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It was recently derived that the QCD running coupling is a function of the magnetic field strength under
the strong magnetic field approximation. Inspired by this progress and based on the self-consistent
solutions of gap equations, the properties of two-flavor and three-flavor quark matter are studied in the
framework of the Nambu–Jona-Lasinio model with a magnetic-field-dependent running coupling. We find
that the dynamical quark masses as functions of the magnetic field strength are not monotonous in the fully
chirally broken phase. Furthermore, the stability of magnetized quark matter with the running coupling is
enhanced by lowering the free energy per baryon, which is expected to be more stable than that of the
conventional constant coupling case. It is concluded that the magnetized strange quark matter described by
running coupling can be absolutely stable.
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I. INTRODUCTION

The properties of strongly interacting quark matter under
a strong magnetic field have attracted much attention in the
last decade [1]. The structure of dense matter and the
behavior of the interaction coupling constant will provide a
new clue to the comprehensive understanding of QCD
theory under extreme conditions [2]. It has been proposed
theoretically and experimentally that a strong magnetic
field could be present in the core of neutron stars and in the
noncentral collision experiments in the Relativistic Heavy
Ion Collider or the Large Hadron Collider [3]. The typical
strength of the strong magnetic fields could be of the order
of 1012 gauss on the surface of pulsars. Some magnetars
can have even larger magnetic fields as high as 1016 gauss
[4]. By comparing the magnetic and gravitational energies,
the physical upper limit to the total neutron star is of order
1018 gauss. And for the self-bound quark stars, the limit
could go higher [5]. The maximum strengths of 1018 ∼
1020 gauss in the interior of stars are proposed by an
application of the viral theorem [3,6]. At the LHC/CERN
energy, it is estimated to produce a field as large as 5 ×
1019 gauss [3,7]. It is thus reasonable to assume a uniform
and constant magnetic field to mimic the environment of
the chiral phase transition in heavy-ion collisions [8–11].
The important effects on the quark matter led by the strong
magnetic field mainly include the following two aspects.
First, the strong magnetic field produces the magnetic
catalysis on the chiral phase transition at finite temperature.
Second, the charged fermions ruled by the Landau level
will display an anisotropic structure with respect to the

direction of the magnetic field. In fact, the behavior of
quark matter is mainly related to the quark condensate
subject to the strong magnetic field [11]. Consequently, the
interaction potential and the QCD ground state will be
affected by the magnetic field [12,13].
As is well known, the running behavior of the QCD

coupling with densities reflects the essential properties of
strongly interacting matter, which can be shown by solving
the renormalization group (RG) equation. In a strong
magnetic field, the RG equation and the polarization tensor
will change due to the fact that charged particles in a
magnetic field obey the Pauli exclusion rule and the Landau
energy level arrangement [14,15]. Therefore, the magnetic-
field-dependent coupling has been proposed and verified
recently [11,14,16]. Until now, the effect of the magnetic-
field dependence has been studied by several versions of
the analytic parametrization formula αsðeBÞ [11,14,17].
The investigation of the effect of the magnetic field on the
coupling constant can be summarized by two trends. One is
to present an analytic function of the running behavior at
ultra-strong magnetic field. The theoretical derivation of the
magnetic-field-dependent running coupling and the effec-
tive fermion mass in the propagator can be obtained by the
Schwinger-Dyson equation in the one-loop approximation.
The other is to fit the general parametrization relation
between the coupling constant and the magnetic field in
order to reproduce the critical temperature of the chiral
symmetry breaking from lattice QCD, since there is no
direct result of the running constant as a function of the
magnetic field.
In the literature, the Nambu–Jona-Lasinio (NJL) model

has been widely employed in the study of the stability
properties of strange quark matter (SQM) without a
magnetic field [18–20]. Recently, the NJL model has been
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extended to the case of a strong magnetic field and many
special properties due to the magnetic field, for example,
the (inverse) magnetic catalysis effect [21]. It is certainly
expected that the stability of SQM is also strongly affected by
themagnetic field through the coupling constant. In previous
work using the NJL model, it was shown that a spherical
droplet of color-flavor locked (CFL) quarkmatter has a larger
gap energy when the coupling constant increases. A larger
gap energy will lead to lower free energy. Therefore, it is
possible to find absolutely stable CFL strangelets for a
coupling constant G larger than some critical value [22].
However, themagnetic fieldwill rule out the constraint on the
coupling constant [23]. Namely, a droplet of magnetized
quarkmattermay exist for any value ofG. In the quasiparticle
model, we also roughly found that for a proper value the
magnetic field can enhance the stability of the quark matter
[24]. In the present paper, we analyze the dynamical masses
and the stability of quark matter with the field-dependent
running coupling in the NJL model.
The paper is organized as follows. In Sec. II, we present

