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We generalize the Jacob-Wick helicity formalism, which applies to sequential decays, to effective field
theories of rare decays of the type B → KJK ð→ KπÞl1l2. This is achieved by reinterpreting local
interaction vertices bΓ0μ1…μnslΓ

μ1…μnl as a coherent sum of 1 → 2 processes mediated by particles whose
spin ranges between zero and n. We illustrate the framework by deriving the full angular distributions for
B → Kl1l2 and B → K�ð→ KπÞl1l2 for the complete dimension-six effective Hamiltonian for nonequal
lepton masses. Amplitudes and decay rates are expressed in terms of Wigner rotation matrices, leading
naturally to the method of moments in various forms. We discuss how higher-spin operators and QED
corrections alter the standard angular distribution used throughout the literature, potentially leading to
differences between the method of moments and the likelihood fits. We propose to diagnose these effects by
assessing higher angular moments. These could be relevant in investigating the nature of the current LHCb
anomalies in RK ¼ BðB → Kμþμ−Þ=BðB → Keþe−Þ as well as angular observables in B → K�μþμ−.
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I. INTRODUCTION

Helicity amplitudes (HAs), as defined by Jacob and
Wick [1], describe A → BC (1 → 2) transitions and have
definite transformation properties under rotation. The key
idea is that the angular and helicity information are
equivalent to each other. Angular decay distributions follow
(e.g. [2–4]) from evaluating the HAs with B and C in the
forward direction, with the angular information encoded in
Wigner D matrix functions, reminiscent of the Wigner-
Eckart theorem.
The intent of this paper is to generalize this method to

decays of the type A → ðB1B2ÞC which are schematically
described by local interactions of the form

Heff ∼ ðACÞμ1…μn
ðB1B2Þμ1…μn : ð1Þ

We do so by rewriting the 1 → 3 decay as a sequence of
1 → 2 processes, by inserting multiple complete sets of
polarization states between the Lorentz contractions of AC
and B1B2 above. This leads to a reinterpretation of the
decay in terms of a sum over intermediate particles of spin
J, where J can range from 0 up to n depending on the
specific structure of the operators. Symbolically we may
write

AðA → ðB1B2ÞCÞ ¼
Xn
J≥0

AðA → BJð→ B1B2ÞCÞ; ð2Þ

with A denoting the amplitude. We refer to this case as the
B-particle factorization approximation. At the formal level,
the main work is the decomposition of the Lorentz tensors
into irreducible objects under the spatial rotation group
(reminiscent of the 3þ 1 decomposition of cosmological
perturbation theory for example).
Important examples of such decays are given by the rare

radiative decays B → Klþl− and B → K�ð→ KπÞlþl−.
Besides evaluating nonperturbative matrix elements to
these decays (e.g. [5–17]), it has become clear that it is
beneficial to consider general properties of the amplitudes
entering the angular distributions (e.g. [18–21]). Our work
can be seen to be part of the latter category.
We evaluate the B → Kð�Þlþl− angular decay distribu-

tions within the generalized helicity framework developed
in this paper, providing an alternative method to traditional
techniques using Dirac trace technology [22,23]. An
important consequence of the manner in which we derive
the distribution is that it lends itself to the methods of
moments (MoM), which use the decomposition of the
distribution into orthogonal functions to obtain observables
independently of each other. This is a complementary
method to the likelihood fit to extract the dynamical
information from the decay, and was recently studied from
an experimental viewpoint in [24]. We discuss the impact
of including higher partial waves in both the ðKπÞ- and
especially the dilepton-system. The latter give rise to
corrections, in the form of higher moments, to the standard
form of the angular distribution used in the literature. The
sources of higher dilepton partial waves are higher spin
operators and electroweak corrections, both of which we
discuss qualitatively. The two sources can be distinguished
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by their different behavior in higher partial moments. We
encourage experimental investigation of higher moments
from various viewpoints. In particular, we discuss how
higher moments can be used to diagnose the size of QED
effects in B → Klþl− (with l ¼ e, μ) and test leakage of
J=Ψ-contributions into the lower dilepton-spectrum. Both
are of importance in view of RK as well as the angular
anomalies in the low dilepton-spectrum, which have
recently been reported by the LHCb collaboration in
[25] and [26,27] respectively.
The paper is organized as follows. In Sec. II the

methodology is introduced ending with a formal expression
for the fourfold decay distribution in terms of rotation
matrices and HAs. Specific angular distributions for
B → Kð�Þl1l2,

1 with detailed results in appendices C
(and a Mathematica notebook in the arXiv version [29])
and D, are given in Sec. III. The method of total and partial
moments is presented in Sec. IV. Section V contains the
discussion of including higher partial waves: a qualitative
assessment of higher spin operators and QED corrections is
presented in subsections V B and V C respectively. The
relevance of testing for higher moments is emphasised in
subsection V D. The paper ends with conclusions in
Sec. VI. Additional material, such as the leptonic HAs
and a few brief remarks on Λb → Λð→ ðp; nÞπÞl1l2, is
presented in Appendices A 3 and E respectively. In
appendix B we provide the kinematic conventions for
computation of the angular distribution by the sole use
of Dirac trace technology.

II. GENERALIZED HELICITY FORMALISM
FOR EFFECTIVE THEORIES

We first review the standard helicity formalism in Sec. II
A, and qualitatively apply it to sequential 1 → 2 decays in
Sec. II A 1, specializing to the spin configuration relevant
for our decays at the end. In Sec. II B the formalism is
extended to include decays like B → KJKð→ KπÞl1l2

described by effective field theories for b → sl1l2 tran-
sitions. The framework can be straightforwardly applied to
the entire zoo of semileptonic and rare flavor decays such
as Bs → K�lν, B → Dð�Þlν, D → ðπ; ρÞμμ, D → ðπ; ρÞμν,
K → πμμ etc., and can also be extended to include initial
particles with nonzero spin.

A. The basic idea of the helicity formalism
and its extension

The discussion in this section is standard and we refer the
reader to [2–4] for more extensive reviews, as well as the
pioneering paper of Jacob and Wick [1]. In a 1 → 2 (say

A → B1B2) decay a particle of spin JA and helicity MA

decays into two particles of momentum ~p1 and ~p2 with
helicities λ1 and λ2 respectively. In the center-of-mass frame
(~p1 ¼ −~p2) the system can be characterized by the two
helicities and the direction (i.e. the solid angles θ and ϕ).
By inserting a complete set of two-particle angular momen-
tum states the corresponding matrix element can be written

AðA → B1B2Þ
¼ hθ;ϕ; λ1; λ2jJA;MAi
¼

X
j;m

hθ;ϕ; λ1; λ2jj; m; λ1; λ2ihj;m; λ1; λ2jJA;MAi

¼ hθ;ϕ; λ1; λ2jJA;MA; λ1; λ2i|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}ffiffiffiffiffiffiffiffi
2JAþ1
4π

p
D

JA
MA;λ1−λ2 ðϕ;θ;−ϕÞ

hJA;MA; λ1; λ2jJA;MAi|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
A

JA
MA;λ1 ;λ2

ð3Þ

as a product of WignerD-functions and a HAAJA
MA;λ1;λ2

. The
Wigner matrix is a ð2JA þ 1Þ-dimensional SOð3Þ repre-
sentation in the helicity basis. The essence is that the
distribution of the amplitude over the angles is then
governed by the rotation matrix as a function of the
helicities. In practice one only needs to compute the HA.
The process B → J=Ψð→ lþl−ÞK�ð→ KπÞ constitutes

a well-known example of a sequential 1 → 2 decay where
the formalism can be applied [30]. The idea of this paper is
to extend this formalism to the case where the l1l2-pair
emerges from a local interaction vertex Oij ∼ sΓiblΓjl
with effective Hamiltonian Heff ∼

P
ijCijOij. This is

achieved by reinterpreting the local interaction vertex as
originating from a sum of particles whose spin depends on
the number of Lorentz contractions between the Γi;j

structures. Elements of this program have appeared in
the literature, e.g. [31] for B → KJlþl−, but we are
unaware of a systematic presentation that allows the
incorporation of a generic effective Hamiltonian as well
as other decay types.

1. Helicity formalism for BJB
→ KJKð→ K1K2ÞγJγð→ l1l2Þ

Let us consider the following sequential decay

BJB → KJK ð→ K1K2ÞγJγ ð→ l1l2Þ ð4Þ

where JB, Jγ and JK denote the spin of the particles B, γJ
and KJ. The notation is close to the main application of this
paper but we emphasise that at this point the methodology
is completely general. Assuming the decay to be a series of
sequential 1 → 2 decays the amplitude can be written in
terms of a product of 1 → 2 HAs times the corresponding
Wigner functions

1Throughout this work, we use nonequal leptons l1 ≠ l2, in
order to accommodate semileptonic decays of the type B → ρlν
as well as potential lepton flavor violation [28], motivated by the
RK measurement.
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AðΩB;Ωl;ΩKjλB; λK1
; λK2

; λ1; λ2Þ
∼
X
λγλK

DJB
λB;λγ−λK ðΩBÞHλγλKD

JK
λK;λK2−λK1 ðΩKÞKλK1 ;λK2

×D
Jγ
λγ ;λl
ðΩlÞLλl1λl2

; ð5Þ

where the λi are helicity indices, and

λl ≡ λ1 − λ2; ð6Þ
is a shorthand that we use frequently throughout the paper.
The HAs H, K and L correspond to the transitions
BJB → KJKγJγ , KJK → K1K2 and γJγ → l1l2 respectively.
The helicities of the internal particles γJ and KJ have to be
coherently summed over. The Wigner D-functions

Dj
m0;mðΩ ¼ ðα; β; γÞÞ ¼ hjm0je−iαJze−iβJye−iγJz jjmi ð7Þ

are irreducible SOð3Þ-representations of dimension 2jþ 1.
The Ji are the generators of angular momentum, and the
states jj; mi carry angular momentum j and helicity m and
are orthonormalized hj;mjj0; m0i ¼ δjj0δmm0 . To avoid pro-
liferation of indices we denote complex conjugation by a
bar instead of the more standard asterisk.
Adaptation to JB ¼ 0 and K1 ¼ K and K2 ¼ π

In order to ease the notation slightly we move straight
to the case B → KJð→ KπÞγJγ ð→ l1l2Þ.2 The relation

DJB¼0
λB¼0;λγ−λK ðΩÞ ¼ δ0;λγ−λK implies equality of helicities

λ≡ λγ ¼ λK: ð8Þ
One may therefore reduce HλγλK → Hλ, which is the

quantity known as the HA in the B → K�lþl−-literature
and carries the nontrivial dynamic information. The HA
KλK1

;λK2
reduces to a scalar constant (denoted by gKJKπ)

since K1 → K, K2 → π are both scalar particles. The third
HA Lλ1λ2 depends on the interaction vertex of the leptons,
but is trivial to calculate once the interaction is known. We
may rewrite the amplitude (5) as

AðB → KJK ð→ KπÞγJγ ð→ l1l2ÞÞ

∼
XJK

λ¼−JK
DJK

λ;0ðΩKÞDJγ
λ;λl
ðΩlÞAJγ

λ;λ1;λ2
; ð9Þ

where the angles, depicted in Fig. 1, are ΩK ¼ ð0; θK; 0Þ
and Ωl ¼ ðϕl; θl;−ϕlÞ. Note, the passage from D to
D-functions from (5) to (9) is related to passing from B
to B.

In the lepton-pair factorization approximation, defined
more explicitly in the following section, the amplitude

A
Jγ
λ;λ1;λ2

∼HλLλ1λ2 jJγ is the product of the hadronic and
leptonic matrix elements. The angle ϕl is the helicity angle
and is usually called simply ϕ. Before commenting on
different conventions of the angles we quote the fourfold
differential decay

d4Γ
dq2d cos θld cos θKdϕ

∼
X
λ1λ2

jAj2 ∼ ð10Þ

X1=2
λ1;λ2¼−1=2

XJγ
λ;λ0¼−Jγ

A
Jγ
λ;λ1;λ2

A
Jγ
λ0;λ1;λ2

D
JKJ
λ;0 ðΩKÞDJKJ

λ0;0ðΩKÞ

×D
Jγ
λ;λl
ðΩlÞDJγ

λ0;λl
ðΩlÞ; ð11Þ

in terms of amplitudes and Wigner D-functions. For the
angles we use the B → K�ll decay as a reference and use
the same conventions as the LHCb collaboration [32]
(Appendix A), which differ from those used by the theory

FIG. 1. Decay geometries for B̄ → K̄�l1l̄2 (above) and B →
K�l̄1l2 (below). In both cases l1 ¼ l−, l2 ¼ l− denote the
negatively charged lepton. The conventions are the same as used
by the LHCb collaboration in [32] (cf. Appendix A therein).
Comparison to the convention used by the theory community can
be found in Appendix C 2. The pictures are slightly misleading
in that the angles θl;K are drawn in the rest frame of the lepton-
pair and the K�-meson. For decays which are not self-tagging,
such as Bs; B̄s → ϕð→ KþK−Þμþμ− at the LHCb, the angles
ðθl; θK;ϕÞ → ðπ − θl; π − θK; 2π − ϕÞ, and one can only mea-
sure the sum of both decay rates [second equation (C6)].

2We choose B̄ → K̄Jl1l̄2 transitions as the main template for
the results in this paper. Such transitions are governed by the
b → s Hamiltonian, which is the standard in the theory literature
and is used to define the Wilson coefficients. In the more
conceptual sections we shall refer to B → Kl̄1l2-transitions.
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community. More precise statements, including a conver-
sion diagram, can be found in Appendix C 2.

B. Effective theories rewritten as a coherent
sum of sequential decays

In this section we give the formal steps to derive the
expression of the angular distributions. The reader inter-
ested in the final result can directly proceed to Sec. III.
The amplitude (9) is of a completely general form for the

decay where γJγ is an actual particle of spin Jγ . In B →
K�ð→ KπÞl1l2 a part of the amplitude is in this form
where the photon corresponds to the intermediate state
(γ1 ¼ γ). In general there are effective vertices, so-called
contact terms, where the intermediate particles are not
present. In the interest of clarity we quote the effective
Hamiltonian for b → sll3:

Heff ¼ cHĤ
eff ;

cH ≡− 4GFffiffiffi
2
p α

4π
V�tsV tb;

Ĥeff ¼
X

i¼V;A;S;P;T
ðCiOi þ C0iO

0
iÞ: ð12Þ

Above GF is Fermi’s constant, α the fine structure constant,
V tD are Cabibbo-Kobayashi-Maskawa (CKM) elements
and the operators are

OSðPÞ ¼ sLblðγ5Þl;
OVðAÞ ¼ sLγμblγμðγ5Þl;
OT ¼ sLσμνblσμνl; ð13Þ

where O0 ¼ OjsL→sR , the labels refer to the lepton
interaction vertex, qL;R ≡ 1=2ð1∓γ5Þq, l, l → l1, l2

for different lepton flavors and a few additional
relevant remarks deferred to Appendix A 2. In passing
we add that the notation O9ð10Þ ¼ OVðAÞ is more
common throughout the literature. In the case where
electroweak corrections are neglected at the matrix
element level one may factorize the hadronic from
the leptonic part. We refer to this as the lepton-pair
factorization approximation (LFA) (B-particle factoriza-
tion approximation in the introduction). Schematically
(12) is written as a product of a hadronic part H and a
leptonic part L with a certain number of Lorentz
contractions between them:

Heff ∼
XN0

a¼1
HaLa þ

XN1

b¼1
Hb

μL
μ
b þ

XN2

c¼1
Hc

μ1μ2L
μ1μ2
c : ð14Þ

The sum over a, b and c extends over operators with 0,
1 and 2 Lorentz contractions between quark and lepton
operators. In the example of CVOV ¼ HμLμ we would
have Hμ ¼ CVsLγμb and Lμ ¼ lγμl. On a formal level
we might think of OVðO9Þ as originating from inte-
grating out a vector and a scalar particle, in the sense
that the Lorentz contraction over index μ can be written
as the sum of products of a spin-one and a timelike
spin-0 polarization vector. This is expressed by the
well-known completeness relation (e.g. [18,23,31])

gμν ¼
X

λ;λ0∈ft;�;0g
ωμðλÞωνðλ0ÞGλλ0 ;

Gλλ0 ¼ diagð1;−1;−1;−1Þ; ð15Þ

where the first entry in Gλλ0 refers to λ ¼ λ0 ¼ t and an
explicit parametrization is given by

ωμð�Þ ¼ ð0;�1; i; 0Þ=
ffiffiffi
2
p

;

ωμð0Þ ¼ ðqz; 0; 0; q0Þ=
ffiffiffiffiffi
q2

q
;

ωμðtÞ ¼ ðq0; 0; 0; qzÞ=
ffiffiffiffiffi
q2

q
; ð16Þ

which is consistent with the parametrization qμ ¼ ðq0; 0;
0; qzÞ. The polarizationvectorsωð�; 0Þ are compatiblewith
the Jacob-Wick phase convention [1] (cf. Appendix B and
the corresponding footnote for further remarks). Let us
pause a moment and emphasise that intermediate results do
depend on the convention, which enters the definition of the
HAs, and this dependence has to be taken into accountwhen
comparing toHAs appearing in the literature.We choose the
convention in [18], since it is compatible with the Condon-
Shortly convention that is standard for Clebsch-Gordon
coefficients and Wigner matrices (e.g. [33]).
We may think of ω as being associated with the Lorentz

group SOð3; 1Þ. In the rest frame qz ¼ 0 the timelike
polarization tensor transforms as a scalar under the restric-
tion of SOð3; 1Þ to spatial rotations SOð3Þ.4 For an effective
operator with n Lorentz indices the relation (15) can be
inserted n times to obtain a HA with n helicity indices.
More precisely, the direct product of SOð3; 1Þ polarization
tensors decomposes into irreducible representations of
SOð3Þ polarization tensors ϵj;λμ1…μn of spin j ¼ 0;…; n
and helicities λ ¼ −j;…; j. Using the expressions in

Eqs. (A8) and (A9) the analogue of A
Jγ
λ;λ1;λ2

in (9) on each
spin component can be written as5

3The adaptation from ll̄ → l1l̄2 is trivial and will not be
spelled out explicitly.

