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We present static meson-meson and baryon-antibaryon potentials in Zð2Þ and Zð3Þ random center vortex
models for the infrared sector of Yang-Mills theory, i.e., hypercubic lattice models of random vortex world
surfaces. In particular, we calculate multiple Polyakov loop correlators corresponding to static meson-
meson or baryon-antibaryon configurations in a center vortex background and observe that their
expectation values follow the minimal area law, displaying bond rearrangement behavior, a characteristic
expected for the confining dynamics of the strong interaction. The static meson-meson and baryon-
antibaryon potentials are compared with theoretical predictions and lattice QCD simulations.
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I. INTRODUCTION

Center vortices [1–6] are closed tubes of quantized
chromomagnetic flux which spontaneously condense in
the vacuum, giving rise to the nonperturbative phenomena
which characterize the infrared sector of strong interaction
physics, namely, quark confinement, the spontaneous break-
ing of chiral symmetry (χSB) and the axial UAð1Þ anomaly.
The vortex model of confinement has been buttressed by a

multitude of studies, in lattice Yang-Mills theory (see, e.g.,
[7–15]), within the infrared effective model of center vortices
under investigation here [16–24] and another infrared model
of random vortex lines in continuous three-dimensional (3D)
space-time [25,26] and also by theoretical effective model
calculations, e.g., [27–30]. The physical motivation for the
vortex picture can be seen from the Wilson loop criterion of
confinement; i.e., the expectation value of the Wilson loop
has to follow an area law in the confined phase. The vortex
model deduces the area law from independent vortex
piercings of the Wilson loop, which can be interpreted as
crossings of the static electric flux tube and moving closed
magnetic flux. The area law follows from fluctuations in the
number of vortices piercing a Wilson loop, and the decon-
finement transition in the center vortex picture takes the
guise of a percolation transition [13,16].
Numerical simulations indicate further that vortices are

responsible for χSB as well [18,24,31–52]. Removal of
center vortices restores chiral symmetry [31]. A dense vortex
vacuum gives rise to a finite density of Dirac operator near-
zero modes (see also [53,54]), hence a finite chiral con-
densate via the Banks-Casher relation [55], spontaneously

breaking chiral symmetry. More than one concrete mecha-
nism may be at play in generating the near-zero mode
spectrum. On the one hand, center vortices give rise to lumps
of topological charge through (self-)intersection and writhe,
as well as through their color structure. These attract Dirac
zero modes, which can interact to generate the near-zero
mode spectrum in a manner reminiscent of the instanton
liquid model, as studied in [46], where the close analogy
between specific spherical vortex configurations and instan-
tons was noted. On the other hand, even in the absence of
would-be zero modes generated by topological charge
lumps, the random interactions of quarks with the vortex
background may be strong enough to smear the free quark
dispersion relation such that the spectral density of the Dirac
operator becomes nonzero near zero eigenvalue [18]. As
vortices modify their percolation behavior at the deconfine-
ment transition, chiral symmetry is restored [18].
A recent study of double-winding Wilson loops [56]

further favors the center vortex degrees of freedom as the
dominating fluctuations in the QCD vacuum. The spatial
distribution of center vortex fields not only gives the area
law falloff for simple Wilson loops but also shows the
correct difference of areas’ behavior for double-winding
Wilson loops, in contrast to other confining gluonic field
fluctuations. Further details, including an outlook on the
relation of the vortex picture to other models of the strong
interaction vacuum, can be found in the reviews [57,58].
In the present work we revisit the random vortex world-

surface model, which will be introduced in the next section
along with its main achievements, to measure static meson-
meson and baryon-antibaryon correlators, as specified in
Sec. III together with simulation details and the exponential
error reduction method. In these correlators, we observe
bond rearrangement behavior as the relative positions of the
static quarks are varied, in accordance with a strict minimal
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area law, operative already at finite separations. The
confining bonds within each mesonic or baryonic cluster
appear to be fully saturating, with no residual interactions
between clusters. Thus, cluster separation occurs not only
asymptotically, where it would be expected on general
grounds, but already at intermediate distances. We present
these results in Sec. IVand furthermore compare them with
theoretical expectations and measurements in lattice QCD.
We draw our conclusions in Sec. V.

