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A system presenting fractal structure in its thermodynamical functions is introduced, and it is shown
that Tsallis statistics is the correct framework for describing the thermodynamical aspects of such a fractal.
Its Haussdorf dimension and its Lipshitz-Hölder exponent are determined in terms of the entropic index q.
The connections with the intermittency in experimental data are discussed. The thermodynamical aspects
of the thermofractal is related to the microscopic interaction of its components through the S-matrix.
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I. INTRODUCTION

In this work, it is shown that a particular thermodynam-
ical system presenting a hierarchy of subsystems, each of
them being described by thermodynamical distributions
similar or affine to those for the subsystems at different
levels of the hierarchical structure, is described by Tsallis
statistics (Sq). Moreover, the thermodynamical potential
for this system allows a direct connection with the S-matrix
for the interacting particles in a gas of thermofractals.
The generalization of Boltzmann statistics proposed by C.

Tsallis [1] has found application in a large number of
phenomena in many different fields of knowledge. It is
interesting to notice that the main motivation to the intro-
duction of a nonadditive entropy, SqðpÞ, which would lead
to a nonextensive statistics was its applicability to fractal
or multifractal systems since this entropy would naturally
lead to power-law distributions characteristic of fractals.
The term fractal was coined by Mandelbrot [2] to

designate systems presenting scaling symmetry. For such
systems, their dimension, according to the definition by
Haussdorf, is not necessarily an integer [3]. The definition
of a fractal can be applied to distribution functions, where
the concept of affinity appears. In such cases, there are
usually many different dimensions associated to the scale
symmetry [3,4], and the system is called multifractal.
There is a large number of fractals found in mathematical

relations or in physical systems. Indeed, fractals are rather
ubiquitous, and one reason for such ubiquity may be the
fact that complex structures can arise from very simple
relations iterated several times. Physics laws are in general
simple, so it may be the case that most of the complexity
observed in nature emerges from self-similar structures, as
it happens with fractals. Quoting Mandelbrot, “Fatou’s and
Julia’s discoveries confirm in effect, that a very complex
artifact can be made with a very simple tool (think of it
as a sculptor’s chisel), as long as the tool can be applied
repeatedly” [2].

The connections between Sq and fractals have already
been addressed in other works [5–8]. In particular, it
was argued in Ref. [8] that the statistical mechanics of
self-similar complex systems with fractal phase space is
governed by Tsallis statistics.
Of special interest for the present work are the thermo-

dynamical aspects of high energy collisions. Such thermo-
dynamical aspects were first observed by Fermi [9] and
subsequently developed by Hagedorn [10] 50 years ago
by supposing a self-similar structure for the hadrons. This
was done by the following definition of fireballs:
“fireball is a * statistically equilibrated system composed

by an undetermined number of fireballs, each one of them
being, in its turn, a (goto *).”
This definition makes clear the self-similarity of the

fireball structure, resulting in a scale invariance typical of
fractals, as already mentioned in Refs. [11–13]. From the
above definition and using a self-consistent argument,
Hagedorn obtained the complete thermodynamical descrip-
tion of fireballs. Among the predictions were the limiting
temperature and the mass spectrum formula, which allowed
comparison with experimental data.
Such a recursive aspect of the definition was also used

by S. Frautschi [14] who proposed that hadrons are made
of hadrons. With this definition, he was able to derive
some of the results obtained previously by Hagedorn.
Hagedorn’s thermodynamical approach was proposed

some years before the quark structure of hadrons became
accepted, but it had far-reaching consequences. In fact,
the very idea of a phase transition between the confined-
deconfined regimes of hadronic matter was advanced by
Cabibbo and Parisi [15] as a reinterpretation of the limiting
temperature discovered with the self-consistent thermody-
namics. However, with experiments at higher energies
(

