables
directly with QCD has been made by considering the
nonanalytic structure of matrix elements expanded in terms
of the pion mass, mπ . In particular, in analogy with low-
energy observables such as masses and magnetic moments,
it was found that moments of parton distribution functions
(PDFs) could be systematically expanded in powers of m2

π ,
with the coefficients of the leading nonanalytic terms
given in terms of model-independent constants [16–20].
This enabled an unambiguous connection to be established
between chiral symmetry breaking in QCD and the
existence of an SU(2) flavor asymmetry in the proton [16].
Building on these earlier observations, more recent

studies have sought to develop the phenomenology of
nonperturbative parton distributions in the context of chiral
effective theory, not just in terms of moments but also as a
function of the parton momentum fraction x [21,22]. While
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much of the attention has been focused on exploring the
consequences of chiral symmetry breaking for the d̄ − ū
asymmetry in the proton, widely seen as the “smoking gun”
signal of the pion cloud, a complementary effort to reveal
the dynamics of pion exchange in high-energy processes
has been the study of leading neutron production in semi-
inclusive DIS on the proton. Here a forward moving
neutron is produced in coincidence with the scattered
lepton in the high-energy reaction ep → enX, and several
dedicated experiments at the ep collider HERA [23–25]
have collected high-precision data on the spectrum of
leading neutrons carrying a large fraction of the proton’s
energy.
As well as identifying the characteristic features of pion

exchange in the leading neutron production cross sections,
the HERA data have also been analyzed in view of
extracting the structure function of the exchanged pion
in the small-xπ region [23,24,26–29]. Previous determina-
tions of the PDFs in the pion based on fits to Drell-Yan and
prompt photon production data from πN scattering experi-
ments at CERN [30,31] and Fermilab [32] have typically
been restricted to the high-xπ region (xπ ≳ 0.2). Analyses of
the HERA leading neutron data have generally been able
to extract the shape of the pion structure function Fπ

2 but
have been unable to fix the normalization because of large
uncertainties in the pion flux (or pion light-cone momen-
tum distribution in the nucleon). Since the pionic contri-
butions to the leading neutron cross sections depend on
both the pion structure function and the pion probability
in the proton, the HERA data by themselves have been
insufficient to disentangle information on Fπ

2 independently
of assumptions about the pion flux.
On the other hand, a systematic study of the assumptions

about the pion distribution function has not yet been
performed. The ZEUS analysis of its data [23] used as a
baseline a Regge theory inspired model of the pion flux
[33] but found a factor 2 difference in the normalization of
Fπ
2 when compared with an additive quark model. Earlier,

D’Alesio and Pirner [27] considered models of the pion
distribution function in pp scattering using a traditional
t-dependent πNN form factor, as well as a light-cone
inspired form, with parameters fixed from inclusive neutron
production data. Because the absorptive corrections in pp
vs γ�p scattering are expected to be different, however, it
was argued [27] that this jeopardized the possibility of a
reliable extraction of Fπ

2 to be made.
More recently, Kopeliovich et al. [28] used a Reggeized

pion exchange model, supplemented by vector and axial
vector mesons and absorption corrections, to study leading
neutron spectra within a dipole approach. Assuming the
ratio of the pion to proton structure functions to be
proportional to the ratio of the number of quarks in the
respective hadrons, Nπ

q=N
p
q , the comparison with the

HERA data suggested the extracted Fπ
2 would be somewhat

sensitive to the precise value of Nπ
q=N

p
q , as well as to the

coherence length parametrizing the absorptive corrections.
The color dipole model for the virtual photon-pion cross
section was also used recently by Carvalho et al. [29] to
study gluon saturation effects at small x, using a range of
πNN form factor models from the literature. In an alter-
native approach, de Florian and Sassot [34] formulated the
one-pion exchange contributions to the leading neutron
cross section in terms of fracture functions. While the
fracture functions are more general constructs, in the pion
model they can be computed as products of the pion flux
and pion structure function.
In the present analysis, we wish to address the question

of whether one can reduce the model dependence of Fπ
2

extracted from the HERA leading neutron data by using
additional constraints from other observables that are
sensitive to the pion flux. In particular, the data on the
SU(2) flavor asymmetry d̄ − ū, particularly those from the
E866 Drell-Yan experiment [13], provide the strongest
indication of significant pion cloud effects in the nucleon.
Because the E866 data are at relatively high x values
compared with the HERA measurements, within the pion
exchange framework they are sensitive to the pion PDFs
at large xπ , where the PDFs are well determined from
pion-nucleon Drell-Yan data [30–32]. The main variable
in describing the d̄ − ū asymmetry is therefore the pion
distribution function in the nucleon.
In contrast, the HERA data are taken at very low x,

10−4 ≲ x≲ 10−2, outside of the region where the pion
PDFs have been constrained. Within the pion exchange
framework, the same pion flux should be applicable for
both observables, which should then reduce the uncertainty
in the extracted Fπ

2 at small x. Surprisingly, a quantitative
analysis of this type has never been performed. In this study
we use methodology adopted from global PDF analysis
[35,36] to simultaneously fit both the HERA leading
neutron and E866 d̄ − ū asymmetry data.
In Sec. II we begin by reviewing pion exchange models,

summarizing the main results for pion distribution func-
tions in the nucleon derived from chiral effective theory and
discussing various regularization prescriptions that have
been used in the literature for the hadronic πNN form
factors. The regularization procedure constitutes the main
model dependence in the calculation of the pion flux. In
Sec. III we ask what constraints on the pion flux models can
be obtained from the SU(2) flavor asymmetry of the sea
observed in the E866 experiment. To this end we perform a
χ2 analysis for various pion distribution models and analyze
whether any of the models can be excluded by the data.
Since the flavor asymmetry is an inclusive observable, we
consider also Δ isobar contributions in the pion-baryon
dissociations, along with the nucleon.
The HERA leading neutron data are analyzed in Sec. IV.

Rather than attempting to fit over the entire range of
kinematics, we restrict the analysis to the small pion
momentum region where one-pion exchange is expected
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to be the dominant contribution. Since the calculations of
the background processes are considerably more model
dependent, the precise delineation of the pion dominated
region is a priori unknown. Instead of introducing addi-
tional model dependence into the analysis, we will allow
the data to select the kinematics where pion exchange is
the relevant process. The main part of the analysis is the
combined fit to the HERA and E866 data, over a large
range of x and Q2 values covered in the experiments. We
discuss the impact of the E866 data on constraining models
of the pion flux and the resulting model dependence of
the extracted pion structure function at small xπ . Further
constraints on Fπ

2 from upcoming tagged DIS experiments
at Jefferson Lab at intermediate xπ values are discussed in
Sec. V, where we illustrate how the new data may resolve
some of the differences between our fits and extrapolations
of existing pion PDFs into the low-xπ region. Finally, in
Sec. VI we summarize our findings and suggest possible
improvements in pion structure function analyses in the
future.

II. PION EXCHANGE MODELS

In this section we review the computation of the pion
light-cone momentum distributions in the nucleon (some-
times also referred to as the pion splitting functions), for
both πN and πΔ fluctuations of the proton. After outlining
the derivation of the distributions for the case of point
particles within the framework of chiral effective theory,
we then discuss various regularization prescriptions that
have been used in the literature to regulate the ultraviolet
divergences for the more realistic case when hadron
structure is taken into account.

A. Pion light-cone momentum distributions

For the fluctuation of a proton (with four momentum p)
to a positively charged pion (momentum k) and a neutron
(p − k), illustrated by the “rainbow” diagram in Fig. 1(a),
the p → nπþ splitting function derived from chiral effec-
tive theory is expressed as a sum of on-shell and δ-function
pieces [21,22],

fπþnðyÞ ¼ 2½fðonÞN ðyÞ þ fðδÞN ðyÞ�; ð1Þ

where y ¼ kþ=pþ is the fraction of the proton’s light-cone
momentum carried by the pion and the “þ” component of
the four-vector is defined as kþ ≡ k0 þ kz. The on-shell

contribution fðonÞN corresponds to the region y > 0 and can
be written as [10,37]

fðonÞN ðyÞ ¼ g2AM
2

ð4πfπÞ2
Z

dk2⊥
yðk2⊥ þ y2M2Þ
ð1 − yÞ2D2

πN
; ð2Þ

where M is the nucleon mass, gA ¼ 1.267 is the axial
charge, fπ ¼ 93 MeV is the pion decay constant, and

DπN ≡ t −m2
π ¼ −

1

1 − y
½k2⊥ þ y2M2 þ ð1 − yÞm2

π� ð3Þ

for an on-shell nucleon intermediate state, with the pion
virtuality t≡ k2 ¼ −ðk2⊥ þ y2M2Þ=ð1 − yÞ. The second

term in Eq. (1), fðδÞN , arises from off-shell nucleon
contributions and is proportional to δðyÞ. The significance
of this term has been discussed [38] with respect to the
model-independent nonanalytic structure of the vertex
renormalization constant as a function of the pion mass.
One may regard this nonanalytic function of m2