the thermodynamics of the NJL model under a strong
magnetic field. The thermodynamical treatments in both
SU(2) and SU(3) versions are shown in the two subsec-
tions, respectively. In Sec. III, the numerical results for the
two-flavor and three-flavor quark matter in β equilibrium
are presented, and the discussions are focused on the
stability properties and the thermodynamical effect of
the magnetic-field-dependent running coupling. The last
section is a short summary.

II. THERMODYNAMICS AND STABILITY OF
MAGNETIZED QUARK MATTER

The dynamics of QCD matter are affected by strong
magnetic fields, especially with a magnitude of eB ∼
15m2

πð∼1019 gaussÞ that can be produced in noncentral
relativistic heavy-ion collisions. In this paper, we mimic the
environment by assuming a uniform magnetic field in the z
direction, i.e., Aμ ¼ δμ2x1B. First, we focus on the two-
flavor quark matter in the SU(2) NJL model. Then we
continue to study SQM in the SU(3) model.

A. SU(2) NJL model in a strong magnetic field

In the SU(2) version of the NJL model in a strong
magnetic field, the Lagrangian density reads

LNJL ¼ ψ̄ðiD −mÞψ þ G½ðψ̄ψÞ2 þ ðψ̄ iγ5~τψÞ2�; ð1Þ
where ψ represents a flavor isodoublet (u and d quarks).
The coupling of the quarks to the electromagnetic field is
introduced by the covariant derivative Dμ ¼ ∂μ − iqfAμ.
Since the model is not renormalizable at zero temperature,
we should introduce a cutoff Λ in the 3-momentum space as
in the usual way that has been modified by a density-
dependent momentum cutoff [20]. Considering the general

graphics of the dynamical fermion mass generation in the
Hartree (mean-field) approximation [25], the dynamical
quark mass entering the thermodynamic potential at finite
chemical potential with a strong magnetic field is related to
the condensation term as

Mi ¼ mi − 2Ghψ̄ψi; ð2Þ

where the condensation is hψ̄ψi ¼ P
i¼u;dϕi for the two-

flavor case. The constituentmass of flavor i depends on both
condensates. Therefore, we can always get the same mass
Mu ¼ Md ¼ M, even for different charges and chemical
potentials. The contribution from the quark flavor i is

ϕi ¼ ϕvac
i þ ϕmag

i þ ϕmed
i : ð3Þ

The terms ϕvac
i , ϕmag

i , and ϕmed
i representing the vacuum,

magnetic field, and medium contribution to the quark
condensation are, respectively [10],

ϕvac
i ¼−

MNc

2π2

�
Λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2þM2

p
−M2 ln

�
Λþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2þM2

p

M

��
;

ð4Þ

ϕmag
i ¼ −

MjqijBNc

2π2

�
ln½ΓðxiÞ� −

1

2
lnð2πÞ þ xi

−
1

2
ð2xi − 1Þ lnðxiÞ

�
; ð5Þ

ϕmed
i ¼

Xki;max

ki¼0

aki
MjqijBNc

2π2
ln

�
μi þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2i − s2i

p
si

�
: ð6Þ

The effective quantity si ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ 2kijqijB

p
sensitively

depends on the magnetic field. The dimensionless quantity
is xi ¼ M2=ð2jqijBÞ. The degeneracy label of the Landau
energy level is aki ¼ 2 − δk0. The quark condensation is
greatly strengthened by the factor jqiBj together with the
dimension reduction D − 2 [14,26]. The Landau quantum
number ki and its maximum ki;max are defined as

ki ≤ ki;max ¼ Int

�
μ2i −M2

2jqijB
�
; ð7Þ

where “Int” means the number before the decimal point.
The total thermodynamic potential density in the mean-

field approximation is

Ω ¼ ðM −m0Þ2
4G

þ
X
i¼u;d

ðΩvac
i þΩmag

i þ Ωmed
i Þ; ð8Þ

where the first term in the summation is the vacuum
contribution to the thermodynamic potential, i.e.,
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Ωvac
i ¼ Nc