4Formally the branching rule for the Lorentz four vector
ð1=2; 1=2Þ is ð1=2; 1=2ÞSOð3;1ÞjSOð3Þ → ð1þ 3ÞSOð3Þ.

5In the notation used throughout the literature Ht ¼
hHμ

biϵ0;0μ ¼ hHμ
biωμðtÞ is known as the timelike HA [23,31].

By virtue of the equation of motion the timelike HAs can be
absorbed into the scalar and pseudoscalar HAs, cf. Appendix C 5.
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A
Jγ
λ;λ1;λ2

¼

8>>><
>>>:
hHaihLai þ hHμ

bihLα
biϵ0;0μ ϵ0;0α þ hHμν

c ihLαβ
c iϵ0;0μν · ϵ0;0αβ Jγ ¼ 0

hHμ
bihLα

biϵ1;λμ ϵ1;λlα þ hHμν
c ihLαβ

c iϵ1;λμν · ϵ1;λlαβ Jγ ¼ 1

hHμν
c ihLαβ

c iϵ2;λμν · ϵ2;λlαβ Jγ ¼ 2

ð17Þ

where summation over Lorentz indices and the number of
operators in (14) are both implied, the scalar product “·” is
detailed in (A8) and

hHμ1…μn
a i≡ hKJðλÞjHμ1…μn

a jBi;
hLμ1…μn

a i≡ hl1ðλ1Þl2ðλ2ÞjLμ1…μn
a j0i; ð18Þ

are the leptonic and hadronic matrix elements. The
helicities in (17) are the helicities of the outgoing
particles of the HAs, with λ for KJðλÞ in HB→KJK and

λl ¼ λ1 − λ2 for l1ðλ1Þl2ðλ2Þ in LγJγ→l1l2 . This is the
main idea of the formalism: the angular dependence
from the ingoing to outgoing particle is governed by

the Wigner D-function, e.g. ϵJl;λ ¼ D
Jγ
λ;λl
ðΩlÞϵJl;λl for

LγJγ ðλÞ→l1ðλ1Þl2ðλ2Þ, which is inherent in (3). The general-
ized HA then becomes essentially a sum over all spin
components Jγ necessary to saturate the Lorentz indices
in the effective Hamiltonian,

AðB → KJK ð→ KπÞl1l2Þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2JK þ 1
p

4π

Xn
Jγ¼0

XminðJγ ;JKÞ

λ¼−minðJγ ;JKÞ
DJK

λ;0ðΩKÞDJγ
λ;λl
ðΩlÞAJγ

λ;λ1;λ2
;

ð19Þ

where the overall factor follows from (3). A schematic
representation of Eq. (19) is given in Fig. 2. The
differential decay distribution (10) is replaced by a
similar expression

d4Γ
dq2dcosθldcosθKdϕ

∼
X
λ1λ2

jAj2¼2JKþ1
4π

X
λ1λ2

X
Jγλ

X
J0γλ0

×A
Jγ
λ;λ1;λ2

A
J0γ
λ0;λ1;λ2

DJK
λ;0ðΩKÞDJK

λ0;0ðΩKÞDJγ
λ;λl
ðΩlÞDJγ

λ0;λl
ðΩlÞ;
ð20Þ

with additional coherent sums over the spins Jγ

X
λ1λ2

¼
X1=2

λ1;λ2¼−1=2
;

X
Jγλ

¼
X2
Jγ¼0

XminðJγ ;JKJ Þ

λ¼−minðJγ ;JKJ Þ
ð21Þ

and likewise for the sum over J0γ; λ0.

III. ANGULAR DISTRIBUTION
AND WIGNER D-FUNCTIONS

We now apply the method introduced in the previous
section to decays governed by the b → sl1l2 effective
Hamiltonian (12). First we consider the decay
B → K�ð→ KπÞl1l2, and then in Sec. III C we present
similar results for B → Kl1l2. The related decay
Λb → Λð→ NπÞl1l2, where N ¼ ðp; nÞ, can also be
treated within this formalism, and will be briefly considered
in Appendix E.

FIG. 2. A diagrammatic interpretation of the process, Eq. (19),
used to set up the formalism. The decay to two leptons is treated
as being mediated by an effective particle γJγ of spin Jγ . The
factor gKJKπ has no dependence on helicities and depends only on
the dynamics of the K� decay.

TABLE I. The definitions of the ΓX and their associated spin
JγðXÞ. The contributions JγðXÞ ¼ 0, 1 give rise to the Sl- and Pl-
wave amplitudes respectively. The basic polarisation vector ωμ is
given in (16) and the composed ones can be found in Eq. (A5).
The precise value of the helicity index λX is specified when the
leptonic and hadronic HAs are defined in Eqs. (A13), (C14),
(D4). Note that the additional structure ΓT5 ¼ σμνγ5 can be
absorbed into the other tensor structures due to the identity
σαβγ5 ¼ − i

2
ϵαβμνσμν (with the ϵ0123 ¼ þ1 convention for the

Levi-Civita tensor). Timelike contributions γμ½γ5�ωμðtÞ can be
absorbed into ΓS;P respectively, as detailed in Appendix C 5.
Above σμν ¼ i=2½γμ; γν�.

ΓS½P� ΓV½A� ΓT½Tt�

ΓX 14½γ5� γμ½γ5�ωμðλXÞ σμνω1;λX
μν ½ωt;λX

μν �
JγðXÞ 0 1 1
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A. B → K�ð→ KπÞl1l2

The use of the effective Hamiltonian (12) in the LFA
restricts the partial waves to Jγ ¼ 0, 1 terms in equa-
tion (17). The discussion of higher partial waves
(Jγ ≥ 2) is deferred to Sec. V. The matrix element for
(12) is then given by the sum of an Sl- and Pl-wave
amplitude (with the subscript l referring to the partial
wave in the angle θl):

M̂λ1;λ2 ¼ hK�ð→ KπÞl1ðλ1Þl2ðλ2ÞjĤeff jBi

¼
ffiffiffi
3
p

4π

�
A0

0;λ1;λ2
D1

0;0ðΩKÞδλ1λ2

þ
X
λ¼�;0

A1
λ;λ1;λ2

D1
λ;0ðΩKÞD1

λ;λl
ðΩlÞ

�
; ð22Þ

where the hat denotes the effective Hamiltonian without
the cH prefactor (12). There is no D-wave since the
two-indices in the tensor operator (12) are antisym-
metric and therefore in a spin 1 representation (cf.
discussion in Sec. V B on higher spin operators). The
K� has spin 1 and is therefore always in a PK-wave in
the θK-angle, with analogous meaning for the K sub-
script as before. Above we have used D0

0;λl
ðΩÞ ¼ δ0λl

to impose δλ1λ2 on the scalar part of the matrix element.
The principal objects to be calculated are the ampli-

tudes A
Jγ
λ;λ1;λ2

. For Heff (12) the Sl- and Pl-wave
amplitudes (that is to say A0 and A1 respectively)
are written as

A0
0;λ1;λ2

¼ HSLS
λ1;λ2
þHPLP

λ1;λ2
;

A1
λ;λ1;λ2

¼ −HV
λ L

V
λ1;λ2

−HA
λL

A
λ1;λ2
þHT

λL
T
λ1;λ2

− 2HTt
λ L

Tt
λ1;λ2

;

ð23Þ

with the relative signs and factor of 2 emerging from
the (double) completeness relation (A3), and the
leptonic and the hadronic HAs are

HX
λ ¼ hK�ðλÞjsΓXbjBi;

LX
λ1λ2

≡ hl1ðλ1Þl2ðλ2ÞjlΓXlj0i; ð24Þ

the expressions in (18) contracted with the correspond-
ing polarization vectors; explicit expressions for the ΓX

are given in Table 1. Explicit results, as well as a more
precise prescription concerning ΓX, are given in
Appendices A 3 and C 5 in Eqs. (A13) and (C14),
respectively. Squaring the matrix element in (22),
summing over external helicities and averaging over
final-state spins, one obtains an angular distribution

IK� ðq2;ΩK;ΩlÞ≡ 32π

3

d4Γ
dq2d cos θld cos θKdϕ

¼ 32π

3
N
X
λ1;λ2

jM̂λ1;λ2 j2; ð25Þ

with IK� being a shorthand and 32π=3 is a convenient
normalization factor. The factor N ,

N ≡ jcHj2κkin; κkin ≡
ffiffiffiffiffi
λB
p ffiffiffiffiffiffi

λγ�
p

26π3m3
Bq

2
; ð26Þ

is the product of the prefactor resulting from the
effective Hamiltonian cH (12) and the kinematic phase
space factor. The matrix element is defined in (22).
Above λB ≡ λðm2

B;m
2
K� ; q

2Þ and λγ� ≡ λðq2; m2
l1
; m2

l2
Þ

where λða; b; cÞ is the Källén-function defined in
(B1) and related to the absolute value of the three-
momentum of the K� and the lepton pair by (B2).

1. Angular distribution

The squaredmatrix element initially contains a plethora of
different products of four Wigner functions. However, these
correspond to pairs of direct products that can be reduced to
single Wigner functions by the Clebsch-Gordan series

Dj
m;nðΩÞDl

p;qðΩÞ ¼
Xjþl

J¼jj−lj

XJ
M¼−J

XJ
N¼−J

CJjl
MmpC

Jjl
NnqD

J
M;NðΩÞ:

ð27Þ

Applied separately over the angles ΩK ¼ ð0; θK; 0Þ and
Ωl ¼ ðϕ; θl;−ϕÞ, along with the identity Dl

m;m0 ðΩÞ ¼
ð−1Þm0−mDl−m;−m0 ðΩÞ, this allows the angular distribution
to be written in the compact form

Ið0ÞK� ðq2;ΩK;ΩlÞ
¼Re½G0;0

0 ðq2ÞΩ0;0
0 þG0;1

0 ðq2ÞΩ0;1
0 þG0;2

0 ðq2ÞΩ0;2
0

þG2;0
0 ðq2ÞΩ2;0

0 þG2;1
0 ðq2ÞΩ2;1

0 þG2;1
1 ðq2ÞΩ2;1

1

þG2;2
0 ðq2ÞΩ2;2

0 þG2;2
1 ðq2ÞΩ2;2

1 þG2;2
2 ðq2ÞΩ2;2

2 �; ð28Þ

where the superscript (0) is a reminder that only Sl- and Pl-
wave contributions were used to describe the amplitude (22).
The angular functions Ω are given in terms of Wigner D
functions

ΩlK;ll
m ≡ΩlK;ll

m ðΩK;ΩlÞ
≡DlK

m;0ðΩKÞDll
m;0ðΩlÞ

¼ DlK
m;0ðΩ0KÞDll

m;0ðΩ0lÞ: ð29Þ
The variables Ω0K ¼ ðϕ; θK;−ϕÞ and Ω0l ¼ ð0; θl; 0Þ form
anangular reparametrization thatwill prove convenientwhen
we discuss partial moments. The label lK corresponds to the
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ðKπÞ-system, ll to the dilepton system, and the common
indexm is the azimuthal componentϕ of either partial wave.
The observablesGlK;ll

m are functions of q2 and the relation to
the standardobservables in the literature is given inSec. III B.
The explicit Wigner D-functions used above are given by

D0
0;0ðΩÞ ¼ 1;

D2
0;0ðΩÞ ¼

1

2
ð3cos2θ − 1Þ;

D2
2;0ðΩÞ ¼

ffiffiffi
3

8

r
e−2iϕsin2θ;

D1
0;0ðΩÞ ¼ cos θ;

D1
1;0ðΩÞ ¼ − 1ffiffiffi

2
p e−iϕ sin θ;

D2
1;0ðΩÞ ¼ −

ffiffiffi
3

8

r
e−iϕ sin 2θ; ð30Þ

and can be related to spherical harmonics Ylmðθ;ϕÞ or
associated Legendre polynomials PlmðxÞ as

Dl
m;0ðϕ; θ;−ϕÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4π

2lþ 1

r
Ylmðθ;ϕÞ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl −mÞ!
ðlþmÞ!

s
Plmðcos θÞe−imϕ: ð31Þ

We comment briefly on four features of the angular
distribution (28), all of which are encoded by the double
Clebsch-Gordan series (27) but which can also be seen to
emerge from the underlying physics:

(i) The second helicity index of all Wigner D-functions
in the angular distribution is zero. The latter is the
difference of the helicities of the final-state particles,
which is zero since these helicities are summed
incoherently, ðλ1 − λ2Þ − ðλ1 − λ2Þ ¼ 0.

(ii) The first helicity index m is identical in all pairs of
Wigner D-functions appearing in the angular dis-
tribution. This index contains the helicities of the
internal particles, summed coherently. One can also
see this as a property of the freedom of defining the
reference plane for the angle ϕ.

(iii) The range of the indices lK and ll is fixed between
the range 0;…; 2max½JK;l�. Including only Jγ ≤ 1

contributions emerging from the dimension-six ef-
fective Hamiltonian (12) hence imposes 0 ≤ ll ≤ 2,
and likewise JK ¼ 1 imposing 0 ≤ lK ≤ 2.

(iv) The absence of angular structures with lK ¼ 1 is
specific to this decay, due to the final state consisting
of (pseudo)scalar mesons.

The first three features are universal to such decay
chains and apply even if some of the particles
involved are fermions, for example in the decay Λb →
Λð→ ðp; nÞπÞl1l2, see Appendix E.