π as the
first principles constraint on the infrared behavior of the
chiral effective theory consistent with the chiral sym-
metry of QCD. In scattering processes this term contrib-
utes only at x ¼ 0 and is therefore relevant only for the
lowest moment of the parton distribution. In this work we
will be analyzing data at nonzero values of x, at which

fðδÞN will play no direct role.
Note that the factor 2 in Eq. (1) is an isospin factor

specific to the p → nπþ fluctuation; the distribution for
the fluctuation p → pπ0 is related to that in Eq. (1) by
fπþnðyÞ ¼ 2fπ0pðyÞ. In writing the coefficient in front of
the integration in Eq. (2), we have assumed the Goldberger-
Treiman relation, gA=fπ ¼ gπNN=M, where g2πNN=4π ≈
13.7 gives the strength of the πNN coupling [39].
In addition to the nucleon intermediate states, contribu-

tions from Δ baryons in Fig. 1(b) are known to play an
important role in hadron structure. Within the same chiral
effective theory framework, using an effective πNΔ inter-
action [22], the p → Δ0πþ splitting function can be written
as a sum of three terms,

fπþΔ0ðyÞ ¼ fðonÞΔ ðyÞ þ fðδÞΔ ðyÞ þ fðend-ptÞΔ ðyÞ: ð4Þ

The on-shell piece fðonÞΔ , corresponding to the Δ pole, is
given for 0 < y < 1 by

fðonÞΔ ðyÞ ¼ CΔ

Z
dk2⊥

yðM2 −m2
πÞ

ð1 − yÞD2
πΔ

½ðM2 −m2
πÞðΔ2 −m2

πÞ

− ½3ðΔ2 −m2
πÞ þ 4MMΔ�DπΔ�; ð5Þ

where

FIG. 1. Contributions to the pion distributions in the proton
from the rainbow diagrams involving (a) a nucleon (solid lines)
and (b) a Δ isobar (double solid line) in the intermediate state.
The external operators couple to the virtual pions (dashed lines).
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DπΔ ≡ t −m2
π ¼ −

1

1 − y
½k2⊥ − yð1 − yÞM2 þ yM2

Δ

þ ð1 − yÞm2
π� ð6Þ

for an on-shell Δ intermediate state of mass MΔ, with
M≡MΔ þM and Δ≡MΔ −M. The pion virtuality here
is given by t≡ k2 ¼ −ðk2⊥ − yð1 − yÞM2 þ yM2

ΔÞ=ð1 − yÞ.
The coefficient CΔ ¼ g2πNΔ=½ð4πÞ218M2

Δ� contains the
πNΔ coupling constant, which is given from SU(6)
symmetry by gπNΔ ¼ ð3 ffiffiffi

2
p

=5ÞgA=fπ ≈ 11.8 GeV−1 [40].
For the other charge channels in the p → Δπ dissociation,
the splitting functions are related by 2fπ−Δþþ ¼
3fπ0Δþ ¼ 6fπþΔ0 .
Note that the on-shell contribution in Eq. (5) differs

from the “Sullivan” form often used in the literature
[14,16,40,41], which is obtained by taking the Δ-pole
contribution, DπΔ → M2

Δ. In particular, it has a higher
power of k⊥ [k6⊥ compared with k2⊥ in Eq. (5)], which arises
from the neglect of the end point contributions in the
Sullivan process.
The other two terms in Eq. (4), fðδÞΔ and fðend-ptÞΔ ,

correspond to a δ-function contribution at y ¼ 0 and an
end point contribution proportional to a δ-function at y ¼ 1,
respectively. Typically the latter term will be suppressed in
the presence of a form factor regulator, which we discuss in
the next section.
Finally, for reference we also define the average mul-

tiplicities of pions for the πN and πΔ dissociations,
summed over all charge states,

hniπN ¼ 3

Z
1

0

dyfðonÞN ðyÞ; ð7aÞ

hniπΔ ¼ 6

Z
1

0

dyfðonÞΔ ðyÞ: ð7bÞ

These will be useful for comparing the relative magnitudes
of the various models with respect to the shape of the
respective form factor regulators.

B. Regularization prescriptions

From the on-shell nucleon and Δ splitting functions
in Eqs. (2) and (5), it is evident that integration over
contributions from large k⊥ will introduce logarithmic
divergences in the pointlike theory, which must be regu-
larized in order to obtain finite results. Since the nucleon is
not pointlike but has a finite spatial extent of Oð1 fmÞ, this
introduces an additional scale into the effective theory,
along with the chiral symmetry breaking scale [42]. The
precise way that the finite range of the nucleon is
implemented in order to regularize the ultraviolet diver-
gences depends on the prescription adopted [42,43],
although any prescription must correctly incorporate the
infrared behavior of pion loops which is model

independent. In practice the model dependence amounts
to a choice of form factor Fðy; k2⊥Þ multiplying the
integrands of Eqs. (2) and (5) which suppresses the
large-k⊥ contributions.
The simplest way to regularize the integrals in the πN

and πΔ splitting functions is to introduce an ultraviolet
cutoff on the k⊥ integrations,

F ¼ ΘðΛ2 − k2⊥Þ ½k⊥cutoff�; ð8Þ

with Λ the cutoff parameter. Of course, a k⊥ cutoff breaks
Lorentz invariance and in practice is used mainly for
illustration purposes rather than as a realistic model
for describing the momentum dependence at k⊥ ≫ 0.
Nevertheless, as the simplest regularization prescription,
it can serve as a useful reference point with which to
compare other calculations.
Regularization prescriptions that do satisfy Lorentz

invariance, as well as chiral symmetry, include dimensional
regularization and Pauli-Villars (PV) subtraction. For the
latter, the divergence of the amplitude is removed by
subtracting from the original integrand an amplitude with
the physical pion mass replaced by a PV mass parameter
[44]. Motivated by the PV regularization, we subtract from
the pion propagator 1=DπN in Eq. (2) a similar term with
the pion mass replaced by a cutoff mass Λ, namely
1=D2

πN − 1=ðt − Λ2Þ2, and similarly for the 1=D2
πΔ term

in Eq. (5). This regularization method differs from the
usual prescription of introducing a form factor F to each
of the meson-baryon vertices, resulting in multiplying the

integrands in fðonÞN and fðonÞΔ by jFj2. In terms of the
usual prescription with form factors, our PV-motivated
regularization corresponds to introducing an effective
form factor

F ¼
�
1 −

ðt −m2
πÞ2

ðt − Λ2Þ2
�
1=2

½Pauli-Villars�: ð9Þ

Note, however, that the application of the Pauli-Villars
regularization here is not unique, and other subtraction
prescriptions are possible. For the πΔ case, an alternative
procedure would be to write the second term in Eq. (5) as an
overall 1=DπΔ and apply the subtraction on 1=DπΔ rather
than on 1=D2

πΔ. However, since our phenomenological
analysis will involve fitting the Λ parameter to the data, it
will make little difference which we employ, and in practice
we choose the latter prescription as in Eq. (9).
A similar regularization prescription that is often adopted

in the literature is to use a form factor that is a monopole
in t,

F ¼
�
Λ2 −m2

π

Λ2 − t

�
½t-dependentmonopole�: ð10Þ
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Alternatively, a dipole form is sometimes also used, in
which the form factor is given by the square of the
expression in Eq. (10). A generalization of the monopole
or dipole is an exponential form,

F ¼ exp½ðt −m2
πÞ=Λ2� ½t-dependent exponential�; ð11Þ

which is an effective sum over infinitely many multipoles.
In practice, results for the dipole form factor are typically
intermediate between those for the monopole and expo-
nential, so using the latter two is sufficient to cover the
range of possible behaviors.
As an alternative to the t-dependent form factors

(9)–(11), a form that naturally arises in infinite momentum
frame or light-front approaches is one in which the form
factors are functions of the invariant mass squared of the
intermediate πN system, s≡ ðpþ kÞ2 ¼ ðk2⊥ þm2

πÞ=yþ
ðk2⊥ þM2Þ=ð1 − yÞ, and similarly for the πΔ system with
M → MΔ. In this case a common form is an exponential
function in s [45,46],

F ¼ exp½ðM2 − sÞ=Λ2� ½s-dependent exponential�; ð12Þ

although other s-dependent functional forms have also been
used in the literature [40,47].
In addition to the s-dependent and t-dependent form

factors, one may also consider u-dependent form factors
[46] with u≡ ðp − kÞ2 ¼ −ðk2⊥ − yð1 − yÞM2 þ ym2

πÞ=y
by crossing the pion virtuality to the intermediate baryon
virtuality. However, the u-dependent form factors are not
accessible to the on-shell contributions, fðonÞN and fðonÞΔ , in
which the four-momentum of the intermediate baryon is
fixed by the on-mass-shell condition.
In studies of inclusive neutron production in hadronic

charge exchange reactions, such as hp → nX (h ¼ π or p),
it was found that the exchange of Regge trajectories with
pion quantum numbers played an important role at very

small values of y and finite t. Within Regge theory the pion
trajectory is incorporated through an additional effective
form factor [33]

F ¼ y−απðtÞ ½Bishari�; ð13Þ

where απðtÞ ≈ α0πt, with the Regge intercept α0π ≈ 1 GeV−2.
Once the intercept is fixed, there are no additional param-
eters in this model to be varied.
A generalization of the Regge model to include addi-

tional suppression at large twas considered by Kopeliovich
et al. [28] in the guise of an exponential form factor
∼ expðR2tÞ, with R ≈ 0.1 fm. This can be recast in a form
that combines the Regge factor in Eq. (13) with the
exponential form factor in Eq. (11),

F ¼ y−απðtÞ exp½ðt −m2
πÞ=Λ2� ½Regge exponential�; ð14Þ

with Λ a free parameter. We note again that in the
application of each of these regularization prescriptions
in the splitting functions, it is the square of the form factor,

jFðy; k2⊥Þj2, that multiplies the integrands in fðonÞN and fðonÞΔ .
In Fig. 2 we illustrate the various on-shell splitting

functions fðonÞN for the models (8)–(14). For reference, each
of the πN splitting functions is normalized to 0.1 when
integrated over y from 0 to 1, which for the various models
corresponds to Λ parameters of 0.68 [t monopole (10)],
0.86 [t exponential (11)], 1.48 [s exponential (12)], 0.26
[Pauli-Villars (9)], 1.61 [Regge exponential (14)], and
0.23 GeV [k2⊥ cutoff (8)]. For the Bishari model (13),
which has no form factor parameter beyond the Regge

intercept α0π , the integrated value of fðonÞN is ≈0.19. To
compare the shape of this distribution with other models,
we normalize the splitting function to the 0.1 value for the
other functions.

