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In the framework of weakly coupled potential nonrelativistic QCD, we derive, first, an analytical
expression for the chromopolarizability of 1S bottomonium states in agreement with previous determi-
nations. Then we use the QCD trace anomaly to obtain the two-pion production amplitude for the
chromopolarizability operator and match the result to a chiral effective field theory with 1S bottomonium
states and pions as degrees of freedom. In this chiral effective field theory we compute some long-range
properties of the 1S bottomonium generated by the pion coupling such as the leading chiral logarithm to the
1S bottomonium mass and the van der Waals potential between two 1S bottomonium states. Both results
improve on previously known expressions.
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I. INTRODUCTION

The new multiquark XYZ hadrons that have been
continuously discovered since the beginning of the last
decade [1] are the subject of intense study in the literature.
They contain a charm quark-antiquark pair, appear near
open charm meson thresholds and do not fit with early
quark model expectations. Among the various models
proposed for the spatial arrangement of the multiquark
structure of some of the new hadrons, particularly interest-
ing are those in which the charm quark-antiquark pair
remains tightly bound while interacting with the light
quarks via multigluon exchanges. The hadrocharmonium
of Ref. [2] is a prominent example of such a model.
The multigluon interaction is a QCD analogue of the van
der Waals force of atomic physics. In this respect, it is
significant that the LHCb Collaboration at CERN reported
recently [3] the observation of J=ψ-proton resonances in
Λ0
b → J=ψK−p decays with properties consistent with

pentaquark states of three light quarks and a charm
quark-antiquark pair. One conjectured possibility for the
structure of the resonances, labeled Pþ

c ð4380Þ and
Pþ
c ð4450Þ by the collaboration, is that of weakly bound

molecular states of a baryon and a meson. The latter

possibility includes a molecule formed by a light-quark
baryon and a charmonium interacting via multigluon
exchanges. In fact, some years ago Brodsky, Schmidt
and de Teramond pointed out that quarkonium states like
J=ψ and ηc could form bound states with atomic nuclei due
to color van der Waals forces [4]. A recent lattice QCD
calculation by the NPLQCD Collaboration confirms this
expectation, finding binding energies of charmonia to
light nuclei of the order of a few tens of MeV [5]. By
extrapolating their results to physical light-quark masses,
the collaboration finds that the binding energy of charmo-
nium to nuclear matter is of the order of 40 MeVor smaller,
in fair agreement with recent model calculations [6–9].
A color van der Waals force arises in hadron-hadron

interactions due to the chromopolarizability of the color-
neutral hadrons, similar to the well-known electric polar-
izability in atomic physics. Contrary to the situation in
QED, not much is presently known about color van der
Waals forces; one reason is that they are a long-wavelength
feature of QCD and therefore of nonperturbative nature,
which makes it difficult to assess them from first principles.
The potential relevance of color van der Waals forces for
the study of the new hadrons demands a better under-
standing of their properties within QCD. Like in many
other instances, it is desirable to employ a theoretical
framework built on controllable approximations that can be
systematically improved. The present paper is a first
quantitative attempt in this direction, namely to use the
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framework of nonrelativistic effective field theories [10]
and chiral effective field theories [11,12] to study long-
range properties of the 1S bottomonium states.
S-wave quarkonium systems are color neutral and do

not possess permanent color-dipole moments or higher-
multipole moments. Nevertheless, these states can still
interact with gluonic fields through the so-called instanta-
neous dipole moments. These are created when the quar-
konium emits a gluon transitioning into a virtual color-octet
state followed by an emission of a second gluon and a
return to the original quarkonium state. One often refers to
this coupling as the polarizability of the system. The set of
the two instantaneous dipoles and the propagation of the
intermediate color-octet states forms the quarkonium
chromopolarizability.
We will assume that the 1S bottomonium states

are characterized by the hierarchy of scales mv ≫
mv2 ≫ ΛQCD, where m is the bottom quark mass and v
is the relative velocity of the heavy quarks. This assumption
stays at the basis of any description of quarkonium as a
Coulombic bound state [13–16]. In the last 20 years, a
Coulombic description of the 1S bottomonium states has
proved to be successful in describing with high accuracy
many observables, like electromagnetic, radiative and total
widths, hyperfine splittings, etc. It also provides one of the
most accurate extractions of the bottom mass. We refer to
the reviews [17–19] for a compilation of results and an
extended list of references.
We can define distinct effective field theories (EFTs) at

each scale; see Fig. 1. For energies at the soft (∼mv)
and ultrasoft (∼mv2) scales the appropriate EFTs are
nonrelativistic QCD (NRQCD) [20,21] and potential non-
relativistic QCD (pNRQCD) [22,23] respectively. One can
go one step further and integrate out the ultrasoft scale
leading to an EFT with 1S bottomonium states and gluons
as degrees of freedom at the energy scale of ΛQCD. We call
this EFT, describing color-neutral bottomonium interacting
with gluons, gluonic van der Waals EFT (gWEFT). The
chromopolarizabilities of the 1S bottomonium states are
defined in gWEFT and can be computed as matching
coefficients. An important element in the calculation of the
polarizability is the characterization of the intermediate

octet states and their corresponding wave functions. In
weakly coupled pNRQCD, the potential of the octet
Hamiltonian is a repulsive Coulomb potential, and there-
fore the octet eigenstates correspond to Coulombic con-
tinuum eigenstates.
In the long range, gluons are no longer perturbative and