ffiffiffi
s

p
> 10 GeV), it was soon noticed that Hagedorn’s

thermodynamics was not able to describe the transverse
momentum (pT) distributions obtained in the high energy
physics (HEP) experiments. Hagedorn himself proposed
a phenomenological model [16] which gives a power-law*email:deppman@if.usp.br
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distribution that fits data even in the high pT range, a result
impossible to be obtained with his former theory.
In 2000, it was shown that simply changing the expo-

nential function in the self-consistent thermodynamics
distribution by the q-exponential function from Tsallis
statistics would result in a power-law distribution for pT

which can describe the data in the whole pT range [11,17].
In 2012, the self-consistent principle proposed by
Hagedorn was generalized by the inclusion of Sq leading
to a well-defined thermodynamical theory when Boltzmann
statistics is replaced by Tsallis statistics [18]. In this case,
not only must the temperature T be constant, but also the
entropic index q from the nonextensive statistics must be
independent of the collision energy or of the hadron mass.
In addition, a new formula for the hadron mass spectrum
is obtained in terms of the q-exponential function, where
the parameters T and q can be determined.
In the last few years, several experimental data from HEP

have been analyzed using the thermodynamical formula
derived from Tsallis statistics [19–23] or using the power-
law formula inspired by QCD [24–28]. In a recent work
[23], it was shown that both formulas fit the pT-distribution
data very well, but the parameters obtained from the fitting
procedure present very different behaviors with energy or
particle mass. When the thermodynamical formula is used,
both T and q are independent of the collision energy and
on the mass of the particle analyzed. In addition, it was
shown that T and q obtained from the analysis of the
mass spectrum are consistent with those obtained with the
analyses of pT-distribution. In this context, it is remarkable
that the new mass formula proposed in Ref. [18] fits well
even in the region of mesons as light as pions.
The subject remains controversial. From one side, there

is the idea that a thermodynamical approach based on
the nonextensive statistics can describe the data in the
whole pT range with parameters T and qwhich are not only
independent of energy and mass, as demanded by the
nonextensive self-consistent thermodynamics [18], but also
present values that are in accordance with a completely
different analysis based on the mass spectrum of hadrons
[23]. On the other hand, the power-law approach inspired in
QCD presents the advantage of being more closely related
to the fundamental interactions of hadrons [29].
In this context, it is important to investigate the possible

origins of nonextensivity in QCD. There are some con-
nections between Tsallis and Boltzmann statistics already
proposed, such as:

(i) the particular case of the Fokker-Planck
equation [30].

(ii) the temperature fluctuation in a stationary state
[31,32].

(iii) the finite size of thermodynamical systems [33].
These approaches triggered an interesting discussion
around more general definitions of entropy, like in super-
statistics [34] or in formulations of new entropies based

on the relaxation of the four Shannon-Khinchin axioms
[35–37]. The connections between Boltzmann and Tsallis
statistics proposed so far, however, are related to thermo-
dynamical aspects of the system but are not directly related
to the microscopic aspects of hadronic matter and to QCD
interaction.
A comparison of results from the nonextensive self-

consistent thermodynamics and from Lattice QCD (LQCD)
has been performed [38] showing a fair agreement between
the two methods. Since LQCD calculations do not include
explicitly the nonextensive features present in the thermo-
dynamical calculations, one can understand from here that
nonextensivity must be an emergent characteristic from
the QCD interaction in systems like those obtained in HEP
experiments. A recent work [29] used a phenomenological
model based on first-order calculation of the parton-parton
cross section to obtain a power-law behavior describing the
pT-distributions even at low values of transverse momen-
tum, which was attributed by the authors to a dominance
of hard scattering. These are indications that one could
learn about QCD from the nonextensive features of the
experimental distributions.
The present work addresses the possibility of finding

close relations between the nonextensive thermodynamics
and the fundamental QCD interaction of hadrons. To this
end, a system showing a fractal structure in its thermody-
namics will be introduced, and its relation with Tsallis
statistics will be deduced. Some features of this system
will be studied, and finally a relation between the entropic
index, q, and the S-matrix for the interacting gas of
quantum system will be obtained.
This paper is organized as follows. In Sec. II, some