8π2

�
M4 ln

�
Λþ ϵΛ
M

�
−ϵΛΛðΛ2þ ϵ2ΛÞ

�
; ð9Þ

where the quantity ϵΛ is defined as ϵΛ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2 þM2

p
. The

ultraviolet divergence in the vacuum part of the thermo-
dynamic potential Ω is removed by the momentum cutoff.
In the literature, a form factor is introduced in the diverging
zero energy as a smooth regularization procedure [27]. The
magnetic field and medium contributions are, respectively,

Ωmag
i ¼−

NcðjqijBÞ2
2π2

�
ζ0ð−1;xiÞ−

1

2
ðx2i −xiÞ lnðxiÞþ

x2i
4

�
;

ð10Þ

Ωmed
i ¼−

jqijBNc

4π2
Xkmax

k¼0

aki

�
μi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2i −ðM2þ2kijqijBÞ

q

−ðM2þ2kijqijBÞln
�
μiþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2i −ðM2þ2kijqijBÞ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2þ2kijqijB

p
��

;

ð11Þ

where ζða; xÞ ¼ P∞
n¼0

1
ðaþnÞx is the Hurwitz zeta function.

From the thermodynamic potential (25), one can easily
obtain the quark density as

niðμ; BÞ ¼
Xki;max

k¼0

aki
jqijBNc

2π2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2i − ðM2 þ 2kijqijBÞ

q
: ð12Þ

The relevant pressure from the flavor i contribution is

Piðμi; BÞ ¼ −Ωi ¼ −ðΩvac
i þΩmag

i þ Ωmed
i Þ: ð13Þ

Under strong magnetic fields, the system’s total pressure
should be a sum of the matter pressure and the field
pressure contributions [10,28]. So we have

Piðμi; BÞ ¼ −Ωi þ
B2

2
; ð14Þ

where the magnetic field term B2=2 is due to the electro-
magnetic Maxwell contribution. It is well known to us that
the energy density and pressure should vanish invacuum. So
the pressure and the thermodynamic potential should be
normalized by requiring zero pressure at zero density as [10]

Peff
i ðμi; BÞ ¼ Piðμi; BÞ − Pið0; BÞ: ð15Þ

In the normalization result, the field term is automatically
absent. According to the fundamental thermodynamic
relation, the free energy density at zero temperature is

εi ¼ −Peff
i þ μini: ð16Þ

For asymmetric quark matter we should impose the β
equilibrium by including the electron contribution under
strong magnetic fields. The electron chemical potential is
not independent an variable and can be expressed by the
quark chemical potentials as μe ¼ μd − μu. According to
the similar normalization procedure in Eq. (15), it is
required that Pe;eff ¼ Peðμe; BÞ − Peðμe; 0Þ. So the pres-
sure of electrons can be simplified as Peff

e ¼ −Ωmed
e by

settingNc ¼ 1 andM ¼ me in Eq. (11). The corresponding
number density and the energy density are

neðμe; BÞ ¼
Xke;max

k¼0

aki
jeBj
2π2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2e − ðm2

e þ 2kjeBjÞ
q

; ð17Þ

εe ¼ −Peff
e þ μene: ð18Þ

For the stellar matter in β equilibrium, the charge neutrality
condition is

2nu − nd − 3ne ¼ 0: ð19Þ
The system pressure and energy density are written as

P ¼
X
i

Peff
i ; ε ¼

X
i

εi; ð20Þ

where the summation goes over u, d quarks and electrons.
The interaction coupling constant between quarks should

in principle be solved by the RG equation, or it can be
phenomenologically expressed in an effective potential
[29–31]. In the infrared region at low energy, the dynamical
gluon mass represents the confinement feature of QCD
[32]. Furthermore, in the presence of a strong magnetic
field, the gluon mass becomes large together with a
decreasing of the interaction constant, which leads to the
damping of chiral condensation. For sufficiently strong
magnetic fields eB ≫ Λ2

QCD, the coupling constant αs is
proposed to be related to the magnetic field as [11,14]

αsðeBÞ ¼
12π

ð11Nc − 2NfÞ lnðjeBj=Λ2
QCDÞ

: ð21Þ

Motivated by the work of Miransky and Shovkovy [14], a
similar ansatz of the magnetic-field-dependent coupling
constant was introduced in the SU(2) NJL [17] and SU(3)
NJL models [11]. In the two-flavor version of the NJL
model, based on the lattice simulations, an interpolating
formula was proposed as [17]

G0ðeBÞ ¼ G
1þ α lnð1þ βjeBj=Λ2

QCDÞ
; ð22Þ

where the energy scale is ΛQCD ¼ 200 MeV. The param-
eters α ¼ 2 and β ¼ 0.000327 are from the fit of the lattice
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result for quarks condensates [17]. We can find that the
running coupling constant versus the field B gradually
approaches the constant value G0ðB → 0Þ ∼ G.