B. Relation of the GlK ;ll
m to standard

literature observables

The functionsGlK;ll
m , omitting the explicit q2-dependence

hereafter, are defined in terms of the standard basis of
observables giðq2Þ parametrized in (C1) by

G0;0
0 ¼

4

9
ð3ðg1c þ 2g1sÞ− ðg2c þ 2g2sÞÞ;

G0;1
0 ¼

4

3
ðg6c þ 2g6sÞ; G0;2

0 ¼
16

9
ðg2c þ 2g2sÞ;

G2;0
0 ¼

4

9
ð6ðg1c − g1sÞ− 2ðg2c − g2sÞÞ;

G2;1
0 ¼

8

3
ðg6c − g6sÞ; G2;2

0 ¼
32

9
ðg2c − g2sÞ;

G2;1
1 ¼

16ffiffiffi
3
p G5; G2;2

1 ¼
32

3
G4; G2;2

2 ¼
32

3
G3; ð32Þ

where we have defined G3;4;5 ≡ ðg3;4;5 þ ig9;8;7Þ.
The twelve quantities (32), keeping in mind that the last

three are complex, have been rewritten in several ways in
the literature. A frequently used form is the set of
observables given in [34], constructed to be insensitive
to form factors. In the notation of LHCb [26], which
includes their, and therefore our, angular conventions, the
observables are given in terms of GlK;ll

m by6:

hP1ibinjLHCb ¼
hRe½G2;2

2 �ibin
N bin

;

hP2ibinjLHCb ¼
h2G0;1

0 −G2;1
0 ibin

3N bin
;

hP3ibinjLHCb ¼
hIm½G2;2

2 �ibin
2N bin

;

hP4
0ibinjLHCb ¼

hRe½G2;2
1 �ibin

4N 0bin
;

hP8
0ibinjLHCb ¼

hIm½G2;2
1 �ibin

4N 0bin
;

hP5
0ibinjLHCb ¼

hRe½G2;1
1 �ibin

2
ffiffiffi
3
p

N 0bin
;

hP6
0ibinjLHCb ¼

hIm½G2;1
1 �ibin

2
ffiffiffi
3
p

N 0bin
; ð33Þ

where we defined

6The extension of these relations to CP-odd and CP-even
combinations, in the spirit of [35], is straightforward, see Sec. IV
of [34].
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hfðq2Þibin ¼
Z
bin

dq2fðq2Þ;

as the integral over q2 bins of the observable of interest, and7

N bin ≡ 4

�
G0;2

0 − 1

2
G2;2

0

�
bin
;

N 0bin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
�
G0;2

0 − 1

2
G2;2

0

�
bin
hG0;2

0 þ G2;2
0 ibin

s
: ð34Þ

Three other combinations of the GlK;ll
m can be related to the

branching fraction dΓ
dq2, the forward-backward asymmetry

AFB and the longitudinal polarization fraction FL [36]:�
dΓ
dq2

�
bin
¼ 3

4
hG0;0

0 ibin;

hAFBibinjLHCb ¼
1

2

hG0;1
0 ibin

hG0;0
0 ibin

;

hFLibin ¼
hG0;0

0 ibin þ hG2;0
0 ibin

3hG0;0
0 ibin

: ð35Þ

The observables in Eqs. (33), (34), (35) correspond to the
twelve gi. The definitions of the Pi

0 above correspond to
those used by LHCb [26]; we give the correspondence to the
observables defined in [34] in Appendix C 2.

C. B → Kl1l2

Having shown the B → K�l1l2 HA analysis in detail we
are going to be rather brief on B → Kl1l2. Skipping the
step in (5) we directly write down the Sl- and Pl-wave
amplitudes [analogue of Eq. (23)]:

A0
0;λ1;λ2

¼ hSLS
λ1;λ2
þ hPLP

λ1;λ2
;

A1
0;λ1;λ2

¼ −hVLV
λ1;λ2

− hALA
λ1;λ2
þ hTLT

λ1;λ2
− 2hTtLTt

λ1;λ2
;

ð36Þ

where the LX
λ1;λ2

are the same as in the B → K�l1l2 decay,
and the hadronic HAs are taken over the same set of
operators, but defined instead for B → K transitions. We
again refer the reader to Appendix A 1 for a clarification of
the signs and factor of 2 that emerge from the (double)
completeness relation.
The reduced matrix element is then the sum of the Sl-

and Pl-wave amplitude

M̂λ1;λ2 ¼
1ffiffiffiffiffiffi
4π
p ðA0

0;λ1;λ2
δλ1λ2 þA1

0;λ1;λ2
D1

0;λl
ðΩlÞÞ; ð37Þ

where Ωl ¼ ð0; θl; 0Þ in this case. The angular distribution
(with 0 ≤ θl ≤ π) is given by squaring the matrix element

IKðq2; θlÞ≡ d2Γ
dq2d cos θl

¼ N
X
λ1;λ2

jM̂λ1;λ2 j2: ð38Þ

Using (37) one obtains

Ið0ÞK ¼Gð0Þðq2ÞþGð1Þðq2ÞD1
0;0ðΩlÞþGð2Þðq2ÞD2

0;0ðΩlÞ
¼Gð0Þðq2ÞþGð1Þðq2ÞP1ðcosθlÞþGð2Þðq2ÞP2ðcosθlÞ

¼Gð0Þðq2ÞþGð1Þðq2ÞcosθlþGð2Þðq2Þ1
2
ð3cos2θl−1Þ;

ð39Þ

where we used Plðcos θlÞ ¼ Dl
0;0ðΩlÞ and D0

0;0ðΩlÞ ¼ 1.
For convenience, we have given results in terms of the
explicit angle θl using equation (30). The superscript (0) is
again a reminder that the restriction to ll ≤ 2 is a
consequence of only including Sl- and Pl-waves in
(37). The explicit functions Gð0;1;2Þ, whose q2-dependence
we omit hereafter, are given in appendix D in equation (D2)
in terms of HAs.8

With respect to the parametrization of the angular
distribution used in the experimental community, [38]

1

Γ
dΓ

dcosθl
¼ 3

4
ð1−FHÞð1− cos2 θlÞþ

1

2
FHþAFB cosθl;

ð40Þ

the relationship to the GðiÞ in (39) is given by

Γ ¼ 2hGð0Þi;

AFB ¼ σX
hGð1Þi
2hGð0Þi ;

FH ¼
hGð0Þi þ hGð2Þi
hGð0Þi ; ð41Þ

where hXi ¼ R
dq2X denotes the integration or

appropriate binning over q2 and σ ¼ �1 depending on
the conventions.9

7In terms of the giðq2Þ basis, N bin ¼ 64
3
hg2sibin and N 0bin ¼

16
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi−hg2cibinhg2sibin
p

.

8The observables GðllÞ and the angular coefficients used in the
literature [37] are related by aðq2Þ ¼ Gð0Þ − 1

2
Gð2Þ, bðq2Þ ¼ Gð1Þ

and cðq2Þ ¼ 3
2
Gð2Þ where Ið0ÞK ¼ aþ b cos θl þ c cos2 θl.

9In our conventions by definition σGHZ ¼ 1 and the translation
to the LHCb conventions [38] are as follows σGHZ ¼ σðB�Þ and
σGHZ ¼ −σðB0; B̄0Þ. The charged and neutral decays are different
because the neutral mode, being observed in KS, is not self-
tagging. Comparing with the theory paper [37] we find σGHZ ¼−σBHP for both charged and neutral modes.
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IV. METHOD OF TOTAL
AND PARTIAL MOMENTS

The MoM is a powerful tool to extract the angular
observables GlK;ll

m by the use of orthogonality relations. In
B physics, for example, the method has been applied to
B → J=Ψð→ llÞK�ð→ KπÞ type decays [30] during the
first B-factory era.
In experiment the angular information on B → K�ll has

been extracted through the likelihood fit method, at the

level of Ið0ÞK� [27], and it has also been suggested for analysis
at the amplitude level [39]. A possible advantage of the
MoM over the likelihood fit is that it is less sensitive to
theoretical assumptions. More precisely, one can test each
angular term independent of the rest of the distribution.
Generically the fourfold angular distribution can be
expanded over the complete set of functions ΩlK;ll

m (29)

IK� ðq2;ΩK;ΩlÞ ¼
X

lK;ll≥0

XminðlK;llÞ

m¼0
Re½GlK;ll

m ΩlK;ll
m ðθK;θl;ϕÞ�;

ð42Þ

of which the distribution Ið0ÞK� (28) is a subset. Note that the
sum over m does not need to be continued for negative
values since IK� is real-valued. By using the orthogonality
properties of the Wigner D-functions (e.g. [40]) with
Ω ¼ ðα; β; γÞZ

1

−1
d cos β

Z
2π

0

dα
Z

2π

0

dγDj
m;nðΩÞDl

p;qðΩÞ

¼ 8π2

2jþ 1
δjlδmpδnq; ð43Þ

the MoM allows us to extract the observablesGlK;ll
m from the

angular distribution. In particular one can test for the absence
of all higher moments and therefore test very specifically the

assumptions made when deriving the distribution Ið0ÞK� (28).
We refer to this method as the method of (total) moments or
simplyMoMwith results given in Sec. IVA. Integrating over
a subset of angles, referred to as partial moments, is discussed
in Sec. IV B. In the latter case orthogonality does not hold

in the generic case anddifferentGlK;ll
m enter the samemoment.

Elements of the MoM have previously been applied to
Λb → Λð→ ðp; nÞπÞl1l2 [41] and more systematically to
the other channels discussed in this paper, crucially
including a study of how to account for detector-resolution
acceptance effects, in [24]. Our study differs from the latter

in that we start at the level of the HAs, and obtain the
distribution (42) through a direct computation, whereas
the other studies proceed backwards and directly expand
the decay distribution in the orthogonal basis of associated
Legendre polynomials. Our approach is therefore advanta-
geous in that it provides additional insight, by clarifying the
structure of the decay distribution (28) and what type of
physics goes beyond it. This is an aspectwe return to inSec.V.

A. Method of total moments

In order to condense the notation slightly we define the
scalar product

hfðΩÞjgðΩÞiθKθlϕ ≡
1

8π

Z
1

−1
d cos θK

Z
1

−1
d cos θl

×
Z

2π

0

dϕfðΩÞgðΩÞ; ð44Þ

normalized such that h1j1i ¼ 1. Using hfðΩÞjgðΩÞiθKθlϕ
we can thus extract all observables GlK;ll

m separately from
each other, by taking moments10

MlK;ll
m ≡ hΩlK;ll

m jIK� ðq2;ΩK;ΩlÞiθKθlϕ ¼ clK;llm GlK;ll
m ; ð45Þ

where

clK;llm ¼ 1þ δm0

2ð2lK þ 1Þð2ll þ 1Þ : ð46Þ

Using the equation above the terms in (28) are given in
Table II. Furthermore, the orthogonality condition also
implies that

Mj;j0
m ¼ 0; ∀ m and j ≥ 3 or j0 ≥ 3;

M1;j0
m ¼ 0; ∀ j0; m: ð47Þ

Hence the higher and lK ¼ 1 moments vanish, providing a

very specific test of the theoretical assumptions behind Ið0ÞK� .

B. Partial moments

The results given previously show how to extract the
individual GlK;ll

m . We propose the method of partial
moments whereby one integrates only over a subset of
angles. The distributions might be regarded as generaliza-
tions of uni- and double-angular distributions as these in

TABLE II. Moments MlK;ll
m in terms of GlK;ll

m as defined by Eq. (45) with factor of proportionality clK;llm evaluated
with (46).

MlK;ll
m G0;0

0
1
3
G0;1

0
1
5
G0;2

0
1
5
G2;0

0
1
15
G2;1

0
1
25
G2;2

0
1
30
G2;1

1
1
50
G2;2

1
1
50
G2;2

2

10The moments MlK;ll
m and the quantities Sll;lK ;m introduced in

[24] are related as follows: 8πG0;0
0 Sll;lK ;m¼GlK;ll

m ¼MlK;ll
m =clK;llm .
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turn can be viewed as partial moments with respect to unity.
The method is effectively a hybrid between the likelihood
fit and the total MoM. To this end we define the further
scalar products

hfðΩÞjgðΩÞiθϕ ≡ 1

4π

Z
1

−1
d cos θ

Z
2π

0

dϕfðΩÞgðΩÞ;

hfðΩÞjgðΩÞiθKθl ≡
1

4

Z
1

−1
d cos θK

Z
1

−1
d cos θlfðΩÞgðΩÞ;

ð48Þ

again normalized such that h1j1i ¼ 1. The orthogonality
relation (43) can then be rewritten as

hDl
p;0ðΩlÞjDj

m;0ðΩlÞiθlϕ ¼
1

2lþ 1
δjlδmp: ð49Þ

1. Integrating over θl;ϕ: k
ll
mðθKÞ-moments

The partial moment over θl and ϕ is defined and given by

kllmðθKÞ≡ hDll
m;0ðΩlÞjIK� ðq2;ΩK;ΩlÞiθlϕ

¼ 1þ δm0

2ð2ll þ 1Þ
X
lK≥0

DlK
m;0ðΩKÞGlK;ll

m ð50Þ

Assuming the distribution (28) (lK ¼ 0, 2) there are six
nonvanishing moments

k00ðθKÞ ¼ G0;0
0 þG2;0

0 D2
0;0ðΩKÞ

¼ G0;0
0 þ

1

2
ð3cos2θK − 1ÞG2;0

0 ;

k10ðθKÞ ¼
1

3
ðG0;1

0 þ G2;1
0 D2

0;0ðΩKÞÞ

¼ 1

3

�
G0;1

0 þ
1

2
ð3cos2θK − 1ÞG2;1

0

	
;

k20ðθKÞ ¼
1

5
ðG0;2

0 þ G2;2
0 D2

0;0ðΩKÞÞ

¼ 1

5

�
G0;2

0 þ
1

2
ð3cos2θK − 1ÞG2;2

0

	
;

k11ðθKÞ ¼
1

6
G2;1

1 D2
1;0ðΩKÞ ¼

−1
6

ffiffiffi
3

8

r
sin 2θKG

2;1
1 ;

k21ðθKÞ ¼
1

10
G2;2

1 D2
1;0ðΩKÞ ¼

−1
10

ffiffiffi
3

8

r
sin 2θKG

2;2
1 ;

k22ðθKÞ ¼
1

10
G2;2

2 D2
2;0ðΩKÞ ¼

1

10

ffiffiffi
3

8

r
sin2θKG

2;2
2 ; ð51Þ

where we usedD0
0;0ðΩKÞ ¼ 1. As was the case in the MoM,

with respect to the distribution Ið0ÞK� higher partial moments
vanish

kllmðθKÞ ¼ 0 ∀ ll ≥ 3; ∀ m: ð52Þ

2. Integrating over θK, ϕ: l
ll
mðθlÞ-moments

The partial moment over θK and ϕ is defined in complete
analogy with the previous partial moment (50) by,

llKm ðθlÞ≡ hDlK
m;0ðΩ0KÞjIK� ðq2;Ω0K;Ω0lÞiθKϕ

¼ 1þ δm0

2ð2lK þ 1Þ
X
ll≥0

Dll
m;0ðΩKÞGlK;ll

m ; ð53Þ

where we make use of the reparametrization of angles given
in (29). Again assuming the distribution (28) (ll ¼ 0, 1, 2)
there are four nonvanishing moments

l00ðθlÞ ¼ G0;0
0 þ G0;1

0 D1
0;0ðΩ0lÞ þ G0;2

0 D2
0;0ðΩ0lÞ

¼ G0;0
0 þ cos θlG

0;1
0 þ

1

2
ð3cos2θl − 1ÞG0;2

0 ;

l20ðθlÞ ¼
1

5
ðG2;0

0 þG2;1
0 D1

0;0ðΩ0lÞ þG2;2
0 D2

0;0ðΩ0lÞÞ

¼ 1

5

�
G2;0

0 þ cos θlG
2;1
0 þ

1

2
ð3cos2θl − 1ÞG2;2

0

	
;

l21ðθlÞ ¼
1

10
ðG2;1

1 D1
1;0ðΩ0lÞ þG2;2

1 D2
1;0ðΩ0lÞÞ

¼ −1
10

ffiffiffi
2
p

�
sin θlG

2;1
1 þ

ffiffiffi
3

4

r
sin 2θlG

2;2
1

	
;

l22ðθlÞ ¼
1

10
G2;2

2 D2
2;0ðΩ0lÞ ¼

1

10

ffiffiffi
3

8

r
sin2θlG

2;2
2 ; ð54Þ

where we used D0
0;0ðΩ0lÞ ¼ 1. With respect to the distri-

bution Ið0ÞK� higher partial moments vanish

lllmðθlÞ ¼ 0; ∀ lK ≥ 3; ∀ m and lK ¼ 1; ∀ m:

ð55Þ

3. Integrating over θK, θl: p
lK ;ll
m;m0 ðϕÞ-moments

Finally, we can consider projecting on to moments of the
form Dl

m;0ðΩKÞDl0
m0;0ðΩ0lÞ with respect to θK, θl. In this

case the full orthogonality relation (43) no longer holds, but
due to (27) there exist selection rules as to which of the
GlK;ll

m can contribute to the partial moments

plK;ll
m;m0 ðϕÞ≡hDlK

m;0ð0;θK;0ÞDll
m0;0ð0;θl;0ÞjIK�ðq2;ΩK;ΩlÞiθKθl :

ð56Þ

Assuming Ið0ÞK� a few nonvanishing moments are
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p0;0
0;0ðϕÞ ¼

1

6
ð6G0;0

0 þ Re½e−2iϕG2;2
2 �Þ; p0;1

0;0ðϕÞ ¼
1

3
G0;1

0 ;

p0;2
0;0ðϕÞ ¼

1

30
ð6G0;2

0 − Re½e−2iϕG2;2
2 �Þ; p2;0

0;0ðϕÞ ¼
1

30
ð6G2;0

0 − Re½e−2iϕG2;2
2 �Þ;

p2;1
0;0ðϕÞ ¼

1

15
G2;1

0 ; p2;2
0;0ðϕÞ ¼

1

150
ð6G2;2

0 þ Re½e−2iϕG2;2
2 �Þ;

p2;1
1;1ðϕÞ ¼

1

15
Re½e−iϕG2;1

1 �; p2;2
1;1ðϕÞ ¼

1

25
Re½e−iϕG2;2

1 �: ð57Þ

A consequence of the fact that the full orthogonality of the
Wigner functions has been lost is that higher moments
contain lower G-functions. As an interesting example we
quote

p4;1
2;0ðϕÞ ¼

1

9
ffiffiffiffiffi
10
p ðG0;1

0 þ G2;1
0 Þ ¼

4

9
ffiffiffiffiffi
10
p g6c: ð58Þ

This quantity is of some interest since g6c ¼ 0 in the
Standard Model (SM), as it involves scalar and tensor
operators at the level of the dimension-six effective
Hamiltonian (12).

