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We generalize the Jacob-Wick helicity formalism, which applies to sequential decays, to effective field
theories of rare decays of the type B — K, (— Kn)¢,¢,. This is achieved by reinterpreting local

interaction vertices bI" sCTH#a ¢ as a coherent sum of 1 — 2 processes mediated by particles whose

Hi---Hn
spin ranges between zero and n. We illustrate the framework by deriving the full angular distributions for
B — K¢,¢, and B — K*(— Knr)¢,¢, for the complete dimension-six effective Hamiltonian for nonequal
lepton masses. Amplitudes and decay rates are expressed in terms of Wigner rotation matrices, leading
naturally to the method of moments in various forms. We discuss how higher-spin operators and QED
corrections alter the standard angular distribution used throughout the literature, potentially leading to
differences between the method of moments and the likelihood fits. We propose to diagnose these effects by
assessing higher angular moments. These could be relevant in investigating the nature of the current LHCb

anomalies in Ry = B(B — Kutu~)/B(B — Ke"e™) as well as angular observables in B — K*uu~.
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I. INTRODUCTION

Helicity amplitudes (HAs), as defined by Jacob and
Wick [1], describe A - BC (1 — 2) transitions and have
definite transformation properties under rotation. The key
idea is that the angular and helicity information are
equivalent to each other. Angular decay distributions follow
(e.g. [2-4]) from evaluating the HAs with B and C in the
forward direction, with the angular information encoded in
Wigner D matrix functions, reminiscent of the Wigner-
Eckart theorem.

The intent of this paper is to generalize this method to
decays of the type A — (BB,)C which are schematically
described by local interactions of the form

H ~ (AC),, (B By)!n. (1)

We do so by rewriting the 1 — 3 decay as a sequence of
1 — 2 processes, by inserting multiple complete sets of
polarization states between the Lorentz contractions of AC
and BB, above. This leads to a reinterpretation of the
decay in terms of a sum over intermediate particles of spin
J, where J can range from O up to n depending on the
specific structure of the operators. Symbolically we may
write

AlA = (B,B)C) = 3" A(A = By(= BiBY)C). (2)
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with A4 denoting the amplitude. We refer to this case as the
B-particle factorization approximation. At the formal level,
the main work is the decomposition of the Lorentz tensors
into irreducible objects under the spatial rotation group
(reminiscent of the 3 + 1 decomposition of cosmological
perturbation theory for example).

Important examples of such decays are given by the rare
radiative decays B —» K¢*¢~ and B — K*(— Kn)t " ¢".
Besides evaluating nonperturbative matrix elements to
these decays (e.g. [5—17]), it has become clear that it is
beneficial to consider general properties of the amplitudes
entering the angular distributions (e.g. [18-21]). Our work
can be seen to be part of the latter category.

We evaluate the B — K*)£+#~ angular decay distribu-
tions within the generalized helicity framework developed
in this paper, providing an alternative method to traditional
techniques using Dirac trace technology [22,23]. An
important consequence of the manner in which we derive
the distribution is that it lends itself to the methods of
moments (MoM), which use the decomposition of the
distribution into orthogonal functions to obtain observables
independently of each other. This is a complementary
method to the likelihood fit to extract the dynamical
information from the decay, and was recently studied from
an experimental viewpoint in [24]. We discuss the impact
of including higher partial waves in both the (Kx)- and
especially the dilepton-system. The latter give rise to
corrections, in the form of higher moments, to the standard
form of the angular distribution used in the literature. The
sources of higher dilepton partial waves are higher spin
operators and electroweak corrections, both of which we
discuss qualitatively. The two sources can be distinguished
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by their different behavior in higher partial moments. We
encourage experimental investigation of higher moments
from various viewpoints. In particular, we discuss how
higher moments can be used to diagnose the size of QED
effects in B — K£T¢~ (with £ = e, u) and test leakage of
J/W-contributions into the lower dilepton-spectrum. Both
are of importance in view of Ry as well as the angular
anomalies in the low dilepton-spectrum, which have
recently been reported by the LHCb collaboration in
[25] and [26,27] respectively.

The paper is organized as follows. In Sec. II the
methodology is introduced ending with a formal expression
for the fourfold decay distribution in terms of rotation
matrices and HAs. Specific angular distributions for
B — K¥¢,7,," with detailed results in appendices C
(and a Mathematica notebook in the arXiv version [29])
and D, are given in Sec. III. The method of total and partial
moments is presented in Sec. IV. Section V contains the
discussion of including higher partial waves: a qualitative
assessment of higher spin operators and QED corrections is
presented in subsections VB and V C respectively. The
relevance of testing for higher moments is emphasised in
subsection VD. The paper ends with conclusions in
Sec. VI. Additional material, such as the leptonic HAs
and a few brief remarks on A, — A(= (p,n)z)t\t>, is
presented in Appendices A3 and E respectively. In
appendix B we provide the kinematic conventions for
computation of the angular distribution by the sole use
of Dirac trace technology.

II. GENERALIZED HELICITY FORMALISM
FOR EFFECTIVE THEORIES

We first review the standard helicity formalism in Sec. II
A, and qualitatively apply it to sequential 1 — 2 decays in
Sec. II A 1, specializing to the spin configuration relevant
for our decays at the end. In Sec. II B the formalism is
extended to include decays like B — K, (= Kn)t\t,

described by effective field theories for b — s#,¢, tran-
sitions. The framework can be straightforwardly applied to
the entire zoo of semileptonic and rare flavor decays such
as By » K*¢v, B — DY ¢v, D — (z,p)uu, D = (7, p)uv,
K — muy etc., and can also be extended to include initial
particles with nonzero spin.

A. The basic idea of the helicity formalism
and its extension

The discussion in this section is standard and we refer the
reader to [2-4] for more extensive reviews, as well as the
pioneering paper of Jacob and Wick [1]. In a 1 — 2 (say

'"Throughout this work, we use nonequal leptons £; # Z,, in
order to accommodate semileptonic decays of the type B — pfv
as well as potential lepton flavor violation [28], motivated by the
Ry measurement.
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A — B;B,) decay a particle of spin J, and helicity M,
decays into two particles of momentum p, and p, with
helicities 4; and 4, respectively. In the center-of-mass frame
(py = —p») the system can be characterized by the two
helicities and the direction (i.e. the solid angles € and ¢).
By inserting a complete set of two-particle angular momen-
tum states the corresponding matrix element can be written

A(A - BB,)
- <6,¢,11,12|JA,MA>
= 0. b A Dol jom Ay Do) o, Ay Dol g M)

J.m

= (0.0, A1 M| Ja My, 2y, 20) (T, Mg, Ay, 23| T 40 M y)

/2047 s Ia
i DMA.xl—xz(‘ﬁ*e-*l/)) Aty i

(3)

as a product of Wigner D-functions and a HA AX;A 4,2, The
Wigner matrix is a (2J4 + 1)-dimensional SO(3) repre-
sentation in the helicity basis. The essence is that the
distribution of the amplitude over the angles is then
governed by the rotation matrix as a function of the
helicities. In practice one only needs to compute the HA.

The process B — J /¥ (— ¢1¢7)K*(— Knr) constitutes
a well-known example of a sequential 1 — 2 decay where
the formalism can be applied [30]. The idea of this paper is
to extend this formalism to the case where the #,7,-pair
emerges from a local interaction vertex O;; NEFib?ij
with effective Hamiltonian H*" ~3~,.C;;0,;. This is
achieved by reinterpreting the local interaction vertex as
originating from a sum of particles whose spin depends on
the number of Lorentz contractions between the I7;;
structures. Elements of this program have appeared in
the literature, e.g. [31] for B — K;#7¢~, but we are
unaware of a systematic presentation that allows the
incorporation of a generic effective Hamiltonian as well
as other decay types.

1. Helicity formalism for By,
= K;, (= KiK>)y; (= 6172)

Let us consider the following sequential decay
By, = K, (= K\Ky)y, (= £163) (4)

where Jp, J, and Jg denote the spin of the particles B, y;
and K ;. The notation is close to the main application of this
paper but we emphasise that at this point the methodology
is completely general. Assuming the decay to be a series of
sequential 1 — 2 decays the amplitude can be written in
terms of a product of 1 — 2 HAs times the corresponding
Wigner functions
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A(QB’ Qfﬂ QKMB’AK] 7/1[(2?/11’/12)

N —Jx
E D" i Q80 D3 o (K i,
Wk

_‘,V
x D3, (Qe)L5, 4, - (5)

where the A; are helicity indices, and
llf = /11 - /127 (6)

is a shorthand that we use frequently throughout the paper.
The HAs H, K and L correspond to the transitions
By, = K;v;, K;, = KKy and y; — £, respectively.
The helicities of the internal particles y; and K; have to be
coherently summed over. The Wigner D-functions
D), (Q=(a.p.y)) = (jm'le”™e”Pre | jm) — (7)
are irreducible SO(3)-representations of dimension 2j + 1.
The J; are the generators of angular momentum, and the
states |j, m) carry angular momentum j and helicity m and
are orthonormalized (j, m|j’, m') = &;;6,,,/. To avoid pro-
liferation of indices we denote complex conjugation by a
bar instead of the more standard asterisk.

Adaptation to Jp=0 and K=K and K, ==
In order to ease the notation slightly we move straight
to the case B — K,(— Kn)y, (= 0\05).?

J5=0
D3 =0,2,—Ax ()

The relation

= 80,2, implies equality of helicities
A=1, = Ag. (8)

One may therefore reduce HMK — H,, which is the

quantity known as the HA in the B — K*/ "¢~ -literature
and carries the nontrivial dynamic information. The HA
’Cﬂk,,/lxz reduces to a scalar constant (denoted by gk, k)
since K; — K, K, — x are both scalar particles. The third
HA L, ,, depends on the interaction vertex of the leptons,
but is trivial to calculate once the interaction is known. We
may rewrite the amplitude (5) as

A(B = K (= Kn)y, (=

NZD

p—

%))
M (Qf)AM e 9)

where the angles, depicted in Fig. 1, are Qg = (0, 0, 0)
and Q, = (¢,,0,,—¢p,). Note, the passage from D to
D-functions from (5) to (9) is related to passing from B
to B.

*We choose B — K ,£,7, transitions as the main template for
the results in this paper. Such transitions are governed by the
b — s Hamiltonian, which is the standard in the theory literature
and is used to define the Wilson coefficients. In the more
conceptual sections we shall refer to B - K¢;£,-transitions.
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FIG. 1. Decay geometries for B — K*#,#, (above) and B —
K*¢,¢, (below). In both cases 7, = ¢, £, = £~ denote the
negatively charged lepton. The conventions are the same as used
by the LHCb collaboration in [32] (cf. Appendix A therein).
Comparison to the convention used by the theory community can
be found in Appendix C 2. The pictures are slightly misleading
in that the angles 8, x are drawn in the rest frame of the lepton-
pair and the K*-meson. For decays which are not self-tagging,
such as By, B, — ¢(— K*K )uTpu~ at the LHCb, the angles
07,0k, ¢) > (m — 0y, — O, 2 — ¢p), and one can only mea-
sure the sum of both decay rates [second equation (C6)].

In the lepton-pair factorization approximation, defined

more explicitly in the following section, the amplitude
J

A/l,y/ll,/lz
leptonic matrix elements. The angle ¢, is the helicity angle
and is usually called simply ¢. Before commenting on
different conventions of the angles we quote the fourfold
differential decay

~HL) 5| J, is the product of the hadronic and

d4
~ Al? ~ 10
dg?d cos 6,d cos Oxdep ;;' [~ (10)

1/2

J J
Z A WA D Q)DL ()

Ady=—1/200=]J,

J, =,
X Dﬂ,ﬂ/(gf)D,l’ ﬂf(Qf)’ (11)
in terms of amplitudes and Wigner D-functions. For the
angles we use the B — K*£¢ decay as a reference and use
the same conventions as the LHCb collaboration [32]
(Appendix A), which differ from those used by the theory
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community. More precise statements, including a conver-
sion diagram, can be found in Appendix C 2.

B. Effective theories rewritten as a coherent
sum of sequential decays

In this section we give the formal steps to derive the
expression of the angular distributions. The reader inter-
ested in the final result can directly proceed to Sec. IIL.