II. RANDOMVORTEXWORLD-SURFACEMODEL

The random center vortex world-surface model [16,19]
describes the infrared gluonic dynamics in the strong
interaction vacuum in terms of collective degrees of freedom
called center vortices, which represent random closed lines of
quantized chromomagnetic flux. In terms of field configu-
rations in four-dimensional (Euclidean) space-time, these
correspond to an ensemble of closed random world surfaces.
The concrete implementation of this model ensemble studied
in the following employs a hypercubic lattice, on which the
random surfaces are composed of elementary lattice squares.
The ensemble is governed by an action related to surface
curvature1: If two of the aforementioned elementary squares
composing a vortex surface share a lattice link while lying in
different lattice planes, an action increment c is incurred. This
can be written formally in terms of a sum over lattice links,

S½q� ¼ c
X
x

X
μ

�X
ν<λ

ν≠μ;λ≠μ

ðjqμνðxÞqμλðxÞj

þ jqμνðxÞqμλðx − eλÞj þ jqμνðx − eνÞqμλðxÞj

þ jqμνðx − eνÞqμλðx − eλÞjÞ
�

¼ c
2

X
x

X
μ

��X
ν≠μðjqμνðxÞj þ jqμνðx − eνÞjÞ

�
2

−
X
ν≠μ

½jqμνðxÞj þ jqμνðx − eνÞj�2
�
; ð1Þ

where qμνðxÞ specifies the chromomagnetic flux associated
with the elementary square that extends from the site x into
the positive μ and ν directions. The variables qμνðxÞ take
three values, qμνðxÞ ∈ f−1; 0; 1g; the value 0 means that the
elementary square is not part of a vortex surface, whereas
nonzero quantized flux carried by the vortices is encoded in
the other values �1. The sign of qμνðxÞ corresponds to the
orientation of the vortex flux, implying the relation
qνμðxÞ ¼ −qμνðxÞ, as will be clear from the characterization
of vortex flux by its effect on Wilson loops circumscribing it,
given in the next section. For the purpose of evaluating
Wilson loops, in the SUð2Þ case it will be seen that there is no
physical distinction between the �1 fluxes, and one could
equivalently adopt a scheme in which SUð2Þ elementary
vortex squares only take the value þ1; for consistency of
notation, this option is not employed here. In the SUð3Þ case,
by contrast, the �1 fluxes have physically distinct effects on
Wilson loops, and one must keep track of the orientation of
vortex flux.
Vortex flux is subject to the Bianchi identity; i.e., it is

continuous modulo 2π, i.e., modulo Dirac strings [17–19].
Vortex world surfaces therefore are closed, as already
mentioned above. Nevertheless, in the SUð3Þ case, vortex
branchings are allowed; flux continuity is respected when a
�1 vortex splits into two∓1 vortices, and vice versa. In the
SUð2Þ case, such branchings do not occur; there is really
only one physical vortex flux, and the distinction between
þ1 and −1 flux is purely formal for present purposes, as
already noted above. This corresponds to there being only
one nontrivial center element in the SUð2Þ group. These
constraints stemming from continuity of flux must be
respected in the generation of the random surface ensem-
ble; in practice, this is achieved by performing Monte Carlo
updates on all six squares making up the surface of an
arbitrary elementary three-dimensional cube in the lattice
simultaneously [19]. Essentially, the continuous flux of a
vortex of the shape of the elementary cube surface is
superposed onto the previously present flux.
This infrared effective model of strong interaction

dynamics has been explored extensively, ascertaining the
reach of such a description of the QCD vacuum in terms of
vortex degrees of freedom with their simplified effective
action. Initial studies focused on the SUð2Þ gauge group;
the random vortex world-surface model was seen to allow
for both a low-temperature confining as well as a high-
temperature deconfined phase [16], which are separated by
a second-order phase transition [19]. The spatial string
tension in the deconfined phase [16], the topological
susceptibility [17] and the (quenched) chiral condensate
[18] are predicted in quantitative agreement with SUð2Þ
lattice Yang-Mills theory. Extending the model to SUð3Þ
color, a weakly first-order deconfinement phase transition
[19] was found, and confirmed by investigating the vortex
free energy [20]. The baryonic static potential exhibits a Y
law [21], and also the SUð3Þ topological susceptibility was