FIG. 2. On-shell πN and πΔ splitting functions (a) fðonÞN ðyÞ and (b) fðonÞΔ ðyÞ for various regularization prescriptions. The πN functions
are normalized arbitrarily to 0.1. The distribution with the Bishari form factor is scaled down by a factor 1.9 to coincide with the same
normalization, and the πΔ distributions are computed for the same Λ values as the πN.
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The πN splitting functions in most of the models
typically have a similar shape, increasing from y ¼ 0
to peak at y ≈ 0.2–0.3. Generally, the distributions
computed with the t-dependent form factors (monopole,
exponential, Pauli-Villars, and Regge exponential) are
peaked at the lower y values (y ≈ 0.2), while the addi-
tional suppression at small y from the s-dependent form in
Eq. (12) shifts the peak in the s-dependent exponential
model to larger y (y ≈ 0.3). Without a t- or s-dependent
form factor suppression at large k2⊥, the splitting function
for the Bishari and k⊥ cutoff models remains finite at
y ¼ 1.
Similar features characterize the splitting functions for

the Δ intermediate states. Because of the larger mass
of the Δ baryon compared to the nucleon, the peaks in
the fðonÞΔ functions are shifted to slightly smaller y values
(y ≈ 0.1–0.2). The biggest difference, however, is in the
magnitude of the functions, which are ≈2–3 times smaller
than the nucleon fðonÞN for the same values of the cutoff
parameters.
In the remaining part of the paper, we will examine the

efficacy of the pion exchange models described in this
section in fitting the HERA leading neutron production
data [23,24], and the compatibility of the results with
the d̄ − ū asymmetry extracted from the E866 Drell-Yan
measurement [13].

III. CONSTRAINTS FROM SU(2) FLAVOR
ASYMMETRY OF THE SEA

One of the most suggestive indirect indications of the
important role played by the pion cloud of the nucleon is
the nonzero SU(2) flavor asymmetry d̄ − ū in the proton
sea. The first evidence for a nonzero flavor asymmetry
came from the observation by the NewMuon Collaboration
(NMC) of a violation of the Gottfried sum rule [12], which
was extracted from the difference of proton and neutron F2

structure functions over a large range of x. However,
while the NMC result was the first accurate determination
of the integrated value of d̄ − ū, extraction of its x
dependence required assumptions about the shape of the
valence quark PDFs which also contribute to F2. A direct
determination of the x dependence of d̄ − ū was achieved
through measurement of proton-proton and proton-deu-
teron dimuon production cross sections in the Drell-Yan
process ppðdÞ → μþμ−X at large values of the dimuon
mass [48].
The E866 experiment at Fermilab measured the ratio

σpd=σpp at high (projectile) proton momentum fractions x1
and low target momentum fraction x2, where at leading
order in the strong coupling constant αs it is approximately
given by [13]

σpd

2σpp
≈
1

2

�
1þ d̄ðx2Þ

ūðx2Þ
�
; ½x1 ≫ x2�: ð15Þ

The cross sections were measured for x2 between
0.015 and 0.35, at an average dimuon mass squared of
Q2 ¼ 54 GeV2, and the extracted d̄=ū ratio was found to
exceed 1.5 for x2 ≈ 0.1 − 0.2.
In this section we examine the constraints on the models

of the pion cloud of the nucleon that can be inferred from a
detailed analysis of the d̄ − ū asymmetry in the proton.
Within the effective chiral framework described in Sec. II,
the contributions to the d̄ − ū difference from the pion loop
diagrams in Fig. 1 can be written as [22]

d̄ − ū ¼
�
fπþn −

2

3
fπ−Δþþ

�
⊗ q̄πv; ð16Þ

where q̄πv ≡ d̄π
þ − dπ

þ ¼ ūπ
− − uπ

−
is the valence quark

PDF in the pion and the symbol “⊗” denotes the con-
volution integral f ⊗ q ¼ R

1
0 dy

R
1
0 dzfðyÞqðzÞδðx − yzÞ.

The convolution in Eq. (16) follows from the crossing
symmetry properties of the splitting functions fð−yÞ ¼
fðyÞ [49], and isospin symmetry relations have been
assumed for the πΔ distributions. The contributions from
neutral pions cancel in the asymmetry.
Note that, while the convolution expression in Eq. (16)

includes only incoherent contributions from the exchange
of pions, in phenomenological meson cloud models it
can be extended to include also contributions from the
exchange of heavier mesons, such as the ρ meson
[28,46,47], and coherent effects. Such effects are expected
to be relatively more important for large meson momenta,
or equivalently shorter distances. On the other hand, the
chiral effective theory formalism adopted here is strictly
speaking applicable only to the lightest mesons appearing
in the chiral theory and does not attempt to describe the
exchange of heavier bosons. We therefore expect the
incoherent exchange of pions to be mostly applicable at
low pion light-cone momenta [50–52], such as at the low y
values to which our analysis is restricted. Indeed, as we
observe in Sec. IV below (see Figs. 6 and 7), the description
of the data at larger y values within the one-pion exchange
approximation deteriorates, providing a posteriori justifi-
cation for confining the application of the convolution
approach with incoherent addition of pions to the low
momentum region.
Performing a χ2 fit to the E866 data, the results for

the various regularization prescriptions are compared in
Fig. 3(a), with the best fit cutoff parameters and χ2dof values
summarized in Table I. For reference, we also list in Table I
the values of the average multiplicities of pions for the πN
and πΔ dissociations from Eqs. (7). The uncertainty bands
around the central values for each of the models have
been computed using standard Hessian error analysis, as
described in Appendix A. For the valence antiquark
distribution in the pion, we use the Sutton et al. (SMRS)
parametrization [53] of the world’s data from πN Drell-Yan
and prompt photon production, evaluated at the E866
average Q2 of 54 GeV2. In all the fits the same cutoff
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parameters have been taken for the πN and πΔ splitting
functions, and the individual (positive) N and (negative) Δ
contributions are shown in Fig. 3(b). Since the πN and πΔ
dissociations contribute to the asymmetry with opposite
signs, allowing these to vary independently leads to very
large correlations, as different combinations of πN and πΔ
cutoffs give essentially the same d̄ − ū asymmetry. On the
other hand, because the shapes of the fðonÞN and fðonÞΔ
functions are different (see Fig. 2), more precise data on
d̄ − ū as a function of x could in the future allow the N and
Δ contributions to be constrained independently.
In the present fits, the values of hniπN range from 0.23

for the s-dependent form factor [Eq. (12)] to 0.31 for the
Pauli-Villars regularization [Eq. (9)]. For the same values of
the πΔ and πN cutoffs, the corresponding πΔ multiplicities
hniπΔ range from 0.06 to 0.21. The fits with the lowest χ2dof
values are obtained with the t-dependent exponential
regulator [Eq. (11)], although, with the exception of the
Bishari [Eq. (13)] and k⊥ cutoff [Eq. (8)] regulators, each of

the models gives a reasonable overall description of the
E866 data.
For the Bishari model, in which there is no form factor

parameter other than the Regge intercept α0π , the result in
Fig. 3 represents a prediction rather than a fit. The predicted
asymmetry is therefore about two times larger than
the d̄ − ū data (the calculation is scaled down in Fig. 3
by a factor 2 for clarity). Since the Bishari model was
constructed to describe neutron production in hadronic
reactions at low jtj, it is not surprising that when applied to
a t-integrated quantity such as d̄ − ū, it would not give a
good fit (χ2dof ≈ 76). Similarly, the χ2 values for the sharp
k⊥ cutoff regularization are significantly larger than those
for all other fitted results (χ2dof > 3). However, since this
model has been used recently in the literature to study
the chiral properties of pion loops [22,38], it is useful to
include it here for reference.
Note that the biggest contributions to the χ2 arise from

the high-x data points, which have a steeper falloff than

FIG. 3. Comparison of the flavor asymmetry xðd̄ − ūÞ for (a) pion model fits for various regularization prescriptions with the empirical
asymmetry extracted from the E866 Drell-Yan experiment [13] and (b) the individual (positive) nucleon and (negative) Δ contributions
to the asymmetry. The envelopes indicate the 68% confidence limits.

TABLE I. Best fit values for the form factor cutoffs in the πN splitting function and the corresponding χ2dof determined from the
comparison with the d̄ − ū asymmetry extracted from the E866 Drell-Yan data [13]. The associated average multiplicities of pions for
the πN and πΔ dissociations, summed over all charge states, are also given. For the pion PDFs the SMRS parametrization [53] is used
(the results with the ASV parametrization [54] are listed in parentheses). For the Bishari model, the quantities with asterisks ð�Þ are not
fitted. The degree of compatibility is computed relative to the t-dependent exponential model (11)†.