B. Magnetized strange quark matter in the
SU(3) NJL model

The SU(3) NJL Lagrangian density includes both a
scalar-pseudoscalar interaction and the ’t Hooft six-fermion
interaction [23] and can be written as [33]

LNJL ¼ ψ̄ðiD−mÞψþG
X8
a¼0

½ðψ̄λaψÞ2þðψ̄γ5λaψÞ2�

−Kfdetf½ψ̄ð1þ γ5Þψ �þdetf½ψ̄ð1− γ5Þψ �g: ð23Þ

The field ψ ¼ ðu; d; sÞT represents a quark field with three
flavors. Correspondingly, m ¼ diagðmu;md;msÞ is the
current mass matrix with mu ¼ md ≠ ms. λ0 ¼

ffiffiffiffiffiffiffiffi
2=3

p
I,

where I is the unit matrix in the three-flavor space. λa with
0 < a ≤ 8 denotes the Gell-Mann matrix. Compared with
the two-flavor case, the gap equations for the three-flavor
case are coupled and should be solved consistently,

Mi −mi þ 4Gϕi − 2Kϕjϕk ¼ 0; ð24Þ

where ði; j; kÞ is the permutation of ðu; d; sÞ. The quark
condensates are the same as in Eq. (3).
The total thermodynamic potential density in the mean-

field approximation reads

Ω ¼ 2G
X

i¼u;d;s

ϕ2
i − 4Kϕuϕdϕs

þ
X

i¼u;d;s

ðΩvac
i þΩmag

i þΩmed
i Þ: ð25Þ

The corresponding calculations of the normalized pressure
and energy density are similar to the SU(2) model.
The simple ansatz of the running coupling is probably

suitable for the SU(3) NJL model if we include the s
quarks [11],

G0ðeBÞ ¼ G
lnðeþ jeBj=Λ2

QCDÞ
; ð26Þ

where the parameter ΛQCD ¼ 300 MeV, which is different
from the value in Eq. (22).

III. NUMERICAL RESULT AND DISCUSSION

A. Symmetric and asymmetric SU(2) quark matter

In the computation of this subsection, we consider the
following set of parameters for the SU(2) NJL model [34]:
Λ ¼ 587.9 MeV, Nc ¼ 3, mu ¼ md ¼ 5.6 MeV, and
G ¼ 2.44=Λ2. The corresponding electric charges are
jqdj ¼ jqsj ¼ 1=3 ¼ jquj=2 in units of the elementary

charge. First, we investigate the symmetric quark matter
with a common chemical potential μ and common dynami-
cal quark mass Mðμ; eBÞ and do the calculation under the
coupling constant G and the magnetic-field-dependent
running coupling G0ðeBÞ in Eq. (22). The dynamical quark
mass can be determined by the gap equation (2). It should
be noticed that the gap equation has more than one solution,
with the physical being the one that minimizes the
thermodynamic potential. The zero chemical potential case
is the fully chirally broken phase. In Fig. 1, we show the
dynamical quark mass Mð0; eBÞ as a function of magnetic
field strength B. The solid curve is for the fixed coupling
constant G. An increase of the magnetic field leads to an
enhancement of the quark mass, which reflects the so-
called magnetic catalysis. The dashed curve is for the case
of the running coupling G0ðeBÞ. It shows the distinct
behavior of the effective mass versus the magnetic field.
In particular, by comparing the case of the coupling constant
it is clear that the running coupling constant G0ðeBÞ
produces an inverse behavior of the dynamical mass in
the magnetic field range of 1017 ∼ 1019 gauss. In the chiral-
symmetry-broken phase, the quark effective mass will feel
the influence of the magnetic field through the correction to
the quark propagator. The numerical result in Fig. 1 shows
that the characteristic becomes more apparent for the
magnetic field B ¼ 1019 gauss, where the running coupling
sensitively depends on the magnetic field. But for smaller
values of the magnetic field, the two curves will gradually
move closer to each other due to the asymptotic behavior of
the running coupling constant G0ðeB → 0Þ ∼G, where the
coupling nearly remains invariant.
For the massive phase with nonzero chemical potential at

the magnetic field B ¼ 2 × 1019 gauss, we can solve the
gap equation and calculate the dynamical quark mass