well-known results for an ideal gas are reviewed, and then
they are used in Sec. III, where a system described by a
fractal-like thermodynamics is defined where the constitu-
ent parts of this system have an internal structure which is
similar to that of the main system, like the fireballs defined
by Hagedorn. Then, it is shown that this system presents
self-affine distributions that characterize multifractals. In
addition, it is possible to obtain a system with self-similar
distributions. It is shown that in both cases the Tsallis
statistics is the most natural statistics to describe the
thermodynamical aspects of such systems. In Sec. IV,
the main features of that system are discussed, as its fractal
characteristics. The results are then used to investigate the
possibility of fractal structure in hadrons, when experi-
mental data on intermittency in multiparticle production in
HEP are used to corroborate the hypothesis used here.
Finally, the connection between the S-matrix and nonex-
tensivity is established. In Sec. V, the conclusions of this
work are presented.

II. ENERGY FLUCTUATION OF AN IDEAL GAS

It is well known that the total energy of an ideal gas
fluctuates according to [39]
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PðUÞdU ¼ A exp

�
−
X3N
i¼1

p2
i

2mkT

�
d3Np; ð1Þ

where PðUÞdU is the probability to find the energy of the
system betweenU andU þ dU,m is the mass of individual
particles of the gas, and

d3Np ¼ dp1xdp1ydp1z…dpNxdpNydpNz ð2Þ
is an infinitesimal volume in the momentum space. A is a
normalization constant which can be straightforwardly
determined, giving

A ¼ ð2πmkTÞ−3N
2 : ð3Þ

The infinitesimal volume can be written also in terms of
the total momentum

p2 ¼
X3N
i¼1

p2
i ð4Þ

by noticing that

d3Npi ∼ p3N−1dp; ð5Þ
where p is the radius of a hypersphere in a 3N-dimensional
space. Of course,

U ¼ p2

2m
; ð6Þ

therefore

dU
U

¼ dp
p

: ð7Þ

From Eqs. (1)–(7), it is possible to conclude that

PðUÞdU ¼ ðkTÞ−3N
2 U

3N
2
−1 exp

�
−

U
kT

�
dU; ð8Þ

which is consistent with the Maxwell distribution of
velocities. Note that Eq. (8) does not depend explicitly
on the particle mass.
Based on this result for the ideal gas, the thermofractal

system will be introduced in the next section.

III. THERMODYNAMICS WITH FRACTAL
STRUCTURE

Define thermofractal as a class of thermodynamical
systems presenting a fractal structure in its thermodynam-
ical description in the following sense:
(1) The total energy is given by

U ¼ F þ E; ð9Þ
where F corresponds to the kinetic energy of N0
constituent subsystems and E corresponds to the

internal energy of those subsystems, which behaves
as particles with an internal structure.

(2) The constituent particles are thermofractals. The
ratio hEi=hFi is constant for all the subsystems.
However, the ratio E=F can vary according to a
distribution, ~PðEÞ, which is self-similar (self-affine);
that is, at different levels of the subsystem hierarchy
the distribution of the internal energy are equal
(proportional) to those in the other levels.

(3) At some level n in the hierarchy of subsystems, the
phase space is so narrow that one can consider

~PðEnÞdEn ¼ ρdEn; ð10Þ
with ρ being independent of fluctuations of the
energy En.

For the description of the thermodynamical properties of
such a system, the starting point is the Boltzmann factor

PðSÞ ¼ A expð−S=kÞ ð11Þ
with S being the entropy and k the Boltzmann constant.
Supposing the variations of the volume can be disregarded,
one has

dU ¼ TdS; ð12Þ
so the probability in Eq. (11) can be written in terms of the
total energy as

PðUÞdU ¼ A expð−U=kTÞDU; ð13Þ
where DU is a generalized differential. Due to properties 1
and 2 of thermofractals, one has

PðUÞdU ¼ A expð−αF=kTÞDFDE ð14Þ
with

α ¼ 1þ ε

kT
; ð15Þ

where

ε ¼ E
F
kT: ð16Þ

Since F is related to the kinetic energy part of the
constituent particles, it is reasonable to write, based on
Eq. (8),