The amplitude (9) is of a completely general form for the
d_ecay Yhere 7, is an actual particle of spin J,. In B -
K*(— Kr)¢ ¢, a part of the amplitude is in this form
where the photon corresponds to the intermediate state
(y1 = 7). In general there are effective vertices, so-called
contact terms, where the intermediate particles are not
present. In the interest of clarity we quote the effective
Hamiltonian for b — s£7°:

ff __ freff
He = ¢ He

4GF a
== — ViV,
CH \/§4ﬂ ts V' tb
AT = (C;0, + C.0O}). (12)
i=V.AS.PT

Above G is Fermi’s constant, « the fine structure constant,
Vip are Cabibbo-Kobayashi-Maskawa (CKM) elements
and the operators are

Os(p) = 5,.b¢(ys5)C

Oy(a) = S1.7*by,(15)¢.
Or =5,6"bf0o,,t, (13)

where O' = Ol _ ., the labels refer to the lepton

interaction vertex, g,z = 1/2(1Fys)q, ¢, ¢ = 1, &,
for different lepton flavors and a few additional
relevant remarks deferred to Appendix A 2. In passing
we add that the notation Og(jg) = Oy(y) is more
common throughout the literature. In the case where
electroweak corrections are neglected at the matrix
element level one may factorize the hadronic from
the leptonic part. We refer to this as the lepton-pair
factorization approximation (LFA) (B-particle factoriza-
tion approximation in the introduction). Schematically
(12) is written as a product of a hadronic part H and a
leptonic part £ with a certain number of Lorentz
contractions between them:

No N, N,
H ~ 2}1%“ + ;Hﬁﬁ’; - 2}1;1,,25’;”‘2. (14)
a= = c=

The adaptation from £Z — ¢£,£, is trivial and will not be
spelled out explicitly.

PHYSICAL REVIEW D 93, 054008 (2016)

The sum over a, b and ¢ extends over operators with 0,
1 and 2 Lorentz contractions between quark and lepton
operators. In the example of CyOy = H, L' we would
have H, = Cy5s.y,b and L' = Zy*¢. On a formal level
we might think of Oy(Oy) as originating from inte-
grating out a vector and a scalar particle, in the sense
that the Lorentz contraction over index u can be written
as the sum of products of a spin-one and a timelike
spin-0 polarization vector. This is expressed by the
well-known completeness relation (e.g. [18,23,31])

=) W@ ()Gu,
AN E[1£0}
G,y = diag(1,—1,—1,—1), (15)

where the first entry in G,y refers to A =1 =1t and an
explicit parametrization is given by

w'(£) = (0,£1,,0)/v2,
@(0) = (¢:,0.0,g0)// ¢*.

(1) = (60.0.0..)/\/ % (16)

which is consistent with the parametrization ¢* = (g, 0,
0, ¢.). The polarization vectors w(+, 0) are compatible with
the Jacob-Wick phase convention [1] (cf. Appendix B and
the corresponding footnote for further remarks). Let us
pause a moment and emphasise that intermediate results do
depend on the convention, which enters the definition of the
HAs, and this dependence has to be taken into account when
comparing to HAs appearing in the literature. We choose the
convention in [18], since it is compatible with the Condon-
Shortly convention that is standard for Clebsch-Gordon
coefficients and Wigner matrices (e.g. [33]).

We may think of @ as being associated with the Lorentz
group SO(3,1). In the rest frame g, = 0 the timelike
polarization tensor transforms as a scalar under the restric-
tion of SO(3, 1) to spatial rotations SO(3)."* For an effective
operator with n Lorentz indices the relation (15) can be
inserted n times to obtain a HA with n helicity indices.
More precisely, the direct product of SO(3, 1) polarization
tensors decomposes into irreducible representations of
SO(3) polarization tensors €’ , of spin j=0,....n
and helicities A = —j,...,j. Using the expressions in

Eqgs. (A8) and (A9) the analogue of A/{.,r/h.ﬂz in (9) on each
spin component can be written as’

4Formally the branching rule for the Lorentz four vector
(1/2,1/2) is (1/2,1/2)50i3,1ylso3) = (14 3)so(3)-

In the notation used throughout the literature H' =
(H)ep® = (Hy)w, (1) is known as the timelike HA [23,31].
By virtue of the equation of motion the timelike HAs can be
absorbed into the scalar and pseudoscalar HAs, cf. Appendix C 5.
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(H (L) + (Hy) (L8 enex® + (HE YL Vel &) T, =0
Ay = 8 (HINLD ek e’ + (HE WL )elih el J,=1 (17)
(HUN LY e J,=2

where summation over Lorentz indices and the number of
operators in (14) are both implied, the scalar product *“-” i
detailed in (A8) and

(HG ") = (K, () |[HZ """ |B),
(LG = (€1 (A1) 2 ()| L4 710), (18)

are the leptonic and hadronic matrix elements. The
helicities in (17) are the helicities of the outgoing
particles of the HAs, with A for K,(1) in H®~%x and
Ao = A — 2y for £,(2)05(4,) in L7712 This is the
main idea of the formalism: the angular dependence
from the ingoing to outgoing particle is governed by

the Wigner D-function, e.g. €7+ —_“ (Q,)e’ for

L=t ‘(’1‘)'“%’12), which is inherent in (3). The general-
ized HA then becomes essentially a sum over all spin
components J, necessary to saturate the Lorentz indices
in the effective Hamiltonian,

A(B - K, (= Kn)?¢, ?)

min(J,.Jx)

=0 =—min(J,.Jk)

DI (Qk)D3, (@) A 5,
(19)

where the overall factor follows from (3). A schematic
representation of Eq. (19) is given in Fig. 2. The
differential decay distribution (10) is replaced by a
similar expression

K(Ax =0) l1(A\r)

K;(\) - ¥, (A)
Lz

/ Hy (B — K,)

W(/\WZU) fz()\z

A x Z/\"Jw

FIG. 2. A diagrammatic interpretation of the process, Eq. (19),
used to set up the formalism. The decay to two leptons is treated
as being mediated by an effective particle y; of spin J,. The
factor gk, k, has no dependence on helicities and depends only on
the dynamics of the K* decay.

4T NZ|A|2 2JK+ Z
dq*dcosO,dcosOxdep P v

(QK)D/M (Q/)D /l’lf(gf)’
(20)

Jy 7
XA A, 4, D (QK)D

with additional coherent sums over the spins J,

and likewise for the sum over Jj, 4.

III. ANGULAR DISTRIBUTION
AND WIGNER D-FUNCTIONS

We now apply the method introduced in the previous
section to decays governed by the b — s¢,7, effective
Hamiltonian (12). First we consider the decay
B — K*(— Kr)¢,¢,, and then in Sec. IIIC we present
similar results for B — K¢,/,. The related decay
Ay = A(— Nn)¢,£,, where N = (p,n), can also be
treated within this formalism, and will be briefly considered
in Appendix E.

TABLE 1. The definitions of the I'¥ and their associated spin
J,(X). The contributions J, (X) = 0, 1 giverise to the S,- and P,-
wave amplitudes respectively. The basic polarisation vector w, is
given in (16) and the composed ones can be found in Eq. (AS).
The precise value of the helicity index Ay is specified when the
leptonic and hadronic HAs are defined in Egs. (A13), (C14),
(D4). Note that the additional structure I'’s = wYs can be
absorbed into the other tensor structures due to the identity
cPys = —%e”ﬂ”"nﬂy (with the €p1p3 = +1 convention for the
Levi-Civita tensor). Timelike contributions y*[ys]w,(f) can be

absorbed into I'S"? respectively, as detailed in Appendix C5.

Above 6, = i/2[y,.7.,]-

rsiPl Vil 7ir]
rx Ly[rs] 7" [rslw,(Ax) oM wp [l
T,(X) 0 1 1
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A. E - K*(—> I?ﬂ)flzz
The use of the effective Hamiltonian (12) in the LFA
restricts the partial waves to J, =0, 1 terms in equa-
tion (17). The discussion of higher partial waves
(J, 2 2) is deferred to Sec. V. The matrix element for
(12) is then given by the sum of an S,- and P,-wave

amplitude (with the subscript ¢ referring to the partial
wave in the angle 6,):

+ > AL nDio(@Q)D),, Q)] (22)
A==%,0

where the hat denotes the effective Hamiltonian without
the cp prefactor (12). There is no D-wave since the
two-indices in the tensor operator (12) are antisym-
metric and therefore in a spin 1 representation (cf.
discussion in Sec. VB on higher spin operators). The
K* has spin 1 and is therefore always in a Pg-wave in
the Og-angle, with analogous meaning for the K sub-
script as before. Above we have used Dj, () = &y,
to impose J, ;, on the scalar part of the matrix element.
The principal objects to be calculated are the ampli-

tudes Aﬁa,,zz' For H* (12) the S,- and P,-wave

amplitudes (that is to say A° and A' respectively)
are written as

0
A, Ao
Au Jy T

=HL; , +HLY
—HYLY , —H{L}, +HILD, —2H,'L), |

(23)

with the relative signs and factor of 2 emerging from

the (double) completeness relation (A3), and the
leptonic and the hadronic HAs are
Hf = (K*(2)[sT*b|B).

551(1/12 = (£1(h)£2(%)|£T%2|0), (24)

the expressions in (18) contracted with the correspond-
ing polarization vectors; explicit expressions for the I'’*
are given in Table 1. Explicit results, as well as a more
precise prescription concerning TI'X, are given in
Appendices A3 and C5 in Egs. (Al13) and (Cl4),
respectively. Squaring the matrix element in (22),
summing over external helicities and averaging over
final-state spins, one obtains an angular distribution

PHYSICAL REVIEW D 93, 054008 (2016)
32 d‘r
3 dg*dcos@,dcosOxdep
3271'
TN M1 (25)

s

IK*(qQO'K’QL”) =

with Iy« being a shorthand and 327z/3 is a convenient
normalization factor. The factor N/,

Vi /Iy

26”3m?éq2 ’

N = |CH|2Kkins Kiin = (26)

is the product of the prefactor resulting from the
effective Hamiltonian cy (12) and the kinematic phase
space factor. The matrix element is defined in (22).
Above g = A(m%, m%.,q*) and ﬁy*zl(qz,mﬁl,mé)
where A(a,b,c) is the Killén-function defined in
(B1) and related to the absolute value of the three-
momentum of the K* and the lepton pair by (B2).

1. Angular distribution

The squared matrix element initially contains a plethora of
different products of four Wigner functions. However, these
correspond to pairs of direct products that can be reduced to
single Wigner functions by the Clebsch-Gordan series

it
j Jjl - il
D{"”(Q)Dé,q(g) Z Z C]\/}mp N]anJ (Q)
J=lj—l| M= N=—J
(27)
Applied separately over the angles Qg = (0,0k,0) and
Q; = (¢.0,,—¢), along with the identity D! (Q)=
(—1)m=mp! _ (Q), this allows the angular distribution
to be written in the compact form

1629, Q)
=Re[Gy" (479" + Gy (4)9" + G (47
+ G+ G ()R + G (¢1)9
+ G0 + G + G, (28)
where the superscript (0) is a reminder that only S,- and P -
wave contributions were used to describe the amplitude (22).

The angular functions  are given in terms of Wigner D
functions

Qlf' = Q5 (2.0,
= Diﬁ,o(QK)DiZ,o(Qf)
i I,
= D, o(Qk)D,, o(€2). (29)

The variables Qj = (¢, 0x, —¢) and &, = (0,6,,0) form
an angular reparametrization that will prove convenient when
we discuss partial moments. The label /g corresponds to the
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(Km)-system, I, to the dilepton system, and the common
index m is the azimuthal component ¢ of either partial wave.

The observables Gf,’f ! are functions of q2 and the relation to
the standard observables in the literature is given in Sec. I1I B.
The explicit Wigner D-functions used above are given by

Djy(Q) = 1,

Dj,(Q) = %(300529 —1),
D3,(Q) = \/gezi"”sinzé’,

D} ,(Q) = cos 6,

Di{,(Q) = —%ei"’ sin6,

3
D?,(Q) = —\ /=~ sin 26, (30)

o]

and can be related to spherical harmonics Y, (0,¢) or
associated Legendre polynomials P, (x) as

4 _
Y, (0
21+1 lm( 7¢)

:

D;,0(¢.0.—¢) =

[—m)! :
T m !le(cos O)e~im?.  (31)

|~
— | —

We comment briefly on four features of the angular
distribution (28), all of which are encoded by the double
Clebsch-Gordan series (27) but which can also be seen to
emerge from the underlying physics:

(1) The second helicity index of all Wigner D-functions
in the angular distribution is zero. The latter is the
difference of the helicities of the final-state particles,
which is zero since these helicities are summed
incoherently, (4 —4,) — (4, — 4,) = 0.

(i1) The first helicity index m is identical in all pairs of
Wigner D-functions appearing in the angular dis-
tribution. This index contains the helicities of the
internal particles, summed coherently. One can also
see this as a property of the freedom of defining the
reference plane for the angle ¢.

(iii) The range of the indices /g and [/, is fixed between
the range 0, ...,2max[J/x /]. Including only J, <1
contributions emerging from the dimension-six ef-
fective Hamiltonian (12) hence imposes 0 < [, < 2,
and likewise Jx = 1 imposing 0 < [ < 2.

(iv) The absence of angular structures with [ =1 is
specific to this decay, due to the final state consisting
of (pseudo)scalar mesons.

