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A system presenting fractal structure in its thermodynamical functions is introduced, and it is shown
that Tsallis statistics is the correct framework for describing the thermodynamical aspects of such a fractal.
Its Haussdorf dimension and its Lipshitz-Holder exponent are determined in terms of the entropic index q.
The connections with the intermittency in experimental data are discussed. The thermodynamical aspects
of the thermofractal is related to the microscopic interaction of its components through the S-matrix.
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I. INTRODUCTION

In this work, it is shown that a particular thermodynam-
ical system presenting a hierarchy of subsystems, each of
them being described by thermodynamical distributions
similar or affine to those for the subsystems at different
levels of the hierarchical structure, is described by Tsallis
statistics (S,). Moreover, the thermodynamical potential
for this system allows a direct connection with the S-matrix
for the interacting particles in a gas of thermofractals.

The generalization of Boltzmann statistics proposed by C.
Tsallis [1] has found application in a large number of
phenomena in many different fields of knowledge. It is
interesting to notice that the main motivation to the intro-
duction of a nonadditive entropy, S,(p), which would lead
to a nonextensive statistics was its applicability to fractal
or multifractal systems since this entropy would naturally
lead to power-law distributions characteristic of fractals.

The term fractal was coined by Mandelbrot [2] to
designate systems presenting scaling symmetry. For such
systems, their dimension, according to the definition by
Haussdorf, is not necessarily an integer [3]. The definition
of a fractal can be applied to distribution functions, where
the concept of affinity appears. In such cases, there are
usually many different dimensions associated to the scale
symmetry [3,4], and the system is called multifractal.

There is a large number of fractals found in mathematical
relations or in physical systems. Indeed, fractals are rather
ubiquitous, and one reason for such ubiquity may be the
fact that complex structures can arise from very simple
relations iterated several times. Physics laws are in general
simple, so it may be the case that most of the complexity
observed in nature emerges from self-similar structures, as
it happens with fractals. Quoting Mandelbrot, “Fatou’s and
Julia’s discoveries confirm in effect, that a very complex
artifact can be made with a very simple tool (think of it
as a sculptor’s chisel), as long as the tool can be applied
repeatedly” [2].
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The connections between S, and fractals have already
been addressed in other works [5-8]. In particular, it
was argued in Ref. [8] that the statistical mechanics of
self-similar complex systems with fractal phase space is
governed by Tsallis statistics.

Of special interest for the present work are the thermo-
dynamical aspects of high energy collisions. Such thermo-
dynamical aspects were first observed by Fermi [9] and
subsequently developed by Hagedorn [10] 50 years ago
by supposing a self-similar structure for the hadrons. This
was done by the following definition of fireballs:

“fireball is a * statistically equilibrated system composed
by an undetermined number of fireballs, each one of them
being, in its turn, a (goto *).”

This definition makes clear the self-similarity of the
fireball structure, resulting in a scale invariance typical of
fractals, as already mentioned in Refs. [11-13]. From the
above definition and using a self-consistent argument,
Hagedorn obtained the complete thermodynamical descrip-
tion of fireballs. Among the predictions were the limiting
temperature and the mass spectrum formula, which allowed
comparison with experimental data.

Such a recursive aspect of the definition was also used
by S. Frautschi [14] who proposed that hadrons are made
of hadrons. With this definition, he was able to derive
some of the results obtained previously by Hagedorn.

Hagedorn’s thermodynamical approach was proposed
some years before the quark structure of hadrons became
accepted, but it had far-reaching consequences. In fact,
the very idea of a phase transition between the confined-
deconfined regimes of hadronic matter was advanced by
Cabibbo and Parisi [15] as a reinterpretation of the limiting
temperature discovered with the self-consistent thermody-
namics. However, with experiments at higher energies
(/s > 10 GeV), it was soon noticed that Hagedorn’s
thermodynamics was not able to describe the transverse
momentum (p7) distributions obtained in the high energy
physics (HEP) experiments. Hagedorn himself proposed
a phenomenological model [16] which gives a power-law
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distribution that fits data even in the high p; range, a result
impossible to be obtained with his former theory.