FIG. 1. Dynamical quark mass of SU(2) quark matter in the
fully chirally broken phase as a function of B for the fixed
coupling constant G and the running coupling G0ðeBÞ.
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Mðμ; eBÞ, which is dependent on both the chemical
potential and the given magnetic field. In Fig. 2, it is
shown that the dynamical quark mass will decrease as the
chemical potential increases. The quark mass under the
running coupling G0ðeBÞ is lower than that of the fixed
coupling constant G case, which is more clear in the small
chemical potential region. It shows that the correction of the
running coupling constant becomes very important near the
infrared region. Correspondingly, the free energy per
baryon versus the baryon number density is shown in
Fig. 3. The free energy with the running couplingG0ðeBÞ is
marked by the dashed curve, which is lower than that of the
fixed coupling case marked by the solid curve. The value of
the minimum of the free energy per baryon on both curves
is much bigger than the average energy value 930 MeV for
56Fe. So it demonstrates that the two-flavor quark matter is

less stable than nuclear matter [35], which is in agreement
with the Witten-Bodmer hypothesis [36].
Now we study the isospin-symmetric quark matter by

setting the common chemical potential for u and d quarks.
The isospin symmetry can be broken under a strong
magnetic field because of the charge splitting for different
flavors. We suppose that the quark matter reaches the β
equilibrium condition. So the chemical potentials satisfy
μu þ μe ¼ μd. The dynamic masses and the two indepen-
dent chemical potentials ðμu; μdÞ can be self-consistently
solved by three equations: the gap equation (2), the baryon
number conservation, and the charge neutrality condition
(19). In Fig. 4 the asymmetric chemical potentials are
shown at the magnetic field B ¼ 2 × 1019 gauss. The
appearance of the inflection points on the curves is due
to the contribution of the Landau level. The d quark
chemical potential μd is always much bigger than that of
the u quark. In fact, it is naturally required that the number
of d quarks is larger than the number of u quarks in order to
reach global electrical neutrality together with the small
amount of leptons. On the other hand, it is understood that
the Landau level of the d quark could be more than the u
quark level.
In Fig. 5, the free energy per baryon versus the baryon

number density is shown for different magnetic fields. The
minimum of the free energy per baryon is in the zero-
pressure state. From top to bottom, the magnetic fields of
the three curves are, respectively, B ¼ 1 × 1018, 8 × 1018,
and 2 × 1019 gauss. It is known that the degeneracy factor
of the quark condensation is proportional to the magnetic
field, so there will be more quarks accommodated in the
lowest Landau level for a larger magnetic field. This is the
reason why the quark matter will have lower free energy at
a stronger magnetic field. A larger magnetic field will
enhance the stability of quark matter by lowering the free
energy per baryon. Furthermore, we can find that the free

FIG. 2. Dynamical quark mass in the massive phase as a
monotonous decreasing function of the chemical potential for the
couplings G and G0ðeBÞ.

FIG. 4. The quark chemical potential versus the baryon number
density for the asymmetric quark matter at B ¼ 2 × 1019 gauss.

FIG. 3. The free energy per baryon of the symmetric quark
matter versus the baryon number density for the same parameter
sets as Fig. 2.
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energy at the running coupling G0ðeBÞ (marked by red
curves) is all lower than that of the coupling constant G at
the same field B.