The first three features are universal to such decay
chains and apply even if some of the particles
involved are fermions, for example in the decay A, —

A(= (p,n)n)¢,¢,, see Appendix E.

PHYSICAL REVIEW D 93, 054008 (2016)

B. Relation of the G to standard
literature observables

The functions G£" , omitting the explicit g>-dependence
hereafter, are defined in terms of the standard basis of
observables g;(¢*) parametrized in (C1) by

4
Gg’o = 5(3(916 + 2913) - (920 + 2925))’

16
G8’2 = (920 + 292s>7

4
Gg'l = = (96c + 2965)- 9

3
4

Gy’ = 9 (6(g1c = 915) = 2(92¢ — 925)):
8 32

G =3l —ge) G = e =)
16

32 32
Gl'=—%Gs,  G'= ?94, Gy = 793’ (32)

V3

where we have defined G; 45 = (9345 + ig98.7)-

The twelve quantities (32), keeping in mind that the last
three are complex, have been rewritten in several ways in
the literature. A frequently used form is the set of
observables given in [34], constructed to be insensitive
to form factors. In the notation of LHCb [26], which
includes their, and therefore our, an%ular conventions, the
observables are given in terms of G, e by6:

(Re [G%z} Dbin

(P1)binlLHCy = ,
1/bin [LHCb Nbin
<P2>bin|LHCb = W’

{Im[G5°]) iy
2J\/.bin
(Re[G1”]in
(P4 DbinlLuch = W,

(Im[G1])pin
(P’ Dbin|LECH = W,
{Re[GT"])pin
2\/§N{)in 7
(Im[GT']) iy
2\/§N{3in ’

<P3>bin|LHCb =

<P5/>bin|LHCb =

<P6/>bin|LHCb =

where we defined

The extension of these relations to CP-odd and CP-even
combinations, in the spirit of [35], is straightforward, see Sec. IV
of [34].
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(@) = / dPA(P),

bin

as the integral over g2 bins of the observable of interest, and’

1
NbinE4<G8‘2_§G%2> s

bin

1
bin = \/_<G8’2 - iG(2)2> (Go? + G )y (34)
bin

Three other combinations of the Gﬁ,’f‘l‘” can be related to the

branching fraction ‘;iqz, the forward-backward asymmetry
Agp and the longitudinal polarization fraction F; [36]:

dr 3, 00
<255>b = 760 Dbins

<AFB>b' |LHCb = l <G8’l>bin
2 <G8'O>bin

(Fp ) = (Go”)pin + <GS’0>bin.
o 3(Go " Dbin

(35)

The observables in Egs. (33), (34), (35) correspond to the
twelve g;. The definitions of the P;’ above correspond to
those used by LHCb [26]; we give the correspondence to the
observables defined in [34] in Appendix C 2.

C. E - I?flzz
Having shown the B — K*¢,¢, HA analysis in detail we
are going to be rather brief on B — K¢,7,. Skipping the

step in (5) we directly write down the S,- and P,-wave
amplitudes [analogue of Eq. (23)]:

‘Ag,ihiz = hsﬁflﬁz + hP,Cf] Ao’
T,
Afl),ﬁl’iz = —hvfx A hA‘Cfl A2 + hT'C/]{l A 2hT‘£/11~iz’
(36)

where the Lfl ,, are the same as in the B — K¢/, decay,
and the hadronic HAs are taken over the same set of
operators, but defined instead for B — K transitions. We
again refer the reader to Appendix A 1 for a clarification of
the signs and factor of 2 that emerge from the (double)
completeness relation.

The reduced matrix element is then the sum of the S,-
and P,-wave amplitude

Mﬂl.ﬂz (Ag,/ll,/lz‘szhﬂz + A(l),ll,izD(l),/lf(Qb’»’ (37)

1
- Varn

"In terms of the g;(¢?) basis, Ny, = % (9o, )i and N, =

16 bin
3V _<92c>bin <g2s>bin'

PHYSICAL REVIEW D 93, 054008 (2016)

where Q, = (0, 6,,0) in this case. The angular distribution
(with 0 < 0, < =) is given by squaring the matrix element

dr

I1x(q*,0,) = ———
k(a7 0c) dq*dcos b,

= N> 1M, P (38)

Ao

Using (37) one obtains

1Y =GO (g?) + G (2D} o(Q/) + G (4*) D3 4 ()
— GO(%) +GD(g?) Py (cos6,) + G (q*)Py(cosby)

1
=G(¢*)+ G (g*)cost, + G (q%)5(3cos’0, — 1),
(39)

where we used P;(cos6,) = D)) ,(Q,) and D{,(Q,) = 1.
For convenience, we have given results in terms of the
explicit angle 6, using equation (30). The superscript (0) is
again a reminder that the restriction to /[, <2 is a
consequence of only including S,- and P,-waves in
(37). The explicit functions G*?), whose ¢*>-dependence
we omit hereafter, are given in appendix D in equation (D2)
in terms of HAs.}

With respect to the parametrization of the angular
distribution used in the experimental community, [38]

ll“dcf)l;ef :2(1 —Fy)(1—cos?0,) +%FH + Agg cosfy,
(40)
the relationship to the G') in (39) is given by
I =2(G),
(1)
App = oy 2<<GG(0)>> )
Fy = <G(O)<>GJ<:>‘><>G(2)> : (41)

where (X) = [dg?X denotes the integration or
appropriate binning over g*> and ¢ = £1 depending on
the conventions.

$The observables G'~) and the angular coefficients used in the
literature [37] are related by a(¢q?) = G —1G®), b(¢?) = G

and ¢(¢%) =2G? where 1Y = 4+ beos, + ccos? 0.

In our conventions by definition ogyy = 1 and the translation
to the LHCb conventions [38] are as follows 6gyy = 6(B*) and
oz = —o(B°, B®). The charged and neutral decays are different
because the neutral mode, being observed in Kj, is not self-
tagging. Comparing with the theory paper [37] we find oGz =
—oppp for both charged and neutral modes.
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TABLEIL. Moments M5 in terms of G5 as defined by Eq. (45) with factor of proportionality clle evaluated

with (46).

Ie s 0.0 | 0.1 | 0.2 1 2.0
My Gy 3Gy 5Gy 5Go

121
ISGO

122 1 20 1 22 122
25 Go 30 01 5001 5002

IV. METHOD OF TOTAL
AND PARTIAL MOMENTS

The MoM is a powerful tool to extract the angular
observables G by the use of orthogonality relations. In
B physics, for example, the method has been applied to
B — J/V(— ¢£)K*(— Knr) type decays [30] during the
first B-factory era.

In experiment the angular information on B — K*£¢ has
been extracted through the likelihood fit method, at the
level of 1 <K03 [27], and it has also been suggested for analysis
at the amplitude level [39]. A possible advantage of the
MoM over the likelihood fit is that it is less sensitive to
theoretical assumptions. More precisely, one can test each
angular term independent of the rest of the distribution.
Generically the fourfold angular distribution can be

expanded over the complete set of functions Qﬁ,’,"lf 29)

min(lg,l;)
I (6% Qx. Q)= > Re[Gt " Q" (0., 04, ),

Ig. 1,20 m=0

(42)

of which the distribution / 5?) (28) is a subset. Note that the
sum over m does not need to be continued for negative
values since I« is real-valued. By using the orthogonality
properties of the Wigner D-functions (e.g. [40]) with

Q= (a,p.7)

1 2 2z . —
/ dCOSﬂ/ da/ dYDin.n(Q)Dia.q(Q)
—1 0 0
872

=——0610m0

2j+ 1 (43)

nq»

the MoM allows us to extract the observables Gi,’{’l’) from the
angular distribution. In particular one can test for the absence
of all higher moments and therefore test very specifically the

assumptions made when deriving the distribution / 5?) (28).
We refer to this method as the method of (total) moments or
simply MoM with results given in Sec. IV A. Integrating over
a subset of angles, referred to as partial moments, is discussed
in Sec. IV B. In the latter case orthogonality does not hold
in the generic case and different G,l,’,( ! enter the same moment.

Elements of the MoM have previously been applied to
A, = A(= (p.n)m)¢,£, [41] and more systematically to
the other channels discussed in this paper, crucially
including a study of how to account for detector-resolution
acceptance effects, in [24]. Our study differs from the latter

in that we start at the level of the HAs, and obtain the
distribution (42) through a direct computation, whereas
the other studies proceed backwards and directly expand
the decay distribution in the orthogonal basis of associated
Legendre polynomials. Our approach is therefore advanta-
geous in that it provides additional insight, by clarifying the
structure of the decay distribution (28) and what type of
physics goes beyond it. This is an aspect we return to in Sec. V.

A. Method of total moments

In order to condense the notation slightly we define the
scalar product

1 [t 1
(F(Q)]9(2))g,0,0 Eg/l dcos GK/I dcosf,

x / " TRy, (44)

normalized such that (1|1) = 1. Using (f(€2)[9(2))g,0,4

we can thus extract all observables Gis™'* separately from
each other, by taking moments'’

M = (Q | I (4%, QK. Q0))o,0,4 = kG, (45)

where

ol _ 1+ 3,0 ‘
" 221 +1)(21, + 1)

(46)

Using the equation above the terms in (28) are given in

Table II. Furthermore, the orthogonality condition also

implies that
M =0,
M, =0,

V m and Jj >3,

Y j, m. (47)

j=3 or

Hence the higher and /[y = 1 moments vanish, providing a

very specific test of the theoretical assumptions behind 7 5?)

B. Partial moments

The results given previously show how to extract the

individual GX%'7. We propose the method of partial
moments whereby one integrates only over a subset of
angles. The distributions might be regarded as generaliza-
tions of uni- and double-angular distributions as these in

'"The moments M ft{’li and the quantities S;, ;, ,, introduced in
[24] are related as follows: SEGS’OSWK,,,, =Glle = pplsle /i le,
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turn can be viewed as partial moments with respect to unity.
The method is effectively a hybrid between the likelihood
fit and the total MoM. To this end we define the further
scalar products

F(@Na(@oy =5 | deoso [ agrig(@).

(f(2)|9(2))g,0, E%/—i dcos O /_1 dcosO,f(Q)g(Q),
(48)

again normalized such that (1|1) = 1. The orthogonality
relation (43) can then be rewritten as

1

(D} o(@)D}0 ()0, = 57 OB (49)

1. Integrating over 0,.¢p: Kk (0 )-moments
The partial moment over 6, and ¢ is defined and given by

ki (0x) = <fo§ o( Q) Ik (4%, Q. Qf)>9/(/)

L+ Gli!
D K 4
2020, + 1) 00,1 1) (50)

l>0

Assuming the distribution (28) (Ix = 0, 2) there are six
nonvanishing moments

kS (0x) = Go¥ + G(Z)'OD%,O(QK)

1
+3 (3cos?0x — 1)G5°,

(=)

B

I
S

ky(0x) = (Gg’l + G(Z)’ID%,O(QK))

b)l»— U.)\»—

1
<G° L4 3 — (3cos20x — 1)G§~‘> ,

(Go? + G5 D5y (@)

Ul|>—

k5(0k) =

1

1
=3 <G8’2 +3 (3cos?0x — 1)G%‘2>,

-1 /3
- \/;sm26,(G2"1,

1 -1 /3.
3 (0g) = 1OG“D%O(QK) To \/%sm2t9KG%2,

1
K1(0x) = ¢ G1' Dl (Qx) =

1 /3
k3 (0x) —1—0G22D o(Qx) = E\/%sinzeKGz'z, (51)

where we used Df) (Qx) = 1. As was the case in the MoM,

with respect to the distribution / 5?) higher partial moments

vanish

PHYSICAL REVIEW D 93, 054008 (2016)

Ki(0g)=0 Vi,>3, Vm. (52)

2. Integrating over O, ¢: I (0,)-moments

The partial moment over 6 and ¢ is defined in complete
analogy with the previous partial moment (50) by,

1 (0,) = (Dl o( Q)| (¢, . >>e,<¢

1+5mo l l
= D' (53
2Q2I + 1) ; 53)

where we make use of the reparametrization of angles given
in (29). Again assuming the distribution (28) (I, =0, 1, 2)
there are four nonvanishing moments

15(6,) = G + Go' Df () + Go* D ()
1
= G)° + cos0,G)" + 3 (3cos?0, — 1)Gy?,
1
[§(0,) = 5 (G5 + Gy Dio () + Gy* D o(€2)))
1 1
=z (G%‘O +cos0,Gg' + 3 (3cos?0, — I)G%)'z),
1
11(0,) = T —(GI'D] (@) + G° D} ()
N (sin 0,G3" + \ﬁsin 20,G**
10\/5 1 4 1 ’
5(0,) = G2 2D3 o (Q) = ! \f sin%0,G3* (54)
2 10 10V8

where we used Df(€2,) = 1. With respect to the distri-

bution / ? higher partial moments vanish

[50,)=0, Vig>3, VYm and Ig=1 Vm.