In 2000, it was shown that simply changing the expo-
nential function in the self-consistent thermodynamics
distribution by the g-exponential function from Tsallis
statistics would result in a power-law distribution for ps
which can describe the data in the whole p; range [11,17].
In 2012, the self-consistent principle proposed by
Hagedorn was generalized by the inclusion of S, leading
to a well-defined thermodynamical theory when Boltzmann
statistics is replaced by Tsallis statistics [18]. In this case,
not only must the temperature 7 be constant, but also the
entropic index ¢ from the nonextensive statistics must be
independent of the collision energy or of the hadron mass.
In addition, a new formula for the hadron mass spectrum
is obtained in terms of the g-exponential function, where
the parameters 7 and g can be determined.

In the last few years, several experimental data from HEP
have been analyzed using the thermodynamical formula
derived from Tsallis statistics [19-23] or using the power-
law formula inspired by QCD [24-28]. In a recent work
[23], it was shown that both formulas fit the py-distribution
data very well, but the parameters obtained from the fitting
procedure present very different behaviors with energy or
particle mass. When the thermodynamical formula is used,
both T and ¢ are independent of the collision energy and
on the mass of the particle analyzed. In addition, it was
shown that 7 and ¢ obtained from the analysis of the
mass spectrum are consistent with those obtained with the
analyses of pr-distribution. In this context, it is remarkable
that the new mass formula proposed in Ref. [18] fits well
even in the region of mesons as light as pions.

The subject remains controversial. From one side, there
is the idea that a thermodynamical approach based on
the nonextensive statistics can describe the data in the
whole p; range with parameters 7" and ¢ which are not only
independent of energy and mass, as demanded by the
nonextensive self-consistent thermodynamics [18], but also
present values that are in accordance with a completely
different analysis based on the mass spectrum of hadrons
[23]. On the other hand, the power-law approach inspired in
QCD presents the advantage of being more closely related
to the fundamental interactions of hadrons [29].

In this context, it is important to investigate the possible
origins of nonextensivity in QCD. There are some con-
nections between Tsallis and Boltzmann statistics already
proposed, such as:

(i) the particular case of the

equation [30].
(ii) the temperature fluctuation in a stationary state
[31,32].

(iii) the finite size of thermodynamical systems [33].
These approaches triggered an interesting discussion
around more general definitions of entropy, like in super-
statistics [34] or in formulations of new entropies based

Fokker-Planck
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on the relaxation of the four Shannon-Khinchin axioms
[35-37]. The connections between Boltzmann and Tsallis
statistics proposed so far, however, are related to thermo-
dynamical aspects of the system but are not directly related
to the microscopic aspects of hadronic matter and to QCD
interaction.

A comparison of results from the nonextensive self-
consistent thermodynamics and from Lattice QCD (LQCD)
has been performed [38] showing a fair agreement between
the two methods. Since LQCD calculations do not include
explicitly the nonextensive features present in the thermo-
dynamical calculations, one can understand from here that
nonextensivity must be an emergent characteristic from
the QCD interaction in systems like those obtained in HEP
experiments. A recent work [29] used a phenomenological
model based on first-order calculation of the parton-parton
cross section to obtain a power-law behavior describing the
pr-distributions even at low values of transverse momen-
tum, which was attributed by the authors to a dominance
of hard scattering. These are indications that one could
learn about QCD from the nonextensive features of the
experimental distributions.

The present work addresses the possibility of finding
close relations between the nonextensive thermodynamics
and the fundamental QCD interaction of hadrons. To this
end, a system showing a fractal structure in its thermody-
namics will be introduced, and its relation with Tsallis
statistics will be deduced. Some features of this system
will be studied, and finally a relation between the entropic
index, ¢, and the S-matrix for the interacting gas of
quantum system will be obtained.

This paper is organized as follows. In Sec. II, some
well-known results for an ideal gas are reviewed, and then
they are used in Sec. III, where a system described by a
fractal-like thermodynamics is defined where the constitu-
ent parts of this system have an internal structure which is
similar to that of the main system, like the fireballs defined
by Hagedorn. Then, it is shown that this system presents
self-affine distributions that characterize multifractals. In
addition, it is possible to obtain a system with self-similar
distributions. It is shown that in both cases the Tsallis
statistics is the most natural statistics to describe the
thermodynamical aspects of such systems. In Sec. 1V,
the main features of that system are discussed, as its fractal
characteristics. The results are then used to investigate the
possibility of fractal structure in hadrons, when experi-
mental data on intermittency in multiparticle production in
HEP are used to corroborate the hypothesis used here.
Finally, the connection between the S-matrix and nonex-
tensivity is established. In Sec. V, the conclusions of this
work are presented.