Model Λ (GeV) hniπN hniπΔ χ2dof DOC

t mon 0.68 (0.70) 0.30 (0.32) 0.18 (0.23) 1.4 (1.2) 60% (55%)
t exp 0.85 (0.88) 0.29 (0.31) 0.16 (0.17) 1.2 (1.1) 100% (100%)†

s exp 1.33 (1.36) 0.23 (0.24) 0.06 (0.07) 1.8 (1.3) 24% (19%)
Pauli-Villars 0.27 (0.27) 0.31 (0.33) 0.21 (0.23) 1.9 (1.5) 30% (23%)
Regge exp 1.32 (1.41) 0.25 (0.27) 0.10 (0.11) 1.4 (1.1) 54% (47%)
k⊥ cutoff 0.23 (0.24) 0.29 (0.31) 0.22 (0.23) 3.7 (3.2) 1% (0.5%)
Bishari � � � 0.56* 0.23* 76 (67) � � �
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can be accommodated in any of the models. In fact, the
models that are closer to the E866 data at large x (x≳ 0.2)
tend to be more on the high side compared at with the
data at lower x (x≲ 0.05), although all of the models are
consistent with the low-x data to within 1σ. (The new
SeaQuest experiment at Fermilab [55] will in the near
future check the high-x behavior by measuring the d̄=ū
ratio up to x ≈ 0.45.) If one were to fit only the points
below x ≈ 0.2, all of the models (apart from Bishari
and k⊥ cutoff) would be essentially indistinguishable,
with χ2dof < 1 for each.
On the other hand, it is evident from Fig. 3(a) that in

some cases, in both the small-x and large-x regions, the
error bands on the model curves do not overlap. To quantify
the extent to which the models are compatible among
themselves, we employ a hypothesis test using standard
t-statistics, as described in Appendix B. For the null
hypothesis we take the t-dependent exponential model
(best fit to the E866 data) and the k⊥ cutoff model as the
alternative hypothesis (worst fit). The t-distributions
of the pseudodata generated from several of the models
(t-dependent exponential, PV, and k⊥ cutoff) are shown in
Fig. 4 for illustration. The degree of compatibility (DOC) of
each model with respect to the best fit model (t-dependent
exponential) is shown in Table I. From the definition, the
DOC for the t-dependent exponential model is 100%. The
DOC values for the t-dependent monopole and Regge
exponential models are > 50%, while, not surprisingly, for
the k⊥ cutoff (worst fit) model the DOC is 1%.
In the preceding analysis we have examined the sensi-

tivity of the calculated d̄ − ū asymmetry to the choice
of model for the hadronic pion-nucleon form factor in the

pion splitting functions fðonÞN and fðonÞΔ . While the pion
PDFs at small x values have never been directly measured,
in the valence quark region the πN Drell-Yan data [30–32]
provide strong constraints on the x dependence of q̄πv
for x≳ 0.1. Interestingly, the distributions at x → 1 were

observed [32] to be more consistent with a ∼ð1 − xÞ
behavior [7,56,57] than with the ∼ð1 − xÞ2 expectation
from perturbative QCD [58] or model calculations using
the Dyson-Schwinger equations (see Ref. [59]). The large-x
behavior in the SMRS parametrization [53] was consistent
with the ∼ð1 − xÞ form indicated by the data.
Later, an analysis including next-to-leading order (NLO)

corrections [60] found that the higher order effects
soften the distributions, leading to a behavior that was
intermediate between (1 − x) and ð1 − xÞ2. More recently,
Aicher et al. (ASV) [54] found that inclusion of threshold
resummation at next-to-leading log accuracy produces
valence distributions that behave approximately as
ð1 − xÞ2 at a low energy scale Q0 ¼ 0.63 GeV.
In order to assess the possible impact of the different

x → 1 behaviors of the valence pion PDF on the d̄ − ū
asymmetry, we repeat our analysis using the ASV para-
metrization [54], evolved from the low energy scale Q0 to
Q2 ¼ 54 GeV2. The best fit results for the various models
are listed in Table I and compared in Fig. 5 for the
t-dependent exponential form factor (11) with the result
using the SMRS parametrization. As expected, the result
with the ASV distribution leads to a softer asymmetry,
with slightly better agreement at large x but marginally
worse at x≲ 0.1. The overall χ2dof values are slightly better
for the ASV fit, mostly because the softer distribution
allows a smaller asymmetry at x≳ 0.2, as preferred by the
E866 data, although the differences are not significant.
(The correlation between the smaller distributions at
high x and the larger values at low x simply reflects the
normalization constraints on the valence pion PDF in the
convolution in Eq. (16) that link its x → 0 and x → 1
behaviors). The new results for the flavor asymmetry from
the SeaQuest experiment [55] at large x may provide
further insights into these comparisons.

FIG. 4. Probability distributions PðτÞ for the t-statistic τ in
Eq. (B1) for the t-dependent exponential (best fit, red), PV (blue),
and k⊥ cutoff (worst fit, green) models. The units along the
abscissa are arbitrary. The overlap between any two distributions
defines the degree of compatibility between the models.

FIG. 5. Comparison of the pion model fits to the d̄ − ū data
from the E866 experiment [13] with the t-dependent exponential
form factor (11) for the valence pion PDFs from the SMRS [53]
and ASV [54] parametrizations.
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IV. LEADING NEUTRON PRODUCTION
AT HERA

Recently, the ZEUS [23] and H1 [24] collaborations
at HERA measured the production of neutrons in the
semi-inlusive process ep → enX, with the leading neutron
carrying a large fraction of the proton beam’s momentum.
Within the one-pion exchange framework, the data were
analyzed with the aim of extracting the pion structure
function Fπ

2 at small values of the pion’s momentum
fraction xπ (xπ ≳ 10−4). The previous πN Drell-Yan
measurements [32] of the pion PDFs extended down to
xπ ≈ 0.2, so that the sea quark PDFs in the pion were
essentially unconstrained.
Of course, since the leading neutron cross section in

pion-exchange models is a product of the pion structure
function and the pion flux, the extracted Fπ

2 must depend to
some extent on the input used for the latter [27,28]. The
ZEUS analysis [23] indeed suggested strong dependence
(up to a factor ∼2) of Fπ

2 on the model of the pion flux
adopted. Motivated by the Regge model descriptions of
inclusive neutron spectra in hp → nX reactions, the ZEUS
study [23] used the Bishari model (13) as a baseline for the
analysis of the ep leading neutron data and contrasted this
with a simple additive quark model based on constituent
quark counting. In the more recent analysis by Kopeliovich
et al. [28], the Regge theory-inspired exponential vertex
function in Eq. (14) was employed, while the earlier work
of D’Alesio and Pirner [27] considered the t-dependent
exponential (11) and s-dependent (12) forms, as well as a
nontraditional form factor extracted from Skyrme models
of the NN force [61,62].
In the present analysis we build upon these earlier

studies by systematically investigating the dependence
of the fitted pion structure function on the models of the
pion splitting function and whether the dependence can
be reduced by imposing additional constraints from the
E866 data. The combined analysis may provide insights
into the applicability of specific functional forms, some of
which may be more attuned to describing the disparate
reactions than others. It is also known from previous
studies [27,28,63,64] that rescattering and absorptive
effects can play an important role in inclusive hadron
production reactions. The effects of absorption are gen-
erally found to be stronger in pp scattering than in
photon-induced reactions and decrease in magnitude with
increasing photon virtualities. The absorptive corrections
are smaller in DIS kinematics, contributing ∼10% at
low values of y. Furthermore, background contributions
from other processes, such as the exchange of heavier
mesons, become increasingly more important at larger y
(y ≫ 0.1) [28,46,47].

A. Leading neutron cross sections

At tree level the differential cross section for the
production of leading neutrons (LN) in semi-inclusive
ep scattering is given by

d3σLN

dxdQ2dy
¼ KFLNð3Þ

2 ðx;Q2; yÞ; ð17Þ

where the kinematic factor

K ¼ 4πα2

xQ4

�
1 − ye þ

y2e
2

�
; ð18Þ

and ye ¼ q · p=l · p ≈Q2=xs is the lepton inelasticity. Here
l and q are the incident lepton and virtual photon momenta,
respectively, α is the electromagnetic fine structure con-
stant, and

ffiffiffi
s

p
∼ 300 GeV is the total ep HERA center of

mass energy. In writing Eq. (17) we have also neglected
possible contributions from rescattering and absorption.
Because in the HERA experiments the scattering angle of
the forward neutron is not measured, its transverse momen-
tum pn⊥ ≈ xLEpθn must be integrated over, where Ep is the
energy of the incident proton beam and xL ¼ 1 − y is the
light-cone momentum fraction of the proton carried by

the neutron. The tagged neutron structure function FLNð3Þ
2 is

then given by the pn⊥-integrated differential structure
function

FLNð3Þ
2 ðx;Q2; yÞ ¼

Z
dpn⊥F

LNð4Þ
2 ðx;Q2; y; pn⊥Þ: ð19Þ

In the pion-exchange model the magnitude of the transverse
momentum of the leading neutron is equivalent to that of
the exchanged pion, pn⊥ ¼ k⊥, and the fully differential

structure function FLNð4Þ
2 can be written in the factorized

form

FLNð4Þ
2 ðx;Q2; y; k⊥Þ ¼ 2fðonÞN ðy; k⊥ÞFπ

2ðxπ; Q2Þ; ð20Þ
where xπ ¼ x=y is the fraction of momentum of the pion
carried by the interacting parton, and the pion structure
function has been assumed to be independent of k⊥. The
latter assumption allows the k⊥-unintegrated pion flux to
be related to the on-shell (y > 0) part of the splitting
function in Eq. (2),

fðonÞN ðyÞ ¼
Z

dk⊥f
ðonÞ
N ðy; k⊥Þ; ð21Þ

so that the tagged neutron structure function FLNð3Þ
2 can be

written

FLNð3Þ
2 ðx;Q2; yÞ ¼ 2fðonÞN ðyÞFπ

2ðxπ; Q2Þ: ð22Þ

The H1 experiment [24] measured FLNð3Þ
2 over a large

range of kinematics covering 1.5 × 10−4 ≤ x ≤ 3 × 10−2

and 6 ≤ Q2 ≤ 100 GeV2 for average y values between
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0.05 and 0.68, and pn⊥ < 0.2 GeV. A similarly extensive
range of kinematics was covered by the ZEUS data [23], for
1.1 × 10−4 ≤ x ≤ 3.2 × 10−2 from photoproduction up to
Q2 ∼ 103 GeV2, with 0 < y < 0.8 and neutron scattering
angle θn < 0.8 mrad. The latter corresponds to a transverse
momentum acceptance of pn⊥ < 0.656ð1 − yÞ GeV. To
reduce many of the correlated systematic errors, the
ZEUS experiment measured the ratio r of leading neutron
to inclusive cross sections in bins of width Δy,

rðx;Q2; yÞ ¼ d3σLN=dxdQ2dy
d2σinc=dxdQ2

Δy; ð23Þ

where the corresponding inclusive cross section,

d2σinc

dxdQ2
¼ KFp

2 ðx;Q2Þ; ð24Þ

is expressed in terms of the proton structure function Fp
2 .