B. Numerical results of the SU(3) NJL model

It is necessary to extend the study of the stability of
magnetized quark matter to the SU(3) case. For the SU(3)
NJL model, we adopt the parameters Λ ¼ 602.3 MeV,
mu ¼ md ¼ 5.5 MeV, ms ¼ 140.7 MeV, G ¼ 1.835=Λ2,
and K ¼ 12.36=Λ5 [37]. We assume that the three-flavor
quark matter is in β equilibrium. Now there are three
dynamical masses and two independent chemical poten-
tials, which can be determined by the three gap equa-
tions (24), the baryon number conservation, and the neutral
charge condition,

2nu − nd − ns − 3ne ¼ 0: ð27Þ

In the fully chirally broken phase at zero chemical
potential, the dynamical quark masses only depend on
the magnetic field. In Fig. 6, we show the dynamical quark
masses of three flavors as functions of the magnetic field.
The dashed, dotted, and solid curves are, respectively,
for the u, d, and s quarks. The corresponding red ones
represent the quark masses at the running coupling G0ðeBÞ
in Eq. (26). As in the SU(2) case, the running coupling
produces different behavior for the dynamical masses for
all three flavors.
We can solve the dynamical masses Miðμ; eBÞ at finite

chemical potential in Fig. 7. The dynamical masses of u
and d quarks apparently decrease as the density increases.
At the coupling constant G ¼ 2 × 1019 gauss, Ms almost
remains a constant of 466 MeV or so. Consequently, the
strange quarks have no real distribution in its Landau level

in the system. On the contrary, the running couplingG0ðeBÞ
will lead to smaller dynamical masses (marked by red
curves). The strange quark mass Ms decreases slightly as
the density increases, and thus the lowest Landau level
of the strange quark can appear at least. In Fig. 8, we
compare the free energy per baryon under different cou-
pling cases at the same magnetic field B ¼ 2 × 1019 gauss.
The upper solid curve is for the coupling constantG and the
lower dashed curve is for the running coupling G0ðeBÞ.

FIG. 6. Dynamical quark masses in the three-flavor quark
matter as functions of B in the fully chirally broken phase.
The solid, dashed, and dotted curves from top to bottom denote
the masses Ms, Mu, and Md, respectively. The red curves are
for the running coupling case.

FIG. 7. Dynamical quark masses in the three-flavor quark
matter as functions of the baryon number density at the magnetic
field B ¼ 2 × 1019 gauss. The curves from top to bottom denote
Ms Mu, and Md, respectively. The red curves are for the running
coupling case.

FIG. 5. The free energy per baryon of the asymmetry two-flavor
quark matter versus the baryon number density at the three
different magnetic field values. The three red curves are for the
running coupling G0ðeBÞ.
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Therefore, it is possible that the strange quark matter with a
running coupling in a proper magnetic field could be
absolutely stable.

IV. SUMMARY

We have studied the magnetized quark matter in the NJL
model with a magnetic-field-dependent running coupling to
reflect the magnetic field effect on the QCD vacuum
structure and the interaction potential between quarks.
The effect becomes more important in the infrared region.
We studied the thermodynamic properties of both the two-
flavor and three-flavor quark matter in β equilibrium under
a strong magnetic field.
In the NJL model, a magnetic field changes the quark

dynamical mass by modifying the quark condensation in
the gap equations. In the computation, we solved the gap
equations for the fixed coupling G and the magnetic-field-
dependent running coupling G0ðeBÞ, respectively. First, in

the fully chirally broken phase, we found that the dynami-
cal quark mass as only a function of the magnetic field is
not monotonous, contrary to the previous result for the
conventional fixed coupling constant. Furthermore, for
two-flavor quark matter in a larger magnetic field (about
1019 gauss), the running coupling G0ðeBÞ leads to a sharp
drop of the dynamical mass as the magnetic field increases,
and a similar behavior appears for three-flavor quark matter
for a higher magnetic field than that of the two-flavor case.
Due to the reduction of the dynamical mass, the strange
quarks have a real distribution in the lowest Landau energy
level at least. Second, we found that the free energy per
baryon of the symmetric quark matter is smaller than that of
the asymmetric case, and it will decrease as the magnetic
field strength increases. Furthermore, we found that the
stability of the magnetized quark matter in β equilibrium
can be enhanced under the running coupling by lowering
the free energy. So the magnetized SQM could be abso-
lutely stable with the running coupling. In fact, the
comprehensive understanding of the QCD running cou-
pling is meaningful together with the one-loop vacuum and
quark-gluon vertex correction in the presence of a strong
magnetic field [38], which will greatly affect the chiral
phase transition and the stability properties of quark matter
in a strong magnetic field. The strong magnetic field will
inevitably lead to the anisotropic magnetization and pres-
sure with respect to the direction of the field [39,40]. It is
expected that the field-dependent coupling would play a
role in the anisotropic structure and phase transition, which
will be studied in the future.
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