(55)
xde o (@h)-moments

3. Integrating over Ok, 0,: p

Finally, we can con31der prOJectmg on to moments of the
form D!, ((Qg)D!, (€,) with respect to O, 6,. In this

case the full orthogonahty relation (43) no longer holds, but
due to (27) there exist selection rules as to which of the

G5 can contribute to the partial moments

Pi,'f,,lf/ (¢)E<DZ<,0(O’QK,O)D£5,O (0.0,.0)[1x-(4*.Qk.22)) g0, -

(56)

. 0 .
Assuming IE() a few nonvanishing moments are
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PP = £ (6G3° + Rele#G3?)),
PRE$) = 55 (6GY? — RefeGE2)),
P =G PR) =g
P = Rl G p)

A consequence of the fact that the full orthogonality of the
Wigner functions has been lost is that higher moments
contain lower G-functions. As an interesting example we
quote

4
9\/— _9\/mg66"

This quantity is of some interest since gg. =0 in the
Standard Model (SM), as it involves scalar and tensor
operators at the level of the dimension-six effective
Hamiltonian (12).

(GOI 21)

Pyo(#) = (58)

V. INCLUDING HIGHER PARTIAL WAVES

The compact form of the angular distribution / g?) (28) is
a consequence of the LFA and the restriction to the Pg-
wave in the (Kz)-channel. In this section we elaborate on
the consequences of going beyond these approximations.
The double partial wave expansion is outlined in Sec. VA
followed by a qualitative discussion of the effect of higher
spin operators and the inclusion of electroweak effects in
Secs. V B and V C respectively. In Sec. VD we emphasise
how testing for higher moments can be used to diagnose the
size of QED corrections. Throughout this section we
change the notation from 7,7, — £*¢~ for the sake of
familiarity and simplicity.

A. Double partial wave expansion

In order to discuss the origin of generic terms in the full
distribution (42), it is advantageous to return to the
amplitude level. Somewhat symbolically we may rewrite
the amplitude (19), omitting the sum over J,, as

A(B = K;(A)(—= Kr)tT(4)¢ (1))

= A5 (@)D, () (59)
with 4, = 1; — 4, as defined in (6). The two opening angles
0k and 0, allow for two separate partial wave expansions.
The partial waves in the Og- and 6,-angles are denoted by
Sk, Pk, ... and S;, Py, ... respectively.

Throughout this work we mostly restricted ourselves to
K; = K* thereby imposing Jx =1 i.e. a Pxg-wave. The
signal of K* is part of the (Kz) Pg-wave. The importance

1 .
= gRe[e_"/’G%z].

PHYSICAL REVIEW D 93, 054008 (2016)

1
) ="
Poo(d) =

1 )
(663" Rele 0632,

——(6G2% + Re[e 2 G2?)),

(57)

of considering the Sg-wave interference through K(800)
[also known as k(800)] was emphasized a few years ago in
[42]. The separation of the various partial waves in the
(Kr)-channel is a problem that can be solved experimen-
tally e.g. [43]. We refer the reader to Ref. [19] for a generic
study of the lowest partial waves at high g°.

The second partial wave expansion originates from
the lepton angle 6,, which will be the main focus hereafter.
By restricting ourselves to the dimension-six effective
Hamiltonian equation (12) as well as the lepton-pair
factorization approximation (LFA)'' only S,- and P,-
waves were allowed [cf. Eq. (22)], bounding [, <2 in
(42). This pattern is broken by the inclusion of higher spin
operators and nonfactorizable corrections between the
lepton pair and the quarks. It is therefore important to
be able to distinguish these two effects from each other.

B. Qualitative discussion of effects of higher spin
operators in H°

Operators of higher dimension are suppressed and
neglected in the standard analysis. Operators of higher
spin in the lepton and quark parts are necessarily of higher
dimension and bring in new features. An operator of
(Iepton- and quark-pair) spin j is given by

0 =5, T, bt nip (60)

with T, =7, Dj...D% ), D* =D + D, with D the

directional covariant derivative and curly brackets denoting
symmetrization in the Lorentz indices. In passing let us
note that in this notation O(Y) = 0y, = 0, with ov defined
in (12). The operator (60) is of dimension d,y =4 + 2j
and the corresponding Wilson coefficients are suppressed
by powers of my. Neglecting electroweak corrections
and including the dimensional estimate of the matrix
elements the leading relative contributions are given by
(my/my)*U=) where (m,/my) ~6 x 1073,

Operators of the form (60) present new opportunities to
test physics beyond the SM provided that their contribution

""We remind the reader that in the LFA no electroweak gauge
bosons are exchanged between the lepton pair and other particles
when calculating the matrix element. This is the same approxi-
mation that is relevant for the endpoint relations [18,44].
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FIG. 3.

Examples of virtual QED corrections to B — K# ¢ ™, where either a photon is exchanged between the decaying b-quark and a

final state lepton, with effective operators Oy 4 (left) and O; (middle), or a second photon is emitted by the charm loop (right). Other
topologies relevant for higher moments include the interaction of the leptons with the spectator as well as the B- and K*)-meson.

is larger than that of the breaking of lepton factorization
through electroweak corrections. The operator O?), for
example, gives rise to nonvanishing moments of
the type G5* in B —» K*(— Kz)¢*¢~ and G}* in B —
K,(— Kr)¢" ¢, [45] both of which are absent in the LFA.

C. Qualitative discussion of QED corrections

The B — K£*¢~ channel allows the discussion of the
consequences of going beyond the LFA in a simplified
setup, and is of particular relevance because of a recent
LHCb measurement [25].

In the LFA (38) the single opening angle 6, of the decay

is restricted to [, < 2 moments in / 5?) (42). More precisely,
lp <2j with 0Y) as in (60) [see also the discussion
following Eq. (28)]. From the viewpoint of a generic
1 — 3 decay there is no reason for this restriction, as it
is only the sum of the total (orbital and spin) angular
momentum that is conserved. However, in the LFA the B —
K[¢¢~] decay mimics a 1 — 2 process, imposing this
constraint. This pattern is broken by exchanges of photons
and W- and Z-bosons, as depicted in Fig. 3 for a few
operators relevant to the decay. The W and Z are too heavy
to impact on the matrix elements, but their effect is included
in the Wilson coefficient.

As stated above QED corrections turn the decay into a
true 1 — 3 process, and this necessitates a reassessment of
the kinematics. By crossing the process can be written as a
2 — 2 process

B(pp) +¢7 (=) = K(p) +£7(£2).  (61)
with  Mandelstam  variables s = (p +£,)?, t=

(6 +6)?=q¢*andu=(p+7¢)°,

1
slu] = 5 [(m + mi + 2m3 — ¢?)

+ o) Amip. mi. q*) cos ], (62)

obeying the Mandelstam constraint s+ ¢+ u = m3+
m% + 2m>. Crucially, the kinematic variables s and u
become explicit functions of the angle 8,. In a generic

computation these variables enter (poly)logarithms,
which when expanded give contributions to any order /,
in the Legendre polynomials. This statement applies
at the amplitude level and therefore also to the decay
distribution (39)

PT(B — K£+e™)
dg?dcos b,

= ZGUf)P,f(cos 0,). (63)

1,0

The B — K¢ moments are simply given by

2 +
a ! d’T'(B - K¢te)
M?; = /_ldcos@;P,f(cos 0,) ddcos0,

_ U
_2l,f+1G?; (64)

where we have introduced a lepton-subscript for further
reference. In the SM the effects are dependent on the lepton
mass, for example through logarithms of the form
In(m,/m;) times the fine structure constant. There are
new qualitative features of which we would like to high-
light the following two:

(i) Both vector and axial couplings Oy ) = Oyg(j0)
(12) contribute to any moment /, > 0. In the LFA
l,-odd terms (forward-backward asymmetric)
arise from broken parity through interference of
Oy and O, (12). The physical interpretation is
that there is a preferred direction for charged
leptons in the presence of the charged quarks of
the decay. In the specific diagram Fig. 3 (left) it
is the charge of the b-quark which attracts or
repels the charged lepton(s) with definite prefer-
ence. It is possible that one can establish a higher
degree of symmetry by using charge-averaged
forward-backward asymmetries.

(i1) A key question is how the moments vary in /,. In the
absence of a computation a precise answer is not
possible. Nevertheless we can assess the question
semiquantitatively by considering for example the
triangle graph between the photon, a lepton and
the b-quark in Fig. 3 (left) and the corresponding
one with the s-quark. Neglecting the Dirac
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structures the triangle graph is given by Cy(m2, p3.
s[cos 0], m2,0,m2). 12 Expanding this function in
partial waves C, = leoc 'p, _(cosB,) we find

that |C | does fall off in lf Averaging over several
configurations (cf. footnote' ) we conclude that the
l, =2 (D-wave) contribution is suppressed by
approximately a factor of 2 with respect to
l, = 0, with a slightly steeper falloff with increasing
1, for the b-quark versus s-quark vertex correction.
Note the graph where the photon couples to the
other lepton comes with a different Dirac struc-
ture and is not obtainable through a straightfor-
ward symmetry prescription. We therefore think
that it is sensible to consider those graphs
separately. We stress that this semiquantitative
analysis does not replace a complete QED com-
putation, which would include corrections to
Wilson coefficients, all virtual corrections and
importantly also the real photon emission.

We now turn to the most important consideration, the
relative size of the QED corrections versus higher spin
operators. For effective field theories of the type
() ~ CU)(up)(OY) (up)) (12), the precise separation
scale pp is arbitrary to a certain degree and effects are
therefore contained in the Wilson coefficients as well as
the matrix elements. We find it convenient to discuss the
effect at the level of the Wilson coefficients. For the
latter QED corrections arising from modes from my, to
ur = my, can be absorbed into a tower of the higher spin
operators OY) (60). The leading contribution to the
corresponding Wilson coefficients from the initial
matching procedure and the mixing due to QED behaves
parametrically as

DG
Laf;- (”’%V)’ : (2‘:)) forj>1. (65)

where we have implicitly used up =m, in (H")~
CY(up)(OY) (up)). Above a is the fine structure con-
stant and f; parametrizes the comparatively moderate
falloff of the higher moments due to QED. In the SM
one therefore expects QED effects to dominate over

those due to higher spin operators, except for j =2

We use conventions for the Passarino-Veltman function
Co(l’p pz, p3,m?, m%, m%) such that the two—particle cuts begin
at {71 > (my +my)?, p3 2 (my +ms3)* and p3 2 (m3 +my)*.

*We have refined this analysis by taking into account that
the b- and s-quark only carry a fraction of the momentum of
the corresponding mesons. This amounts to the substitution
p% — (pg—xp)? and s[u] —» (£,[¢1] + xp)? with x being the
momentum fraction carried by the s-quark. For the vertex
diagrams one expects the Feynman mechanism (i.e. x = 0) to
dominate. This changes when spectator corrections are taken
into account.

PHYSICAL REVIEW D 93, 054008 (2016)

where they could be comparable [45]. At the level of
matrix elements this hierarchy could even shift further
toward QED as a result of infrared enhancements
through In(m,/m,)-contributions.

The discussion of B — K*(— Kz)¢* ¢~ is similar, but
involves the kinematics of a 1 — 4 decay. The decay
distribution becomes a generic function of all three angles
0., Ok and ¢. It should be added that the selection of the
K* — Kr signal (Pg-wave) restricts [ = 0, 2.

D. On the importance of testing for higher
moments for B — K*) 7/~

We have stressed throughout the text that it is of
importance to probe for moments that are vanishing in
the decay distributions / 5( (28) of B - K*(— Kx)£¢) and

(38) of B — K£¢ respectively. In this section we
highlight specific cases of current experimental anomalies
in exclusive decay modes where their nature might be
clarified using an analysis of (higher) moments.

1. Diagnosing QED background to Ry

In the SM the decays B™ — Ktete™ and B™ —
K*u"p~ are identical up to phase-space lepton mass effects
and electroweak corrections. The observable

Rel _B(B* - K*utu") (66)
K qmm qm\x - B(B+ — K‘he‘he*) [qz 5 ]

‘min *dmax

has been put forward in Ref. [46] as an interesting test of
lepton flavour universality (LFU). Above ¢ / max Stands for
the bin boundaries. Neglecting electroweak corrections the
SM prediction is Rg/|j; ¢ gev2 = 1.0003(1) [47], which is at
2.60-tension with the LHCb measurement at 3 fb~! [25]

Ry = 0.74570929(stat) 4 0.036(syst). (67)

Previous measurements [48,49], with much larger uncer-
tainties, were found to be consistent with the SM as well as
(67). This led to investigations of physics beyond the SM

with CZ # C# (where OZf = by,s¢y"¢) amongst other
variants for Wthh we quote a few recent works [50-59] as
well as the general review [60] for further references.