V. INCLUDING HIGHER PARTIAL WAVES

The compact form of the angular distribution Ið0ÞK� (28) is
a consequence of the LFA and the restriction to the PK-
wave in the ðKπÞ-channel. In this section we elaborate on
the consequences of going beyond these approximations.
The double partial wave expansion is outlined in Sec. VA
followed by a qualitative discussion of the effect of higher
spin operators and the inclusion of electroweak effects in
Secs. V B and V C respectively. In Sec. V D we emphasise
how testing for higher moments can be used to diagnose the
size of QED corrections. Throughout this section we
change the notation from l1l2 → lþl− for the sake of
familiarity and simplicity.

A. Double partial wave expansion

In order to discuss the origin of generic terms in the full
distribution (42), it is advantageous to return to the
amplitude level. Somewhat symbolically we may rewrite
the amplitude (19), omitting the sum over Jγ, as

AðB → KJðλÞð→ KπÞlþðλ1Þl−ðλ2ÞÞ
¼ A

Jγ ;JK
λ;λl

DJK
λ;0ðΩKÞDJγ

λ;λl
ðΩlÞ ð59Þ

with λl ¼ λ1 − λ2 as defined in (6). The two opening angles
θK and θl allow for two separate partial wave expansions.
The partial waves in the θK- and θl-angles are denoted by
SK; PK;… and Sl; Pl;… respectively.
Throughout this work we mostly restricted ourselves to

KJ ¼ K� thereby imposing JK ¼ 1 i.e. a PK-wave. The
signal of K� is part of the ðKπÞ PK-wave. The importance

of considering the SK-wave interference through K�0ð800Þ
[also known as κð800Þ] was emphasized a few years ago in
[42]. The separation of the various partial waves in the
ðKπÞ-channel is a problem that can be solved experimen-
tally e.g. [43]. We refer the reader to Ref. [19] for a generic
study of the lowest partial waves at high q2.
The second partial wave expansion originates from

the lepton angle θl, which will be the main focus hereafter.
By restricting ourselves to the dimension-six effective
Hamiltonian equation (12) as well as the lepton-pair
factorization approximation (LFA)11 only Sl- and Pl-
waves were allowed [cf. Eq. (22)], bounding ll ≤ 2 in
(42). This pattern is broken by the inclusion of higher spin
operators and nonfactorizable corrections between the
lepton pair and the quarks. It is therefore important to
be able to distinguish these two effects from each other.

B. Qualitative discussion of effects of higher spin
operators in Heff

Operators of higher dimension are suppressed and
neglected in the standard analysis. Operators of higher
spin in the lepton and quark parts are necessarily of higher
dimension and bring in new features. An operator of
(lepton- and quark-pair) spin j is given by

OðjÞ ¼ sLΓ
ðj−Þ
μ1…μjblΓðjþÞμ1…μjl ð60Þ

with Γðj�Þμ1…μj ≡ γfμ1D
�
μ2…D�μjg, D

� ≡ D
 � ~D, with ~D the

directional covariant derivative and curly brackets denoting
symmetrization in the Lorentz indices. In passing let us
note that in this notation Oð1Þ ¼ OV ≡O9 with OV defined
in (12). The operator (60) is of dimension dOðjÞ ¼ 4þ 2j
and the corresponding Wilson coefficients are suppressed
by powers of mW . Neglecting electroweak corrections
and including the dimensional estimate of the matrix
elements the leading relative contributions are given by
ðmb=mWÞ2ðj−1Þ where ðmb=mWÞ ∼ 6 × 10−3.
Operators of the form (60) present new opportunities to

test physics beyond the SM provided that their contribution

11We remind the reader that in the LFA no electroweak gauge
bosons are exchanged between the lepton pair and other particles
when calculating the matrix element. This is the same approxi-
mation that is relevant for the endpoint relations [18,44].
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is larger than that of the breaking of lepton factorization
through electroweak corrections. The operator Oð2Þ, for
example, gives rise to nonvanishing moments of
the type G2;4

2 in B → K�ð→ KπÞlþl− and G4;4
4 in B →

K2ð→ KπÞlþl−, [45] both of which are absent in the LFA.

C. Qualitative discussion of QED corrections

The B → Klþl− channel allows the discussion of the
consequences of going beyond the LFA in a simplified
setup, and is of particular relevance because of a recent
LHCb measurement [25].
In the LFA (38) the single opening angle θl of the decay

is restricted to ll ≤ 2 moments in Ið0ÞK (42). More precisely,
ll ≤ 2j with OðjÞ as in (60) [see also the discussion
following Eq. (28)]. From the viewpoint of a generic
1 → 3 decay there is no reason for this restriction, as it
is only the sum of the total (orbital and spin) angular
momentum that is conserved. However, in the LFA the B →
K½lþl−� decay mimics a 1 → 2 process, imposing this
constraint. This pattern is broken by exchanges of photons
and W- and Z-bosons, as depicted in Fig. 3 for a few
operators relevant to the decay. TheW and Z are too heavy
to impact on the matrix elements, but their effect is included
in the Wilson coefficient.
As stated above QED corrections turn the decay into a

true 1 → 3 process, and this necessitates a reassessment of
the kinematics. By crossing the process can be written as a
2 → 2 process

BðpBÞ þ l−ð−l1Þ→ KðpÞ þ l−ðl2Þ; ð61Þ

with Mandelstam variables s ¼ ðpþ l2Þ2, t ¼
ðl1 þ l2Þ2 ¼ q2 and u ¼ ðpþ l1Þ2,

s½u� ¼ 1

2
½ðm2

B þm2
K þ 2m2

l − q2Þ

� βl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðm2

B;m
2
K; q

2Þ
q

cos θl�; ð62Þ

obeying the Mandelstam constraint sþ tþ u ¼ m2
Bþ

m2
K þ 2m2

l. Crucially, the kinematic variables s and u
become explicit functions of the angle θl. In a generic

computation these variables enter (poly)logarithms,
which when expanded give contributions to any order ll
in the Legendre polynomials. This statement applies
at the amplitude level and therefore also to the decay
distribution (39)

d2ΓðB → Klþl−Þ
dq2d cos θl

¼
X
ll≥0

GðllÞPllðcos θlÞ: ð63Þ

The B → Kll moments are simply given by

MðllÞ
ll
¼

Z
1

−1
d cos θlPllðcos θlÞ

d2ΓðB → Klþl−Þ
dq2d cos θl

¼ 1

2ll þ 1
GðllÞ

ll
ð64Þ

where we have introduced a lepton-subscript for further
reference. In the SM the effects are dependent on the lepton
mass, for example through logarithms of the form
lnðml=mbÞ times the fine structure constant. There are
new qualitative features of which we would like to high-
light the following two:

(i) Both vector and axial couplings OVðAÞ ¼ O9ð10Þ
(12) contribute to any moment ll ≥ 0. In the LFA
ll-odd terms (forward-backward asymmetric)
arise from broken parity through interference of
OV and OA (12). The physical interpretation is
that there is a preferred direction for charged
leptons in the presence of the charged quarks of
the decay. In the specific diagram Fig. 3 (left) it
is the charge of the b-quark which attracts or
repels the charged lepton(s) with definite prefer-
ence. It is possible that one can establish a higher
degree of symmetry by using charge-averaged
forward-backward asymmetries.

(ii) A key question is how the moments vary in ll. In the
absence of a computation a precise answer is not
possible. Nevertheless we can assess the question
semiquantitatively by considering for example the
triangle graph between the photon, a lepton and
the b-quark in Fig. 3 (left) and the corresponding
one with the s-quark. Neglecting the Dirac

FIG. 3. Examples of virtual QED corrections to B → Klþl−, where either a photon is exchanged between the decaying b-quark and a
final state lepton, with effective operators OV;A (left) and O7 (middle), or a second photon is emitted by the charm loop (right). Other
topologies relevant for higher moments include the interaction of the leptons with the spectator as well as the B- and Kð�Þ-meson.
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structures the triangle graph is given by C0ðm2
l; p

2
B;

s½cos θl�; m2
l; 0; m

2
bÞ.12 Expanding this function in

partial waves C0 ¼
P

ll≥0C
ðllÞ
0 Pllðcos θlÞ we find

that jCðllÞ0 j does fall off in ll. Averaging over several
configurations (cf. footnote13) we conclude that the
ll ¼ 2 (D-wave) contribution is suppressed by
approximately a factor of 2 with respect to
ll ¼ 0, with a slightly steeper falloff with increasing
ll for the b-quark versus s-quark vertex correction.
Note the graph where the photon couples to the
other lepton comes with a different Dirac struc-
ture and is not obtainable through a straightfor-
ward symmetry prescription. We therefore think
that it is sensible to consider those graphs
separately. We stress that this semiquantitative
analysis does not replace a complete QED com-
putation, which would include corrections to
Wilson coefficients, all virtual corrections and
importantly also the real photon emission.

We now turn to the most important consideration, the
relative size of the QED corrections versus higher spin
operators. For effective field theories of the type
hHeffi ∼ CðjÞðμFÞhOðjÞðμFÞi (12), the precise separation
scale μF is arbitrary to a certain degree and effects are
therefore contained in the Wilson coefficients as well as
the matrix elements. We find it convenient to discuss the
effect at the level of the Wilson coefficients. For the
latter QED corrections arising from modes from mW to
μF ≃mb can be absorbed into a tower of the higher spin
operators OðjÞ (60). The leading contribution to the
corresponding Wilson coefficients from the initial
matching procedure and the mixing due to QED behaves
parametrically as

CðjÞ ¼ Oð1Þ
ðm2

WÞj
þαfj ·

�
m2

W

m2
b

	ðj−1Þ Oð1Þ
ðm2

WÞj
; for j≥ 1; ð65Þ

where we have implicitly used μF ¼ mb in hHeffi∼
CðjÞðμFÞhOðjÞðμFÞi. Above α is the fine structure con-
stant and fj parametrizes the comparatively moderate
falloff of the higher moments due to QED. In the SM
one therefore expects QED effects to dominate over
those due to higher spin operators, except for j ¼ 2

where they could be comparable [45]. At the level of
matrix elements this hierarchy could even shift further
toward QED as a result of infrared enhancements
through lnðml=mbÞ-contributions.
The discussion of B → K�ð→ KπÞlþl− is similar, but

involves the kinematics of a 1 → 4 decay. The decay
distribution becomes a generic function of all three angles
θl, θK and ϕ. It should be added that the selection of the
K� → Kπ signal (PK-wave) restricts lK ¼ 0, 2.

D. On the importance of testing for higher
moments for B → Kð�Þlþl−

We have stressed throughout the text that it is of
importance to probe for moments that are vanishing in
the decay distributions Ið0ÞK� (28) of B → K�ð→ KπÞllÞ and
Ið0ÞK (38) of B → Kll respectively. In this section we
highlight specific cases of current experimental anomalies
in exclusive decay modes where their nature might be
clarified using an analysis of (higher) moments.

1. Diagnosing QED background to RK

In the SM the decays Bþ → Kþeþe− and Bþ →
Kþμþμ− are identical up to phase-space lepton mass effects
and electroweak corrections. The observable

RKj½q2min;q
2
max� ≡

BðBþ → Kþμþμ−Þ
BðBþ → Kþeþe−Þ






½q2min;q

2
max�

ð66Þ

has been put forward in Ref. [46] as an interesting test of
lepton flavour universality (LFU). Above q2min =max stands for
the bin boundaries. Neglecting electroweak corrections the
SM prediction is RKj½1;6� GeV2 ≃ 1.0003ð1Þ [47], which is at
2.6σ-tension with the LHCb measurement at 3 fb−1 [25]

RK ¼ 0.745þ0.090−0.074ðstatÞ � 0.036ðsystÞ: ð67Þ

Previous measurements [48,49], with much larger uncer-
tainties, were found to be consistent with the SM as well as
(67). This led to investigations of physics beyond the SM

with Cee
9 ≠ Cμμ

9 (where Oll
9 ≡ bγαslγαl) amongst other

variants for which we quote a few recent works [50–59] as
well as the general review [60] for further references.
Let us summarize the aspects of QED corrections which

are of relevance for the discussion below: (i) they break
lepton factorization and therefore give rise to higher
moments, and (ii) they depend on the lepton mass, for
example through logarithmic terms of lnðml=mbÞ. In view
of the lack of a full QED computation14 we suggest
diagnosing the size of QED corrections, as well as their
lepton dependence, by experimentally assessing higher

12We use conventions for the Passarino-Veltman function
C0ðp2

1; p
2
2; p

2
3; m

2
1; m

2
2; m

2
3Þ such that the two-particle cuts begin

at p2
1 ≥ ðm1 þm2Þ2, p2

2 ≥ ðm2 þm3Þ2 and p2
3 ≥ ðm3 þm1Þ2.

13We have refined this analysis by taking into account that
the b- and s-quark only carry a fraction of the momentum of
the corresponding mesons. This amounts to the substitution
p2
B → ðpB − xpÞ2 and s½u� → ðl2½l1� þ xpÞ2 with x being the

momentum fraction carried by the s-quark. For the vertex
diagrams one expects the Feynman mechanism (i.e. x≃ 0) to
dominate. This changes when spectator corrections are taken
into account.

14A partial result, photon emission from initial and final state,
was reported in [61].
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moments.15 The latter is directly relevant for RK. Let us be
slightly more concrete and define the normalized angular

functions as follows ĜðllÞ
ll

≡GðllÞ
ll

=ð2Gð0Þ
ll
Þ (63) (in this

convention 2Gð0Þ
ll
¼ dΓðB → KllÞ=dq2, Ĝð1Þ

ll
¼ AFB and

Ĝð2Þ
ll
¼ ðFH − 1Þ=2 in the notation of [37]). We would like

to stress the following points:
(i) How to distinguish QED corrections from higher

dimensionaloperators:bothcontributionsgive rise to
higher moments but crucially the QED corrections
dominate for moments of increasing ll, cf. the dis-
cussion at the end of Sec. V C and specifically
Eq. (65). A Jγ-wave at the amplitude level contributes
to a ll ¼ Jγ þ 1 moment through interference with
the SM Pl-wave. We conclude that QED and higher

spin operators could be comparable for Ĝð3Þ
ll

but for

Ĝðll>3Þ
ll

one would expect the former to dominate.16

(ii) Lepton-flavor dependence of QED corrections:

differences between Ĝðll≥3Þμμ and Ĝðll≥3Þee in the range

above q2 > 1 GeV2 indicate the importance of the
flavor dependence. This gives an indication on how
much the branching fractions (zeroth moments) and
therefore RK is affected by QED through lepton mass
effects. Note that due to lnðml=mbÞ-effects it is

conceivable that Ĝðll≥3Þμμ is small, say Oð1%Þ, but that
Ĝðll≥3Þee is larger. Note for example that Ĝð1Þμμ ¼ AFB is
consistent with the SM prediction excluding QED,
which is OðmμÞ, within errors in the few percent
range [38].