In the pion exchange model, r is then proportional to the
ratio of the pion to proton structure functions, evaluated at
xπ and x, respectively,

rðx;Q2; yÞ ¼ 2fðonÞN ðyÞF
π
2ðxπ; Q2Þ
Fp
2 ðx;Q2Þ Δy: ð25Þ

Multiplying the r ratios by a fit to the inclusive Fp
2 data, the

ZEUS Collaboration was also able to reconstruct FLNð3Þ
2

values for various bins of x, Q2, and y.

B. Optimizing sensitivity to one-pion exchange

While some dedicated analyses [28] have attempted to
describe the HERA leading neutron spectra at all kinemat-
ics, our aim here will instead be to maximize the sensitivity
to the basic one-pion exchange contribution, which has the
most direct connection to the chiral effective theory. This
can be achieved by restricting the analysis to regions where
one-pion exchange is expected to be the dominant process,
and contributions from other backgrounds are minimal.
In practice, since the calculation of the backgrounds is
significantly more model dependent, the exact choice of
kinematics may be somewhat subjective. To determine in a
more objective way the region of kinematics where the one-
pion exchange is applicable, we perform a χ2 analysis of the
data as a function of the maximum value of y up to which
the data are fitted. Although this reduces the total number
of data points in the fit, the analysis of the more restrictive
kinematic range should allow for a cleaner interpretation
and extraction of the pion exchange parameters.
In performing the χ2 fits to the ZEUS [23] and H1 [24]

data, for each of the models of the pion flux discussed in
Sec. II B we vary the cutoff parameter Λ in the form factor
(with the exception of the Bishari model, which does not
have a cutoff), as well as the pion structure function. For the

pion structure function parametrization at the input scale
Q2

0, we use the form

Fπ
2ðxπ; Q2

0Þ ¼ Nxaπð1 − xπÞb; ð26Þ

which should be sufficiently flexible for describing the
small-xπ region. Since the HERA data are insensitive to the
large-xπ behavior of Fπ

2 , we fix the parameter b ¼ 1 [53];
the exact value of b does not affect the determination of the
more relevant small-xπ parameters, namely, the exponent a
and the normalization N. To allow for the Q2 dependence
of a, we use the simple ansatz [65]

a ¼ a0 þ a1η; ð27Þ

where the Q2 dependence is parametrized through the
variable [65]

η ¼ log

�
logQ2=Λ2

QCD

logQ2
0=Λ

2
QCD

�
; ð28Þ

with Q2
0 ¼ 1 GeV2 and ΛQCD ¼ 0.4 GeV. The η depend-

ence of a effectively mocks up the Q2 evolution of the sea
quark distributions in the pion. The fits then involve a total
of four parameters for each model of the pion flux. In
principle one could also decompose Fπ

2 in a partonic
representation and fit the individual valence and sea quark
PDFs in the pion, in the context of a global QCD fit
[53,66,67]. Although this is a worthwhile future pursuit, it
is somewhat outside of the scope of the present analysis.
To illustrate the effects on the fits to the HERA data of

the y cut, we show in Fig. 6 the ZEUS cross section ratio

r=Δy and the H1 FLNð3Þ
2 structure function in two repre-

sentative bins at fixed x and Q2 values. For the ZEUS ratio

r, we divide the calculated model FLNð3Þ
2 by the proton

structure function Fp
2 computed from the NLO PDFs

parametrized in the HERAPDF1.5 set [68]. Since the
model with the t-dependent exponential form factor gave
the best results for the E866 data comparison in Sec. III, we
use this model here to illustrate the ycut dependence. Other
models give qualitatively similar results. While the low-y
data can be described within the model reasonably well,
fitting the cross sections at higher y values becomes
increasingly difficult. This is not surprising, since contri-
butions from processes other than one-pion exchange are
known to become progressively more important with
increasing y. Similar behavior is seen for the y-dependent
spectra in other x and Q2 bins. Note also that the ratio r for

the ZEUS data decreases beyond y ≈ 0.3, while FLNð3Þ
2

from H1 keeps increasing with y (the relative factor of Fp
2

between them is independent of y). The different behavior
of these spectra reflects the different detector acceptances in
the two experiments with relation to the neutron transverse
momentum pn⊥. While H1 applied a y-independent cut on
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pn⊥, the ZEUS cut proportional to 1 − y suppresses con-
tributions from larger y values.
Of course, in general we would like to maximize the

y coverage included in the analysis in order to increase the
statistics of the fit. For the smallest y cut, for instance,
ycut ¼ 0.1, there is a total of 54 data points (25 from ZEUS
and 29 from H1), while for ycut ¼ 0.2 the number of points
doubles to 108. For ycut ¼ 0.3 the number of points
increases to 187 (100 from ZEUS and 87 from H1), and
at ycut ¼ 0.4 it reaches 266. Furthermore, increasing the
value of ycut allows one to maximize the range of xπ
over which the pion structure function is constrained.
At fixed x a smaller value of ycut will restrict the sensitivity
of the fit to small xπ values. For example, for the ZEUS
data the lowest x bin extends to x ¼ 1.1 × 10−4, so that a
ycut of ≈ 0.1 or 0.3 will allow one to reach down to xmin

π ≈
1 × 10−3 or 4 × 10−4, respectively. In the case of the H1
data, for which the smallest x value is 2.24 × 10−4,
sensitivity to the pion structure function can be extended
down to xmin

π ≈ 2 × 10−3 and 7 × 10−4 for the same
respective ycut values.
To determine the sensitivity of the fit to different y cuts,

we compute the χ2 values for each of the models by fitting
the ZEUS and H1 data over the respective ranges from
y ¼ 0 to ycut. The χ2dof profiles in Fig. 7(a) for the HERA
fit indicate generally good fits for all models, with χ2dof ≲ 1

up to ycut ≈ 0.3. In fact, all the models other than the
Bishari (13) and Regge exponential (14) model give good
χ2dof values up to ycut ≈ 0.5, above which the fits rapidly
deteriorate.
A closer inspection of the fitted parameters, however,

reveals rather large correlations between the Λ values and
the pion structure function parameters, especially for low
ycut. For example, there is a 36% correlation between Λ and
the normalization N for ycut ¼ 0.3 and an even larger,
51% correlation for ycut ¼ 0.2. This suggests that, while

reasonable fits to the leading neutron cross sections can be
obtained within most of the pion exchange models, mean-
ingful extraction of pion structure function parameters from
the HERA data alone is problematic. To determine the pion
parameters unambiguously requires additional constraints
beyond the leading neutron cross sections. An obvious
candidate for an independent constraint is the d̄ − ū
asymmetry extracted from the E866 Drell-Yan data, dis-
cussed in Sec. III, which are sensitive to the Λ parameters in
the pion distribution functions but insensitive to the pion
structure function at low x. In the rest of this paper, we
focus on the analysis of the combined set of ZEUS, H1, and
E866 data.

C. Combined HERA and E866 analysis

With the inclusion of the E866 d̄ − ū asymmetry data in
the fits together with the HERA leading neutron cross
sections, the correlations between the pion flux and pion
structure function parameters decrease dramatically for all
cutoff models. For the t-dependent exponential model (11),
for instance, the correlations between the Λ and N
parameters are reduced to between −8% to −16% over
the range of cutoffs between ycut ¼ 0.1 and 0.4. The
resulting χ2dof profiles for all the models are displayed
in Fig. 7(b). In this case there is significantly greater
discriminating power between the form factor models,
with much stronger dependence of the fit results to the
value of ycut.
In particular, the s-dependent exponential (12), k⊥ cutoff

(8), and Bishari (13) models all yield large χ2dof ≳ 2 for the
entire range of ycut values spanned. In fact, for the Bishari
model the χ2dof values are extremely large and off the
vertical scale shown in Fig. 7. This merely reflects the
absence of any Λ dependence in the pion flux and is
consistent with the findings in Sec. III. For the k⊥ cutoff
model, the large χ2dof values are related to the fact that a

FIG. 6. Examples of y-dependent spectra of leading neutrons from (a) ZEUS r=Δy data at x ¼ 8.5 × 10−4 and Q2 ¼ 60 GeV2 and
(b) H1 FLNð3Þ