hadronize into pions. Using the QCD trace anomaly we
hadronize the two-chromoelectric field polarizability cou-
pling and match the result into a chiral EFT made of 1S
bottomonium states and pions (χEFT). The chiral EFT is
defined at energies of the order of the pion mass mπ (see
Fig. 1). In this way we obtain the values of the low-energy
constants of the leading operators coupling pions and 1S
bottomonium states. These couplings can be used to study
the long-range properties of the 1S bottomonium states of
which we present two: the leading chiral logarithm of the
1S bottomonium mass, and the long-range van der Waals
potential between two 1S bottomonium states. The van der
Waals potential is defined in an EFT (WEFT) at the scale
set by the kinetic energy of the 1S bottomonium (see
Fig. 1). Matching χEFT to WEFT, the van der Waals
potential is obtained from the two-pion loop that carries the
long-range dependence of the two-1S bottomonium inter-
action. We give an explicit expression for the long-range
behavior of the van der Waals potential.
The paper is organized as follows. In Sec. II we review

briefly pNRQCD. In Sec. III we introduce gWEFT and
perform the matching calculation for the polarizability. In
Sec. IV we write down the χEFT and, using the QCD trace
anomaly, we calculate the low-energy constants associated
with the leading-order pion coupling. Using χEFT we
obtain the leading chiral logarithm contribution to the 1S
bottomonium mass in Sec. V. In Sec. VI we obtain the van
der Waals potential between two 1S bottomonium states
and, using a dispersive representation, we find an analytical
expression for the long-range potential in coordinate space.
Finally, we briefly conclude in Sec. VII.

II. pNRQCD

The explicit form of the pNRQCDLagrangian depends on
where the nonperturbative scale ΛQCD lies in relation to the
soft and ultrasoft scales. The weak-coupling regime of
pNRQCD occurs whenmv ≫ ΛQCD; in this case, integrating
out the degrees of freedom at the energy scale mv can be
done in perturbation theory. Furthermore, v can be identified
with αs. It is convenient to change the coordinates of the
fields from the positions of the heavy quark and antiquark to
the center-of-mass coordinate R and the relative coordinate r
of the heavyQQ̄ system, and decompose theQQ̄ field into a
color-singlet and a color-octet component. The gauge fields
do not depend on r, since the distance between the heavy
quarks is of the order of the soft scale, which has been
integrated out. This corresponds to a multipole expansion of
the gluon fields. In the present work, we will furthermore

FIG. 1. Hierarchy of scales and the corresponding effective
field theories;mπ is the pion mass and k is the momentum transfer
between two widely separated 1S bottomonia of mass mϕ

interacting through a van der Waals potential.
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assume that mα2s ≫ ΛQCD, in which case the physics at the
ultrasoft scale is perturbative.
The pNRQCD Lagrangian density in the weakly coupled

regime at leading order in 1=m and atOðrÞ in the multipole
expansion is [22,23]

LpNRQCD ¼
Z

d3rTr½S†ði∂0 − hsÞSþO†ðiD0 − hoÞO�

þ gVAðrÞTr½O†r · ESþ S†r · EO�
þ g
2
VBðrÞTr½O†r · EOþO†Or · E� þ Llight;

ð1Þ

where S and O are the quark-antiquark singlet and octet
fields respectively normalized with respect to color. The
Lagrangian Llight is the QCD Lagrangian in the Yang-Mills
and light-quark sectors. All the gauge fields in Eq. (1) are
evaluated in R and t, in particular Gμν ≡GμνðR; tÞ,
Ei ≡Gi0ðR; tÞ, and iD0O≡ i∂0O − g½A0ðR; tÞ; O�. The
singlet and octet Hamiltonians read (the relative and
center-of-mass kinetic energies are shown up to order 1=m)

hs ¼ −
∇2

r

m
−
∇2

R

4m
þ VsðrÞ; ho ¼ −

∇2
r

m
−
D2

R

4m
þ VoðrÞ:

ð2Þ

At leading order the potentials read (r ¼ jrj) VsðrÞ ¼
−CFαsð1=rÞ=r, VoðrÞ ¼ αsð1=rÞ=ð2NcrÞ, VAðrÞ ¼ 1,
and VBðrÞ ¼ 1, with Nc ¼ 3, CF ¼ ðN2

c − 1Þ=ð2NcÞ and,
for further use, TF ¼ 1=2.

III. gWEFT

In this section we integrate out the ultrasoft scale mα2s
and match pNRQCD to gWEFT, where gWEFT is an EFT
at the energy scale of ΛQCD ≪ mα2s [24]. At energies much
below mα2s, which is the scale of the binding energy, the
different singlet states are frozen and should be considered
as independent fields. The degrees of freedom of gWEFT
are then the singlet eigenstates and the gluonic fields
expressed in terms of the chromoelectric field E and
the chromomagnetic field B. In this work, we are only
interested in the 1S color-singlet eigenstates in the botto-
monium sector. These are the spin singlet, ηb, and the spin
triplet, ϒð1SÞ. Spin-dependent interactions are suppressed
by the bottom mass and are beyond the accuracy we are
aiming at, and therefore these two states can be taken as
degenerate and we will represent them both with a 0−þ
field ϕ.
In the one-ϕ sector, when going from QCD to gWEFT,

we integrate out the scalesm,mαs andmα2s , and thus one is
able to organize the gWEFT Lagrangian as a series in
the ratios mαs=m, mα2s=ðmαsÞ and ΛQCD=ðmα2s Þ. The
Lagrangian reads (see also Ref. [25])