2. Combinatorial background in B → K�μþμ− below the
narrow charmonium resonance region

A characteristic feature of B → Kð�Þlþl− transitions is
the large contribution to the branching fraction through
the intermediate narrow charmonium states J=Ψ and
Ψð2SÞ. For example BðB → KJ=ΨÞBðJ=Ψ → μþμ−Þ≃
ð8 × 10−4Þð6 × 10−2Þ≃ 5 × 10−5 is three orders of mag-
nitude larger than the measured differential branching

fraction, dBðB → K�μþμ−Þ=dq2 ≃ 2 × 10−8=GeV2 [64],
well below the narrow charmonium resonances region. It
is therefore legitimate to be concerned with possible
combinatorial backgrounds in this region.
Assuming that such backgrounds are relevant this raises

the question as to how they can be distinguished from the
signal event. In the case where they can be absorbed into
the background fit-function they would not impact on the
analysis. Whether or not this is the case is a nontrivial
question. Pragmatically, however, background events can be
expected to perturb the hierarchy of the moments as
compared to the true signal event. One would expect the
background events to fall off only slowly for highermoments
in the lepton partial wave.17 Hence the size of these effects
can be diagnosed through the measurement of higher
moments as a function of q2, independent of model assump-
tions. By the latter we mean that higher moments peaking
below the charmonium resonances will be indicative of the
type of combinatorial background mentioned above.
A possible example of such backgrounds is the process

B → Kμþμ−γ where the photon is not detected but ener-
getic enough to cause a significant downward shift in
q2 ¼ ðl1 þ l2Þ2. Such an event would be rejected as a B →
Kμþμ− signal because the reconstructed B-mass mKμμ

would fall outside the signal window [i.e. mKμμ < mB −
Δ and Δ≃Oð100 MeVÞ]. If additionally a π-meson from
the underlying event is detected, the event could conspire to
enter the signal window of B → K�ð→ KπÞμþμ− (i.e.
mKπμμ ≃mB and mKπ ≃mK�). It is therefore conceivable
that the small chance of the events described above is
overcome by the enhancement by three orders of magnitude
of the J=Ψ transition. If such events are present and not
rejected then this leads to a bias in B → K�ð→ KπÞμþμ−
transitions below the narrow charmonium resonances.
More precisely, denoting the momentum of the undetected
photon by r, the shift in q2 is as follows q2 ≃m2

J=Ψ ¼
ðl1 þ l2 þ rÞ2 → q2signal ≡ ðl1 þ l2Þ2 < m2

J=Ψ.
This is particularly relevant as some of the anomalies

from the LHCb measurements, in particular the angular
observable P5

0, are most pronounced in bins just below the
J=Ψ-resonance [26,27]. To what extent such operators
correspond to new physics in O9 ≡OV [65,66] or effects
from charm resonances [67] is a difficult question since
they contribute to the same helicity amplitude. They can be
distinguished from each other by analyzing the q2-spec-
trum of the observables and by the determination of the
strong phases which can originate from the charm reso-
nances [67]. This could be through the determination of the
complex-valued residues of the resonance poles [67], or

15Collinear photon emission in the inclusive case was studied
recently in [62]. The additional photon of course leads to terms
which go beyond the Ið0ÞK angular distribution. Note, in view of the
presence of these terms through virtual corrections they also have
to be present in real emission by virtue of the Bloch-Nordsieck
QED infrared cancellation theorem [63]. The authors [62] find
within their approximation that the third and fourth moment are
two orders of magnitude smaller than the leading contributions.
This is in the expected parametric range but one cannot draw
precise conclusions on the size of this effect for the exclusive
channels discussed in this paper.

16Another criterion could be that corrections from higher spin
operators are uniform in the lepton mass provided that lepton
flavor universality is unbroken. This is though delicate since the
measurement of RK questions this aspect.

17Similar things can be said about the hadronic partial wave,
but as the detection of the PK-wave is part of the signal selection
the presence of such higher waves would have less influence.
However, the remaining background might impact on the SK-
wave, which does matter since the SK-wave enters the analysis.
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simply the strong phase in the region below the q2-
resonance through Im½G2;1

1 � ∼ P6
0, which corresponds to

the imaginary part of Re½G2;1
1 � ∼ P5

0 (33).

VI. CONCLUSIONS

In this work we have generalized the standard
helicity formalism to effective field theories of the
b → sll-type. The framework applies to any semileptonic
and radiative decay. The formalism has been used to derive

the angular distributions Ið0ÞK� (28) and I
ð0Þ
K (39) for nonequal

lepton masses with the full dimension-six effective
Hamiltonian, including in particular scalar and tensor
operators. Explicit results for B → K�l1l2 and for B →
Kl1l2 can be found in Appendices C and D respectively as
well as a Mathematica notebook (notebookGHZ.nb) pro-
vided in the arXiv version [29]. Comments on differences
conversion of observables between theory and experiment
with the literature are reported in Appendix C 2 a. Minor
discrepancies in tensor contributions with respect to pre-
vious results are discussed in Appendix C 1 b.
The approach clarifies how the lepton factorization

approximation determines the specific form of the angular
distributions Ið0ÞK� and Ið0ÞK , and how these distributions are
extended by the inclusion of virtual and real QED correc-
tions, as well as higher-spin operators in the effective
Hamiltonian. Higher-dimensional spin operators provide
new opportunities to search for physics beyond the SM. We
have argued that, within the SM, QED effects and higher-
spin operators can be distinguished from each other by their
differing falloff behavior in increasingly higher moments in
the θl-angle.

18

Assessing higher moments can shed light on current
anomalies with respect to the SM. We have argued
(cf. Sec. V D 1) that higher moments in B → Klþl−
(l ¼ e, μ) are a window into QED corrections and therefore
of importance with regard to the RK measurement [25]. In
view of tensions of angular predictions inB → K�μþμ− with
experiment [26,27], the higher moments can be of help in
assessing their origin, such as the possible leakage of J=Ψ
events into the lower nearby q2-bins (cf. Sec. V D 2). As
another example we mention the RðDð�ÞÞ ¼ BðB →
Dð�ÞτνÞ=BðB → Dð�ÞμνÞ ratio measurement [68–70], sug-
gestive of some tension with the SM. A higher moment
analysis could again beuseful in assessing the impact ofQED,
lepton mass or cross channel backgrounds on these results.
To measure and bound higher moments is relevant as

their contributions can bias likelihood fits. We therefore
encourage the investigation of higher moments in several

experimental channels from the various perspectives dis-
cussed above.
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Note added.—Recently a paper using the helicity formalism
for B → K�lþl− appeared [71]. The paper uses the
standard Jacob-Wick formalism and therefore includes
HAs of definite spin. This is an approximation that holds
up to lepton mass corrections in the SM and does not allow
the inclusion of scalar operators for example.

APPENDIX A: RESULTS RELEVANT
FOR ALL DECAY MODES

1. Decomposition of SOð3;1Þ into SOð3Þ up to spin 2

Theaimof thisAppendix is to give somemore detail about
the decomposition (15) and in particular extend it to the two-
index case, which includes the discussion of spin 2, 1, 0.
In Sec. II B it was shown that insertion of the complete-

ness relation (15) corresponds to the decomposition, or
branching rule,

ð1=2; 1=2ÞSOð3;1ÞjSOð3Þ → ð1þ 3ÞSOð3Þ; ðA1Þ

where ð1=2; 1=2Þ is the irreducible vector Lorentz represen-
tation. We remind the reader that the irreducible Lorentz
representations, denoted by ðj1; j2Þ, are characterized by the
eigenvalues of the two Casimir operators of SOð3; 1Þ.
Inserting the completeness relation twice therefore corre-
sponds to taking the tensor product ð1=2; 1=2Þ ⊗ ð1=2; 1=2Þ
which decomposes as

ðð1=2; 1=2Þ ⊗ ð1=2; 1=2ÞÞSOð3;1Þ
¼ ð½ð1; 1Þ� ⊕ ½ð1; 0Þ ⊕ ð0; 1Þ� ⊕ ð0; 0ÞÞSOð3;1ÞjSOð3Þ
→ ð½1 · 5 ⊕ 1 · 3 ⊕ 1 · 1� ⊕ ½2 · 3� ⊕ 1 · 1ÞSOð3Þ
¼ ð1 · 5 ⊕ 3 · 3 ⊕ 2 · 1ÞSOð3Þ: ðA2Þ

The double completeness relation

gαβgγδ ¼ δαβγδ þ δtαβγδ þ δttαβγδ ðA3Þ

can be decomposed

18In addition higher-spin operators can be distinguished from
QED corrections by universality in the lepton flavor. However, it
should be kept in mind that lepton-universality is questioned by
the RK measurement.
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δαβγδ ¼
X2
J¼0

XJ
λ¼−J

ωJ;λ
αγ ω

J;λ
βδ ;

δtαβγδ ¼ − X1
λ¼−1

ωt;λ
αγω

t;λ
βδ −

X1
λ¼−1

ωt;λ
γαω

t;λ
δβ ;

δttαβγδ ¼ ωtt
αγω

tt
βδ; ðA4Þ

into parts containing zero, one and two timelike polarization
vectors

ωt;λ
αγ ¼ ωαðtÞωγðλÞ; ωtt

αγ ¼ ωαðtÞωγðtÞ;

ωJ;λ
αγ ¼

X1
λ1;λ2¼−1

CJ11
λλ1λ2

ωαðλ1Þωγðλ2Þ; ðA5Þ

with λ ¼ λ1 þ λ2 in the first term and the polarizationvectors
ωαðλÞ are parametrized as

ωμð�Þ ¼ ð0;�1; i; 0Þ=
ffiffiffi
2
p

;

ωμð0Þ ¼ ðqz; 0; 0; q0Þ=
ffiffiffiffiffi
q2

q
;

ωμðtÞ ¼ ðq0; 0; 0; qzÞ=
ffiffiffiffiffi
q2

q
; ðA6Þ

which we reproduce from (16) for the reader’s conven-
ience. A few explanations seem in order. The minus sign
in front of δtαβγδ in (A4) is due to there being an odd
number of timelike polarization vectors. The first, second
and third term in (A3) correspond respectively to the
(1,1)-, ½ð1; 0Þ ⊕ ð0; 1Þ�- and (0,0)-terms in (A2). It is
convenient to rewrite the double completeness relation
(A3) in a form that makes the decomposition into the
different spins j explicit

gαβgγδ ¼
X2
J¼0

XJ
λ¼−J

ϵJ;λαγ · ϵJ;λβδ : ðA7Þ

Above the scalar product “·” stands for

ϵλαγ · ϵ
J;λ0
βδ ¼ δJ0½ω0;0

αγ ω
0;0
βδ þ ωtt

αγω
tt
βδ�

þ δJ1½ω1;λ
αγ ω

1;λ0
βδ − ωt;λ

αγω
t;λ0
βδ − ωt;λ

γαω
t;λ0
δβ �

þ δJ2½ω2;λ
αγ ω

2;λ0
βδ �: ðA8Þ

The single completeness relation (15) in the analogous
notation of (A7) reads

gαβ ¼
X1
J¼0

XJ
λ¼−J

ϵJ;λα ϵJ;λβ ; ðA9Þ

with ϵJ;λα ¼ δJ1ωαðλÞ þ δJ0ωαðtÞ.
When applying the double completeness relation to

generic decay structures, it can be seen from (A4) that
in general one expects two distinct contributions to the
amplitude from δtαβγδ,

HμνLμν → −ðHtλLtλ þHλtLλtÞ þ � � � ;

where Htλ ¼ Hμνω
μν
t;λ, and analogous notation for Hλt, Ltλ

and Lλt. If, however, the objects Hμν and Lμν are both
symmetric or antisymmetric in the Lorentz indices, then
HλtLλt ¼ HtλLtλ and the two contributions can be com-
bined. We have used this simplification in defining
the generalized HAs for the B → K�l1l2 (23)
and B → Kl1l2 (36) decays respectively, resulting in
the extra factor of 2 associated with the terms
HTt

λ L
Tt
λ1;λ2

, hTtLTt
λ1;λ2

relative to other contributions in the
generalized HAs.

2. Additional remarks on effective Hamiltonian

Here we collect a few additional remarks to the
effective b → sll Hamiltonian quoted in Eqs. (12),
(13). Contributions proportional to VusV�ub have been
neglected. The chromoelectric and chromomagnetic
operators O7 and O8, along with the contributions of
the four-quark operators O1;…;6, can be absorbed into
OV through defining an effective Wilson coefficient

Ceff
V ¼ Ceff

9 . We can rewrite Oð0ÞT ¼ 1=2ðOT �OT5
Þ, with

the latter defined as

OT ¼ sσμνblσμνl; OT5 ¼ sσμνγ5blσμνl; ðA10Þ

(note: OT5 ¼ sσμνblσμνγ5l ¼ − i
2
ϵαβμνsσαβblσμνl with

the last equality depending on conventions) and the
relation between the Wilson coefficients is therefore

Cð0ÞT ¼ CT � CT5; CTð5Þ ¼
1

2
ðCT � C0T Þ ðA11Þ

in the sense that CTOT þ CT5OT5 ¼ CT OT þ C0T O
0
T .

3. Definitions and results of leptonic
helicity amplitudes

The calculation of the leptonic helicity amplitudes is an
important part of the generalized helicity formalism
described in this paper, and the method for their calculation
is outlined in [3]. In the Dirac basis of the Clifford algebra,
with σi as the usual 2 × 2 Pauli matrices,

γ0 ¼
�
1 0

0 −1
	
;

γi ¼
�

0 σi

−σi 0

	
;

γ5 ¼
�
0 1

1 0

	
; ðA12Þ

the particle u and antiparticle v spinor are given by
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u

�
1

2

	
¼

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E1 þml1

p
; 0;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E1 −ml1

p
; 0
�
T ¼ ðβþ1 ; 0; β−1 ; 0ÞT;

u

�
− 1

2

	
¼

�
0;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E1 þml1

p
; 0; − ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E1 −ml1

p
;
�
T ¼ ð0; βþ1 ; 0;−β−1 ÞT;

v

�
1

2

	
¼

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 −ml2

p
; 0; − ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E2 þml2

p
; 0
�
T ¼ ðβ−2 ; 0;−βþ2 ; 0ÞT;

v
�
− 1

2

	
¼

�
0;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 −ml2

p
; 0;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 þml2

p �
T ¼ ð0; β−2 ; 0; βþ2 ÞT;

with implicit definition of β�i ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ei �mli

p
. The

spinors are normalized as uðλ1Þuðλ2Þ¼δλ1λ22ml1 and
vðλ1Þvðλ2Þ¼−δλ1λ22ml2 . The leptonic HAs (18)
contracted with polarization vectors give rise to the
HAs Lλ1λ2

LX
λ1λ2

≡ hl1ðλ1Þl2ðλ2ÞjlΓXlj0i ¼ uðλ1ÞΓXvðλ2Þ;
ðA13Þ

(where l1 ¼ e− for example) and the ΓXjλX→λl
(λl ¼

λ1 − λ2) as defined in Table 3.1. Using all the equations
above the evaluation of the lepton HAs is then straightfor-
ward and the results are presented below, for lepton masses
ml1 ≠ ml2 in the first set ofmatrices andml1 ¼ ml2 ≡ml in
the second set.19 The first row (column) corresponds to
λ1ðλ2Þ ¼ − 1

2
and the second row (column) corresponds to

λ1ðλ2Þ ¼ þ 1
2
. For theB → K�l1l2 decaymode, iel1 ¼ l−,

the lepton HAs are given by

LVðλ1; λ2Þ ¼
�

βþ1 β
þ
2 − β−1 β−2 − ffiffiffi

2
p ðβþ1 βþ2 þ β−1 β−2 Þ

− ffiffiffi
2
p ðβþ1 βþ2 þ β−1 β−2 Þ βþ1 β

þ
2 − β−1 β−2

	
→

�
2ml − ffiffiffiffiffiffiffi

2q2
p

− ffiffiffiffiffiffiffi
2q2

p
2ml

	
;

LAðλ1; λ2Þ ¼
�

βþ1 β
−
2 − β−1 βþ2

ffiffiffi
2
p ðβþ1 β−2 þ β−1 βþ2 Þ

− ffiffiffi
2
p ðβþ1 β−2 þ β−1 βþ2 Þ β−1 βþ2 − βþ1 β

−
2

	
→

�
0

ffiffiffiffiffiffiffi
2q2

p
βl

− ffiffiffiffiffiffiffi
2q2

p
βl 0

	
;

LSðλ1; λ2Þ ¼
�
βþ1 β

−
2 þ β−1 βþ2 0

0 βþ1 β
−
2 þ β−1 βþ2

	
→

� ffiffiffiffiffi
q2

p
βl 0

0
ffiffiffiffiffi
q2

p
βl

	
;

LPðλ1; λ2Þ ¼
�
βþ1 β

þ
2 þ β−1 β−2 0

0 −βþ1 βþ2 − β−1 β−2

	
→

� ffiffiffiffiffi
q2

p
0

0 − ffiffiffiffiffi
q2

p 	
;

LTðλ1; λ2Þ ¼
� −i ffiffiffi

2
p ðβþ1 β−2 þ β−1 βþ2 Þ −2iðβþ1 β−2 − β−1 βþ2 Þ
2iðβþ1 β−2 − β−1 βþ2 Þ i

ffiffiffi
2
p ðβþ1 β−2 þ β−1 βþ2 Þ

	
→

�−i ffiffiffiffiffiffiffi
2q2

p
βl 0

0 i
ffiffiffiffiffiffiffi
2q2

p
βl

	
;

LTtðλ1; λ2Þ ¼
�

iðβþ1 βþ2 þ β−1 β−2 Þ −i ffiffiffi
2
p ðβþ1 βþ2 − β−1 β−2 Þ

−i ffiffiffi
2
p ðβþ1 βþ2 − β−1 β−2 Þ iðβþ1 βþ2 þ β−1 β−2 Þ

	
→

�
i

ffiffiffiffiffi
q2

p −2i ffiffiffi
2
p

ml

−2i ffiffiffi
2
p

ml i
ffiffiffiffiffi
q2

p 	
; ðA14Þ

where β�1;2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E1;2 �ml1;2

p
as before. Above we have used βþi β

−
i → Eβl for ml1;2

→ ml since E2 ¼ q2=4, where E is the
energy of either lepton in the rest frame of the lepton pair. Note that the scalar transitions S andP are necessarily diagonal since
λl ¼ λ1 − λ2 ¼ 0. Timelike vector and axial lepton HAs are integrated into the hadron HAs (C15).