II. ENERGY FLUCTUATION OF AN IDEAL GAS

It is well known that the total energy of an ideal gas
fluctuates according to [39]
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3N 2
Di 3N
P(U)dU =A -y ——\d"p, 1
Wi =aexp(=3 5B ) )
where P(U)dU is the probability to find the energy of the
system between U and U + dU, m is the mass of individual
particles of the gas, and

d*Np = dp\dpydp,....dpydpyydpy.  (2)

is an infinitesimal volume in the momentum space. A is a
normalization constant which can be straightforwardly
determined, giving

A = (2amkT)™%. (3)

The infinitesimal volume can be written also in terms of
the total momentum

3N
pr=> p? (4)
i=1
by noticing that
d*Np; ~ p*Ndp, (5)

where p is the radius of a hypersphere in a 3N-dimensional
space. Of course,

therefore
du dp
=2 ™
p

From Eqgs. (1)—(7), it is possible to conclude that

P(U)dU = (kT)"2 U2 exp (- %) du,  (8)
which is consistent with the Maxwell distribution of
velocities. Note that Eq. (8) does not depend explicitly
on the particle mass.

Based on this result for the ideal gas, the thermofractal
system will be introduced in the next section.

III. THERMODYNAMICS WITH FRACTAL
STRUCTURE

Define thermofractal as a class of thermodynamical
systems presenting a fractal structure in its thermodynam-
ical description in the following sense:

(1) The total energy is given by

U=F+E, (9)

where F corresponds to the kinetic energy of N’
constituent subsystems and E corresponds to the
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internal energy of those subsystems, which behaves
as particles with an internal structure.

(2) The constituent particles are thermofractals. The
ratio (E)/(F) is constant for all the subsystems.
However, the ratio E/F can vary according to a
distribution, IB(E), which is self-similar (self-affine);
that is, at different levels of the subsystem hierarchy
the distribution of the internal energy are equal
(proportional) to those in the other levels.

(3) At some level n in the hierarchy of subsystems, the
phase space is so narrow that one can consider

f)(En)dEn :pdEnv (10)

with p being independent of fluctuations of the
energy E,.

For the description of the thermodynamical properties of

such a system, the starting point is the Boltzmann factor

P(S) = Aexp(—S/k) (11)

with § being the entropy and & the Boltzmann constant.
Supposing the variations of the volume can be disregarded,
one has

dU = TdS., (12)

so the probability in Eq. (11) can be written in terms of the
total energy as

P(U)dU = Aexp(-U/kT)DU, (13)

where DU is a generalized differential. Due to properties 1
and 2 of thermofractals, one has

P(U)dU = Aexp(—aF/kT)DFDE (14)
with
€
— 14 1
=1t (13)
where
E
=—kT. 16
e=" (16)

Since F is related to the kinetic energy part of the
constituent particles, it is reasonable to write, based on
Eq‘ (8)7

DF = F¥-1dF, (17)
and for the internal energy, it is possible to write
DE = P(E)dE, (18)

where P(E) is the probability density for the subsystem
internal energy.
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Note that due to Eq. (16) one has

~ F -
P(E)dE = —TP(e)de, (19)
so Eq. (14) is now given by

3 F
P(U)dU = AFT " exp (_a_T

P )dFﬁ(e)de, (20)

where N = N’ 4 2/3 is an effective number of subsystems.
Factors not depending on ¢ or F are included in the
constant A.

The thermodynamical potential is given by

© N F -
Q= / AFS-! exp<—“—>dFP(e)de, (21)
0 kT

which after integration on F' results in

Q= A “A {1 + kiT} b e)de. (22)

A. Self-affine solution

Using property 2, it can be imposed the self-affinite in
the probability functions by establishing

log[P(U)] o log[P(e)]. (23)

Equations (22) and (23) are simultaneously satisfied if
e ]
Ple)=A|l +— 24
@Al 24)

where n is the number of levels in the subsystem hierarchy
according to property 3.