2 data at x ¼ 1.02 × 10−3 andQ2 ¼ 24 GeV2. The curves represent simultaneous fits to ZEUS and H1 data at all available x
and Q2 values, for fixed maximum values of y from ycut ¼ 0.1 to 0.6, using the t-dependent exponential form factor model (11). The
dotted curves are extrapolations of the respective fits into the unconstrained regions above ycut.
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sharp cutoff does not provide a realistic description of the
data at k⊥ ≫ 0.
Interestingly, the s-dependent exponential model, which

gave reasonably good χ2 values for the HERA data, has
difficulty in describing the d̄ − ū asymmetry, as was
evident in Sec. III where a χ2dof ∼ 2 was also found for
the fit to the E866 data alone (see Table I). The poor fit to
the small-y HERA and E866 data can be attributed to the
functional form of the s-dependent form factor in Eq. (12).
In particular, at small values of y the πN invariant mass
s ∼ k2⊥=y becomes increasingly large, rendering the form
factor zero in the y → 0 limit even for finite k⊥. This gives
rise to much stronger suppression at low y, which is
already visible in the shapes of the splitting functions

fðonÞN in Fig. 2(a). A similar suppression would arise for
u-dependent form factors (see Sec. II B), since u ∼ k2⊥=y at
low y, if these were applied to splitting functions beyond
the on-shell contributions discussed in this work. This
suppression does not occur for the t-dependent form
factors, on the other hand, which depend on the variable
t ∼ −k2⊥=ð1 − yÞ at small y. Through the convolution
formula (16), less strength at small y also translates into
suppression of the calculated PDFs at small x values, which
is also visible in Fig. 3 for the s-dependent model.
For the other models (namely, t-dependent exponential

and monopole, Pauli-Villars, and Regge exponential),
reasonable fits with χ2dof ≲ 1 are obtained for ycut up to
0.2 and for the t-dependent exponential (11) [and to a lesser
extent the t-dependent monopole (10)] model also at
ycut ¼ 0.3. For larger ycut values the χ2dof increases rapidly,
and no model is able to give an adequate description of the
combined data sets for ycut ≳ 0.4.
The larger χ2dof values are in fact associated with

increasing cutoffs Λ and correspondingly larger values
of the pion multiplicities hniπN , as Fig. 8 illustrates. For all

the models other than Bishari (for which the pion flux is
independent of Λ and hence of ycut), the pion multiplicities
for ycut ≲ 0.2 are similar to the values hniπN ∼ 0.3 obtained
in Sec. III from the d̄ − ū constraints alone. For reference,
the dotted horizontal lines in Fig. 8 at low ycut represent the
values of the cutoffs and pion multiplicities from the E866-
only fits, as in Table I. Recall that for too large cutoffs, or
multiplicities hniπN ≳ 0.5, the probability of multipion
exchanges becomes non-negligible, and the justification
for restricting the calculation to one-pion exchange is more
questionable [4,14].
Reasonable values of hniπN are still obtained, however,

for ycut ¼ 0.3 for the t-dependent exponential and monop-
ole, s-dependent, and Regge exponential models, although
with the exception of the t-dependent exponential model all
of these give somewhat larger χ2dof ≳ 2. Taken together, the
results for the χ2dof , Λ, and hniπN profiles point to the
t-dependent exponential model (11) as the one best able to
account for the combined ZEUS and H1 leading neutron
data and the E866 d̄ − ū asymmetry over the largest range
of y.
Taking the t-dependent exponential model with ycut ¼

0.3 as the optimal result of our fits, in Figs. 9 and 10 we
show the spectra of leading neutrons from the ZEUS [23]
and H1 [24] experiments, respectively. For the ZEUS data
we convert the measured ratios r in Eq. (23) to an absolute
cross section by multiplying the ratio by the inclusive
proton Fp

2 structure function, Eq. (25). The resulting
structure function FLNð3Þ

2 in Fig. 9 is plotted as a function
of x at fixed Q2 values from Q2 ¼ 7 to 1000 GeV2, for
individual y bins at average values of y ¼ 0.06, 0.15, 0.21,
and 0.27. Because the highest twoQ2 bins atQ2 ¼ 480 and
1000 GeV2 contain only one x value, x ¼ 3.2 × 10−4, we
combine these data to show the structure function as a
function of y. The comparison in Fig. 9 between the data

FIG. 7. Variation of χ2dof in various models with the maximum value ycut used in the fit to the HERA leading neutron data, for (a) ZEUS
[23] and H1 [24] data only and (b) the combined ZEUS, H1, and E866 [13] fit. The Bishari model in the latter is off the vertical scale.
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and the fitted results shows very good agreement across all
kinematics, with the slopes in x and y well reproduced. The
errors on the data points shown include statistical and
systematic uncertainties added in quadrature, including an

acceptance uncertainty of ∼5% and a normalization error of
4%. For the lowest-y data points at y ¼ 0.06, there is a
large, ∼25% systematic uncertainty from the energy scale
uncertainty, which inflates the overall error at these points

FIG. 8. Dependence on ycut in the HERA data of the fitted values of (a) the form factor cutoffs Λ and (b) the pion multiplicities hniπN
for various cutoff models, for the combined HERA and E866 fit. The dotted horizontal extensions at small ycut denote the results from
fits to the E866 data only.

FIG. 9. Leading neutron structure function FLNð3Þ
2 from ZEUS [23] as a function of x at fixed values of Q2 and y. The panels at

Q2 ¼ 480 and 1000 GeV2 are shown as a function of y for fixed x ¼ 3.2 × 10−2. The fitted results have been computed for the
t-dependent exponential model (11) with ycut ¼ 0.3. For clarity, the values of FLNð3Þ

2 in the first six panels (for Q2 ≤ 240 GeV2)
have been offset by multiplying by a factor 2i for i ¼ 0 (for y ¼ 0.06) to i ¼ 3 (for y ¼ 0.27).
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relative to the data at larger y. Uncertainties from the
parametrization of the inclusive Fp

2 structure function are
smaller than the experimental errors on r and are not
included.
Similarly good agreement with the measured leading

neutron spectra is obtained for the H1 data [24] at average
y ¼ 0.095, 0.185, and 0.275 in Fig. 10, in which the

absolute FLNð3Þ
2 structure function was obtained directly

over a range of Q2 between 7.3 and 82 GeV2. The H1
leading neutron data were collected during the 2006–2007
run and represent an integrated luminosity of 122 pb−1, or
about three times that of the ZEUS data in the DIS region.
Consequently, the statistical uncertainties of the H1 data are
smaller than those for the ZEUS leading neutron spectra.
Note that in the calculations of the leading neutron structure
functions the appropriate transverse momentum acceptance
cuts of k2⊥ < 0.43ð1 − yÞ2 GeV2 and k2⊥ < 0.04 GeV2

were applied for the ZEUS and H1 data, respectively.
We list in Table II the parameters fitted in the combined

analysis, namely, the cutoffs Λ and Fπ
2 parameters N, a0,

and a1, for our optimal fit, the t-dependent exponential
model of the pion flux with ycut ¼ 0.3. For comparison we

also list the parameters for two comparable fits, for the
t-dependent exponential and t-dependent monopole models
with ycut ¼ 0.2. Also listed for reference are the pion
multiplicities corresponding to the Λ values and the χ2dof
for the fits.
For our optimal model from the fit to the combined

HERAþ E866 data sets, as a consistency check we show
in Fig. 11 the resulting d̄ − ū asymmetry compared with the
E866 data. The quality of the fit is similar to the fit to
the E866 data alone in Sec. III, as is also indicated by the
similar values for the cutoffs Λ in Tables I and II, although
the data at the largest x values (x≳ 0.2) and at low x
(x≲ 0.05) are slightly overestimated. For comparison
we also plot the results of the fit with the t-dependent
exponential model for ycut ¼ 0.2, which gives a similar
cutoff to that in the E866-only fit in Table I
(Λ ¼ 0.85 GeV) and hence a slightly better fit to the
E866 data. Overall, the comparison in Fig. 11 clearly
demonstrates the consistency of the one-pion exchange
description, and in particular the model of the pion flux
with the t-dependent exponential form factor (11), of both
the HERA leading neutron cross sections and the d̄ − ū
asymmetry.

FIG. 10. Leading neutron structure function FLNð3Þ
2 from H1 [24] as a function of x at fixed values of Q2 and y. The fitted results have

been computed for the t-dependent exponential model (11) of the pion flux with ycut ¼ 0.3. For clarity, the values of FLNð3Þ
2 have been

offset by multiplying by a factor 2i for i ¼ 0 (for y ¼ 0.095) to i ¼ 3 (for y ¼ 0.275).
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D. Pion structure function at small x

Having systematically quantified the efficacy of the
various pion exchange models in describing the HERA
leading neutron and E866 d̄ − ū asymmetry data, we can
now assess whether and to what extent the combined
analysis is able to unambiguously determine the xπ
dependence of the pion structure function. Choosing the
t-dependent exponential model for the πNN form factor
(11) as the one best capable of giving a consistent
description of the data over the largest range of kinematics,
in Fig. 12(a) we illustrate the stability of the results for Fπ

2

with respect to the value of ycut, at a fixed Q2 ¼ 10 GeV2.
With the exception of the ycut ¼ 0.1 fit, the extracted Fπ

2

shows remarkable stability across all cuts up to the optimal
ycut ¼ 0.3 and even beyond, over the entire range of
xπ ≳ 4 × 10−4 constrained by the ZEUS and H1 data.
Note that each of the curves is plotted for xπ down to
different values of xmin

π ¼ xmin=ycut because of the varying
ycut values in each fit.