APPENDIX B: DETAILS ON KINEMATICS FOR DECAY MODES

While within the formalism described in this paper it is not essential to consider the full kinematics of the decay, as the
evaluation of the hadronic and leptonic HAs can be performed within their respective rest frames, we collect here the
kinematics used in calculating the angular distribution using the Dirac trace technology approach [22,23] in order to
facilitate comparison. The Källén function that often appears in our results is given by

λða; b; cÞ≡ a2 þ b2 þ c2 − 2ðabþ acþ bcÞ: ðB1Þ

19The expressions for ml1 ≠ ml2 can be applied to studies of lepton flavor-violating processes in all the decay modes considered in
this paper within the lepton factorization approximation, and are also applicable to decays involving an lν̄ in the final state e.g.
B → D�lν̄.
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For a decay A → Bþ C, in the rest-frame of A, it is related
to the absolute value the spatial momentum of the B and C
particles as

j ~pBj ¼ j ~pCj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðm2

A;m
2
B;m

2
CÞ

p
2mA

: ðB2Þ

1. Basis-dependent kinematics for B → K�l1l2

We parametrize the kinematics of the (l1 ¼ l− and
l2 ¼ l−)

B → K�ð→ KðpKÞπðpπÞÞl1ðl1Þl2ðl2Þ ðB3Þ
decay mode. To do so we need all four momenta pπ , pK
(p ¼ pπ þ pK), l1 and l2 (q ¼ l1 þ l2) in a specific frame
for which we choose the B-restframe. It is simplest to first
obtainl1;2 andpπ;K in the rest frame of the lepton pair and the
K�-meson respectively:

l1;2-rest frame∶ lμ
1¼ðE1; j~pljl̂Þ; lμ

2¼ðE2;−j~pljl̂Þ;
pπ;K-rest frame∶ pμ

K ¼ðEK; j~pKjk̂Þ; pμ
π ¼ðEπ;−j~pKjk̂Þ;

ðB4Þ
and the definitions

l̂¼ðcosϕsinθl;−sinϕsinθl;cosθlÞ; j~plj ¼
ffiffiffiffiffiffi
λγ�

p
2

ffiffiffiffiffi
q2

p ;

k̂¼ð−sinθK;0;−cosθKÞ; j~pKj ¼
ffiffiffiffiffiffiffi
λK�
p
2mK�

; ðB5Þ

where

λγ� ≡ λðq2; m2
1; m

2
2Þ;

λK� ≡ λðm2
K� ; m

2
K;m

2
πÞ;

λB ≡ λðm2
B;m

2
K� ; q

2Þ; ðB6Þ
are the explicit Källén function used throughout. The
lepton and hadron energies are then given by E1;2 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

l1;2
þ j~plj2

q
, Eπ;K¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π;Kþj~pKj2
q

and obey E1þE2¼ffiffiffiffiffi
q2

p
and Eπ þ EK ¼ mK� .

The polarization vectors ημðλÞ of the K�-meson in its rest
frame, using the convention in [18], are20

ημð0Þ ¼ ð0; 0; 0; 1Þ; ημð�Þ ¼ ð0;∓1; i; 0Þ=
ffiffiffi
2
p

: ðB7Þ
In the B-restframe, pB ¼ ðmB; 0; 0; 0Þ, the momenta take
the following form

ðl1Þμ ¼ ðflðE1; q0; qzÞ; j~plj sin θl cosϕ;−j~plj sin θl sinϕ; flðE1; qz; q0ÞÞ;
ðl2Þμ ¼ ðflðE2; q0;−qzÞ;−j~plj sin θl cosϕ;þj~plj sin θl sinϕ; flðE2; qz;−q0ÞÞ;
ðpKÞμ ¼ ðfK�ðEK; p0; qzÞ;−j~pKj sin θK; 0;−fK� ðEK; qz; p0ÞÞ;
ðpπÞμ ¼ ðfK�ðEπ; p0;−qzÞ; j~pKj sin θK; 0;−fK� ðEπ; qz;−p0ÞÞ; ðB8Þ

with flða;b;cÞ¼ðabþcj~pljcosθlÞ=
ffiffiffiffiffi
q2

p
and fK� ða;b;cÞ¼

ðabþcj~pKjcosθKÞ=m�K , and it is easily verified that

qμ ¼ ðl1 þ l2Þμ ¼ ðq0; 0; 0; qzÞ;
pμ ¼ ðpK þ pπÞμ ¼ ðp0; 0; 0;−qzÞ; ðB9Þ

ðp0 ¼ EK�Þ while the polarization vectors of the K� in
the B-rest frame are

ημð0Þ ¼ ð−qz; 0; 0; p0Þ=mK� ;

ημð�Þ ¼ ð0;∓1; i; 0Þ=
ffiffiffi
2
p

; ðB10Þ
where p0 þ q0 ¼ mB and qz ¼

ffiffiffiffiffi
λB
p

=ð2mBÞ, in accordance
with (B2), is the three-momentum of the lepton pair.

For completeness let us add that in the case of:
(i) B → K�l1ðl1Þl2ðl2Þ the replacement rule

l̂→ l̂ϕ→−ϕ¼ðcosϕsinθl;þsinϕsinθl;cosθlÞ ap-
plies. Note this is coherent with Fig. 4 in the next
section;

(ii) identical lepton masses the following replacements
are in order

E1;2 →
ffiffiffiffiffi
q2

q
=2;

ffiffiffiffiffiffi
λγ�

q
→ ðq2Þβl ðB11Þ

where we recall that βl ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

l
q2

q
.

2. Basis-independent kinematics for B → K�l1l2

Introducing the notation

Qμ ¼ ðl1 − l2Þμ; Pμ ¼ ðpK − pπÞμ; ðB12Þ

in addition to (B9). the invariants that can be formed out of
p, P, q and Q are given by

20The polarisation vector η corresponds to γ in [18] (c.f. appen-
dix A therein). The exact correspondence between the convention
used in [18], and also in this paper, and the Jacob-Wick convention
[1,3] is ηð�Þμj½18�¼−ηð�Þμj½1�, ηð0Þμj½18�¼ηð0Þμj½1�. The final
distributions remain the same but the off-diagonal elements of
the lepton HAs (or matrices) change sign (A14). Note in particular
that the hadron HAs (C15) remain unchanged.
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q ·Q ¼ m2
l1
−m2

l2
;

Q2 ¼ 2ðm2
l1
þm2

l2
Þ − q2;

q · p ¼ 1

2
ðm2

B −m2
K� − q2Þ;

p · P ¼ m2
K −m2

π;

P2 ¼ 2ðm2
K þm2

πÞ −m2
K� ;

q · P ¼ 2p · Pq · pþ cos θK
ffiffiffiffiffiffiffiffiffiffiffi
λBλK�
p

2m2
K�

;

Q · P ¼ p · P
ffiffiffiffiffiffiffiffiffiffi
λBλγ�

p
cos θl þ 2q · p

ffiffiffiffiffiffiffiffiffiffiffiffi
λK�λγ�

p
cos θK cos θl

2m2
K�q

2

þ
ffiffiffiffiffiffiffiffiffiffiffiffi
λK�λγ�

p
sin θK sin θl cosϕ

mK�
ffiffiffiffiffi
q2

p þ q ·Qq · P
q2

;

Q · p ¼ 2q ·Qq · pþ cos θl
ffiffiffiffiffiffiffiffiffiffi
λBλγ�

p
2q2

;

ϵðP; p;Q; qÞ

¼ − sin θK sin θl sinϕ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λBλK�λγ�

p
2mK�

ffiffiffiffiffi
q2

p ðB13Þ

with p2 ¼ m2
K� , the λ’s defined in Eq. (B6), ϵðP; p;Q; qÞ ¼

ϵαβγδPαpβQγqδ and the ϵ0123 ¼ 1 convention for the
Levi-Civita tensor. Note that the kinematic invariants for
B → K�l1ðl1Þl2ðl2Þ are the same up to ϵðP; p;Q; qÞ →
−ϵðP; p;Q; qÞ which originates from the only change in
angles ϕ → −ϕ.

APPENDIX C: SPECIFIC RESULTS FOR
B → K�ð→ KπÞl1l2

1. Fourfold differential decay rate

The angular distribution for B → K�ð→ KπÞl1l2 is
usually presented in the form (e.g. [36])

8π

3

d4Γ
dq2d cos θld cos θKdϕ

¼ Ið0ÞK�

4
¼ ðg1s þ g2s cos 2θl þ g6s cos θlÞsin2θK

þ ðg1c þ g2c cos 2θl þ g6c cos θlÞcos2θK
þ ðg3 cos 2ϕþ g9 sin 2ϕÞsin2θKsin2θl
þ ðg4 cosϕþ g8 sinϕÞ sin 2θK sin 2θl

þ ðg5 cosϕþ g7 sinϕÞ sin 2θK sin θl; ðC1Þ

which can be condensed as

8π

3

d4Γ
dq2d cos θld cos θKdϕ

¼ Re½ðg1s þ g2s cos 2θl þ g6s cos θlÞsin2θK
þ ðg1c þ g2c cos 2θl þ g6c cos θlÞcos2θK
þ e−2iϕG3sin2θKsin2θl

þ e−iϕ sin 2θKðG4 sin 2θl þ G5 sin θlÞ�; ðC2Þ

where we have defined

G3;4;5 ¼ ðg3;4;5 þ ig9;8;7Þ: ðC3Þ

We have introduced the notation gi rather than Ji in order to
minimize the potential of confusion due to the angular
conventions discussed in Appendix C 2. The relationship
between the giðq2Þ and the GlK;ll

m ðq2Þ was given in (32) but
is repeated here for convenience:

G0;0
0 ¼

4

9
ð3ðg1c þ 2g1sÞ − ðg2c þ 2g2sÞÞ;

G0;1
0 ¼

4

3
ðg6c þ 2g6sÞ; G0;2

0 ¼
16

9
ðg2c þ 2g2sÞ;

G2;0
0 ¼

4

9
ð6ðg1c − g1sÞ − 2ðg2c − g2sÞÞ;

G2;1
0 ¼

8

3
ðg6c − g6sÞ; G2;2

0 ¼
32

9
ðg2c − g2sÞ;

G2;1
1 ¼

16ffiffiffi
3
p ðg5 þ ig7Þ|fflfflfflfflfflffl{zfflfflfflfflfflffl}

¼G5

; G2;2
1 ¼

32

3
ðg4 þ ig8Þ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
¼G4

;

G2;2
2 ¼

32

3
ðg3 þ ig9Þ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
¼G3

: ðC4Þ

Explicit results for the GlK;ll
m are presented in Sec. C 3 for

the case of identical final-state leptons ml1 ¼ ml2 and
Sec. C 4 for the more general case ml1

≠ ml2 .

a. Kinematic endpoint relations in terms of GlK ;ll
m

In Ref. [18] it was shown that the HAs obey
symmetry relations at the kinematic endpoint due to
symmetry enhancement. This is due to the K� being at
rest resulting in symmetry in all space directions i.e.
helicity directions. The relations for the HAs in Eq. (13)
in [18] lead to the following equivalent of Eq. (21)
in [18]

G0;0
0 ≠ 0; G2;2

0 → Re½G2;2
0 �;

G2;2
1 → −2Re½G2;2

0 �; G2;2
2 → 2Re½G2;2

0 �; ðC5Þ

with all other five GlK;ll
m vanishing. Recall that G0;0

0 is
proportional to the total decay rate. The relations
between the G2;2

m are not accidental but have to do
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with the symmetries of a multiplet. The factor of two
between G2;2

0 and G2;2
1ð2Þ, once more, originates from

absorbing G2;2
−1ð2Þ into G2;2

1ð2Þ. The results of the

threshold expansion, linear in the K� momentum
κ ∼ λðm2

B;m
2
K� ; q

2Þ, can be inferred from Eq. (30) in
[18] taking into account the different angular conven-
tions detailed in Fig. 4.

b. Comparison of angular distribution
with the literature

The angular distribution (C1) was first computed in
the SM for massless leptons in [22], extended to
include equal lepton masses in [23,72]. A full dimen-
sion-six operator basis was considered in [73]. The
basis was extended to lepton mass corrections for
(pseudo)scalar operators in [35], enforcing the g6c-
structure, and tensor operators by the authors in
[36,74]. We compare our results with regard to [36],
which is the latest reference.
Taking into account the change g4;6;7;9 → −J4;6;7;9

(cf. Fig. 4) and comparing at the level of form factors
(naive factorization) only we find agreement except for
tensor interference terms. Agreement is established when
CT5 → −CT5 in [36]. The latter might be related to the fact
that the relations tr½γαγβγγγδγ5� ¼ 4λiϵαβγδ and σαβγ5 ¼
−λ i

2
ϵαβγδσγδ (with λ ¼ �1 depending on conventions

—λ ¼ 1 in this paper) are not consistent with Eq. C.16
[36] (v3).
A minor difference is that the authors of [36] have

chosen not to present the tensor contribution in J8;9ðg8;9Þ,
since such contributions vanish in the narrow-width
approximation.21 In addition, we find that a few of the
HAs in [36] Eq. (C13) do not agree with their definitions.
These disagreements do, however, drop out in the final
expression.

2. Angular conventions

In this section we discuss and compare the LHCb
and theory angular conventions. The main result is
shown in form of a commutative diagram in Fig. 4.
We proceed by first discussing the CP-conjugate modes
in each case and then link the conventions with
each other.
The LHCb conventions [32], which are the same as

adapted in this paper, are shown in Fig. 1. The
rationale behind the definition of the conjugate mode
is as follows. First, particles are mapped into anti-
particles, corresponding to a C-transformation. Then the

momenta of all particles are reversed, changing the
angle ϕ → 2π − ϕ. This leads to sign changes in g7;8;9.
Hence the conjugate mode corresponds to a full CP-
transformation

d4Γ
dq2d cos θld cos θKdϕ






LHCb

¼ d4Γ
dq2d cos θld cos θKdϕ






CP
;

and the quantity

d4ðΓ� ΓÞ
dq2d cos θld cos θKdϕ






LHCb

;

is therefore CP-even (-odd). Above Γ¼ΓðB→K�l1l2Þ
and Γ ¼ ΓðB → K�l1l2Þ.
The theory conventions for CP conjugates are such

that they facilitate the implementation of decays
which are not self-tagging [such as Bs; Bs → ϕð→
KþK−Þlþl− at hadron colliders]. When going between
conjugate modes the conventions are that the angles
transform as ðθl; θK;ϕÞ→ ðπ − θl; π − θK; 2π − ϕÞ,22
which leads to sign changes in g5;6;8;9. This trans-
formation rule corresponds to a full CP-conjugation,
but with the angles θl; θK associated to the same
particle rather than the antiparticle.
To find the transformation between the theory and

LHCb conventions is not straightforward because it is
difficult to find a theory paper that resolves the
fourfold ambiguity of defining the angle ϕ and/or
shows a figure consistent with the definitions used
in the corresponding work. We have taken a pragmatic
route in verifying that the results in [35,36,72] agree
with each other for common contributions, and cru-
cially that our results are in agreement with these
contributions for B → K�l1l2 if J4;6;7;9 ¼ −g4;6;7;9 and
J1;2;3;5;8 ¼ g1;2;3;5;8. This completes the diagram in
Fig. 4.23

21In v3 of [36] it is stated that agreement with v4 of [75] is
found up to a sign of an interference term between a scalar and a
tensor HA. This suggests that we agree with [36] but disagree
with [75] on that sign, as well as the sign of CT5.