1A systematic gradient expansion of the vortex world-surface
action starts with a Nambu-Goto term (proportional to the world-
surface area), followed by a curvature term. The effects of these
terms are correlated; configurations with more area will generically
also contain more curvature. In [16,19], the two-dimensional plane
of coupling constants corresponding to the aforementioned two
action terms was explored, and it was indeed found that the terms
can to a certain extent be traded off against one another. Lines of
approximately constant physics were identified, on which char-
acteristics of SUð2Þ and SUð3Þ Yang-Mills theory are reproduced.
These lines of constant physics contain points on which the
Nambu-Goto term vanishes (but do not include points on which
the curvature term vanishes). Consequently, these points in the
coupling constant plane were adopted as the simplest realization of
the vortex world-surface model consistent with the confinement
characteristics of Yang-Mills theory.
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evaluated [24]. Further gauge groups were studied in order
to better understand the systematics of competing confine-
ment mechanisms [59], including SUð4Þ color [22] and
Spð2Þ color [23]. It was seen that the vortex picture is
sufficiently flexible to account for the confinement proper-
ties associated with various gauge symmetries, provided
the effective dynamics are suitably tailored; in general, one
must employ more complex effective actions than the
simple curvature action (1) describing the SUð2Þ and
SUð3Þ cases. The present work revisits the latter, widening
the scope from the simplest confinement properties studied
previously, as described above, to more complex static
meson-meson and baryon-antibaryon correlators.

III. OBSERVABLES AND EXPONENTIAL
NOISE REDUCTION

Our objective is to evaluate expectation values of
multiple Polyakov loop operators in a center vortex back-
ground. Studies of quantities of this type have also been
suggested in [60]. Generally, Wilson loops2 are influenced
by the quantized chromomagnetic flux carried by center
vortices in a characteristic fashion: For an arbitrary area
spanning a given Wilson loop (the choice of area being
immaterial owing to flux continuity), each time the area is
pierced by a vortex world surface,3 the Wilson loop is
multiplied by a phase corresponding to a nontrivial center
element of the gauge group. Specifically, in the SUð2Þ color
case, each piercing contributes a phase ð−1Þ ¼ expð�iπÞ,
whereas in the SUð3Þ color case, two distinct phase factors
are possible, corresponding to the two possible quantized
vortex fluxes, namely, expð�i2π=3Þ. Note, thus, that there
is no physical distinction in the SUð2Þ case between the
two orientations of vortex flux, as already mentioned
further above. To cast these properties into precise lan-
guage, in terms of the variables qμνðxÞ, consider evaluating
an elementary Wilson loop, i.e., the plaquette UκλðyÞ,
starting at the (dual) lattice site y, integrating first into
the positive κ direction and then into the positive λ
direction, and continuing around the plaquette. This pla-
quette is pierced (only) by the lattice elementary square
qμνðxÞ, with the indices κ, λ, μ, ν spanning all four space-
time dimensions and x ¼ yþ ð ~eκ þ ~eλ − ~eμ − ~eνÞa=2,
where a denotes the lattice spacing. Thus, UκλðyÞ is
determined exclusively by qμνðxÞ as

UκλðyÞ ¼ expðiπ=N · ϵκλμνqμνðxÞÞ; ð2Þ

where N is the number of colors and the usual Euclidean
summation convention over Greek indices applies. An
arbitrary Wilson loop can be evaluated [21] by finding a
tiling of that loop by a set of plaquettes, and multiplying
the values (2) of those plaquettes in the given vortex
configuration.
To probe static meson-meson potentials, one measures

the correlator of two (flat) Wilson loops of size R × T, i.e.,
the quark and antiquark in each static meson are separated
by a distance R in a spatial direction and are propagating in
time direction, with distance D between the two mesons in
an orthogonal spatial direction. To probe static baryon-
antibaryon potentials, the spatial setup depicted in Fig. 1(b)
was adopted: Two Wilson loops of size R × T (static
mesons) with opposite orientations are combined to con-
struct a propagating static linear baryon; i.e., the three
quarks in the baryon lie equidistantly along one line with
total extent 2R. This pair of Wilson loops is then again
correlated with a mirrored pair of loops for the antibaryon
at distance D. A comment is in order concerning this
particular choice for the spatial arrangement of the quarks,
which is owed to computational simplicity. A realistic
baryon, of course, is not described by any particular static
arrangement of quarks, but by a wave function which
features a finite probability density for linear, triangular,
and a continuum of other spatial arrangements of the quarks
(presumably, approximately triangular arrangements are
somewhat more likely than approximately linear ones).
Studying all these possibilities in a representative manner
lies beyond the scope of this work. No particular choice
will adequately represent an actual baryon; this is not the
intent of the present study. Instead, the focus lies on the
gluonic dynamics alone, namely, on the confining bond
rearrangements given a collection of quarks. To address this
question, a particular spatial arrangement is selected from
among the continuum which occurs in a baryon. The linear
arrangement has the advantage that all bonds occur along
lattice axes, and therefore the resulting data do not have to
be disentangled with respect to, e.g., effects of rotational
symmetry breaking when bonds do not lie along axes. As
already noted above, a detailed study of the baryonic Y law,
including off-axis bonds, was carried out in [21].
In practice, in the present work, the Wilson loops were