Although the t-dependent exponential model gave the
smallest χ2dof of all models in the combined fit, up to ycut ¼
0.4 [see Fig. 7(b)], the dependence of the fitted Fπ

2 on the
functional form of the πNN form factor is rather weak, as
Fig. 12(b) illustrates for ycut ¼ 0.3. Interestingly, the best fit
model gives the smallest Fπ

2 result, with the largest magni-
tude (some 20%–25% larger) found for the s-dependent
exponential model (which also has a χ2dof ≈ 2.5).
On the other hand, for a given model the propagated fit

errors from the analysis are rather small, as indicated by the
band around the extracted Fπ

2 in Fig. 12(c) for the
t-dependent exponential model with ycut ¼ 0.3. The PDF
error is also generally substantially smaller than the differ-
ence between our fitted result for Fπ

2 and the values from
the SMRS [53] and Glück et al. (GRS) [67] global PDF
analyses, extrapolated to the small-x region of HERA
kinematics. In particular, while our fitted Fπ

2 has a similar
shape to the GRS parametrization, its magnitude is
≈ 30%–40% smaller at xπ ≈ 10−3 − 10−2. The magnitude
is closer to the result from the SMRS parametrization at
similar xπ values, but the latter shows considerably less
variation with xπ .
Since prior to the HERA leading neutron experiment

there were no data with any sensitivity to the small-xπ
region, the SMRS fit to the πN Drell-Yan and prompt
photon data considered three cases for the (unconstrained)
pion sea, with 10%, 15%, and 20% of the pion’s momen-
tum carried by sea quarks and gluons at a scale of
Q2 ¼ 4 GeV2. Comparing with the pion structure function
constructed from the SMRS PDFs with the three different
sea momentum fractions in Fig. 12(c), our results for the
extracted Fπ

2 favor the 20% scenario for the sea at xπ ≈ 10−3

but are closer to the 10% scenario at xπ ≈ 10−2. At larger
values of xπ ≳ 10−2, our fit is less reliable, as it does not
include the πN Drell-Yan and prompt photon constraints on
the large-xπ region, at which our simple parametrization of
Fπ
2 in Eq. (26) is no longer expected to be adequate. A more

complete QCD-based analysis in terms of the pion valence,
sea, and gluon PDFs, fitting all available data including the

TABLE II. Fit parameters from the combined ZEUS, H1, and E866 fit for the cutoff Λ and pion structure function
parameters N, a0, and a1 for several fits: our optimal fit for the t-dependent exponential model (11) with ycut ¼ 0.3
(shown in boldface) and comparable fits with ycut ¼ 0.2 for the t-dependent exponential and monopole models. For
reference the corresponding values of the pion multiplicities hniπN are also given, as are the number of fitted points
and χ2dof .

Model t exp ðycut ¼ 0.3Þ t exp (ycut ¼ 0.2) t mon (ycut ¼ 0.2)

Λ (GeV) 0.927� 0.003 0.863� 0.004 0.694� 0.005
hniπN 0.34 0.30 0.31
N 0.084� 0.009 0.083� 0.016 0.091� 0.016
a0 −0.0033� 0.0123 −0.0074� 0.0207 −0.0047� 0.0208
a1 −0.257� 0.015 −0.247� 0.016 −0.253� 0.014
χ2dof 1.27 0.65 0.80
# data points 202 123 123

FIG. 11. Flavor asymmetry xðd̄ − ūÞ from the combined fit to
the HERA leading neutron [23,24] and E866 Drell-Yan [13] data,
for cuts on the HERA data of ycut ¼ 0.2 (blue dashed curve) and
0.3 (solid red curve).
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HERA leading neutron spectra, would be necessary in
order to describe Fπ

2 over the entire xπ region.

V. CONSTRAINTS FROM FUTURE
TAGGED DIS EXPERIMENTS

The analysis in the previous sections enabled us to
establish the models and parameters which are best able
to describe the existing data sensitive to pionic degrees of
freedom in the nucleon. While the flavor asymmetry from
the E866 Drell-Yan data is sensitive to the pion distribution
function in the nucleon and the pion PDFs at large parton
momentum fractions xπ of the pion, the HERA leading
neutron data provide information on the pion PDFs at
small xπ , once constraints on the pion flux are included
from the d̄ − ū asymmetry. Clearly it would be helpful to
have data at complementary kinematics to those of HERA
and E866, which could enable further constraints to be
placed on the pion flux and pion structure function
parameters independently.
The upcoming tagged DIS (TDIS) experiment at

Jefferson Lab [69] plans to take data on the production
of leading protons from an effective neutron target in the
reaction en → epX, which, in analogy with the HERA
leading neutron leptoproduction, can be described at small
y through the exchange of a π−. In the proposed experi-
ment, the effective neutron target will be prepared by
tagging spectator protons with momenta between 60 and
400 MeVat backward kinematics in the DIS of the electron
from a deuteron nucleus, using the same technique that was
developed for the measurement of the neutron structure
function in the BONuS experiment at Jefferson Lab [70]. In
this section we use the fit results from the analysis of the
HERA and E866 data in Sec. IV to estimate the leading
proton (LP) structure function at kinematics relevant for the
TDIS experiment. In analogy with the neutron structure
function FLNð3Þ

2 in Eq. (22), we define the LP structure
function as

FLPð3Þ
2 ðx;Q2; yÞ ¼ fπ−pðyÞFπ

2ðxπ; Q2Þ; ð29Þ

where we have used isospin symmetry to equate the πþ and
π− structure functions. Isospin symmetry also implies
equivalence between the p → πþn and n → π−p splitting
functions, fπ−pðyÞ ¼ fπþnðyÞ from Eq. (1).
The TDIS experiment will measure the semi-inclusive

ed → eppX cross section over the kinematic range corre-
sponding to the parton momentum fraction in the neutron
of 0.05≲ x≲ 0.1, and for 0.05≲ y≲ 0.3, at an average
Q2 ¼ 2 GeV2. In Fig. 13(a) the leading proton structure
function is shown as a function of x for typical TDIS
kinematics, for fixed values of y ¼ 0.1 and 0.2. To illustrate
the model dependence of the results, the structure function
calculated using the parameters from the t-dependent
exponential form factor with ycut ¼ 0.3 is compared with
those using the t-dependent exponential and monopole
models with ycut ¼ 0.2. The differences between the
models are relatively small over the entire range of
kinematics considered. Note, however, that the fitted results
have been extrapolated from the region where they are
constrained by the HERA data, for which the largest x is
3.2 × 10−2, to the TDIS kinematics where x≳ 0.05.
Furthermore, since the lowest Q2 for the HERA data is
7 GeV2, the fitted pion structure function is extrapolated to
the Q2 ¼ 2 GeV2 value relevant for the TDIS experiment
using the functional form in Eqs. (26)–(28). Comparing
with the NLO evolution of phenomenological PDFs, the
uncertainty from our approximate Q2 evolution is of the
order 20% between Q2 ≈ 2 and 10 GeV2. This does not
affect, however, the observation that the dependence of
FLPð3Þ
2 on the pion flux model is weak at Jefferson Lab

kinematics.
Plotted as a function of xπ , the leading proton structure

function FLPð3Þ
2 for the best fit t-dependent exponential

model with ycut ¼ 0.3 is shown in Fig. 13(b) for a fixed
y ¼ 0.2. While the results are constrained by the HERA

FIG. 12. Pion structure function Fπ
2 as a function of xπ at Q2 ¼ 10 GeV2, extracted from a simultaneous fit to the ZEUS and H1

leading neutron data and the E866 d̄ − ū asymmetry for (a) the t-dependent exponential model with different ycut values, (b) various
models at fixed ycut, and (c) the best fit t-dependent exponential model with ycut ¼ 0.3, compared with the GRS [67] and SMRS [53]
parametrizations, with the latter shown for a 10% (lowest), 15% (central), and 20% (highest) pion sea.
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data at small xπ , because of the simple choice of para-
metrization for Fπ

2 in Eq. (26) our calculation is effectively

an extrapolation for xπ ≳ 10−2. Comparing with the FLPð3Þ
2

computed from pion PDF parametrizations evolved to
Q2 ¼ 2 GeV2, our results are smaller than those using
both the SMRS [53] and GRS [67] fits, with the differences
similar to those observed in Fig. 12(c) for Fπ

2. On the other
hand, the phenomenological pion PDFs [53,67] are fitted to
the πN Drell-Yan data [32] only down to xπ ≈ 0.2, and for
smaller xπ ≲ 0.1 the parametrizations are unconstrained. It
is interesting, however, to observe that the differences

between the FLPð3Þ
2 calculated using only the sea part of the

pion structure function parametrizations and our fit are
significantly reduced at xπ ≳ 10−2. This may reflect the
restricted form (26) used for our Fπ

2 parametrization, which,
while suited for describing the small-xπ region where the
sea dominates, may not be optimal for all xπ . A more
systematic approach in the future would be to perform a
combined global PDF analysis of leading neutron and πN
Drell-Yan data in terms of pion PDFs, separating the pion
structure function into its valence and sea components.
With the TDIS data expected to cover the region xπ ≳ 0.1

[69], this experiment offers an important opportunity to
bridge the gap between the HERA data which can constrain
the pion PDFs at low xπ and the πN Drell-Yan data that
have been used to determine the pion’s valence quark
content at xπ → 1. Together with the constraints from the
E866 d̄ − ū asymmetry, the combined data sets should be
able to more precisely pin down the partonic structure of
the pion over a much more extended range of xπ.