22Equivalently one can use the angular redefinitions ðπ −
θl; θK; π − ϕÞ and ðθl − π; θK; 2π − ϕÞ, which are sometimes
stated in the literature.

23One can come to the same conclusion in another way [76].
Let us again consider B̄ → K̄�l1l̄2. In general θKjLHCb ¼
θKjtheory is chosen to be the same angle and the theoretical
community chooses θljLHCb ¼ π − θljtheory. The only unknown
remains the angle ϕ, for which one may use the scalar- and cross-
product definitions. Using Appendix A in [32] and likewise in
[72], we infer that cosϕjLHCb ¼ cosϕjtheory and sinϕjLHCb ¼− sinϕjtheory. Taking all angular changes into account this results
in sign changes in g4;6;7;9 which is consistent with our explicit
computations mentioned above.
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In summary,

d4ðΓ� ΓÞ
dq2d cos θld cos θKdϕ






LHCb

⇔S½A�1;2;3;4;5;6;7;8;9;

d4ðΓ� ΓÞ
dq2d cos θld cos θKdϕ






theory

⇔S½A�1;2;3;4;7; A½S�5;6;8;9;

ðC6Þ

where the CP-even (-odd) quantities are

Si½Ai� ¼
gi � gCPi
Γþ ΓCP ðC7Þ

with adapted notation from [35]. Written in yet another way
(C6) is equivalent to

ðg; A; SÞ1;2;3;5;8jLHCb ¼ þðJ; A; SÞ1;2;3;5;8jtheory;
ðg; A; SÞ4;6;7;9jLHCb ¼ −ðJ; A; SÞ4;6;7;9jtheory: ðC8Þ

In order to understand (C6) and (C8) one has to keep in
mind that B → K�ðl1l2Þ rather than its conjugate is the
reference decay. Note that at the LHCb (hadron collider)
Bs → ϕμþμ− is untagged and therefore, setting aside the
issue of production asymmetry, only S1;2;3;4;7; A5;6;8;9 are
experimentally accessible.

a. Angular observables in the literature
and conventions

We aim to find the relation between angular Pð0Þi
observables as defined by the theorists [34] and their
adaptation by LHCb [26]. In matching the results and
creating the dictionary one needs to pay attention to the fact
that [26] and [34] define the Pi

0 in terms of gi and Ji
differently, as well as the different angular conventions for
gi and Ji per se (shown in Fig. 4).
Amongst the twelve observables discussed in Sec. III B,

eight of them, P1;2;3; P04;5;6;8 and AFB, depend on angles and
definitions.

The Pi
0 and AFB are defined by LHCb [26] as

P04;5;6;8jLHCb ¼
S4;5;7;8jLHCbffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FLð1 − FLÞ

p ;

AFBjLHCb ¼
3ðS6sjLHCbÞ
4ðΓþ ΓÞ ; ðC9Þ

where Si is defined in Eq. (C7) and 2N 0bin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FLð1 − FLÞ

p
in our notation used in Sec. III B. LHCb has not defined
P1;2;3 and we shall assume the same functional form as in
the theory paper [34].
In [34] the eight equivalent angular observables are

defined as follows24

P1 ¼
1

2S2s
S3 ¼

1

2S2s
ðS3jLHCbÞ ¼ þP1jLHCb;

P2 ¼
1

8S2s
S6s ¼

1

8S2s
ð−S6sjLHCbÞ ¼ −P2jLHCb;

P3 ¼
−1
4S2s

S9 ¼
−1
4S2s
ð−S9jLHCbÞ ¼ −P3jLHCb;

P04 ¼
1

N 0bin
S4 ¼

1

N 0bin
ð−S4jLHCbÞ ¼ −2P04jLHCb;

P05 ¼
1

2N 0bin
S5 ¼

1

2N 0bin
ðS5jLHCbÞ ¼ þP05jLHCb;

AFB ¼ − 3S6s
4ðΓþ ΓÞ ¼ − 3ð−S6sjLHCbÞ

4ðΓþ ΓÞ ¼ þAFBjLHCb;

P06 ¼
−1

2N 0bin
S7 ¼

−1
2N 0bin

ð−S7jLHCbÞ ¼ þP06jLHCb;

P08 ¼
−1
N 0bin

S8 ¼
−1
N 0bin

ðS8jLHCbÞ ¼ −2P08jLHCb;

where we have directly translated into the LHCb
conventions. It seems that we differ from the theory
community in the sign of the observables S½A�7;8;9. For
example, both P6

0 ¼ P6
0jLHCb and P8

0 ¼ −2P8
0jLHCb differ

from the relations given in the caption of Table 1 in [65]
by the aforementioned sign. Our relation S½A�9 ¼
−S½A�9jLHCb also differs from the one given by [66] in
Table 1 by a sign.

3. Glk;ll
m for B → K�l1l2 in terms of helicity

amplitudes for mli ≡ml

When the masses of the leptons are identical, we obtain
for GlK;ll

m ¼ Nq2GlK;ll
m [with N defined in (26)],

FIG. 4. Changes of angular functions when going from one
mode to the other. For CP conjugates the conjugation of the CP-
odd (weak) phases are suppressed. Angular functions whose
signs do not change are not indicated.

24Note that [35,36] define AFB ¼ 3S6s
4ðΓþΓ̄Þ which results in

AFBj½34;35� ¼ −AFBjLHCb.
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G0;0
0 ¼

4

9
ð1− m̂l

2ÞðjHVþj2þ jHV−j2þ jHV
0 j2þ ðV → AÞÞ þ 4m̂l

2

3
ðjHVþj2þ jHV−j2þ jHV

0 j2 − ðV → AÞÞ þ 2

3
β2ljHSj2þ 2

3
jHPj2

þ 8

9
ð1þ 8m̂l

2ÞðjHTtþ j2þ jHTt− j2þ jHTt
0 j2Þ þ

4

9
β2lðjHTþj2þ jHT−j2þ jHT

0 j2Þ þ
16

3
m̂lIm½HVþH

Ttþ þHV−HTt− þHV
0H

Tt
0 �;

G0;1
0 ¼

4βl
3
ðRe½HVþHAþ −HV−HA−� þ Im½

ffiffiffi
2
p

HT
0H

Pþ 2HTt
0 H

S�− 2m̂lRe½HV
0H

S� þ 4m̂lIm½HAþH
Ttþ −HA−HTt− �Þ;

G0;2
0 ¼ −2

9
β2lð2jHV

0 j2 − jHVþj2 − jHV−j2þ ðV → AÞ− 2ð2jHT
0 j2 − jHTþj2 − jHT−j2Þ− 4ð2jHTt

0 j2 − jHTtþ j2 − jHTt− j2ÞÞ;

G2;0
0 ¼ −4

9
ð1− m̂l

2ÞðjHVþj2þ jHV−j2 − 2jHV
0 j2þ ðV → AÞÞ− 4m̂l

2

3
ðjHVþj2þ jHV−j2 − 2jHV

0 j2 − ðV → AÞÞ

þ 4

3
β2ljHSj2þ 4

3
jHPj2 − 8

9
ð1þ 8m̂l

2ÞðjHTtþ j2þ jHTt− j2 − 2jHTt
0 j2Þ− 4

9
β2lðjHTþj2þ jHT−j2 − 2jHT

0 j2Þ

− 16

3
m̂lIm½HVþH

Ttþ þHV−HTt− − 2HV
0H

Tt
0 �;

G2;1
0 ¼ −4βl

3
ðRe½HVþHAþ −HV−HA−�− 2Im½

ffiffiffi
2
p

HT
0H

Pþ 2HTt
0 H

S� þ 4m̂lðRe½HV
0H

S� þ Im½HAþH
Ttþ −HA−HTt− �ÞÞ;

G2;2
0 ¼ −2

9
β2lð4jHV

0 j2þ jHVþj2þ jHV−j2þ ðV → AÞ− 2ð4jHT
0 j2þ jHTþj2þ jHT−j2Þ−4ð4jHTt

0 j2þ jHTtþ j2þ jHTt− j2ÞÞ;

G2;1
1 ¼

4βlffiffiffi
3
p ðHVþHA

0 þHAþHV
0 −HV

0H
A− −HA

0H
V−þ 2m̂lðHVþHSþHSHV−Þ

− ffiffiffi
2
p

iðHPHT− −HTþHPþ
ffiffiffi
2
p
ðHSHTt− −HTtþHSÞÞ− 4im̂lðHAþH

Tt
0 þHTt

0 H
A− −HTtþHA

0 −HA
0H

Tt− ÞÞ;

G2;2
1 ¼

4

3
β2lðHVþHV

0 þHV
0H

V−þ ðV → AÞ− 2ðHTþHT
0 þHT

0H
T−þ 2ðHTtþH

Tt
0 þHTt

0 H
Tt− ÞÞÞ;

G2;2
2 ¼ −8

3
β2lðHVþHV−þHAþHA− − 2ðHTþHT−þ 2HTtþHTt− ÞÞ; ðC10Þ

where m̂l ¼ ml=
ffiffiffiffiffi
q2

p
and we recall that βl ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m̂2

l

q
. The number m in Glk;ll

m corresponds to the units of plus

helicities. The common factor of q2 in all observables as compared with standard literature results is a consequence of our
choice of normalisation, whereby all global factors are placed outside the HAs. The factors of i where they appear
(explicitly and implicitly) in G2;1

1 , G2;2
1 and G2;2

2 are not accidental, as the results given above are complex and one must take
the real and imaginary parts of these results to recover the observables g3;4;5;7;8;9.
Note that it is sometimes convenient to express results in terms of the transversity amplitudes, which possess a definite

parity. The relations to the HAs used throughout this paper are

HL=R
∥ð⊥Þ ≡

1ffiffiffi
2
p ðHL=R

þ �HL=R− Þ; HS ≡HS; Ht ≡Ht; HT t
∥ð⊥Þ ≡

1ffiffiffi
2
p ðHTtþ �HTt− Þ;

HT t
0 ≡HTt

0 ; HT
∥ð⊥Þ ≡

1ffiffiffi
2
p ðHTþ �HT−Þ; HT

∥⊥ ≡HT
0 : ðC11Þ

In [36] the notation Aij, with i; j ¼ ∥;⊥; 0, is used for the transversity amplitudes. Note that when comparing to this paper
the difference in the convention of the polarization vectors has to be taken into account.

4. Glk;ll
m for B → K�l1l2 in terms of helicity amplitudes for ml1 ≠ ml2

The formalism discussed in this paper allows a simple extension to the case ml1 ≠ ml2
, so that the results presented in

(C10) can be adapted to test for possible lepton-flavor violating processes. Using the notation

λγ�

4q2
¼ βþ1 β

−
1 β
þ
2 β

−
2 ; ðC12Þ

[λγ� given in (B6) and β�1;2≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E1;2�ml1;2

p
], we obtain the following expressions forGlK;ll

m ¼N ~GlK;ll
m [withN defined in (26)]:
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~G0;0
0 ¼

4

9

�
3E1E2þ

λγ�

4q2

	
ðjHVþj2þjHV−j2þjHV

0 j2þðV→AÞÞþ4ml1ml2

3
ðjHVþj2þjHV−j2þjHV

0 j2−ðV→AÞÞ

þ4
3

�
E1E2−ml1ml2þ

λγ�

4q2

	
jHSj2þ4

3

�
E1E2þml1

ml2þ
λγ�

4q2

	
jHPj2

þ16
9

�
3ðE1E2þml1ml2

Þ− λγ�

4q2

	
ðjHTtþ j2þjHTt− j2þjHTt

0 j2Þþ
8

9

�
3ðE1E2−ml1ml2Þ−

λγ�

4q2

	

×ðjHTþj2þjHT−j2þjHT
0 j2Þþ

16

3
ðml1E2þml2E1ÞIm½HVþH

Ttþ þHV−HTt− þHV
0H

Tt
0 �

þ8
ffiffiffi
2
p

3
ðml1E2−ml2E1ÞIm½HAþHTþþHA−HT−þHA

0H
T
0 �;

~G0;1
0 ¼

4
ffiffiffiffiffiffi
λγ�

p
3

�
Re½HVþHAþ−HV−HA−�þ2

ffiffiffi
2
p m2

l1
−m2

l2

q2
Re½HTþH

Ttþ −HT−HTt− �þ2
ml1þml2ffiffiffiffiffi

q2
p Im½HAþH

Ttþ −HA−HTt− �
	

þ
ffiffiffi
2
p ml1

−ml2ffiffiffiffiffi
q2

p Im½HVþHTþ−HV−HT−�−ml1−ml2ffiffiffiffiffi
q2

p Re½HA
0H

P�−ml1þml2ffiffiffiffiffi
q2

p Re½HV
0H

S�þIm½
ffiffiffi
2
p

HT
0H

Pþ2HTt
0 H

S�
	
;

~G0;2
0 ¼−2

9

λγ�

q2
ð2jHV

0 j2− jHVþj2− jHV−j2þðV→AÞ−2ð2jHT
0 j2− jHTþj2− jHT−j2Þ−4ð2jHTt

0 j2− jHTtþ j2− jHTt− j2ÞÞ;

~G2;0
0 ¼−4

9

�
3E1E2þ

λγ�

4q2

	
ðjHVþj2þjHV−j2−2jHV

0 j2þðV→AÞÞ−4ml1ml2

3
ðjHVþj2þjHV−j2−2jHV

0 j2−ðV→AÞÞ

þ8
3

�
E1E2−ml1ml2þ

λγ�

4q2

	
jHSj2þ8

3

�
E1E2þml1

ml2þ
λγ�

4q2

	
jHPj2

−16

9

�
3ðE1E2þml1

ml2Þ−
λγ�

4q2

	
ðjHTtþ j2þjHTt− j2−2jHTt

0 j2Þ−8

9

�
3ðE1E2−ml1ml2

Þ− λγ�

4q2

	
ðjHTþj2þjHT−j2−2jHT

0 j2Þ

−16

3
ðml1

E2þml2E1ÞIm½HVþH
Ttþ þHV−HTt− −2HV

0H
Tt
0 �−8

ffiffiffi
2
p

3
ðml1E2−ml2E1ÞIm½HAþHTþþHA−HT−−2HA

0H
T
0 �;

~G2;1
0 ¼−4

ffiffiffiffiffiffi
λγ�

p
3

�
Re½HVþHAþ−HV−HA−�þ2

ffiffiffi
2
p m2

l1
−m2

l2

q2
Re½HTþH

Ttþ −HT−HTt− �þ
2ðml1þml2Þffiffiffiffiffi

q2
p Im½HAþH

Ttþ −HA−HTt− �

þ
ffiffiffi
2
p ðml1−ml2Þffiffiffiffiffi

q2
p Im½HVþHTþ−HV−HT−�þ2

ml1−ml2ffiffiffiffiffi
q2

p Re½HA
0H

P�þ2ml1þml2ffiffiffiffiffi
q2

p Re½HV
0H

S�−2Im½
ffiffiffi
2
p

HT
0H

Pþ2HTt
0 H

S�
	
;

~G2;2
0 ¼−2

9

λγ�

q2
ð4jHV

0 j2þjHVþj2þjHV−j2þðV→AÞ−2ð4jHT
0 j2þjHTþj2þjHT−j2Þ−4ð4jHTt

0 j2þjHTtþ j2þjHTt− j2ÞÞ;