Defining
gi-1= 50 (25)
and
= (q,— 1T, (26)
it is finally obtained that
P =i+ @-ng T e

which is the well-known Tsallis distribution. Notice that
this system presents several entropic indexes ¢, depending
on the hierarchical level n of the thermofractal. In the next
section, it will be shown that it is possible to obtain a
thermofractal with ¢ independent of the fractal level.
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B. Self-similarity
By slightly modifying Eq. (22) and writing

o e]%
Q= All +— P(e))” 2
[aig] were e
where v is a fractal index, it is possible to impose the
identity
P(U) = P(e) (29)

corresponding to a self-similar solution for the thermo-
fractal probability distributions. The simultaneous solution
for Egs. (28) and (29) is obtained with

3N 1
E | 721w
Ple) =A|1+— . 30
@ =a|1+ 5] (30)
Introducing the index ¢ by
2
-1=—(1- 31
g-1=-5(1-1) (31)
and the effective temperature
2(1 -
LN (32)
3
one finally obtains
14
Ple)=A|l+(g=1)—| " 33
@ =A1+@-0g] (33)

which is exactly the Tsallis g-exponential factor character-
istic of the nonextensive statistics.

Equation (33) shows that, instead of the Boltzmann
statistical weight, the Tsallis statistical weight given by the
g-exponential function should be used to describe more
directly the thermodynamics of thermofractals. In fact,
writing

(e)
T - Sq, (34)
it follows from Eq. (33) that
Sy _1-2,P7
4 _ L B 35
C= (33)

which is the Tsallis entropy with ¢’ =2 — ¢, with P;
representing a discretized probability based on Eq. (33).
Notice that the change g — ¢’ is necessary due to the
different definition of the q-exponential used here (see for
instance Ref. [40]). This result is in agreement with the
findings in Ref. [8], where it is shown that self-similarity in
fractal systems is described by Tsallis statistics.
Note that from Egs. (31) and (32) one has

1z

q-1=5=, (36)
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showing that the entropic index ¢ is related to the ratio
between the Tsallis temperature z and the Hagedorn
temperature 7.

IV. DISCUSSION

In order to make clear the structure of the thermofractal,
it will be interesting to analyze what happens when one
considers the first level after the initial one in the fractal
structure. From Eq. (28), one has

//AFZ exp[—F/kT]

x [exp[—y(e)F/KT][P(e)]"d(Fe)ldF,  (37)

where
€
=—. 38
e) =5 (38)
Considering that y(¢) F = E and that d(Fe) = dE, one can

see that the term between brackets is the internal energy
distribution. Considering the internal energy is distributed
statistically among the N constituent subsystems, and
considering that they are independent of each other, it is
possible to write

dE = dE,...dEy’ (39)
and

P(e)

with E; and P; corresponding to the energy and the
probability density for the ith subsystem, respectively.

Due to properties 1 and 2 of thermofractals, all density
distributions are identical, since here the self-consistent
solution is under consideration'; therefore, Eq. (37) can be
written as

Q:/mAFZM-lexp[—F/kT]
0

= P,(e)...Py(€) (40)

X { /0 exp {—ZEi /kT] |:1:[Pi(£):| “dE, .. .dEN’}dF.

(41)

The kinetic energy F can be written in terms of the
individual subsystems, as described above in the case of an
ideal gas, resulting in

Q= {/OOAF%_1 exp[—F,/kT]
0

y [ A ™ expl—E,/KT] [Pi(e)]”dE,] dF,}N/, (42)

For the self-affine solution, a similar reasoning can be
applied.

PHYSICAL REVIEW D 93, 054001 (2016)

with F; being the kinetic energy of the ith subsystem,
Notice that the term between square brackets represents
the internal energy distribution of one subsystem of the
original thermofractal. Therefore, according to property 1,
the subsystem is also a thermofractal, and due to property 2,
its energy E; can be separated into two parts, E; = F + E,
with F’ being the kinetic energy of the components of the
subsystem, and E’, the subsystem internal energy. Then,

Aoo exp|—E;/kT|[P;(¢)|"dE;
- /Ooo /)oo exp[—aF!/kT|[P;(¢)]*dedF). (43)

The equation above shows that it is possible to factorize
the probability distributions of each subsystem, and it
explicitly shows that each of them has an internal energy
distribution that has the same form of the original system,
according to Eq. (28).