chosen to extend over the entire temporal extent of the
lattice, in which case the correlators described above take the
form of multiple Polyakov loop correlators. Static meson-
meson correlators are obtained from four, static baryon-
antibaryon correlators from six Polyakov loops; see Fig. 1.
To reduce the numerical noise contaminating the mesonic

and baryonic Polyakov loop correlator measurements as far
as possible, the noise reduction technique introduced by
Lüscher and Weisz [61] was employed, adapted to the
random center vortex world-surface model [21].

2A correlator of two Polyakov loops can be viewed as a special
case of a Wilson loop, extending along the entire temporal
direction of the lattice; note that no path ordering issues arise in
the present case, owing to the Abelian character of the ZðNÞ
vortex configurations.

3Wilson loops are defined on the lattice which is dual to the
one on which the vortex world surfaces are defined, i.e., on a
lattice shifted by the vector ða=2; a=2; a=2; a=2Þ, where a is the
lattice spacing. Consequently, the notion of a Wilson loop area
being pierced by a vortex world surface is unambiguous.
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As noted in conjunction with (1), the vortex world-
surface action takes the form of a sum over contributions
associated with lattice links. The contribution at each link
couples only elementary squares attached to the link. The
action can thus be decomposed in the form

S½q�≡ S½qt; qs� ¼ St½qt� þ
X
i

Si½qt; qsi �; ð3Þ

where the set of variables qt represents all elementary
squares that extend into the time and one space direction,
whereas the set of variables qsi represents the elementary
squares extending into two spatial directions at fixed lattice
time i. The Si piece of the action thus contains the sum over
spatial links at lattice time i, and St contains the sum over
all temporal links. The constraint of continuity of flux can
be treated in an analogous manner; it is a constraint that
must be satisfied at each lattice link separately [21], and in
each case involves precisely the elementary squares
attached to the link in question. The constraint therefore
factorizes into terms which either couple only the variables
qt and qsi at fixed lattice time i or couple only the variables
qt. One can thus express the constraint of continuity of flux
in the form

δ½q�≡ δ½qt; qs� ¼ δt½qt�
Y
i

δi½qt; qsi �: ð4Þ

Finally, Wilson loop observables obey a similar decom-
position. As noted above in conjunction with Eq. (2), a
Wilson loop W is simply given as a product over the
plaquettes making up a tiling of the loop. Each of the
plaquettes is determined exclusively by its dual vortex
elementary square via Eq. (2); one can therefore group the
product into factors as

W½q�≡W½qt; qs� ¼
Y
i

Wi½qt; qsi �: ð5Þ

The noise reduction method given by Lüscher and Weisz
operates by introducing a hierarchy into the Monte Carlo
averaging ofW over the variables q, governed by the action
S and the constraint δ, as follows:

hWifq;δ;Sg ¼
1

Z

Z
½Dqt�δt½qt� expð−St½qt�Þ

×
Y
i

Z
½Dqsi �δi½qt; qsi �

×Wi½qt; qsi � expð−Si½qt; qsi �Þ

¼
�Y

i
hWiifqsi ;δi;Sig½qt�

�
fq;δ;Sg

:

That is, one keeps the variables qt fixed while performing
the inner averagings over the sets of variables qsi according
to the corresponding actions Si and constraints δi; then, the
outer expectation value over the product of these inner
averages, taken over the full set of variables q according to
the full action S and the full constraint δ, may fluctuate
much less than if one were simply to average the original
Wilson loop W½q�. As noted in Sec. II, updates of the
random vortex world surfaces are performed on all six
surfaces of an elementary three-dimensional cube in the
lattice simultaneously; in the inner averaging step, there-
fore, only cubes extending into three spatial directions, i.e.,
lying in a fixed time slice, are updated.
This algorithm can be straightforwardly iterated, i.e.,

further levels of averaging can be introduced in which, at
each level, the quantities being averaged only depend on a
subset of the variables on which the quantities at the next-
lower level depended. Concretely, from the set of variables
qt a further subset can be selected which is kept fixed while
one averages over its complement, provided the action, the
constraint and the observable can still be decomposed
analogously to Eqs. (3)–(5). In the present work, one
additional such iteration was performed, namely, the set
of variables qt was partitioned into the sets qt2i of squares