LgWEFT ¼
Z

d3R

�
ϕ†ðt;RÞ

�
i∂0 − Eϕ þ

∇2
R

4m

þ 1

2
βg2E2

a þ � � �
�
ϕðt;RÞ

�
þ Llight: ð3Þ

The dots stand for higher-order operators. These can either
be relativistic kinetic corrections or other operators cou-
pling ϕ to gluons. For this latter kind, the next relevant
operator to appear is a coupling to chromomagnetic fields
proportional to B2

a, which can be shown to be α2s suppressed
with respect to the chromoelectric coupling in Eq. (3).
Since chromoelectric and -magnetic fields carry color
charge, linear terms in these fields are forbidden in Eq. (3).
The constant β can be termed, in analogy with the

electromagnetic properties of neutral systems, as the
chromoelectric polarizability. The matching computation
for β is sketched in Fig. 2. The expression for the polar-
izability reads [13–16]

β ¼ −
2V2

ATF

3Nc
hϕjr 1

Eϕ − ho
rjϕi; ð4Þ

where jϕi is a 1S Coulombic state. Note that, since gluons
carry color charge, the intermediate states on the left-hand
side of Fig. 2 must be color-octet states; this fact is made
explicit in the expression of the polarizability in Eq. (4) by
the presence of the octet Hamiltonian in the denominator.

A. Polarizability β

Octet states can be labeled by their energy and angular
momentum quantum numbers and obey

�
p2

m
þ Vo

�
jpllzi ¼

p2

m
jpllzi: ð5Þ

It is convenient to introduce an arbitrary unit vector p̂
and define a state

jpli≡ 4π

p

X
lz

jpllzihllzjp̂i; ð6Þ

where hllzjp̂i ¼ Ylz
l ðp̂Þ� is a spherical harmonic. A suitable

normalization of the states jpli is

FIG. 2. Matching of the pNRQCD diagram on the left-hand
side with the gWEFT diagram on the right-hand side. Single lines
stand for quark-antiquark singlet and double lines for quark-
antiquark octet propagators. The circle with the cross represents
the chromoelectric dipole vertex of the pNRQCD Lagrangian (1).
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X
l

Z
d3p
ð2πÞ3 hxjplihpljyi ¼ δ3ðx − yÞ: ð7Þ

By inserting a complete set of states jpli into Eq. (4) we get

β ¼ −
2V2

ATF

3Nc

X
l

Z
d3p
ð2πÞ3 jhϕjrjplij

2
1

Eϕ −
p2

m

: ð8Þ

Since ϕ is an S-wave state, the dipole coupling can only
project it into a l ¼ 1 state due to conservation of the
angular momentum. Then the only matrix element left to
compute is

hϕjrjp1i ¼
Z

d3rhϕjrirhrjp1i: ð9Þ

The 1S (Coulombic) wave function is given by hrjϕi ¼
e−r=a0=

ffiffiffiffiffiffiffiffi
πa30

q
, with Bohr radius a0 ¼ 2=ðmCFαsÞ. The

Coulombic wave functions in the continuum, jpllzi, can
be found in Ref. [26], while the octet wave function, jp1i,
can be found in Refs. [27–29] and reads

hrjp1i ¼ eiðπ=2−δ1Þ
ffiffiffiffiffiffi
2π

p
p · r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρð1þ ρ2

a2
0
jpj2Þ

a0jpjðe
2πρ
a0 jpj − 1Þ

vuuut
× eijpjjrj1F1

�
2þ i

ρ

a0jpj
; 4;−i2jpjjrj

�
; ð10Þ

where 1F1 is the confluent hypergeometric function, δ1 is
the l ¼ 1 Coulomb phase and ρ ¼ ðN2

c − 1Þ−1. The matrix
element squared is then

jhϕjrjp1ij2 ¼
512π2ρðρþ 2Þ2a60jpjð1þ ρ2

a2
0
jpj2Þe

4ρ
a0 jpj arctanða0jpjÞ

ðe 2πρ
a0 jpj − 1Þð1þ a20jpj2Þ6

:

ð11Þ

Using Eq. (11) in Eq. (8), we arrive at [VA ¼ 1 and
Eϕ ¼ −1=ðma20Þ]

β ¼ 256
ρðρþ 2Þ2

3Nc

1

mE2
ϕ

I; ð12Þ

with

I ¼
Z

∞

0

dpp3
ð1þ ρ2

p2Þe
4ρ
p arctanp

ðe2πρ
p − 1Þð1þ p2Þ7

¼
Nc¼3

0.01143; ð13Þ

which has been evaluated numerically. The result agrees for
Nc ¼ 3 with Refs. [16,30]. Expressions (12) and (13)
provide the explicit dependence of the polarizability on

the number of colors; see Fig. 3. For a computation of the
polarizability with free wave functions as intermediate states
instead of octet ones, which corresponds to the large-Nc
limit of the matrix element in Eq. (4), see Refs. [13,14]. To
our knowledge only this last determination has been used so
far in the applications discussed in Secs. V and VI.
At leading order, the binding energy, Eϕ, is given by

−mðCFαsÞ2=4. In Fig. 4 we plot β from Eq. (12) as a
function of αs, with the conventional value of the bottom
mass m ¼ 5 GeV. The natural scale of αs in the binding
energy is of the order of the inverse Bohr radius. Taking as
the central value for our determination αsð1.5 GeVÞ ≈ 0.35,
as the lowest value αsð2 GeVÞ ≈ 0.3 and as the largest value
αsð1 GeVÞ ≈ 0.5, we obtain