Let us summarize the aspects of QED corrections which
are of relevance for the discussion below: (i) they break
lepton factorization and therefore give rise to higher
moments, and (ii) they depend on the lepton mass, for
example through logarithmic terms of In(m,/m,). In view
of the lack of a full QED computation~ we suggest
diagnosing the size of QED corrections, as well as their
lepton dependence, by experimentally assessing higher

A partial result, photon emission from initial and final state,
was reported in [61].

054008-13



GRATREX, HOPFER, and ZWICKY

moments."® The latter is directly relevant for Rg. Let us be
slightly more concrete and define the normalized angular

A

. ) _ (L 0 . .
functions as follows G(? f) = G(? f) / (2G;;) (63) (in this
convention 2G(?0; =dl'(B - K¢¢)/dq?, (A}g; = Apg and
G2 = (Fy —1)/2 in the notation of [37]). We would like
to stress the following points:

(1) How to distinguish QED corrections from higher
dimensional operators: both contributions give rise to
higher moments but crucially the QED corrections
dominate for moments of increasing I,, cf. the dis-
cussion at the end of Sec. VC and specifically
Eq. (65). A J,-wave at the amplitude level contributes
toal, =J,+ 1 moment through interference with

the SM P,-wave. We conclude that QED and higher
spin operators could be comparable for 6(3; but for

Z
G¥;>3) one would expect the former to dominate.'®

(i) Lepton-flavor dependence of QED corrections:

differences between (’\}571523) and Gél;z*%)
above ¢> > 1 GeV? indicate the importance of the
flavor dependence. This gives an indication on how
much the branching fractions (zeroth moments) and
therefore Ry is affected by QED through lepton mass

effects. Note that due to In(m,/m,)-effects it is

conceivable that G}%fﬁ) is small, say O(1%), but that

(A}(zl:ﬁ) is larger. Note for example that G,(,L) = Apg i

consistent with the SM prediction excluding QED,
which is O(m,), within errors in the few percent

range [38].

in the range

2. Combinatorial background in B — K*pu*u~ below the
narrow charmonium resonance region

A characteristic feature of B — K*)£+£~ transitions is
the large contribution to the branching fraction through
the intermediate narrow charmonium states J/W and
U(2S). For example B(B — KJ/W)B(J/¥ - putu~) =
(8 x 107)(6 x 1072) =5 x 107 is three orders of mag-
nitude larger than the measured differential branching

Collinear photon emission in the inclusive case was studied
recently in [62]. The %%ditional photon of course leads to terms
which go beyond the /.’ angular distribution. Note, in view of the
presence of these terms through virtual corrections they also have
to be present in real emission by virtue of the Bloch-Nordsieck
QED infrared cancellation theorem [63]. The authors [62] find
within their approximation that the third and fourth moment are
two orders of magnitude smaller than the leading contributions.
This is in the expected parametric range but one cannot draw
precise conclusions on the size of this effect for the exclusive
channels discussed in this paper.

Another criterion could be that corrections from higher spin
operators are uniform in the lepton mass provided that lepton
flavor universality is unbroken. This is though delicate since the
measurement of Ry questions this aspect.
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fraction, dB(B — K*'utu~)/dq* =2 x 1078/GeV? [64],
well below the narrow charmonium resonances region. It
is therefore legitimate to be concerned with possible
combinatorial backgrounds in this region.

Assuming that such backgrounds are relevant this raises
the question as to how they can be distinguished from the
signal event. In the case where they can be absorbed into
the background fit-function they would not impact on the
analysis. Whether or not this is the case is a nontrivial
question. Pragmatically, however, background events can be
expected to perturb the hierarchy of the moments as
compared to the true signal event. One would expect the
background events to fall off only slowly for higher moments
in the lepton partial wave.'” Hence the size of these effects
can be diagnosed through the measurement of higher
moments as a function of ¢2, independent of model assump-
tions. By the latter we mean that higher moments peaking
below the charmonium resonances will be indicative of the
type of combinatorial background mentioned above.

A possible example of such backgrounds is the process
B — Kutu~y where the photon is not detected but ener-
getic enough to cause a significant downward shift in
q* = (¢, + £,)*. Such an event would be rejected as a B —
Ku*p~ signal because the reconstructed B-mass my,,
would fall outside the signal window [i.e. mg,, < mp—
A and A = O(100 MeV)]. If additionally a z-meson from
the underlying event is detected, the event could conspire to
enter the signal window of B — K*(— K=z)u™u~ (i.e.
Mgy = Mg and my, = my-). It is therefore conceivable
that the small chance of the events described above is
overcome by the enhancement by three orders of magnitude
of the J/W transition. If such events are present and not
rejected then this leads to a bias in B — K*(— Kz)upu~
transitions below the narrow charmonium resonances.
More precisely, denoting the momentum of the undetected
photon by r, the shift in > is as follows ¢* =mJ, =
() + 2471 = G = (61 +62)* <y,

This is particularly relevant as some of the anomalies
from the LHCb measurements, in particular the angular
observable Ps’, are most pronounced in bins just below the
J/W-resonance [26,27]. To what extent such operators
correspond to new physics in Og = Oy [65,66] or effects
from charm resonances [67] is a difficult question since
they contribute to the same helicity amplitude. They can be
distinguished from each other by analyzing the g-spec-
trum of the observables and by the determination of the
strong phases which can originate from the charm reso-
nances [67]. This could be through the determination of the
complex-valued residues of the resonance poles [67], or

Similar things can be said about the hadronic partial wave,
but as the detection of the Pg-wave is part of the signal selection
the presence of such higher waves would have less influence.
However, the remaining background might impact on the Sg-
wave, which does matter since the Sg-wave enters the analysis.
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simply the strong phase in the region below the g¢°-
resonance through Im[G%'] ~ P¢’, which corresponds to
the imaginary part of Re[G>'] ~ Ps’ (33).

VI. CONCLUSIONS

In this work we have generalized the standard
helicity formalism to effective field theories of the
b — s¢¢-type. The framework applies to any semileptonic
and radiative decay. The formalism has been used to derive

the angular distributions 7\ (28) and I' (39) for nonequal
lepton masses with the full dimension-six effective
Hamiltonian, including in particular scalar and tensor
operators. Explicit results for B — K*#,¢, and for B —
K?,¢, can be found in Appendices C and D respectively as
well as a Mathematica notebook (notebookGHZ.nb) pro-
vided in the arXiv version [29]. Comments on differences
conversion of observables between theory and experiment
with the literature are reported in Appendix C 2 a. Minor
discrepancies in tensor contributions with respect to pre-
vious results are discussed in Appendix C 1 b.

The approach clarifies how the lepton factorization
approximation determines the specific form of the angular
distributions / ,?* and / (,? , and how these distributions are
extended by the inclusion of virtual and real QED correc-
tions, as well as higher-spin operators in the effective
Hamiltonian. Higher-dimensional spin operators provide
new opportunities to search for physics beyond the SM. We
have argued that, within the SM, QED effects and higher-
spin operators can be distinguished from each other by their
differing falloff behavior in increasingly higher moments in
the t9;—.'51ngle.18

Assessing higher moments can shed light on current
anomalies with respect to the SM. We have argued
(cf. Sec. VD1) that higher moments in B — K£ ¢~
(¢ = e, p) are a window into QED corrections and therefore
of importance with regard to the Rx measurement [25]. In
view of tensions of angular predictions in B — K*uu~ with
experiment [26,27], the higher moments can be of help in
assessing their origin, such as the possible leakage of J/W¥
events into the lower nearby g-bins (cf. Sec. VD ?2). As
another example we mention the R(D™)= B(B —
D™)/B(B — D™ uv) ratio measurement [68-70], sug-
gestive of some tension with the SM. A higher moment
analysis could again be useful in assessing the impact of QED,
lepton mass or cross channel backgrounds on these results.

To measure and bound higher moments is relevant as
their contributions can bias likelihood fits. We therefore
encourage the investigation of higher moments in several

'8n addition higher-spin operators can be distinguished from
QED corrections by universality in the lepton flavor. However, it
should be kept in mind that lepton-universality is questioned by
the Rx measurement.
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experimental channels from the various perspectives dis-
cussed above.
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Note added.—Recently a paper using the helicity formalism
for B — K*¢"¢~ appeared [71]. The paper uses the
standard Jacob-Wick formalism and therefore includes
HAs of definite spin. This is an approximation that holds
up to lepton mass corrections in the SM and does not allow
the inclusion of scalar operators for example.

APPENDIX A: RESULTS RELEVANT
FOR ALL DECAY MODES

1. Decomposition of SO(3.1) into SO(3) up to spin 2

The aim of this Appendix is to give some more detail about
the decomposition (15) and in particular extend it to the two-
index case, which includes the discussion of spin 2, 1, 0.

In Sec. I B it was shown that insertion of the complete-
ness relation (15) corresponds to the decomposition, or
branching rule,

(1/2,1/2)s0.1)ls03) = (1 +3)s003)-

where (1/2,1/2) is the irreducible vector Lorentz represen-
tation. We remind the reader that the irreducible Lorentz
representations, denoted by (jy, j,), are characterized by the
eigenvalues of the two Casimir operators of SO(3,1).
Inserting the completeness relation twice therefore corre-
sponds to taking the tensor product (1/2,1/2) ® (1/2,1/2)
which decomposes as

(LD @ [(1,0) & (0, )] & (0,0))s003.1)l5003)
> (1-501-301-1®2-3| 691‘1)50(3)

(A1)

:(1'5@3'392‘1)50(3)- (A2)
The double completeness relation
Gap9ys = 5aﬁy6 + 551/3;/6 + 52/)’75 (A3)

can be decomposed
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27
_ T A—T A
Oapys = E E Way Dy,

J=0 ji=——1J
1 1
. tA—t1.2 )
Oapys = — E Day Vs — E Dya@ss,
=1 J=—1

5 (A4)

apys = waywﬂav

into parts containing zero, one and two timelike polarization
vectors

Wiy = wu(Nw,(2), ol = w,(1)o,(1),
1
w{,;,’l = Z CM/I [0)] (/11)607</12),

Mda=—1

(AS)

with A = A; + 1, in the first term and the polarization vectors
w,(4) are parametrized as

o' (£) = (0,£1,,0)/v2,

@(0) = (4..0.0.40)/1/ 7"
(1) = (40.0.0.4.)/

which we reproduce from (16) for the reader’s conven-
ience. A few explanations seem in order. The minus sign
in front of 5;/% in (A4) is due to there being an odd
number of timelike polarization vectors. The first, second
and third term in (A3) correspond respectively to the
(1,1)-, [(1,0) & (0,1)]- and (0,0)-terms in (A2). It is
convenient to rewrite the double completeness relation
(A3) in a form that makes the decomposition into the
different spins j explicit

(A6)

2 J
9apdys = Z € 'E/i}sl- (A7)
J=0 4=—J
Above the scalar product “” stands for
eéy _25/1 = 510 [0’270_250 + wé’@};’a]
+ o ooy — ol — ojiog]
+ 82w @y - (A8)

The single completeness relation (15) in the analogous
notation of (A7) reads

1

Gap = Z Z ele),

J=0 A=—J

(A9)

with e)* = 8;1w,(2) + 800,4(1).

When applying the double completeness relation to
generic decay structures, it can be seen from (A4) that
in general one expects two distinct contributions to the
amplitude from & 5,

PHYSICAL REVIEW D 93, 054008 (2016)
HMDLW - _(HMCM + HMCM) +oee

where H,, = H,,@,", and analogous notation for H,, L,
and L. If, however, the objects H,, and L* are both
symmetric or antisymmetric in the Lorentz indices, then
H. Ly = H,y Ly, and the two contributions can be com-
bined. We have used this simplification in defining
the generalized HAs for the B — K'/,/, (23)
and B — K¢,¢, (36) decays respectively, resulting in
the extra factor of 2 associated with the terms
HAT’EXT]” I hT,Eﬁr% relative to other contributions in the

generalized HAs.

2. Additional remarks on effective Hamiltonian

Here we collect a few additional remarks to the
effective b — s£¢ Hamiltonian quoted in Egs. (12),
(13). Contributions proportional to V V., have been
neglected. The chromoelectric and chromomagnetic
operators O, and Og, along with the contributions of
the four-quark operators O; 4, can be absorbed into
Oy through defining an effective Wilson coefficient

Ceff = CSf. We can rewrite O = 1/2(07 + Oy,), with
the latter defined as
Or =56,,blc,,C. Ors =50,,y5b¢o,, ¢,  (A10)
(note: Oys = 50,,b0,,y5¢ = —4eP"50,4b¢0,,¢ with
the last equality depending on conventions) and the
relation between the Wilson coefficients is therefore

CY =Cr+Crs,  Crsy=-(Cr£Cy) (Al

l\)|>—'

in the sense that C;O7 + CysO7s = C7O1 + CLO.