(a)

q q

T

D

q q

R

D

R

(b)

T

R

R

D

D
q q

q q

qq

R

FIG. 1. Polyakov loop setups for static (a) meson and (b) baryon correlators.
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extending from lattice time ð2i − 1Þ to lattice time ð2iÞ,
with the remaining squares constituting the set q̄t which is
again kept fixed at this second level in the hierarchy.
This partitioning again yields decompositions of the type
(3)–(5), given that for any i, the set of variables qt2i only
enters the product of inner averages

hW2i−1iqs
2i−1;δ

2i−1;S2i−1hW2iiqs
2i;δ

2i;S2i :

In this second level of averaging, therefore, one performs
updates associated with all elementary three-dimensional
lattice cubes except for the ones extending from even lattice
times 2i to the next higher odd lattice times 2iþ 1.
Finally, note that the autocorrelations between succes-

sive measurements can be practically rendered negligible
by updating the full configuration a significant number of
times before evaluating the next sample. This adds only a
small overhead to the total execution time, which is
dominated by the time required for the computation of
the time-slice averages, but exponentially reduced com-
pared to measuring the observable with the same accuracy
but without the error reduction method [61].

IV. MEASUREMENTS AND RESULTS

We measure static meson-meson and baryon-antibaryon
correlators on 163 × 4 lattices, which is still well in the
confinement phase; the deconfinement transition occurs
between inverse temperature T ¼ 2 and T ¼ 1 for both
Zð2Þ and Zð3Þ models with optimized curvature action
parameters [cf. Eq. (1)], namely, c ¼ 0.24 and c ¼ 0.21,
respectively [16,19]. The corresponding string tensions are
very similar, σa2 ¼ 0.755 in the Zð2Þ case [16] and σa2 ¼
0.766 for the Zð3Þ vortex model [21], implying a lattice
spacing of about a ¼ 0.39 fm in both cases if one sets
the zero-temperature string tension to σ ¼ ð440 MeVÞ2.
In practice, it turned out to be efficient to carry out the

innermost averaging in the error reduction method by
Lüscher and Weisz [61] described above using 8000
configurations; in the second-level averaging, 800 configu-
rations were used. For the outermost averaging, typically
200 configurations were enough to achieve a sufficient
level of accuracy. The correlator eventually becomes
sensitive to the double-precision machine accuracy at
− loghWðR; T ¼ 4ÞxWðR; T ¼ 4ÞxþDi=T ¼ 6, i.e., for
individual meson/baryon loops hWðR; T ¼ 4Þi ≈ 10−12.

A. Static meson-meson correlator in Zð2Þ
and Zð3Þ vortex background

We show the static meson-meson potential
− loghWðR; T ¼ 4ÞxWðR; T ¼ 4ÞxþDi=T for various quark
source separations R and distances D between two static
mesons in Fig. 3 for the Zð2Þ case and in Fig. 4 for the Zð3Þ
vortex model. The potential is, in fact, symmetric with
respect to R and D; the plots for constants R and D,
respectively, hence lie on top of each other.4 Once the
distance D between the two static mesons becomes smaller
than the quark source separation within the mesons, i.e., the
spatial meson loop extent R, we observe bond rearrange-
ment, i.e., the chromoelectric strings will always connect
quark sources such as to minimize their combined length.
The potential follows a direct area law as predicted by
vortex models; the bond rearrangement just means that the
correlator will always measure the minimal area of possible
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FIG. 2. (a) Zð2Þ static meson-meson Polyakov loop correlators − loghWðR; T ¼ 4ÞxWðR; T ¼ 4ÞxþDi=T for various distances R
between quark and antiquark and distances D between static mesons on 163 × 4 lattices [the Zð3Þ results look, apart from the slightly
different string tension, the same]. (b) The expectation values of the static meson-meson correlator are given by the minimal area of
possible Polyakov loop combinations and display bond rearrangement between the quarks if D < R; compare to Fig. 1(a).