In Eq. (33), A is a normalizing constant, which gives

2—gq
kr

A=

(44)
The average energy of the thermofractal is then
J
(€) :A/ 5[1 (g~ 1)i] Tde,  (45)
0 kt

resulting in

kt
= . 46
© =373 (46)
From Eq. (16) and the mean value for &, one has
E -1
o) _(E) _ 4 (47)
kT (F) 3-2q

Considering also Eq. (36), it is possible to observe that,
while the temperature 7 regulates the average energy of the
system, the temperature 7" regulates the ratio between the
kinetic energy, F, and the internal energy, E.

Defining r = (E)/(F), it is possible to write the ratio

el

and using Eq. (47), one obtains

__ (g=DN/N
3-2g+(q—1)N’

(49)

which represents the ratio between the internal energy of
one of the thermofractal constituent subsystems and the
total energy of the main fractal.
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It is known that as ¢ — 1 Tsallis statistics approaches
Boltzmann statistics, so it is interesting to analyze the
thermofractal in that limit. Due to Eq. (31), as ¢ — 1, also
v — 1, and from Eq. (32), one notices that there are two
ways to get this limit: one by letting 7 — O and the other
keeping 7 constant.

In the case © — 0, the Boltzmann limit is not obtained. In
fact, in this case, one has v — 1, as in the case of the self-
affine solution, but with ¢ independent of the hierarchical
level. This is possible only for 7 — 0 corresponding to the
trivial case of a thermofractal with energy U — 0. This also
indicates that the self-similar solution is not a special case
of the self-affine solution but represents a different system.

The Boltzmann limit is obtained if 7 is constant, which
means that (1 —»)7 remains constant as v — 1; therefore,
T — oo. Hence, the Boltzmann limit is obtained if almost
all energy of the gas appears in the form of kinetic energy
of its constituents. In this case, the system is insensitive to
the subsystem internal energy, behaving therefore as an
ideal gas that can be described by Boltzmann entropy.

A. Thermofractal dimensions

1. Haussdorf dimension

Consider a hypothetical experiment where the energy of
the thermofractal is measured with resolution r. This means
that energy fluctuations smaller than r can be neglected,
defining in this way the level n of the thermofractal
structure where the subsystems internal degrees of freedom
can be ignored, according to property 3 above. The level n
is such that R" = r, so

1
n=—8"
log R

(50)

The Haussdorf fractal dimension D [3,4] is determined
by considering that when the energy is measured in units of
r the total energy scales as r~! while the energy of each
subsystem scales as = such that

NrP o« r (51)

where N is the number of boxes necessary to completely
cover all subsystem energies of a thermofractal. The well-
known relation follows

_1_1og/\/
~ logr

(52)

Since at the level n all subsystems have distinguishable
energies at the given resolution, then N is the number of
subsystems at this level, i.e., AV = N'". From here, it
follows that

log N
logR "~

D=1+ (53)
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2. Fractal spectrum

There are several parameters that characterize multi-
fractals, and in the following some of those will be
investigated. Among these quantities, the Lipshitz-Holder
mass exponent and the fractal spectrum are the most used
[4]. In this context, the probability p(x;) for the event x; is
related to the mass exponent a; by

Ps(x;) o 8%, (54)

where 6 is the linear dimension of the basic box in which
the phase space is partitioned.
The partition function

2(q) =Y _psx) ~ Y 5. (55)

1

This partition function is also written in another form,

2(q) =" _s%n(ay), (56)

with
n(a;) o 57/ (57)
so that
Z5(q) < 89, (58)
where?
1(q) = qa; — f(a). (59)

using, for the sake of simplicity, &; = a(x;). The function
f(a) is the multifractal spectrum.

Let us consider the thermofractal which presents a
probability density given by Eq. (33). In order to avoid
confusion with the symbols used for probability, we will
indicate it by p(x), with x = 1 4 ¢/kz. One has

p(x) o X7, (60)

so the probability to find particles in the box with
dimension ¢ around x is

p(x) = NP(X)AX (e x_ﬁé ~ §52(%) (61)
with
N == N/n. (62)

It follows that the mass exponent, a(x), is

*The usual notation is 7(g), but here #() is made use of to
avoid confusion with the Tsallis temperature and the entropic
index.
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log N’ 1 1
alx) =1 =n—2" _ OBX (63)
logé ¢g—1logd

Using Eq. (50), one has
log N/ 1
alx)—1= o2

" logR g-1llogs’
The fractal spectrum is related to the number of boxes
with the same index a. Therefore, consider the probability

log x

(64)

Ap(x) = Np(x)5Ax. (65)