β ¼ 0.50þ0.42
−0.38 GeV−3: ð14Þ

Additional correlated uncertainties come from the bottom
mass and higher-order corrections.
We note that by taking the mass of ϕ as the spin average

of the ηb [31] and ϒð1SÞ [32] masses, corresponding to
the value mϕ ¼ 9.4454 GeV, and m ¼ 5 GeV, we get

2 3 4 5 6 7 8 9 10 11 12
Nc0.50

0.52

0.54

0.56

0.58

0.60
Nc m E2

FIG. 3. The dependence of the polarizability on the number of
colors. The dashed line at the constant value 7=12 corresponds to
the large-Nc limit computed in Ref. [13].

0.30 0.35 0.40 0.45 0.50 0.55
s

0.5

1.0

1.5

GeV 3

FIG. 4. Plot of β from Eq. (12) as a function of αs for
m ¼ 5 GeV.
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mϕ − 2m ¼ −0.555 GeV, which is the binding energy we
obtain from the leading-order formula when choosing
αs ≈ 0.5. Hence, with this definition of the binding energy,
β would assume the lowest value in Eq. (14), i.e.,
0.12 GeV−3. In Ref. [33] the transition ϒð2SÞ →
ϒð1SÞππ has been computed using the QCD trace anomaly
and the transitional polarizability fitted to experimental data
of the decay rates obtaining the value βϒ−ϒ0 ¼ 0.66 GeV−3.
The same value could be obtained also for β using
αs ≈ 0.326. One should notice, however, that β and
βϒ−ϒ0 do not correspond to the same quantity, the latter
involving the matrix element between a 1S and a 2S
bottomonium state.

IV. CHIRAL EFT

At energies of order mπ, much below ΛQCD, the degrees
of freedom are the ϕ and the Goldstone bosons. The
interaction operators with Goldstone bosons can be easily
constructed by considering that the field ϕ is a scalar under
chiral symmetry. The different sectors of the χEFT
Lagrangian density read at leading order [we include the
kinetic energy in Eq. (15)]

Lϕ
χEFT ¼ ϕ†

�
i∂0 þ

∇2

2mϕ

�
ϕ; ð15Þ

Lπ
χEFT ¼ F2

4
fTr½∂μU∂μU†� þ Tr½χ†U þ χU†�g; ð16Þ

Lϕ−π
χEFT ¼ ϕ†ϕ

F2

4
fcd0Tr½∂0U∂0U†�

þ cdiTr½∂iU∂iU†� þ cmTr½χ†U þ χU†�g: ð17Þ

The ϕ contact interactions are similar to the ones in nuclear
physics [34]. They are essential to renormalize the ultra-
violet divergences in the chiral loops, but will not play any
role in the long-distance properties that we will discuss in
the rest of the paper; hence we do not write them here
explicitly. As a basic building block we use the unitary
matrix UðxÞ to parametrize the Goldstone boson fields,
which may be taken as

U ¼ eiΦ=F; Φ ¼
�

π0
ffiffiffi
2

p
πþffiffiffi

2
p

π− −π0

�
; ð18Þ

although final results for observable quantities do not
depend on this specific choice. At leading order, F may
be identified with the pion decay constant Fπ ¼
92.419 MeV. We also use the building block,

χ ¼ 2Bm̂1; ð19Þ
where, working in the isospin limit, m̂ is the average quark
mass between mu and md. The pion mass in the isospin
limit is m2

π ¼ 2Bm̂ ≈ ð135 MeVÞ2.

The extension to an SUð3Þ chiral Lagrangian can be
obtained by replacing Eq. (18) by the appropriate matrix
including kaons and etas.

A. Matching gWEFT to χEFT using the
QCD trace anomaly

In the low-energy limit the two-pion production by the
polarizability operator of gWEFT in Eq. (3) is determined
up to a constant from chiral algebra and the QCD anomaly
in the trace of the energy-momentum tensor [35–41]. We
use this result to match the two-chromoelectric field
emission of gWEFT in Eq. (3) to the pion-ϕ interactions
in Eq. (17).
Diagrammatically the matching is shown in Fig. 5. The

trace anomaly for the chromoelectric fields is given by [42]

g2hπþðp1Þπ−ðp2ÞjE2
aj0i ¼

8π2

b
ðκ1p0

1p
0
2 − κ2pi

1p
i
2 þ 3m2

πÞ;
ð20Þ

where κ1 ¼ 2 − 9κ=2, κ2 ¼ 2þ 3κ=2, b is the first coef-
ficient of the QCD beta function,

b ¼ 11

3
Nc −

2

3
Nf; ð21Þ

Nf is the number of light flavors and κ is a parameter that
can be obtained from pionic transitions of quarkonium
states. A detailed experimental study of the decay
ψ 0 → J=ψπþπ−, using the trace anomaly, was done by
the BES Collaboration in Ref. [43]. The fit to the spectrum
of the invariant mass of the produced dipion resulted in
the value κ ¼ 0.186� 0.003� 0.006, while the fit to the
ratio of the D- and S-wave amplitudes from the angular
distribution gave κ ¼ 0.210� 0.027� 0.042.
The two-pion production amplitude in gWEFT is