4It should be noted that this R −D symmetry is manifest in the
multiple Polyakov loop correlators which are being evaluated in
the present specific calculational setup; on the other hand, for
general Wilson loop correlators which do not extend over the entire
temporal extent of the lattice, one would presumably have to take
care to allow for sufficiently long Euclidean time evolution in order
to render switching on-and-off effects, which break the symmetry,
negligible, and thus recover the R −D symmetry.
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FIG. 3. Zð2Þ static meson-meson potentials (Polyakov loop correlators) − loghWðR; T ¼ 4ÞxWðR; T ¼ 4ÞxþDi=T for various
distances R between quark and antiquark and distances D between static mesons on 163 × 4 lattices. Range of extracted lattice
data is limited by machine precision.
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FIG. 4. Zð3Þ static meson-meson potentials (Polyakov loop correlators) − loghWðR; T ¼ 4ÞxWðR; T ¼ 4ÞxþDi=T for various
distances R between quark and antiquark and distances D between static mesons on 163 × 4 lattices. Range of extracted lattice
data is limited by machine precision.
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FIG. 5. Zð3Þ static baryon-antibaryon potentials (Polyakov loop correlators) − loghWðR; T ¼ 4ÞxWðR; T ¼ 4ÞxþDi=T for various
distances R between quark sources within the static baryons and distances D between static baryon and antibaryon on 163 × 4 lattices,
compared with minimal area law predictions in cyan (short dashed lines) for constant D data (green dashed lines) and in magenta
(dashed lines) for constant R data (red solid lines). The plateau ratios 4Rσ∶3Dσ can be understood from the Polyakov loop setup shown
in Fig. 6(b); it is simply the area ratio of the Polyakov loop correlators in the R vs D direction. For constantD plots (green dashed line),
the data drop from the 3Dσ plateau to 2Dσ at R ¼ 8 since, in this case, one is left with a static meson-meson correlator because the two
outer quarks (antiquarks) of the initial static baryon (antibaryon) recombine to an antiquark (quark) source. The R ¼ 8 (red solid) line in
the bottom right plot (h) corresponds to the static meson-meson correlator in Fig. 4(h). Range of extracted lattice data is limited by
machine precision.
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Polyakov loop combinations, and its values can easily be
reproduced by the form 2Rσ or 2Dσ, respectively, indicated
by blue (dashed) and cyan (short dashed) lines using the
corresponding string tensions from above. As the two string
tensions are almost the same, also Zð2Þ and Zð3Þ results are
likewise, and we only show the Zð2Þ correlator as a 3D plot
in Fig. 2(a) vs R andD, reflecting the R −D symmetry, and
the bond rearrangement, i.e., minimal area behavior. As
long as machine precision is sufficient, i.e., up to distances
R ¼ 4 orD ¼ 4, the potentials nicely follow the cyan (short
dashed) and blue (dashed) predictions of minimal area: the
potential first scales linearly with quark (meson) separation
and stays constant once the active bonds are not extended
anymore. At bond rearrangement regions where R ≈D the
data show small deviations which are most likely caused by
mixed states. At small separations [cf. Figs. 3(a), 3(b), 4(a),
and 4(b)], the potentials are still affected by short-distance
modifications to the asymptotic linear behavior, and thus
they lie slightly above the constant blue (dashed) line.
Defining the potential energy VðRÞ to asymptotically go

to zero, i.e., VðRÞ ¼ EðRÞ − Eð∞Þ, we have to shift our
potentials by their asymptotic values 2Rσ, i.e., the two
mesonic areas, in order to compare our results with SUð2Þ
and SUð3Þ lattice studies [62,63]. Taking into account the
fixed lattice spacing a ¼ 0.39 fm of the vortex models and
the fact that center vortices do not reproduce Coulomb
effects, the potentials are reproducing QCD results includ-
ing the bond rearrangement behavior [64]; compare, for
example, Figs. 4(b) and 1(b) in [63].