3. Definitions and results of leptonic
helicity amplitudes

The calculation of the leptonic helicity amplitudes is an
important part of the generalized helicity formalism
described in this paper, and the method for their calculation
is outlined in [3]. In the Dirac basis of the Clifford algebra,
with ¢’ as the usual 2 x 2 Pauli matrices,

J’0=<1 0>,

0 -1

. 0 o

r=(_o_i 0),
0 1

}’5=<1 0>,

the particle u and antiparticle » spinor are given by

(A12)
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u@_(\/mo VE =z, 0)" = (81.0.57.0)".
u(_%) = (0. VEFm 0. —E—m. ) = 0.57.0.-7)",

U(%):<m,o, — VEyFme.0) = (57.0.-1,0)",
(_é) = (0B =m0, VEr ) = (0.55.0.55)",

|
with implicit definition of pf=.,/E;£m,. The (where ¢, =e~ for example) and the I**|, _; (1, =
spinors are normalized as w(A,)u(4,)=6;,,2m, and 4y —4,) as defined in Table 3.1. Using all the equations
5(A)v(hy)=—6; ,,2m,. The leptonic HAs (18) above the evaluation of the lepton HAs is then straightfor-
e ward and the results are presented below, for lepton masses

contracted with polarization vectors give rise to the

HAs £, mg, # mg, 1ntheﬁrstsetofmatncesandmf = my, = myin
: the second set ® The first row (column) corresponds to
21(A,) = —1 and the second row (column) corresponds to

£X,, = (61 () B ()[ETE10) = ()T 0(d). () == (columm) corresp

21(4) = +4.Forthe B — K*¢¢, decay mode, ie ¢ = ¢~
(A13) the lepton HAs are given by
|

va ( BiBs —Bip,  —V2ABIB +ﬂf/35)) ( 2mg, —\/2q2)
1 2 g )
ﬂ*ﬁz +BIBY) BB BB —\24  2my,
A2 = ( BiBs —BrBs  V2BB; +ﬂrﬁ2+>> ( 0 V24 f)
1 2 = - )
ﬁ1 By +B1B3)  BiBE — BB —2¢8, 0
S00.) = (Mz +hB 0 ) . (Jq_% 0 )
) BBy + BBy o Vi)
P31, Ao) :<ﬁ +ﬁ1ﬂ2 0 >_)<\/‘1_2 0 >
’ —BiBs — B by (E—y
rda) (—zf (BI A7 + BiB3) —%(ﬂfﬂz—ﬁlﬂ;)) (—i\/ch ;0 )
1 - )
2i(B1 B —PiB)  iV2BIBT + BB 0 iv/24%5,
£y ) = ( PPy + B0 V2B —ﬂ1ﬂ2)> . ( e —2iﬁmf>7 (AL4)
—iV2(BI B = BiB) BB+ BB) —2iv2m, i

where i, = | /E|, £ m, , as before. Above we have used f5;/ f; — Ef, for m, , — m, since E* = ¢*/4, where E is the

energy of either lepton in the rest frame of the lepton pair. Note that the scalar transitions S and P are necessarily diagonal since
Ay = A1 — A, = 0. Timelike vector and axial lepton HAs are integrated into the hadron HAs (C15).

APPENDIX B: DETAILS ON KINEMATICS FOR DECAY MODES

While within the formalism described in this paper it is not essential to consider the full kinematics of the decay, as the
evaluation of the hadronic and leptonic HAs can be performed within their respective rest frames, we collect here the
kinematics used in calculating the angular distribution using the Dirac trace technology approach [22,23] in order to
facilitate comparison. The Kallén function that often appears in our results is given by

Ma,b,c)=a*+ b* + c* —2(ab + ac + be). (B1)

“The expressions for m,, # m,, can be applied to studies of lepton flavor-violating processes in all the decay modes considered in
this paper within the lepton factorization approximation, and are also applicable to decays involving an /v in the final state e.g.
B — D*¢v.
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For adecay A — B + C, in the rest-frame of A, it is related
to the absolute value the spatial momentum of the B and C
particles as

A(m3, mp, m¢)

5| = |Pel = B2
15l = I7c] o (B2)

1. Basis-dependent kinematics for B — K*7,¢,
We parametrize the kinematics of the (7, =¢~ and
Lr=10")

B — K*(= K(px)a(ps))t1(£1)64(¢5) (B3)
decay mode. To do so we need all four momenta p,, pg
(p=pr+px) ¢ and &, (g = £ + £,) in a specific frame
for which we choose the B-restframe. It is simplest to first

obtain 7, ; and p,, g in the rest frame of the lepton pair and the
K*-meson respectively:

¢y p-testframe: 2 = (Ey, |py|?), ¢4 = (Ey.—|psl?)
Prx-restframe: pi = (Ex.|pxlk).  ph=(E;.—|pklk).
(B4)

and the definitions

(1) = (fe(En,

(@2)" = (f¢(E2. g0, — )7

(px)" = (fx(Ek. Po- 4z)

(P2)' = (fx (Ez. Po—42),

with f,(a,b,c)=(ab+c|p,|cosb,)/+/q* and fg-(a,b,c)=
(ab+c|pg|cosOx)/m, and it is easily verified that

q" = (¢1 + )" = (40.0.0.q,).
P' = (px + o) = (p0.0.0,—q,),

(po = Eg+) while the polarization vectors of the K* in
the B-rest frame are

n"(0)
n'(+)

where po + g9 = mp and g, = \/Az/(2mp), in accordance
with (B2), is the three-momentum of the lepton pair.

(B9)

= <_qZ7 O’ O’ pO)/mK*’

= (0.F1.i,0)/v2, (B10)

*The polarisation vector # corresponds to y in [18] (c.f. appen-
dix A therein). The exact correspondence between the convention
used in [18], and also in this paper, and the Jacob-Wick convention
(1,31 is n(E),lpg=—1(F),lp> 1(0),l15=1(0),[p;. The final
distributions remain the same but the off-diagonal elements of
the lepton HAs (or matrices) change sign (A14). Note in particular
that the hadron HAs (C15) remain unchanged.
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Vi
NG

? = (cos¢sin@,, —singsinb,,cosb,), |p,|=

k= (—sin@x,0,—cosb), |]3K|_;/n§ (B5)
where

Ay = AMg? mi,m3),

A = Am%., my, m2),

Ap = Ampy.mg..q°), (B6)

are the explicit Killén function used throughout. The
lepton and hadron energies are then given by E;, =

m§1_2 + ‘Z)AZ’ Er:.l(: \/ mJZZ’K+|Z7K|2 and Obey E] —|—E2:

\/qz andE,,—l—EK:mK*. .
The polarization vectors (1) of the K*-meson in its rest
frame, using the convention in [18], are?’

7(0) = (0,0,0,1),  #(£) = (0,F1,i,0)/V2.

In the B-restframe, pp = (mp,0,0,0), the momenta take
the following form

(B7)

,—|pelsinOysing, f£(E1, q.. q0)),

~|Pelsindcos , +|p| sin O, sing, f4(Ey. g, —qo)),
~|pk|sinOk,0,~fx(Ex, q-. Po));

0, —fx(Ez gz, —Po))

(B8)

[

For completeness let us add that in the case of:
() B— K*¢,(¢))¢5(¢,) the replacement rule
7 - 24)%_45 = (cos¢psinf,,+singsinb,,cos,) ap-
plies. Note this is coherent with Fig. 4 in the next
section;
(i1) identical lepton masses the following replacements
are in order

Eip =/ 4*/2,
4m?
where we recall that f, =4/1 — q—[.

2. Basis-independent kinematics for B — K*¢,7,

Ay = (@B, (BL1)

Introducing the notation

o' = (61 =), Pr=(pxk— P (B12)

in addition to (B9). the invariants that can be formed out of
p, P, ¢ and Q are given by
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— 2 2
Q'Q—mfl — My,

Q* =2(m7 +m7) — ¢,

1
q~p:§(m%—m§<*—q2),

p-P= m%( — m,zz,
P2 =2(m% + m2) — m%.,
2p-Pq- p—&—cosHK\//lB/lK*
2m%.

p - Py/Agl, cosO, +2q - p,//lK*/l cos B cos b,

q-P=

Q-P=

2m3.q?
\/,WsinGKsinéfcosgb q-0q-P
+ + 2
mK*\/? 1

2q-0q - p+coslp\/Aph,
247 ’

e(P,p,0.q)

sin g sin O, sin g /AgAg: A,

= (B13)

2mg- \/?

with p? = m%., the A’s defined in Eq. (B6), ¢(P, p, 0, q) =
EapysP” p?07q® and the €p; =1 convention for the
Levi-Civita tensor. Note that the kinematic invariants for

B — K*¢,(¢,)¢,(¢,) are the same up to e(P, p, Q.q) —
—e(P, p, Q, q) which originates from the only change in

angles ¢ —» —¢.

APPENDIX C: SPECIFIC RESULTS FOR
E - I_{*(—> I_{Jt)flzz
1. Fourfold differential decay rate
The angular distribution for B — K*(— Kn)¢,¢, is
usually presented in the form (e.g. [36])

8 d‘r
3 dq*dcos6,d cos Oxdep
/0

= % = (g15 + G5 €08 20, + gg, cOS O,)sin’Ox

+ (g1e + Gre €08 20, + g, cos O, )cos>Ox
+ (g3 cos 2¢h + go sin 2¢h)sin®Oxsin’0,
+ (g4 cos ¢ + gg sin @) sin 20 sin 20,
+ (g5 cos ¢ + g; sin @) sin 20 sin 6., (C1)

which can be condensed as
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8n da‘r
3 dq’dcos6,d cos Oxde
= Re[(g15 + g5 €08 20, + gg, cOs O,)sin’Ox

+ (91 + 920 €05 20, + g, €05 0,)c0s2y

+ e %% G,sin*0ksin6,

+ e7% sin 20 (G, sin 20, + G5 sin6,)], (C2)
where we have defined
Gias = (G345 T i9087)- (C3)

We have introduced the notation g; rather than J; in order to
minimize the potential of confusion due to the angular
conventions discussed in Appendix C 2. The relationship
between the g;(¢*) and the Glxle (g*) was given in (32) but
is repeated here for convenience:

Gy’ = 3(3(910 +2915) — (92c +2625))-

Gy' %(géc + 29y Gy’ = %6 (92 + 2925)-

Go' = 3(6(910 915) = 2(92c — 925))-

GY' =S = g) G = (02 =),
16

) 32 .
G%’l =—=(g5 +ig7), G%z = — (94 + igs).
\/gﬁg/—/ 3 hg,_/

—0s -G,

32 )
Gg'z =3 (g5 +igo). (C4)

=03

Explicit results for the Gf,’{ 1 are presented in Sec. C 3 for
the case of identical final-state leptons m, = m,, and
Sec. C4 for the more general case my # my,.

a. Kinematic endpoint relations in terms of Gfﬁ,“l”

In Ref. [18] it was shown that the HAs obey
symmetry relations at the kinematic endpoint due to
symmetry enhancement. This is due to the K* being at
rest resulting in symmetry in all space directions i.e.
helicity directions. The relations for the HAs in Eq. (13)
in [18] lead to the following equivalent of Eq. (21)
in [18]

G #0. G - RelGi)

Gi* — —2Re[G;?], G5 — 2Re[Gp?], (C5)
with all other five G vanishing. Recall that G8'O is
proportional to the total decay rate. The relations
between the G%;z are not accidental but have to do
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with the symmetries of a multiplet. The factor of two
between G§’2 and G%’é), once more, originates from

absorbing G%f(z) into G%‘z. The results of the

()

threshold expansion, linear in the K* momentum
K~ A(m%, m%.,q*), can be inferred from Eq. (30) in
[18] taking into account the different angular conven-

tions detailed in Fig. 4.

b. Comparison of angular distribution
with the literature

The angular distribution (C1) was first computed in
the SM for massless leptons in [22], extended to
include equal lepton masses in [23,72]. A full dimen-
sion-six operator basis was considered in [73]. The
basis was extended to lepton mass corrections for
(pseudo)scalar operators in [35], enforcing the gg.-
structure, and tensor operators by the authors in
[36,74]. We compare our results with regard to [36],
which is the latest reference.

Taking into account the change g4679 = —J4679
(cf. Fig. 4) and comparing at the level of form factors
(naive factorization) only we find agreement except for
tensor interference terms. Agreement is established when
Crs — —Cyps in [36]. The latter might be related to the fact
that the relations tr[y®y?y"y%ys] =44ie®° and o*ys =
—2%e?%6 5 (with A= +£1 depending on conventions
—A =1 in this paper) are not consistent with Eq. C.16
[36] (v3).