VI. CONCLUSION

Our analysis has sought to determine whether a con-
sistent description of the HERA leading neutron cross
sections [23–25] can be obtained within a pion exchange
framework, while simultaneously also accounting for the
d̄ − ū asymmetry in the proton extracted from the E866
Drell-Yan data [13]. Previous analyses of the HERA data
alone have generally drawn somewhat negative conclusions
about whether one can reliably extract information on the
pion structure function Fπ

2 at small xπ , that was not subject
to large uncertainties associated with the choice of the pion
flux. Rather than relying on assumptions about specific
forms for the pion light-cone distributions in the nucleon,
we have addressed the model dependence empirically, by
performing the first comprehensive statistical analysis of
the combined HERA leading neutron and E866 data sets,
for a wide range of prescriptions adopted in the literature
for regularizing the pion-nucleon amplitudes.
Our findings suggest that we can indeed describe both

HERA and E866 data within a one-pion exchange frame-
work, if the cutoff parameters in the πNN form factors are
fitted simultaneously with the pion structure function. For
the E866 data, we find that almost all the models that have
adjustable cutoffs are able to provide reasonable descrip-
tions of the d̄ − ū asymmetry. The exceptions are the
Bishari model [33], which has parameters fixed by hadron
production data in inclusive pp scattering, and the sharp k⊥
cutoff model, which we consider mostly for illustration
purposes. The E866 data are also not very sensitive to the
precise large-xπ behavior of the pion PDFs.

FIG. 13. Leading proton structure function FLPð3Þ
2 in TDIS kinematics [69] at Q2 ¼ 2 GeV2 (a) as a function of x at fixed y ¼ 0.1 and

0.2, for the t-dependent exponential model with ycut ¼ 0.3 (red solid curves), and the t-dependent exponential (blue dashed curves) and
monopole (green dotted curves) models with ycut ¼ 0.2, and (b) as a function of xπ at fixed y ¼ 0.2 for the t-dependent exponential
model with ycut ¼ 0.3 (red solid curves), compared with the SMRS [53] (blue) and GRS [67] (green) parametrizations for the total
(dashed) and sea only (dotted) contributions. The horizontal arrows at the bottom of the panels indicate the reach of the HERA data at
low x, the projected TDIS at Jefferson Lab data coverage at high x, and the region at large xπ where the pion PDFs are constrained by the
πN Drell-Yan data [32].
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For the HERA leading neutron data, since background
processes other than one-pion exchange, such as the
exchange of other mesons and absorption corrections,
are known to play an increasingly important role at large
pion momentum fractions y, we do not attempt to model the
data over the entire range of kinematics. Instead we perform
χ2 fits to determine the relevant region where one-pion
exchange is applicable empirically. Most of the models
considered are able to give reasonable χ2 values for
ycut ≲ 0.5. However, fitting only the HERA data we find
large correlations between the fitted pion flux and pion
structure function parameters, suggesting that it is not
possible to unambiguously extract these independently
of one another.
On the other hand, the combined fits to both the HERA

and E866 data are significantly more restrictive, with
models with t-dependent form factors, such as the expo-
nential or monopole, giving the best descriptions of the
combined data sets over the largest range of kinematics, up
to ycut ≈ 0.3 [14,40,41]. Models with s-dependent form
factors give poor fits, with χ2dof ∼ 2 irrespective of the ycut
value. For ycut ¼ 0.2 all the models with t-dependent
form factor and adjustable cutoffs (exponential, monopole,
Pauli-Villars, and Regge exponential) give good descrip-
tions of the combined data sets, with reasonable values of
the average pion multiplicity, hniπN ≈ 0.3. A slight pref-
erence is found for the t-dependent exponential model,
owing to the good description (χ2dof ∼ 1) obtained over the
largest y range, up to ycut ¼ 0.3. While the restricted y
regions reduce the number of data points available for the
fit, cuts of ycut ¼ 0.2 and 0.3 still provide 123 and 202
HERA data points, respectively.
For the preferred models, excellent descriptions of the

ZEUS and H1 leading neutron spectra are obtained over the
entire range 10−4 ≲ x≲ 0.03 and 7 ≤ Q2 ≤ 1000 GeV2

covered by the data. For parton momentum fractions in
the pion of 4 × 10−4 ≲ xπ ≲ 0.1, the extracted pion struc-
ture function Fπ

2 for these models is rather weakly depen-
dent on the choice of ycut, and indeed on the form factor
model. Compared with existing parametrizations of pion
PDFs, which are well constrained at large xπ , the extrapo-
lation of the GRS fit [67] into the HERA region over-
estimates our fitted results by a factor ∼2, but has a similar
shape, while the SMRS fit [53] is closer to our fit in
magnitude, but has a shallower xπ dependence. Our fitted
result is somewhat smaller than both the phenomenological
parametrizations at xπ ≈ 0.1, which may be due to the
limitations of our simple parametric form for Fπ

2, which is
constructed for the sea region, or because our fit is not
constrained at large xπ by the πN Drell-Yan data.
In the near future, the SeaQuest Drell-Yan experiment

[55] at Fermilab will measure the d̄ − ū difference up to
larger values of x, x ≈ 0.45, which should allow improved
constraints on the models of the pion distribution function
in the nucleon. Beyond that, the tagged DIS experiment

[69] at Jefferson Lab will provide precise information on
pion exchange in leading proton production from an
effective neutron target at kinematics complementary to
the range covered by the HERA and Drell-Yan measure-
ments. This should reduce the uncertainty in Fπ

2 in the
intermediate xπ region, xπ ∼ 0.1.
One may also examine in more detail the k⊥ dependence

of leading neutron (or proton) cross sections, which was
studied in some of the HERA measurements [25] and
will be explored in the TDIS experiment. Comparison of
the unintegrated pion flux with the empirical transverse
momentum distributions could provide a more incisive test
of the momentum dependence of the πNN form factor. In
the longer term, a necessary goal would be to perform a
global PDF fit, in terms of both sea and valence quark
PDFs, to the πN Drell-Yan data at moderate and high
values of xπ , together with HERA leading neutron data at
small xπ , and the new TDIS data on leading proton
production in the intermediate xπ region. We look forward
to these endeavors revealing much more concisely and
completely the partonic structure of the pion and the role of
the pion cloud in the structure of the nucleon.
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APPENDIX A: HESSIAN ERROR ANALYSIS

The fits to the experimental data in our analysis are
performed using standard χ2 minimization to find the
optimal set of fit parameters. To estimate the uncertainties
in the parameters, or in various derived quantities from the
model, we employ the Hessian error technique. The method
is valid for any number of parameters in a given model
(including for the case of only one parameter).
The essential idea of the method is to find a set of

directions in parameter space around the best fit values (p0)
which can be treated as statistically independent. These are
found by diagonalizing the Hessian matrix H, the elements
of which are defined as

Hij ¼
1

2

∂χ2ðpÞ
∂pi∂pj

����
p¼p0

; ðA1Þ

with i ranging from 1 to the number of parameters. The
statistically independent directions (or eigendirections) of
the HessianH are labeled by êi and parametrize the shifts in
the parameter space,
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Δp ¼ p − p0 ¼
X
i

ξiêi: ðA2Þ

The basic assumption in the Hessian analysis is that the
probability distribution P of the parameters p factorizes
along each eigendirection,

PðΔpÞ ≅
Y
i

PðξiêiÞ; ðA3Þ

where

PðξiêiÞ ¼ N exp

�
−
1

2
χ2ðp0 þ ξiêiÞ

�
; ðA4Þ

and N is a normalization constant. One can then perform
the error propagation for a given observable O along each
eigendirection and add the independent errors in quad-
rature. The errors along each individual eigendirection are
given by

δiO ¼ Oðpþ ξCLi êiÞ −Oðp0Þ; ðA5Þ

where, for a given C.L., ξCLi is the boundary such that the
region −ξCLi ≤ ξi ≤ ξCLi is the corresponding C.L. region
for the probability distribution PðξiêiÞ. The total combined
uncertainty for the observable is given by

δO ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i

ðδiOÞ2
r

: ðA6Þ

If the χ2 along each eigendirection behaves quadratically as
a function of ξi, then setting ξCLi ¼ 1 induces a change in
the χ2 by one unit. This occurs, for example, if the model is
linear in the parameters, for which Gaussian behavior
holds. However, for parameters that are weakly constrained
by the data, one does not observe Gaussian behavior.
This method avoids the use of a Δχ2 criterion, which is

sometimes used in the literature for inflating errors when
fitting to incompatible data sets. Moreover, the χ2 can be
treated as an observable, and its shift for a given C.L. can
be quantified using Eq. (A6). In particular, by setting the
C.L. equal to 1σ we can asses whether the errors satisfy
Gaussian statistics.

APPENDIX B: LIKELIHOOD ANALYSIS

In this section we describe our statistical method for
comparing the DOC among models. The method is based
on hypothesis testing using the standard t-statistic, τ,
defined as the log-likelihood ratio

τDAB ¼ 2 ln
LðDjMBÞ
LðDjMAÞ

; ðB1Þ

where L is the likelihood function, D represents the data,
and the models MA and MB are the null and alternative
hypotheses, respectively. For a given model M, the like-
lihood function is proportional to

LðDjMÞ ∝
Y
i

exp

�
−
1

2

�
Di − TiðMÞ

δDi

�
2
�
; ðB2Þ

where TiðMÞ are theory predictions for the observable Di
with uncertainty δDi in a given kinematic bin i. Using this
definition, one can construct the probability distribution
PχðτÞ from a sample of τ values computed from Eq. (B1)
using pseudodata sets fDgχ generated from a given model
Mχ . This is achieved by drawing each data point in the data
set from a normal distribution N ðμ; σÞ, with μ ¼ TiðMχÞ
and σ equal to the experimental uncertainties δDi.
The DOC between any two models can then be

expressed in terms of the overlapping area between their
corresponding t-distributions. In particular the DOC
between the models MA and MB is given by

DOCðA;BÞ ¼
Z

∞

−∞
dτmin½PAðτÞ;PBðτÞ�: ðB3Þ

A compatibility of 100% indicates that the models cannot
be distinguished by the data.
In our current analysis we select the null and alternative

hypotheses to be the models that have the best and worst
descriptions of the data (using the minimun χ2 as a
criterion), respectively, and the DOC is computed with
respect to the best model.
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