~G2;1
1 ¼

4
ffiffiffiffiffiffi
λγ�

pffiffiffi
3
p

�
ðHVþHA

0 þHAþHV
0 −HV

0H
A−−HA

0H
V−Þþ

ml1þml2ffiffiffiffiffi
q2

p ðHVþHSþHSHV−Þ

− ffiffiffi
2
p

iðHPHT−−HTþHPþ
ffiffiffi
2
p
ðHSHTt− −HTtþHSÞÞ

þml1−ml2ffiffiffiffiffi
q2

p ðHAþHPþHPHA−Þ−2i
ml1þml2ffiffiffiffiffi

q2
p ðHAþH

Tt
0 þHTt

0 H
A−−HTtþHA

0 −HA
0H

Tt− Þ

− ffiffiffi
2
p

i
ml1

−ml2ffiffiffiffiffi
q2

p ðHVþHT
0þHT

0H
V−−HTþHV

0 −HV
0H

T−Þþ2
ffiffiffi
2
p m2

l1
−m2

l2

q2
ðHTþH

Tt
0 þHTtþHT

0 −HT
0H

Tt− −HTt
0 H

T−Þ
	
;

~G2;2
1 ¼

4

3

λγ�

q2
ðHVþHV

0 þHV
0H

V−þðV→AÞ−2ðHTþHT
0þHT

0H
T−þ2ðHTtþH

Tt
0 þHTt

0 H
Tt− ÞÞÞ;

~G2;2
2 ¼−8

3

λγ�

q2
ðHVþHV−þHAþHA−−2ðHTþHT−þ2HTtþHTt− ÞÞ: ðC13Þ
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5. Explicit helicity amplitudes in terms of form factors

We collect here the definitions of the helicity amplitudes
in terms of which our results are expressed. The hadronic
HA is defined by

HX
λ ¼ hK�ðλÞjsΓXbjBi; ðC14Þ

with ΓXjλX→λ as defined in Table 3.1 and the further
replacement ω → ω. The definitions of the hadronic
matrix elements used in the calculations are standard
(e.g. [77]). Below we evaluate the HAs using form factors
to make clear the relative signs between the various
contributions, allowing for definite comparison with the
literature.
Results for form factors for low q2 can be found from

light-cone sum rules (LCSR) with vector distribution
amplitudes (DA) in [5,77] and B-meson DA in [6], and
for high q2 from lattice QCD [78]. Long-distance effects
contribute to HV

λ only, and include quark loops (QL), the
chromomagnetic operator O8, quark loop spectator scat-
tering (QLSS) and weak annihilation (WA). At low q2,

effects have been evaluated in QCD factorization (QCDF)
in the leading 1=mb-limit and in LCSR. Results for O8,
WA and QLSS in QCDF are given in [7], and additional
contributions for O8 in [8]. In Ref. [7] it was shown that
quark loops can be integrated into the 1=mb framework
using the results from inclusive matrix element computa-
tions [9]. Results for O8 and WA, as well as a prescription
for dealing with endpoint divergences of QLSS, can be
found in [10] and [11]. Results for charm loops beyond
the 1=mb approximation can be found in [12] for LCSR
with B-meson DA, and [13,14] for LCSR (at q2 ¼ 0 only)
for vector-meson DA. At high q2 many of the long-
distance contributions are suppressed in the formulation in
terms of an OPE in 1=q2 (with q2 ≃m2

b) [79,80]. It should
be added that the large contribution of broad charm
resonances in B → Kμþμ− observed by the LHCb col-
laboration [81] demands a reassessment of duality viola-
tions [67]. Long-distance contributions can be found
elsewhere.
Explicit results for the B → K�ðl1l2Þ-mode are

given by

HV
0 ¼

4imBmK� ½ðCV−C0VÞðmBþmK� ÞA12þmbðC7−C07ÞT23�ffiffiffiffiffi
q2

p
ðmBþmK� Þ

;

HA
0 ¼

4imBmK�ffiffiffiffiffi
q2

p ðCA−C0AÞA12;

HV
�¼

i
2ðmBþmK� Þ

ð�ðCVþC0VÞ
ffiffiffiffiffi
λB

p
V−ðmBþmK� Þ2ðCV−C0VÞA1Þþ

imb

q2
ð�ðC7þC07Þ

ffiffiffiffiffi
λB

p
T1−ðC7−C07Þðm2

B−m2
K� ÞT2Þ;

HA
�¼

i
2ðmBþmK� Þ

ð�ðCAþC0AÞ
ffiffiffiffiffi
λB

p
V−ðmBþmK� Þ2ðCA−C0AÞA1Þ;

HP¼ i
ffiffiffiffiffi
λB
p
2

�
CP−C0P
mbþms

þml1þml2

q2
ðCA−C0AÞ

	
A0;

HS¼ i
ffiffiffiffiffi
λB
p
2

�
CS−C0S
mbþms

þml1−ml2

q2
ðCV−C0VÞ

	
A0;

HT
0 ¼

2
ffiffiffi
2
p

mBmK�

mBþmK�
ðCT þC0T ÞT23;

HTt
0 ¼

2mBmK�

mBþmK�
ðCT −C0T ÞT23;

HT
�¼

1ffiffiffiffiffiffiffi
2q2

p ð�ðCT −C0T Þ
ffiffiffiffiffi
λB

p
T1−ðCT þC0T Þðm2

B−m2
K� ÞT2Þ;

HTt
� ¼

1

2
ffiffiffiffiffi
q2

p ð�ðCT þC0T Þ
ffiffiffiffiffi
λB

p
T1−ðCT −C0T Þðm2

B−m2
K� ÞT2Þ; ðC15Þ

whereCVðAÞ ¼ C9ð10Þ in the standard notation used in the literature and the q2-dependence of the form factors is suppressed.
Furthermore we have used

A12 ¼
ðmB þmK� Þ2ðm2

B −m2
K� − q2ÞA1 − λBA2

16mBm2
K� ðmB þmK� Þ

; T23 ¼
ðm2

B −m2
K� Þðm2

B þ 3m2
K� − q2ÞT2 − λBT3

8mBm2
K� ðmB −mK�Þ

;

the same shorthand for zero-helicity form factor combinations as in [77,78].
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The so-called timelike HAs, often denoted by Ht in the
literature, have been absorbed into HS and HP. This is
exceptional and follows from the vector and axial Ward
identities qμuðl1Þγμ½γ5�vðl2Þ¼ðml1∓ml2Þuðl1Þ½γ5�vðl2Þ.
A similar simplification procedure could be repeated by use
of the equation of motion i∂νðsiσμνbÞ¼−ðmsþmbÞsγμbþ
i∂μðsbÞ−2siD

 
μb (as u sed in [82]) for HTt

λ if all of the
operators present in the equation were used in the effective
Hamiltonian. Since the higher derivative operators are not
present in the effective Hamiltonian used in this paper, such
a simplification does not occur.

APPENDIX D: SPECIFIC RESULTS
FOR B → Kl1l2

The angular distribution for this decay is

d2Γ
dq2dcosθl

¼Gð0ÞD0
0;0ðΩlÞþGð1ÞD1

0;0ðΩlÞþGð2ÞD2
0;0ðΩlÞ;

where, using the general leptonic HAs in Appendix A 3 and
taking ml1 ≠ ml2 , the functions GðllÞ ¼ N ~GðllÞ [with N
defined in (26)], are given in terms of B → K HAs by

~Gð0Þ ¼
�
4ðE1E2 þml1ml2Þ þ

λγ�

3q2

	
jhV j2 þ

�
4ðE1E2 −ml1ml2Þ þ

λγ�

3q2

	
jhAj2

þ
�
4ðE1E2 −ml1ml2Þ þ

λγ�

q2

	
jhSj2 þ

�
4ðE1E2 þml1

ml2Þ þ
λγ�

q2

	
jhPj2

þ 16

�
E1E2 þml1

ml2 −
λγ�

12q2

	
jhTt j2 þ 8

�
E1E2 −ml1ml2 −

λγ�

12q2

	
jhT j2

þ 16ðml1E2 þml2
E1ÞIm½hVhTt � þ 8

ffiffiffi
2
p
ðml1E2 −ml2E1ÞIm½hAhT �;

~Gð1Þ ¼ −4
ffiffiffiffiffiffi
λγ�

q �
Re

�
ml1 þml2ffiffiffiffiffi

q2
p hVhS þml1 −ml2ffiffiffiffiffi

q2
p hAhP

�
− Im½2hTthS þ

ffiffiffi
2
p

hThP�
	
;

~Gð2Þ ¼ − 4λγ�

3q2
ðjhV j2 þ jhAj2 − 2jhT j2 − 4jhTt j2Þ: ðD1Þ

The equivalent expressions for equal lepton masses are, using the notation GðllÞ ¼ N q2GðllÞ

Gð0Þ ¼ 4

3
ð1þ 2m̂l

2ÞjhV j2 þ 4

3
β2ljhAj2 þ 2β2ljhSj2 þ 2jhPj2

þ 8

3
ð1þ 8m̂l

2ÞjhTt j2 þ 4

3
β2ljhT j2 þ 16m̂lIm½hVhTt �;

Gð1Þ ¼ −4βlð2m̂lRe½hVhS� − Im½2hTthS þ
ffiffiffi
2
p

hThP�Þ;

Gð2Þ ¼ − 4β2l
3
ðjhV j2 þ jhAj2 − 2jhT j2 − 4jhTt j2Þ; ðD2Þ

where we have used the shorthand m̂l ≡ml=
ffiffiffiffiffi
q2

p
.

1. Explicit B → K helicity amplitudes in
terms of form factors

As for B → K�l1l2 we quote the HAs for form factor
contributions only, which allows for comparison with the

literature. Form factor computations are available for low q2

and high q2 from LCSR [15,16] and lattice QCD [17]
respectively. Contributions to long-distance processes can
be found in the same references as for theK�-meson final state
(quoted in Appendix C 5). The form factor matrix elements
relevant toB → K transition, in standard parametrization, are

hKðpÞjsγμbjBðpBÞi ¼ ðpB þ pÞμfþðq2Þ þ
m2

B −m2
K

q2
qμðf0ðq2Þ − fþðq2ÞÞ;

hKðpÞjsσμνbjBðpBÞi ¼ i½ðpB þ pÞμqν − ðpB þ pÞνqμ�
fTðq2Þ

mB þmK
;

hKðpÞjsbjBðpBÞi ¼
m2

B −m2
K

mb −ms
f0ðq2Þ; ðD3Þ
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with hKðpÞjsγμγ5bjBðpBÞi ¼ hKðpÞjsγ5bjBðpBÞi ¼ 0 in
QCD. The hadronic HA is defined by

hX ¼ hKjsΓXbjBi; ðD4Þ

where ΓXjλX→0 as in Table 3.1 with ω → ω, containing
the full set of dimension-six operators in the effective
Hamiltonian (12). We find

hV ¼
ffiffiffiffiffiffiffiffi
λBK
p

2
ffiffiffiffiffi
q2

p �
2mb

mB þmK
ðC7 þ C07ÞfT þ ðCV þ C0VÞfþ

	
;

hA ¼
ffiffiffiffiffiffiffiffi
λBK
p

2
ffiffiffiffiffi
q2

p ðCA þ C0AÞfþ;

hS ¼ m2
B −m2

K

2

�ðCS þ C0SÞ
mb −ms

þml1 −ml2

q2
ðCV þ C0VÞ

	
f0;

hP ¼ m2
B −m2

K

2

�ðCP þ C0PÞ
mb −ms

þml1 þml2

q2
ðCA þ C0AÞ

	
f0;

hT ¼ −i
ffiffiffiffiffiffiffiffi
λBK
pffiffiffi

2
p ðmB þmKÞ

ðCT − C0T ÞfT;

hTt ¼ −i
ffiffiffiffiffiffiffiffi
λBK
p

2ðmB þmKÞ
ðCT þ C0T ÞfT; ðD5Þ

where the Källén function [cf. Eq. (B1)] λBK ≡
λðm2

B;m
2
K; q

2Þ replaces λB ≡ λðm2
B;m

2
K� ; q

2Þ and CVðAÞ ¼
C9ð10Þ in the standard notation used in the literature.

2. Comparison with the literature

The results for equal lepton masses (D2) do agree with
the results of Ref. [37] when θl → π − θl is taken into
account. This is consistent with the angular conventions. In
this paper we use the same conventions as LHCb [38],
which differ from the ones of [37] by the transformation
stated above.

APPENDIX E: Λb → Λð→ ðp;nÞπÞl1l2
ANGULAR DISTRIBUTION

The decay Λb → Λð→ ðp; nÞπÞl1l2 with a final-state
proton or neutron, recently measured by the LHCb
Collaboration [83], can also be considered within the
generalized helicity formalism, and is particularly relevant
because this decay can also be described using the effective
Hamiltonian defined in A 2. In this case (5) becomes, in the
rest frame of the Λb,

AðΩΛb
;Ωl;ΩΛjλΛb

; λN; λ1; λ2Þ
∼

X
λγ ;λΛ;Jγ

δλΛb ;λγ−λΛHλγλΛD
1
2

λΛ;λN
ðΩΛÞN λND

Jγ
λγ ;λl
ðΩlÞlλ1λ2

¼
X
λγ ;Jγ

Hλγ ;λγ−λΛbD
1
2

λγ−λΛb ;λN ðΩΛÞN λND
Jγ
λγ ;λl
ðΩlÞlλ1λ2 ; ðE1Þ

where the leptonic HAs are the same as before and N λN is
the HA for the decay Λ → Nπ analogous to the gK�Kπ factor
in the B → K� decay, this time carrying nontrivial depend-
ence on helicities owing to the final state particle N having
spin-1

2
. The terms HλγλΛ are the HAs for the Λb → Λ decay

and can be again expressed in the form

HλγλΛ ¼ hΛðλΛÞjsΓXbjΛbðλΛb
Þi; ðE2Þ

with the ΓX the same as defined in Table 3.1. The resulting
angular distribution can then be expressed as

Kðq2;ΩΛ;ΩlÞ∼Re½K0;0
0 Ω0;0

0 ðΩΛ;ΩlÞ þK0;1
0 Ω0;1

0 ðΩΛ;ΩlÞ
þK0;2

0 Ω0;2
0 ðΩΛ;ΩlÞ þK1;0

0 Ω1;0
0 ðΩΛ;ΩlÞ

þK1;1
0 Ω1;1

0 ðΩΛ;ΩlÞ þK1;2
0 Ω1;2

0 ðΩΛ;ΩlÞ
þK1;1

1 Ω1;1
1 ðΩΛ;ΩlÞ þK1;2

1 Ω1;2
1 ðΩΛ;ΩlÞ�;

ðE3Þ

whereΩΛ ¼ ð0; θΛ; 0Þ andΩl ¼ ðϕ; θl;−ϕÞ. A theoretical
angular analysis of this decay has been performed in
[41,84]; in terms of the functions defined in [41], the
KlΛ;ll

m above are

K0;0
0 ¼

1

3
ðK1cc þ 2K1ssÞ; K0;1

0 ¼ K1c;

K0;2
0 ¼

2

3
ðK1cc − K1ssÞ; K1;0

0 ¼
1

3
ðK2cc þ 2K2ssÞ;

K1;1
0 ¼ K2c; K1;2

0 ¼
2

3
ðK2cc − K2ssÞ;

K1;1
1 ¼ K3s þ iK4s; K1;2

1 ¼
1ffiffiffi
3
p ðK3sc þ iK4scÞ: ðE4Þ

These results can also be compared with those found in
[24]; it follows that the MoM will be equally useful in
future angular analyses of this decay.

APPENDIX F: CHANGES IN CONVENTIONS
AND PRESENTATION

Notational changes with respect to the arXiv version 1,
aimed at clarifying the underlying structure, are as follows:
(i) results are presented for B → Kð�Þl1l2 rather than the

conjugate decay, (ii) we use Cð
0Þ
T Wilson coefficients in

place of CTð5Þ for the tensor operators cf. Appendix A 2 for
details, (iii) the angular distribution (C1) is presented in
terms of gi in place of Ji in order to emphasize the
differences of angular convention of this paper and the
theory community (as discussed in Appendix C 2), (iv) lep-
ton HAs are presented in the A, V rather than L, R basis and
(v) timelike HAs are absorbed into scalar and pseudoscalar
HAs. In addition we provide a Mathematica notebook,
entitled notebookGHZ. nb, containing the results presented
in Appendix C 4 for the decay mode B → K�ð→ KπÞl1l2

for nonequal lepton masses [29].
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