A minor difference is that the authors of [36] have
chosen not to present the tensor contribution in Jg9(gso),
since such contributions vanish in the narrow-width
approximation.21 In addition, we find that a few of the
HAs in [36] Eq. (C13) do not agree with their definitions.
These disagreements do, however, drop out in the final
expression.

2. Angular conventions

In this section we discuss and compare the LHCb
and theory angular conventions. The main result is
shown in form of a commutative diagram in Fig. 4.
We proceed by first discussing the CP-conjugate modes
in each case and then link the conventions with
each other.

The LHCb conventions [32], which are the same as
adapted in this paper, are shown in Fig. 1. The
rationale behind the definition of the conjugate mode
is as follows. First, particles are mapped into anti-
particles, corresponding to a C-transformation. Then the

21n v3 of [36] it is stated that agreement with v4 of [75] is
found up to a sign of an interference term between a scalar and a
tensor HA. This suggests that we agree with [36] but disagree
with [75] on that sign, as well as the sign of Crs.

PHYSICAL REVIEW D 93, 054008 (2016)

momenta of all particles are reversed, changing the
angle ¢ — 2z — ¢. This leads to sign changes in g7g9.
Hence the conjugate mode corresponds to a full CP-
transformation

d‘rv
dq*d cos 0,d cos Oxdgp
B d'r
 dg*dcos0,d cos Oxdep

LHCb

cP
and the quantity

at(C £7)
dg?*d cos 0,d cos Oxdep

b
LHCb

is therefore CP-even (-odd). Above I'=T(B—K*#,¢>)
and T =T(B - K*¢,¢,).

The theory conventions for CP conjugates are such
that they facilitate the implementation of decays
which are not self-tagging [such as B, B, — ¢(—
KT"K™)¢"¢~ at hadron colliders]. When going between
conjugate modes the conventions are that the angles
transform as (6, 0x. ) —» (7 — O,. 7 — O 21 — ),
which leads to sign changes in ¢sgg9. This trans-
formation rule corresponds to a full CP-conjugation,
but with the angles 6,,0x associated to the same
particle rather than the antiparticle.

To find the transformation between the theory and
LHCb conventions is not straightforward because it is
difficult to find a theory paper that resolves the
fourfold ambiguity of defining the angle ¢ and/or
shows a figure consistent with the definitions used
in the corresponding work. We have taken a pragmatic
route in verifying that the results in [35,36,72] agree
with each other for common contributions, and cru-
cially that our results are in agreement with these
contributions for B = K*¢,¢, if J4670 = —G4670 and
J1,2,3,5.8:gl,2,3,5,8' This Completes the diagram in
Fig. 4.2

“Equivalently one can use the angular redefinitions (7 —
0s,0, 7 —¢) and (0, — 7,0k, 2w — ), which are sometimes
stated in the literature.

One can come to the same conclusion in another way [76].
Let us again consider B — K*Z|¢,. In general Oyl ycy, =
Ok iheory 18 chosen to be the same angle and the theoretical
community chooses ¢ yyc, = 7 — O|ieory- The only unknown
remains the angle ¢, for which one may use the scalar- and cross-
product definitions. Using Appendix A in [32] and likewise in
[72], we infer that cos ¢liyc, = €08 Plipeory and sin gl ycy, =
— 50 )| peory - Taking all angular changes into account this results
in sign changes in g, 679 which is consistent with our explicit
computations mentioned above.
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9459 = —Jas9

B — K*€€|LHCb B — K*€€|theory

97,89 = —97,8,9 J5.6,89 = —J5,689

B — K*€€|LHCb

B — K*F( th
94,6,7,9 — —J1,6,7,9 [theory

FIG. 4. Changes of angular functions when going from one
mode to the other. For CP conjugates the conjugation of the CP-
odd (weak) phases are suppressed. Angular functions whose
signs do not change are not indicated.

In summary,

d* (T +0)
< S|A ,
dq?d cos 0,d cos Oxd |, pen Ali23456759
d* (T +£T)
< S[A JA|S ,
dq2dcos ng cos 9[{d¢ theory { ]1,2,3,4,7 { ]5,6,8.9
(Co)
where the CP-even (-odd) quantities are
g 9"
SfA] =2 — 2 C7
la) ==L ()

with adapted notation from [35]. Written in yet another way
(C6) is equivalent to

(9:A,8)12358lHce = +(J, A, S)1.2,3,5,8|theory7

(9.4, S)4.6,7.9 lLucy = —(J, A, S)4.6,7,9|theory' (C8)
In order to understand (C6) and (C8) one has to keep in
mind that B — K*(#,£,) rather than its conjugate is the
reference decay. Note that at the LHCb (hadron collider)
B, — ¢uTu~ is untagged and therefore, setting aside the
issue of production asymmetry, only S;,347,A5689 are
experimentally accessible.

a. Angular observables in the literature
and conventions

We aim to find the relation between angular P,(/)

observables as defined by the theorists [34] and their
adaptation by LHCb [26]. In matching the results and
creating the dictionary one needs to pay attention to the fact
that [26] and [34] define the P; in terms of ¢; and J;
differently, as well as the different angular conventions for
g; and J; per se (shown in Fig. 4).

Amongst the twelve observables discussed in Sec. I1I B,
eight of them, P, , 3, PZL.S,6,8 and Agg, depend on angles and
definitions.

PHYSICAL REVIEW D 93, 054008 (2016)
The P; and Agg are defined by LHCb [26] as

P _ Sys7s8liace
4.5,6,8|LHCb N AT )] (-F )9
L =1ry

3(SGS|LHCb) , (C9)

where S; is defined in Eq. (C7) and 2N, = \/F, (1 — F})
in our notation used in Sec. III B. LHCb has not defined
P, 3 and we shall assume the same functional form as in
the theory paper [34].

In [34] the eight equivalent angular observables are
defined as follows™*

Py = %2;93 = i(SﬂLHCb) = +P1|Luco
Py = LS() = L(—56 lLacn) = —Palincy
88y, 0 88y, s ’
Py = __159 - _—1 (_S9|LHCb) = _P3|LHCb’
48, 485,
1 1
Pil TS4 = T (_S4|LHCb) = _2P£1|LHCb’
Py = o S5 = = (Sshen) = +P4]
STON 2N \WslLcy sILHCb»
3S6s 3(—Seslincy)
Am = yren) AT+ Al
Po= s = S ) = Py
6~ N 1775 N 7|LHCb 6/LHCb>
-1 1
Py = TSS = T(S8|LHCb> = —2Pg] nco-

where we have directly translated into the LHCb
conventions. It seems that we differ from the theory
community in the sign of the observables S[A], . For
example, both P¢’ = P¢'| ey, and Py’ = —2Pg'|| ey, differ
from the relations given in the caption of Table 1 in [65]
by the aforementioned sign. Our relation S[A]y =
—S[A]o|iucy also differs from the one given by [66] in
Table 1 by a sign.

3. G for B — K*¢,7, in terms of helicity
amplitudes for m, =m,

When the masses of the leptons are identical, we obtain
for G = N'g*Gis" [with A defined in (26)],

*Note that [35,36] define Agpg :% which results in

AFB | [34,35) — _AFB |LHCb'
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4 . 4ni 2 2
63" =5 (1 =mA)(HYP + [HY P+ [HY P+ (V > 4)) (HYP + [HY P+ [HY P = (V= 4) + SR HSPR + S |H P

8 . 4 16 _ _ _
+5+ 8 2)(|HY [ + [HD ) + |HY' ) + g (HLP + [HLP + [HE ) +?mflm[HY_H_Tg +HYH" + HYH,,

Gyl = ﬂ “ (Re[HYHA — HVHA] + Im[v2HYH” + 2H} H®] — 2, Re[H) HY] + 4mi Im[HAH" — HAHT),
Go'zz—%ﬁz(Zlelz—IHVIZ—IHV|2+(V—>A)—2(2|HTI2 IH |~ |HT %) —42|Hy'|* - |HY [P = |H[?))
0 9t 0 + - 0 - 0 + =17))

4 4
G3'°=—§(1 m2)(|HY P + [HY]? = 2|H > + (V - A)) — (\H >+ [HYP = 2|H]> = (V = A))

4 8

+3BH IHPI2 o 1+ 8 2) (|HE P+ [HT:2 — 2IHT’I )__ﬂf<|H >+ |HL|> —2|HG )

16 _ _ _

- ?nifim[HKH_{f +HYH" —2HVH[,

4 _ _ _ _ _ _ _

Gy' = —% (Re[HYHA — HYHA] — 2Im[V2HYH” + 2H} 'HS] + 41i,(Re[HYHS| + Im[HAH' — HAH™'])),

2 T, 2 7,2
G(Z)'ZZ—_@(4|HX|2+|HK|2+|HKi2+(V—’A) 24[HGP + [HL> + [HEP)—4(4Hy' |” + |HY | + [HL 1),

4p,

62,1
'3

(HYH} + H{HY — HYH* — HyH" + 2ni,(HYHS + HSH")
2i(HPH” — HTH? +2(HSH": — H"H%)) — 4ini,(HAH]' + H'"HA — H'"HA — HAH™"))
- + - + e\ g 0 - + 11 01-))

4 — — — _ _ _
G* = fp(HYHY + HYHY + (V — A) = 2(HLHf + HYHL +2(HLHy' + HyHD))).

8 _ _ _ _
Gy? = —gﬂf,(HKHY +HAHA —2(HTH” +2H""H"")), (C10)

where 7, = m,/+/q* and we recall that f, = /1 —4ﬁ1§. The number m in G corresponds to the units of plus
helicities. The common factor of g? in all observables as compared with standard literature results is a consequence of our
choice of normalisation, whereby all global factors are placed outside the HAs. The factors of i where they appear
(explicitly and implicitly) in Gf h GZ 2 and G% 2 are not accidental, as the results given above are complex and one must take

yyyyyy

Note that it is sometimes convenient to express results in terms of the transver31ty amplitudes, which possess a definite
parity. The relations to the HAs used throughout this paper are

1

L/R L/R 7, T,
H”(/J_)EE(HJ + HE/R), Hg=H5, H,=H' Hy 57(H+ + HT),
1
TI — Tt —_— —_—
Hy' =H,, Hﬁ(L):ﬁ(Hﬂj:HZ), HT = H}. (C11)
In [36] the notation A;;, with i, j = ||, L, 0, is used for the transversity amplitudes. Note that when comparing to this paper

the difference in the convention of the polarization vectors has to be taken into account.
4. G%" for B — K*¢,7, in terms of helicity amplitudes for my #mg,

The formalism discussed in this paper allows a simple extension to the case m,, # mg,, so that the results presented in
(C10) can be adapted to test for possible lepton-flavor violating processes. Using the notation

2= BB (€12)

[4,- given in (B6) and ﬂfz =,/E\,xmy ], we obtain the following expressions for GiEle =N f}f,’j'l” [with N defined in (26)]:
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4
9

4 Ay 4 A
+§ <E1E2—m,glmf2 >|HS|2 <E E2+mflmfz+4;2>|HP|2

m me
O (HY P+ [HY P+ HY P (V= A))

s Ay
GY= <3E E,+-1 3

) (P4 P4 P4 (V) +

16 /1 * 7,2 T, 8 l .
) (3<E1E2+mamfz>—4—;2>(lH+l HIHLP +Hy ) 45 3B Ea=meme)

16 _ . _
 (|HT >+ |HT 2+ |HE 2) +—(my, Ey +mg E)Im[HYH + HYH + HYH{']

3
8\/_ AT AT AT
+T(mflE2 mf El)Im[H+H++H,H,+HOHO},
- 4., //1 . +m _ _
Gy'= <R [HYHA —HYHA]+2V2 MR [HTH' HTHT}+27‘”21m[H1H§'—HAHTr]>
3 q° N
V2O {1V BT — BT -0 e Re AR " Re[ HY S|+ Im[V2HE P 4 2H] m) ,
vV Va Va

~ 24, T2 T2
GS’Z‘I—%—Z(2|HoV|2—IHK|2—|1L1Y|2+(V—>A)—2(2|H$|2 [HLP? = |HIP)—4Q2[Hy' "= [H "= [HT ),

- Ay dmy my
i = (3B1Bs 475 ) UHYP -+ [P 20+ (V=) =" 1Y P Y P2 P (V)

8 Ay 8 A
+5 (BB, ) 0P (BBt + 7 ) P

16 ANy i 8
5 (BB e me )~ ) (7 P [HLP <20 )= (3(E B2y e~
8v/2 _ _ _
— = (e Ey—my B )Im[HAHY, + HAH' —2H{H].

Ay
)<|H P TP -2l )
4¢*

16 vl VT, vl
—?(mf]E2+mf2E1)Im[H+H+ ‘I’H,HJ—ZHOHO ]
2(mfl —I—mfz)

/q2
2 — _ _ m, —m _ my +m
+Mlm[HKH1—HKHZ]+2 O ORe[HAHP]+2———"Re

~ Tf TI
Gé’ZZ__q_(“IHo P+ |HY P+ [ HY P+ (V= A) =24 HG P+ [HL P+ [HE ) =4 (4 H' P+ [HY P+ [HD ),

o 4 _ _
Gy'= 3 (Re[HVHA —HYHA]+2V2 MR [HTH'' —HTHT|+ Im[HAH —HAHT
7

(HYHS] —21m|v2HTH? +-2H] rﬁﬂ) ,

Me +myg,

Ve

o A _ _ _ _ _
Gyl =—"Y< <(HKH3+H¢H5—HOVH/3—H3HK)+ (HYHS+HSHY)

V3
- 2i(HPﬁZ—HTHP+\/§(HSﬁTI—HT‘ﬁS))
mf— + fz
+7 PR SN
VvV Vv
mZ _
LH"H +HIHY —HTHY —H/H")+2V2 ’”'7 HTH) +HH —HIH" —H}'HT) ),
NCa ’ 7 ’

L (HYHY +HYHY +(V — A)—2(H H} + HyH. +2(H Hy' + Hy H™))),

(HAH? + HPHA) -2 (HAH) +H)H* —H"H) —H{HT)

—V2i

Ay _ - _
—-q—g(HKHK+H1Hé—2(H1HZ+2H§’H§)). (C13)
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S. Explicit helicity amplitudes in terms of form factors

We collect here the definitions of the helicity amplitudes
in terms of which our results are expressed. The hadronic
HA is defined by

HY = (K*(2)[sT*b|B), (C14)
with TX|, _, as defined in Table 3.1 and the further
replacement ® — @. The definitions of the hadronic
matrix elements used in the calculations are standard
(e.g. [77]). Below we evaluate the HAs using form factors
to make clear the relative signs between the various
contributions, allowing for definite comparison with the
literature.