A ¼ 4π2β

b
ðκ1p0

1p
0
2 − κ2pi

1p
i
2 þ 3m2

πÞ; ð22Þ

FIG. 5. We compute the production of two pions in gWEFT
using the trace anomaly (left-hand side) and match the result to
the corresponding amplitude in χEFT (right-hand side). Solid and
dashed lines represent 1S quarkonium and pions respectively,
while the wiggled lines represent gluons.
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which should be matched to the one obtained from
χEFT

A ¼ −cd0p0
1p

0
2 þ cdipi

1p
i
2 − cmm2

π; ð23Þ

giving

cd0 ¼ −
4π2β

b
κ1; cdi ¼ −

4π2β

b
κ2; cm ¼ −

12π2β

b
:

ð24Þ

V. LEADING CHIRAL LOGARITHM OF THE
1S BOTTOMONIUM MASS

One simple and straightforward application of the lead-
ing pion-1S bottomonium coupling obtained in Sec. IV is
the determination of the leading chiral logarithm of the 1S
bottomonium mass. This can be achieved by computing
corrections to the 1S bottomonium mass up to Oðβm4

πÞ. In
Fig. 6 we display diagrammatically the contributions to the
1S bottomonium mass. The counterterm diagram on the
left-hand side contains contributions both at leading order
from Eq. (17) and next-to-leading order from higher-order
operators in the chiral Lagrangian that we have not
displayed. The tadpole diagram on the right-hand side is
constructed only with operators from Eq. (17). The mass
correction reads

δmϕ ¼ −F2cmm2
π þ counterterms ofOðm4

πÞ

þ 3m2
π

8
ðcd0 þ 3cdi − 4cmÞA½m2

π� þ
3m4

πðcd0 − cdiÞ
256π2

;

ð25Þ

where A is the one-point function

A½m2
π� ¼

m2
π

16π2

�
λ − log

m2
π

ν2

�
; ð26Þ

where ν is the renormalization scale and

λ ¼ 2

4 − d
þ 1 − γE þ log 4π; ð27Þ

d is the space-time dimension. The ultraviolet divergence in
A½m2

π� can be renormalized in the (modified) MS scheme by
absorbing the pieces proportional to λ in the counterterms.
From Eq. (25), the chiral logarithm correction to the

quarkonium mass reads

δmϕjchiral log ¼ −
3

8

β

b
m4

π log
m2

π

ν2
; ð28Þ

where we have not included chiral logarithms that may be
generated from matching F to the pion decay constant
beyond leading order. Note that the result does not depend
on κ. A similar approach to ours was used in Ref. [44] to
obtain the light-quark mass dependence of the quarkonium
mass splittings. There the polarizability was not computed
but was left as a parameter to be fitted on lattice data. Our
result disagrees with theirs, which is a factor 16 larger.1

VI. 1S BOTTOMONIUM VAN DER WAALS
POTENTIAL

In this section, we obtain the van der Waals potential
between two 1S bottomonium particles. We assume that the
momentum transfer k between the two ϕ’s is of the order of
the pion mass, mπ , and therefore the distance between the
two ϕ’s is of the order r ∼ 1=mπ [the distance r used in this
section should not be confused with the quark-antiquark
distance defined in Sec. II, which is of order 1=ðmvÞ and,
therefore, much shorter].2 The van der Waals potential is
defined in an EFT (WEFT) at the energy scale of the kinetic
operator of the ϕ field, which is lower than the pion mass.
Hence the potential can be computed as a matching
coefficient when integrating out the scale mπ .

A. WEFT

The energy scale Q of the two-ϕ dynamics is given by
the kinetic energy of the ϕ’s in their center-of-mass frame,
Q ∼Oðk2=mϕÞ, where k is the momentum transfer and mϕ

is the mass of the ϕ’s. For a momentum transfer k of the
order mπ, the interaction of the ϕ’s is mediated by pions,
whose interaction with the ϕ’s is described by the χEFT
Lagrangian of Sec. IV. However, since mπ ≫ m2

π=mϕ the
dynamics of the pions occurs at a higher-energy scale than
that of the ϕ. Therefore, in order to study two-ϕ inter-
actions, it is convenient to integrate out the pion dynamics
and have its effects taken into account through a potential
term. We are going to refer to this term as the van der Waals

FIG. 6. Self-energy contributions to the 1S bottomonium mass.
The solid square on the left-hand side represents counterterms,
while the right-hand side is the pion tadpole diagram that
generates the leading chiral logarithm for the 1S bottomonium
mass.

1One source of disagreement can be traced back to a missing
factor of 1=2 when matching the dilatation current with the trace
of the chromoelectric field. In contrast to Ref. [44], we assert that
the contribution from the chromomagnetic field cannot be
neglected in that matching.