Now, the number of boxes with dimension d corresponding
to the interval Ax is given by the relation

Ax = n(x)é. (66)

Using this result in Eq. (65) and considering Eq. (60), one
obtains

n(x)8 = xr TN (67)
From the equation above, one can see that
n(x) =57/ (68)
with
fla) —1logs =nlogN' — 1logx. (69)
q —_—
Applying Eq. (50), one gets
log N’ 1 logx
-1= -1-— . 70
f@) log R g — 1logné (70)

Comparing Egs. (64) and (70), one gets
fla)=a. (71)

Note that this result was already expected from the multi-
fractal dimension theory [3,4]. Also, a corresponds to the
Haussdorf dimension given in Eq. (53).

In the limit 6 — 0, one gets

fla)=a=D
{D:1+$ﬁ. 72)
og

The calculations performed here are valid everywhere
but for the case of a corresponding to the lowest range
of probabilities, which is indicated by a,,,,. Due to the
asymptotic behavior of the probability density, one has
p(x = 00) = 050 oy, — oo and also the number of boxes
n(x > o0) = oo; hence, f(a) — oo. But since the proba-
bility does not diverge, one has

— 5amax_f(amax) — 0, (73)

Xmax

therefore, dtya — f(Qmax) = .
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The Lipshitz-Holder exponent is given by Eq. (58). With
the results obtained so far, one has

Z(g) = 5%, (74)
SO

1(q) = (¢ = Da. (75)

The exponent 7(g) can be observed experimentally, as
discussed below.

B. Thermofractals and hadrons

Before considering using the thermofractal to get some
knowledge about the hadron structure, a few comments are
needed. In the construction of the thermofractal formalism,
antisymmetrization was not taken into account. The effects
of antisymmetrization, however, are expected to be small
[10,14] since the phase space is sufficiently large to
consider the hadronic states of interest as a dilute gas.

Another aspect is that the treatment used here is semi-
relativistic, with the energy of the particles calculated as

»?

E=>—+m, 76
ot m (76)

where the internal energy is identified with the subsystem
mass, m. This may be a good approximation when the
temperature 7 is small so that E is sufficiently larger
than F.

The formalism derived in the last section is very general
even though it has been motivated by the definitions
of hadrons given by Hagedorn [10] and Frautschi [14].
Many aspects of this system can be investigated, as its
fractal dimensions or its thermodynamical functions. In
what follows, some aspects of the fractal structure and
its phase-space occupation will be addressed, as well as a
possible connection between the microscopic interaction of
the constituents of the thermofractal and the entropic index
g which characterizes its nonextensive statistics. Further
analyses on the fractal structure or the possible implications
of this formalism on the study of QCD in high energy
collisions will be given in future papers. From now on it is
supposed that hadrons have a thermofractal structure.
Fractal aspects in hadron production and in hadron struc-
ture have been already studied in many works [41-45].

1. Hadron fractal dimension

In order to calculate the fractal properties of hadrons,
one needs two parameters that characterize the hadronic
thermodynamics, namely, the ratio z/T and the entropic
index ¢. These values have been thoroughly investigated
in analyses of p; distributions from high energy pp
collisions [19-23], in an analysis of the hadronic
mass spectrum [23], and in the comparison of the
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thermodynamical calculations with LQCD data [38]. The
values found are ¢ = 1.14 and /T = 0.32 [38,40].

Proceeding to calculate the thermofractal properties, one
has, using Eq. (36), N = 2.3, and using N = N’ +2/3,
one gets N’ = 1.7. From Egs. (49), one has R = 0.104.
Finally, using Eq. (53), one gets D = 0.69, so from
Eq. (72), also a = 0.69.

The exponent #(g) can be observed experimentally
through the intermittency in experimental data, which
has been studied in many works on high energy collisions
[41-48]. Intermittency allows a direct measure of that
exponent and has been used as an indication of fractal
aspects in multiparticle production. The value calculated
here is in fair agreement with the results of analyses of
experimental data in hadron-hadron collisions [49-53],
which range between 0.43 and 0.65.