Results for form factors for low g> can be found from
light-cone sum rules (LCSR) with vector distribution
amplitudes (DA) in [5,77] and B-meson DA in [6], and
for high ¢* from lattice QCD [78]. Long-distance effects
contribute to H} only, and include quark loops (QL), the
chromomagnetic operator Og, quark loop spectator scat-
tering (QLSS) and weak annihilation (WA). At low g2,
|

dimpmp-[(Cy—Cy)(mp+mg)Ay +my,(C;—C5) T3]

PHYSICAL REVIEW D 93, 054008 (2016)

effects have been evaluated in QCD factorization (QCDF)
in the leading 1/m,-limit and in LCSR. Results for O,
WA and QLSS in QCDF are given in [7], and additional
contributions for Og in [8]. In Ref. [7] it was shown that
quark loops can be integrated into the 1/m,; framework
using the results from inclusive matrix element computa-
tions [9]. Results for Og and WA, as well as a prescription
for dealing with endpoint divergences of QLSS, can be
found in [10] and [11]. Results for charm loops beyond
the 1/m, approximation can be found in [12] for LCSR
with B-meson DA, and [13,14] for LCSR (at q2 = 0 only)
for vector-meson DA. At high ¢*> many of the long-
distance contributions are suppressed in the formulation in
terms of an OPE in 1/¢? (with ¢* = m3) [79,80]. It should
be added that the large contribution of broad charm
resonances in B — Kutu~ observed by the LHCb col-
laboration [81] demands a reassessment of duality viola-
tions [67]. Long-distance contributions can be found
elsewhere.

Explicit results for the B — K*(£,/,)-mode are
given by

HY = ,
V@ (mp+myg-)
dimpmpg-
Hé*ﬁ<CA_qu>Alz,
i im
HY =————(£(Cy+Cy)\/ AV — (mp+mg-)*(Cy—Cy)Ay) + b( +(Cr+Ch) /AT —(C7—Ch) (my —m%.)T,),
2(mp+mg-)
i
HY = (£(C4+C')\/A5V — D2(C—C A,
i 2(m3+m1<*)< (Ca+C)\/ AV —(mp+mg:)*(Cy—C))A)
/A —C/ mge —|—mf
HP =278 Pyp—0—2(Cy—C)) ) Ao,
2 (merms 7> (Ca=CW) ) Ao
i /1 C _CI mf —mf
HS: B S N 1 2(Cy,—C' Ay,
(G e e, ) a
2\/§mBmK*
H{=——"—""(Cr+C})Ty;,
0 Mg+ My ( T T) 23
2mpmg-
HI = ZTBTK o C\T )
0 m3+mK¥( T T) 23
1
H = (£(Cr=Cp )\ AT —(Cr +Clp) (my—m.)T5),

\/2q2

1
HY =———(£(Cr+Cp)\/2sT — (Cr

2/

Where C\/( A)
Furthermore we have used

mi - CIZ)Al — A4y

9

(mpg + mg-)*(mp —
16mpmz. (mg + my-)

A12 =

—C )(mB _ml(* )T2),

(C15)

= Cy(19) in the standard notation used in the literature and the g*-dependence of the form factors is suppressed.

(mp — mi.)(mp + 3mg. — q*)T, — lBT3

M)

Ty =
- 8mpm%.(mg —

the same shorthand for zero-helicity form factor combinations as in [77,78].
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The so-called timelike HAs, often denoted by H, in the
literature, have been absorbed into HS and H”. This is
exceptional and follows from the vector and axial Ward
identities ¢"u (21 )y, [ys|v(£2) = (mg, Fme, Ju(Z1)[ys|v(£).
A similar simplification procedure could be repeated by use
of the equatlon of motion i¢* (Sic,b) = —(m, +m,)sy,b+

i0,(5b )—2szDﬂb (as u sed in [82]) for H;’ if all of the
operators present in the equation were used in the effective
Hamiltonian. Since the higher derivative operators are not
present in the effective Hamiltonian used in this paper, such
a simplification does not occur.

|

Ay

G(O) <4(E E2 + mflm,gz

+ <4(E1E2 — mflm,gQ)

-+ 16(E1E2+m,flm,gz 12

—|— 16(mf Ez + mf

PHYSICAL REVIEW D 93, 054008 (2016)

APPENDIX D: SPECIFIC RESULTS
FOR B b K f 1 f 2

The angular distribution for this decay is

d’T
——e (V) 5 NN Te) GOpl (O GAD2 (Q,),
dq2dcost, 00(Q0)+ 00(7)+ 0.0(Q¢)
where, using the general leptonic HAs in Appendix A3and
taking m,, # mg,, the functions G (te) = N GUe) [with
defined in (26)], are given in terms of B — K HAs by

A
)hVI2 (4<E1Ez—mf,mfz>+%)|h/*|2

A
+q—72)hs|2 +
) |hT |2 + 8(E E2 mf] m,fz

E\)Im[hVR"] + 8V2(my E, —

3q

A
(4(E1E2 +mp my,) + q_72> |hP|?

e\
124>

mszl )Im[hAhT],

—4./2, ( { ’/”Z hVhS + %hf%”] — Im2n"hS + ﬁhTﬁP]),
q
- 4, -
G = =S (0P + WP 200 P 447 ), (o1)
q
The equivalent expressions for equal lepton masses are, using the notation GUs) = N ¢>G%)
0 _4 oV L YA 217,512 P2
GO =2 (1+2002) [0V P + S SE1I P + 282 P + 2/
8 4 —
5 (L -+ 80 )R> 4 2 B3 |AT2 + 16m Am[AV A",
G = —4p,(2m Re[hV 5] — Im[2h7T hS + V2hTRP)),
4
60 = =2 (Y - 272 — a2, (D2)

where we have used the shorthand ni, = m,/\/q*.

1. Explicit B — K helicity amplitudes in
terms of form factors
As for B —» K*¢,¢, we quote the HAs for form factor
contributions only, which allows for comparison with the
|

(K(p)[s7,b|B(pg))

<F(p) |§Gﬂl/b |E(pB>>

2 2
mp — mg

(K(p)Isb|B(pp)) =

my — nig

2 02
= (pp + P),,f+<q2) + %q
=il(ps+ P)uds — (Ps+P)uqul =~

fo(612),

I
literature. Form factor computations are available for low g?
and high q2 from LCSR [15,16] and lattice QCD [17]
respectively. Contributions to long-distance processes can
be found in the same references as for the K*-meson final state
(quoted in Appendix C5). The form factor matrix elements
relevant to B — K transition, in standard parametrization, are

ﬂ(fo(q2>
fr(4?)

mp + mg’

—f+(a*).

(D3)
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with (K(p)[sy,7sb[B(pp)) = (K(p)[s7sb[B(pp)) =0 in
QCD. The hadronic HA is defined by

W* = (K|sT¥b[B), (D4)

where TX|; _, as in Table 3.1 with @ — @, containing

the full set of dimension-six operators in the effective
Hamiltonian (12). We find

hV _ VlBK ( 2mh
2+/q* \imp +mg
V4K
2/ q?
m%;— i (CS+C/)+mf1
my —m

(Q+Wh+©ﬁdﬁ0,

W =

(Ca+CYf 1

s = > w@+%0m

(Cp+ C’ m +m
" (P ﬂ¢‘%q+q0m,
VA
W' = —i—= X (Cr — Cy)f7.
V2(mg + mg)
. Vg
h't = —i Cr+C , D5
s 2 (Cr ) (D3)
where the Killén function [cf. Eq. (B1)] Agx =

A(my, my, ¢*) replaces Ag = A(mp. my..q*) and Cyy) =

Co(10) In the standard notation used in the literature.

2. Comparison with the literature

The results for equal lepton masses (D2) do agree with
the results of Ref. [37] when 6, — = — 0, is taken into
account. This is consistent with the angular conventions. In
this paper we use the same conventions as LHCb [38],
which differ from the ones of [37] by the transformation
stated above.

APPENDIX E: A, —» A(= (p.n)x)t175
ANGULAR DISTRIBUTION

The decay A, — A(— (p.n)z)¢,¢, with a final-state
proton or neutron, recently measured by the LHCb
Collaboration [83], can also be considered within the
generalized helicity formalism, and is particularly relevant
because this decay can also be described using the effective
Hamiltonian defined in A 2. In this case (5) becomes, in the
rest frame of the A,,

A(QA,, ’ va QAMA,, ’ AN’ /11 ’ /12)
1 J
~ Y 8 s Haa Di s (QON, D31, ()0,

2y inrd,

= ZHz A=, D

_ A=, iy (QON3D /1 2, (&), (El)

PHYSICAL REVIEW D 93, 054008 (2016)

where the leptonic HAs are the same as before and N iy 18
the HA for the decay A — Nx analogous to the gg+ g, factor
in the B — K* decay, this time carrying nontrivial depend-
ence on helicities owing to the final state particle N having
spin-3. The terms H 4,4, are the HAs for the A, — A decay

and can be again expressed in the form
Hiay = (A(20)ISTXD|Ay(An,)),

with the T'¥ the same as defined in Table 3.1. The resulting
angular distribution can then be expressed as

(E2)

K(q%Q,,9Q,) ~Re[K3°Q00(Q,, Q,) + K3 Q0 (24, Q)
+ K200 (24, Q) + K500 (@4, Q)
+ K"y (Qu. Q) + Ko ? Qg (. Q)

+K1QI Q4. Q) + K122 (24, 2/)],

(E3)

where Qy = (0,80,,0) and Q, = (¢, 0., —¢p). A theoretical

angular analysis of this decay has been performed in
[41,84]; in terms of the functions defined in [41], the

Iyl
IC,A'¢ above are

1

ng’O = g (chc + 2Klss)’ ,C(O)l = KIC’
02 2 10 _ 1
ICO’ = g(chc - Klss)7 ICO’ = §(KZCC + 2K255)
2
K5 =Ko KB =5 (Kaee = Ko,

1 .
7§ (K3XC + 1K4sc)'
These results can also be compared with those found in
[24]; it follows that the MoM will be equally useful in
future angular analyses of this decay.

Ki'=Ks +iKy.  Kp?= (E4)

APPENDIX F: CHANGES IN CONVENTIONS
AND PRESENTATION

Notational changes with respect to the arXiv version 1,
aimed at clarifying the underlying structure are as follows:

(i) results are presented for B — K¢, ¢, rather than the
()

conjugate decay, (ii) we use C; Wilson coefficients in
place of Cr(s) for the tensor operators cf. Appendix A 2 for
details, (iii) the angular distribution (C1) is presented in
terms of ¢; in place of J; in order to emphasize the
differences of angular convention of this paper and the
theory community (as discussed in Appendix C 2), (iv) lep-
ton HAs are presented in the A, V rather than L, R basis and
(v) timelike HAs are absorbed into scalar and pseudoscalar
HAs. In addition we provide a Mathematica notebook,
entitled notebookGHZ. nb, containing the results presented
in Appendix C 4 for the decay mode B — K*(— Kz)¢,7,
for nonequal lepton masses [29].
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