B. Static baryon-antibaryon correlator
in Zð3Þ vortex background

In Figs. 5 and 6(a) we present 2D and 3D plots of static
baryon-antibaryon potentials in the Zð3Þ vortex model
with respect to quark source separations R and baryon

distances D. There is no more R −D symmetry, which
becomes clear in Fig. 6(b), when after bond rearrangement
we do not correlate a static baryon and antibaryon anymore,
but rather three static mesons. Hence, we have four mesonic
loops making up the static baryon and antibaryon vs three
static meson loops, and as the same minimal area law
behavior as above applies, the plateau ratios 4Rσ∶3Dσ in
Fig. 5 can easily be understood. A nice detail is observed for
static baryons with R ¼ 8 on our lattices with spatial lattice
extent 16: In this case, the outer sources in the baryon and in
the antibaryon, respectively, share the same spatial position
and couple (3 ⊗ 3 → 3̄, 3̄ ⊗ 3̄ → 3), leaving a static meson-
meson correlator, as is evident from the constant D data
(green lines, dashed) which drop atR ¼ 8 from 3Dσ to 2Dσ.
Thus, the potentials again follow nicely the minimal area
predictions; however, the signal becomes limited owing to
machine precision limitations for R, respectively, D > 2.
Nevertheless, the potential energy redefined to asymptoti-
cally go to zero, i.e., shifted by the asymptotic value 4Rσ
(two baryonic areas), is again in good agreement with SUð3Þ
lattice studies [65], keeping in mind the fact that center
vortices do not reproduce a Coulomb potential and short
distance effects cannot be studied within the vortex models at
fixed lattice spacing a ¼ 0.39 fm.

V. CONCLUSIONS

Complementing earlier results within random center
vortex world-surface models, which successfully describe
the confinement-deconfinement transition and reproduce
(spatial as well as temporal) string tensions, topological
susceptibility and the (quenched) chiral condensate, we
analyze static meson-meson and baryon-antibaryon poten-
tials in Zð2Þ and Zð3Þ center vortex backgrounds. To this
end, we calculate multiple Polyakov loop correlators corre-
sponding to static meson-meson and baryon-antibaryon
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FIG. 6. (a) Zð3Þ static baryon-antibaryon potentials (Polyakov loop correlators) − loghWðR; TÞxWðR; TÞxþDi=T for various distances
R, with T ¼ 4, between quarks (or antiquarks), and distances D between static baryon and antibaryon on 163 × 4 lattices. (b) Polyakov
loop setup reflects the plateau ratios 4Rσ∶3Dσ in Fig. 5, i.e., 4 meson loops in R direction vs 3 inD direction, meaning that, if 3D < 4R,
bond rearrangement between the quark sources changes the static baryon-antibaryon into three static mesons.
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configurations in a hypercubic lattice model of random
vortex world surfaces, an effective model for the infrared
sector of Yang-Mills theory. An analysis of this type, namely,
of the area law associated with pairs of flat Wilson loops in a
center vortex background, similar to the analysis of multiple
Polyakov loop correlators performed here, had also been
suggested previously in [60].
We find that the expectation values of the static meson-

meson and baryon-antibaryon correlators follow a minimal
area law. Bond rearrangement results when the mesons,
respectively, the baryon and antibaryon become too close to
one another; i.e., it becomes energetically favorable to
recombine the quark sources to two, respectively, three
complementary static meson pairs. No evidence of long-
distance tails in the potentials, i.e., van der Waals type
forces, is found as the bonded clusters are separated; the
confining bonds in the clusters thus appear to be truly
saturating. Cluster separation occurs already at finite
distances, not only in an asymptotic sense. These properties
are expected for the confining dynamics governing quarks
in the strong interaction [64], and our results are in good
agreement with SUð2Þ and SUð3Þ lattice studies [62,63,65]
at long distances, keeping in mind the fact that center
vortices do not reproduce a Coulomb potential, and short
distance effects cannot be studied within the vortex models
at fixed lattice spacing a ¼ 0.39 fm. It should be empha-
sized that there is no conclusive a priori argument in
favor of the (plausible) conjecture that the random vortex

world-surface model exhibits this behavior, i.e., that it
generates a strict minimal area law at finite separations as
described above. Thus, our study constitutes a nontrivial
test of the random vortex world-surface model, investigat-
ing aspects of the confining dynamics of the model which
had not been previously probed. The model indeed repro-
duces the confinement characteristics expected within the
strong interaction.
Work is in progress to investigate static meson-meson

correlators in random center vortex models using quadratic
and circular Wilson (not Polyakov) loop correlators,
focusing on the minimal area law [66]. Motivated by the
minimal surface of revolution problem, we aim to analyze
possible signs of catenary solutions.
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