2Shorter distance effects would need to be accounted for at the
level of pNRQCD, gWEFT or the chiral EFT. They are beyond
the scope of the present work.
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potential and to the EFT describing the dynamics of ϕ
interacting through it as WEFT. The Lagrangian of such an
EFT is at leading order Lϕ

WEFT þ Lϕϕ
WEFT, where (we have

reabsorbed the mass correction δmϕ, computed in the
previous section, in a field redefinition)

Lϕ
WEFT ¼

Z
d3Rϕ†ðt;RÞ

�
i∂0 þ

∇2

2mϕ

�
ϕðt;RÞ; ð29Þ

Lϕϕ
WEFT ¼ −

1

2

Z
d3R1d3R2ϕ

†ϕðt;R1ÞWðR1;R2Þϕ†ϕðt;R2Þ:

ð30Þ

In Eq. (29) both the time derivative and the kinetic terms are
of the same size ∼Q. The potential WðR1;R2Þ can be
obtained by matching χEFT to WEFT, which is shown
diagrammatically in Fig. 7. In the short range it is
dominated by contact terms, which include renormalization
counterterms. In the long range it depends only on
k2 ¼ ðp − p0Þ2. If we just display the two-pion loop
contribution, it reads in momentum space

~Wðk2Þ ¼ contact terms

−
3

8
cdiðcd0 − cdiÞ

m4
π

16π2
−
3

4
cdiðk2cdi þm2

πð3cdi þ cd0 − 4cmÞÞA½m2
π�

−
3

8
ðk2cdi þ 2m2

πðcdi − cmÞÞ2B½m2
π;−k2�

−
3

2
ðcd0 − cdiÞðk2cdi þ 2m2

πðcdi − cmÞÞC1½m2
π;−k2�

−
3

2
ðcd0 − cdiÞ2C2½m2

π;−k2�: ð31Þ

B is the standard two-point function, and since −k2 < 0, it
takes the form

B½m2
π;−k2� ¼

1

16π2

0
B@λþ 1 − log

m2
π

ν2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4m2

π

k2

r
log

2
64

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4m2

π

k2

q
− 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4m2
π

k2

q
þ 1

3
75
1
CA; ð32Þ

while the functions C1 and C2 are given by

C1½m2
π − k2� ¼ 5k2 þ 24m2

π

576π2

þ 1

192π2

0
B@ðk2 þ 6m2

πÞ
�
λ − log

m2
π

ν2

�

þk2
�
1þ 4m2

π

k2

�
3=2

log

2
64

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4m2

π

k2

q
− 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4m2
π

k2

q
þ 1

3
75
1
CA;

ð33Þ

C2½m2
π − k2� ¼ 31k4 þ 280k2m2

π þ 705m4
π

19200π2

þ 1

1280π2

�
ðk4 þ 10k2m2

π þ 30m4
πÞ

×
�
λ − log

m2
π

ν2

�
þ k4

�
1þ 4m2

π

k2

�
5=2

× log

2
64

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4m2

π

k2

q
− 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4m2
π

k2

q
þ 1

3
75
1
CA; ð34Þ

where ν is the renormalization scale and λ is given in
Eq. (27). The ultraviolet divergences can be absorbed in the
(modified) MS scheme by suitably redefining the counter-
terms in the first line of Eq. (31) to cancel λ.

B. Long-range potential in coordinate space

In this section, wewant to obtain the long-range potential
in coordinate space. The potential in coordinate space is the
Fourier transform of Eq. (31). The polynomial terms in
Eq. (31) correspond to local Dirac delta potentials and
derivatives of it. Since we are interested in the long-range
part of the potential we will not consider them.

FIG. 7. Matching of the amplitude in χEFT (left-hand side) to a
van der Waals potential in WEFT (right-hand side). Solid and
dashed lines represent ϕ and pions respectively. Neutral as well as
charged pions should be considered in the pion loop.
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Furthermore, the polynomial part of Eq. (31) depends on a
set of unknown couplings. The long-range part of the
potential originates from the pion-loop diagram of Fig. 7.
To obtain the Fourier transform of this piece it is convenient
to use a dispersive representation [45,46] (we review it in
the Appendix). The dispersive representation is useful
because it allows us to separate the local from the long-
range contributions, namely the subtraction constants give
local terms while the two-pion cut gives the long-range
contribution. Alternatively one can think of the subtraction
constants as redefinitions of the couplings in the poly-
nomial piece of the potential. The potential in coordinate
space is obtained through the Fourier transform

WðrÞ ¼
Z

d3k
ð2πÞ3 e

ik·r ~Wðk2Þ: ð35Þ

For k2 → ∞ the momentum-space potential ~Wðk2Þ
diverges as k4, and hence its corresponding dispersion
relation should be twice-subtracted. Using the spectral
representation of Eq. (A7) for ~Wðk2Þ in Eq. (35), we obtain

WðrÞ ¼ 1

2π2r

Z
∞

2mπ

dμ e−μrμIm½ ~Wðϵ − iμÞ�; ð36Þ

where the limit ϵ → 0 is understood. The imaginary parts of
B, C1 and C2 read

ImB½m2
π; ϵ − iμ� ¼ 1

16π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
π

μ2

s
; ð37Þ

ImC1½m2
π; ϵ − iμ� ¼ −

1

192π
μ2
�
1 −

4m2
π

μ2

�
3=2

; ð38Þ

ImC2½m2
π; ϵ − iμ� ¼ 1

1280π
μ4
�
1 −

4m2
π

μ2

�
5=2

; ð39Þ

from which we obtain the imaginary part of Eq. (31) to be
used in Eq. (36). We find the following exact expression for
the long-range potential in coordinate space:

WðrÞ ¼ −
3πβ2m2

π

8b2r5
½ð4ðκ2 þ 3Þ2ðmπrÞ3

þ ð3κ21 þ 43κ22 þ 14κ1κ2ÞmπrÞK1ð2mπrÞ
þ2ð2ðκ2 þ 3Þðκ1 þ 5κ2ÞðmπrÞ2
þ ð3κ21 þ 43κ22 þ 14κ1κ2ÞÞK2ð2mπrÞ�; ð40Þ

where KnðxÞ are the modified Bessel functions of the
second kind, and the matching results (24) have been used
to simplify the expression.
The potential in coordinate space is plotted in Fig. 8 for

two values of β. The dependence on β is quite noticeable, as
one would expect since the potential is proportional to β2.
For short distances the absolute value of the potential
increases rapidly. For the two values of κ listed in Sec. IVA
the variation of the potential is unappreciable. Only for very
large deviations compared to the uncertainties of these
parameters does the potential change in a more significant
way and only on the short distances.
In the long range, i.e., when Eq. (40) is expanded for

large r, we obtain

WðrÞ ¼ −
3ð3þ κ2Þ2π3=2β2

4b2
m9=2

π

r5=2
e−2mπr: ð41Þ

The long-range potential (41), valid for r ≫ 1=ð2mπÞ, is of
the order of a few eV, whereas the potential (40), valid also
for r ∼ 1=ð2mπÞ, may be as large as −1 MeV in the region
around 0.6 and 0.7 fm; see Fig. 9.
If in the expression (41) we neglect κ, i.e., we take

κ2 ¼ 2, and we also neglect contributions proportional to
m2

π in the trace anomaly, then the expression agrees with the
one derived in Ref. [47] using an approach similar to ours
based on the dipole-dipole interaction and the trace
anomaly. One should notice, however, that, while neglect-
ing κ is justified by its smallness, taking the chiral limit of
the trace anomaly modifies the strength of the long-range
van der Waals potential (although not its functional
dependence on r and mπ): the van der Waals potential in

0.5 0.6 0.7 0.8 0.9 1.0
r fm

0.15

0.10

0.05

V MeV

0.12 GeV 3

0.5 0.6 0.7 0.8 0.9 1.0
r fm

10

8

6

4

2

V MeV

0.92 GeV 3

(a) (b)

FIG. 8. Plot of the potential in coordinate space (40) for the smallest and the largest value of the polarizability β of ϕ quoted in
Eq. (14). We take κ ¼ 0.186, mπ ¼ 135 MeV and b is computed with three active flavors and Nc ¼ 3.
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Ref. [47] is a factor 16=25 weaker than Eq. (41). This is not
surprising if one considers that under the condition that the
typical distance between the quarkonia is of order 1=mπ,
mπ cannot be neglected. In the numerical part of their
analysis the authors of Ref. [47] took the polarizability
from the large-Nc estimate of Refs. [13,14].
Comparing the plots of Eq. (40) with the analogue results

from the two-pion exchange diagrams in the nucleon-
nucleon EFT (e.g., in Refs. [45,46]) we see that the ϕ-ϕ
potential that we have obtained is much less deep. This
difference has two origins. First, in the nucleon-nucleon
EFT the two-pion exchange appears at next-to-leading
order instead of at next-to-next-to-leading order as in the
ϕ-ϕ case; this results in a Oððmπ=ΛχÞ2Þ ∼ 10−2 suppres-
sion. Second, there are five different two-pion exchange
diagrams in nucleon-nucleon interactions, whereas in our
case there is only one.

VII. CONCLUSIONS

The 1S states are the lowest lying in the bottomonium
spectrum. For these states one can assume that the
hierarchy mv ≫ mv2 ≫ ΛQCD is fulfilled. At the ultrasoft
energy scale the 1S bottomonium states are solutions of
the Schrödinger equation defined by weakly coupled
pNRQCD. Since spin-dependent interactions are sup-
pressed by the bottom quark mass, both ηb and ϒð1SÞ
can be represented by a pseudoscalar field ϕ. Integrating
out the ultrasoft scale we arrive at an EFT in which the
color-singlet 1S bottomonium states and the gluon fields
are dynamical degrees of freedom. In this EFT, which we
have named gWEFT, the color-singlet 1S bottomonium
states interact with the gluons through quadratic terms in
the chromoelectric fields proportional to the chromopolar-
izability of the states. Matching pNRQCD to gWEFT, the
chromopolarizability can be computed in perturbation
theory. A key ingredient in the calculation of the polar-
izability is the description of the intermediate color-octet
states. In weakly coupled pNRQCD, the octet potential is a
Coulomb-like repulsive potential, and therefore the octet

eigenfunctions correspond to Coulombic wave functions in
the continuum region. An expression of the polarizability,
where the dependence on the number of colors has been
made explicit, is given in Eq. (12). The expression agrees
with previous findings in the literature.
In gWEFT the gluon dynamics is nonperturbative. To put

our results for the chromopolarizability in a more useful
form we have used the QCD trace anomaly to obtain the
two-pion production amplitude for the quadratic chromo-
electric field operator and matched the result to a chiral EFT
in which the 1S bottomonium and pions are the degrees of
freedom. Using this chiral EFT we have computed the
leading chiral logarithmic contribution to the 1S bottomo-
nium mass. This can be read from Eq. (28).
The second application we have considered is the

calculation of the long-range van der Waals potential
generated by the two-pion exchange between two 1S
bottomonium states. The van der Waals potential is defined
at a lower energy scale than mπ , set by the center-of-mass
kinetic energy of the 1S bottomonium state. Thus we have
written down the EFT at this latter scale, WEFT, and
computed the potential as a matching coefficient. Using a
dispersive representation of the potential, which takes into
account the two-pion cut, an analytical expression of the
van der Waals potential has been obtained in Eq. (40) for
r ∼ 1=ð2mπÞ or larger, which reduces to Eq. (41) in the
limiting case r ≫ 1=ð2mπÞ. The results of both applications
improve on previous findings.
Our calculation of the ϕ-ϕ long-range potential of