The agreement described above needs to be discussed in
more detail. In fact, the analysis of intermittency is made
through a sophisticated methodology that was developed
some decades ago to extract fractal parameters from
experimental data [41-44] and has been applied since then
to study mainly data from heavy ion collisions in emulsion
[54-57]. But aside from the technical difficulties, there is
the unavoidable problem described in Refs. [58,59], where
it is shown that when multiple fractal sources are present
the measured intermittency is weaker than the real fractal
dimension would imply. In fact, experimental data where
one supposed fewer sources are present tend to present
stronger intermittency effects when measured with the
available technique. This may explain the fact that the
intermittency in nucleus-nucleus collisions, which is
~0.97, is much weaker than that from hadron-hadron or
ete™ collisions, which is ~0.4 [49].

The fair agreement found between calculation and
the experimental values indicates that the thermofractal
proposed here can indeed give a reliable description of the
fractal aspects of the multiparticle production. In addition,
it can show that the intermittency found in HEP data is
related to the fractal structure of the hadron. In fact, it is the
fractal structure of the hadrons that leads to the nonex-
tensive self-consistent thermodynamics [18] as the proper
thermodynamical description of the hadronic systems.

The study of intermittency has been used to show
multifractal aspects in the cascade dynamics behind multi-
particle production. The dynamical cascade is connected to
complex QCD diagrams which would describe the entire
particle production process [60—62]. Here, we show the
connection between intermittency and Tsallis statistics.
However, a direct connection with the scattering dynamics
governed by QCD is possible, as shown below.

2. S-matrix and entropic index

Another important result for thermofractals is that the
thermodynamical potential for the self-similar solution
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can be written in the form

x (1 Y (g-1) i>_1/(q_l)de] aF,  (78)

where Eq. (64) was used and

0 00 F
Q, = —— |FNI2gF 79
=7 exp( kT) (79)

is the potential function for a noninteracting gas. Writing
the potential in this form allows a direct comparison with
the Dashen, Ma, and Bernstein [63] formula connecting
thermodynamics and microscopic information on the
interaction among the particles composing the gas, which
appears in terms of the scattering matrix, S, in

. N
Q=Q, MA exp( E/kT)(TrS a—ES>CdE, (80)

where the index C indicates that the trace is performed for
the connected diagrams in the Feynman-Dyson expansion.
Direct comparison of Egs. (79) and ([63]) gives

0 o (g— e F

Trs— 2. - F - -

(rS aES>C°‘ A eXp( Nkt kT
& | Tq1

X [1—}—((]—1)—] e, (81)

kt

which is a relation establishing constraints in the S-matrix
which will allow the interacting gas to show nonextensive
features. Equation (81) relates the S-matrix to the entropic
factor, allowing one to extract information on the micro-
scopic interaction from the nonextensive behavior of the
experimental distributions.

V. CONCLUSIONS

The present work introduces a system which has a fractal
structure in its thermodynamical functions, which is called
thermofractal. It is shown that its thermodynamics is more
naturally described by Tsallis statistics rather than the
Boltzmann statistics. A relation between the fractal dimen-
sion and the entropic index, g, is found. The ratio between
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the Tsallis temperature, 7, and the Boltzmann temperature,
T, is related to the entropic index and to the number of
subsystems, N, in the next level of the fractal structure. It is
shown that, while 7 regulates the system energy, T regulates
the fraction of the total energy that is accumulated as
internal energy of the subsystems.

The study of the self-similar thermofractal reveals that
it is a fractal with dimension determined by ¢ and N'.
The Lipshitz-Holder exponent is calculated in terms of
7, g, and N'. Assuming that hadrons present a thermofractal
structure, the relevant values for the calculation are
obtained from the analyses of p; distribution and from
the observed hadronic mass spectrum, while the ratio z/T
was already found in a work comparing the thermodynam-
ical results to the LQCD data.

The comparison between the calculated fractal dimen-
sion and the value obtained from the analysis of inter-
mittency in HEP experimental data show a fair agreement.
This result is an indication that hadrons present a fractal
structure similar to the thermofractal introduced here.
Indeed, the calculated fractal dimension is obtained from

PHYSICAL REVIEW D 93, 054001 (2016)

a combination of g and 7/T determined in analyses that are
completely different from the analysis of intermittency.

Finally, for a system of interacting particles presenting
thermofractal structure, a relation between the entropic
index and the S-matrix is found for the particle interaction.
This result, on one hand, to establish allows one to
connect the entropic index to fundamental aspects of the
interaction between the constituents and, on the other
hand, to establish constraints on the S-matrix to allow
the emergence of nonextensivity in the corresponding
system.
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