Sec. VI B shows a significant dependence on the value
of the polarizability β. Hence, while the long-range para-
metric dependence on the distance r of the potential is well
understood and resembles that of the two-pion exchange
potentials of the nucleon-nucleon EFT, its actual strength
reflects the uncertainty on β. Finally, the possible existence
of a shallow ϕ-ϕ bound state will also depend crucially on
the ϕ-ϕ short-range interaction, which has not been
addressed in the present work.
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APPENDIX: DISPERSION RELATIONS

Consider a function of one complex variable fðzÞ
that is analytic on the cut complex plane CnΓ with Γ ¼
½s0;∞Þ ⊂ R and real below the cut: fðsÞ ∈ R ∀s ∈ R,
s < s0. The Schwarz reflection principle holds

fðz�Þ ¼ f�ðzÞ ∀ z ∈ RnΓ: ðA1Þ
We can apply Cauchy’s integral formula

fðzÞ ¼ 1

2πi

I
γ

fðξÞ
ξ − z

dξ ðA2Þ

to the integration path γ shown in Fig. 10. Assuming that
the function fðzÞ tends to zero for jzj → ∞, the integral
over the arc vanishes for R → ∞. The integral over γc
remains

fðzÞ ¼ 1

2πi

Z
γc

fðξÞ
ξ − z

dξ

¼ lim
ϵ→0

1

2πi

Z
∞

s0

fðsþ iϵÞ − fðs − iϵÞ
s − z

ds

¼ lim
ϵ→0

1

π

Z
∞

s0

Imfðsþ iϵÞ
s − z

ds: ðA3Þ

By evaluating this equation just above the cut, we arrive at

fðsÞ ¼ 1

π

Z
∞

s0

Imfðs0Þ
s0 − s − iϵ

ds0; ðA4Þ

where the limit ϵ → 0 is understood, and fðsÞ and fðs0Þ are
the analytic continuation to the real axis from above the cut.
Equations like Eq. (A4) are called dispersion relations.

We can calculate the dispersive integral with the help of
the identity

1

s0 − s − iϵ
¼ P

1

s0 − s
þ iπδðs0 − sÞ; ðA5Þ

which means that we transform the dispersion integral into
the sum of the Cauchy principal value, P, and iπ times the
residue of the integral.
We are interested in a dispersion relation for potentials in

momentum space with a two-pion cut in the negative real
axis in the complex three-momentum space. We can obtain
such a dispersion relation starting from Eq. (A4) and using
s ¼ −k2 and s0 ¼ μ2; then we arrive at

fð−k2Þ ¼ 2

π

Z
∞

2mπ

μImfðμ2 þ iϵÞ
μ2 þ k2

dμ; ðA6Þ

and by rewriting fð−k2Þ as a function of k we arrive at the
final form used in Ref. [46]

fðkÞ ¼ 2

π

Z
∞

2mπ

μImfðϵ − iμÞ
μ2 þ k2

dμ: ðA7Þ

In the case where the function fðzÞ does not fall off fast
enough for z → ∞, or if we simply want to reduce the
dependence on Imfðs0Þ at large s0, we can write a
subtracted dispersion relation, i.e., a dispersion relation
for the function

gðsÞ≡ fðsÞ − fðs̄Þ
s − s̄

; ðA8Þ

where s̄ < s0 is called the subtraction point. The function g
has the same analytical properties as f; thus we can
write

fðsÞ − fðs̄Þ
s − s̄

¼ 1

π

Z
∞

s0

1

s0 − s − iϵ
Im

�
fðs0Þ − fðs̄Þ

s0 − s̄

�
ds0;

ðA9Þ

and since Imfðs̄Þ ¼ 0

fðsÞ ¼ fðs̄Þ þ s − s̄
π

Z
∞

s0

Imfðs0Þ
ðs0 − s̄Þðs0 − s − iϵÞ ds

0: ðA10Þ

We could repeat this procedure for the function
hðsÞ≡ ðgðsÞ − gðs̄2ÞÞ=ðs − s̄2Þ, s̄2 < s0 to obtain a twice-
subtracted dispersion relation and so on. In an n-times-
subtracted dispersion relation, a polynomial of order n in s
multiplies the dispersive integral.
The contribution from the subtraction can be separated

from the rest of the dispersive integral by using partial
fractioning

FIG. 10. The integration path γ consists of a part γc circum-
navigating the branch cut and an arc γR with radius R.
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1

ðs0 − s̄Þðs0 − s − iϵÞ ¼
1

s − s̄

�
1

s0 − s − iϵ
−

1

s0 − s̄

�
;

ðA11Þ

in Eq. (A10)

fðsÞ ¼ fðs̄Þ − 1

π

Z
∞

s0

Imfðs0Þ
s0 − s̄

ds0 þ 1

π

Z
∞

s0

Imfðs0Þ
s0 − s − iϵ

ds0;

ðA12Þ

where the integral of the second term is independent of s
and is called a subtraction constant. The subtraction
constant can be in general a divergent quantity.
In a physical situation, we can split an amplitude

into a polynomial piece and a part that generates
the cut in the complex plane. The latter, once appropri-
ately subtracted, can be extended analytically using a
dispersion relation. The subtraction constants can then be
reabsorbed in suitable redefinitions of the couplings of
the theory.
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