DF ¼ F
3N0
2
−1dF; ð17Þ

and for the internal energy, it is possible to write

DE ¼ ~PðEÞdE; ð18Þ

where ~PðEÞ is the probability density for the subsystem
internal energy.
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Note that due to Eq. (16) one has

~PðEÞdE ¼ F
kT

~PðεÞdε; ð19Þ

so Eq. (14) is now given by

PðUÞdU ¼ AF
3N
2
−1 exp

�
−
αF
kT

�
dF ~PðεÞdε; ð20Þ

where N ¼ N0 þ 2=3 is an effective number of subsystems.
Factors not depending on ε or F are included in the
constant A.
The thermodynamical potential is given by

Ω ¼
Z

∞

0

AF
3N
2
−1 exp

�
−
αF
kT

�
dF ~PðεÞdε; ð21Þ

which after integration on F results in

Ω ¼
Z

∞

0

A

�
1þ ε

kT

�
3N=2

~PðεÞdε: ð22Þ

A. Self-affine solution

Using property 2, it can be imposed the self-affinite in
the probability functions by establishing

log½PðUÞ� ∝ log½ ~PðεÞ�: ð23Þ
Equations (22) and (23) are simultaneously satisfied if

PðεÞ ¼ A

�
1þ ε

kT

�
−3Nn

2

; ð24Þ

where n is the number of levels in the subsystem hierarchy
according to property 3.
Defining

qn − 1 ¼ 2

3Nn
ð25Þ

and

τ ¼ ðqn − 1ÞT; ð26Þ
it is finally obtained that

PnðεÞ ¼ A

�
1þ ðqn − 1Þ ε

kτ

�
− 1
qn−1

; ð27Þ

which is the well-known Tsallis distribution. Notice that
this system presents several entropic indexes qn depending
on the hierarchical level n of the thermofractal. In the next
section, it will be shown that it is possible to obtain a
thermofractal with q independent of the fractal level.

B. Self-similarity

By slightly modifying Eq. (22) and writing

Ω ¼
Z

∞

0

A

�
1þ ε

kT

�
−3N

2 ½PðεÞ�νdε; ð28Þ

where ν is a fractal index, it is possible to impose the
identity

PðUÞ ¼ ~PðεÞ ð29Þ
corresponding to a self-similar solution for the thermo-
fractal probability distributions. The simultaneous solution
for Eqs. (28) and (29) is obtained with

PðεÞ ¼ A

�
1þ ε

kT

�
−3N

2
1

1−ν
: ð30Þ

Introducing the index q by

q − 1 ¼ 2

3N
ð1 − νÞ ð31Þ

and the effective temperature

τ ¼ 2ð1 − νÞ
3

T; ð32Þ

one finally obtains

PðεÞ ¼ A

�
1þ ðq − 1Þ ε

kτ

�
− 1
q−1
; ð33Þ

which is exactly the Tsallis q-exponential factor character-
istic of the nonextensive statistics.
Equation (33) shows that, instead of the Boltzmann

statistical weight, the Tsallis statistical weight given by the
q-exponential function should be used to describe more
directly the thermodynamics of thermofractals. In fact,
writing

hεi
τ

¼ Sq; ð34Þ

it follows from Eq. (33) that

Sq
k

¼ 1 −
P

iP
1−q0
i

q0 − 1
; ð35Þ

which is the Tsallis entropy with q0 ¼ 2 − q, with Pi
representing a discretized probability based on Eq. (33).
Notice that the change q → q0 is necessary due to the
different definition of the q-exponential used here (see for
instance Ref. [40]). This result is in agreement with the
findings in Ref. [8], where it is shown that self-similarity in
fractal systems is described by Tsallis statistics.
Note that from Eqs. (31) and (32) one has

q − 1 ¼ 1

N
τ

T
; ð36Þ
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showing that the entropic index q is related to the ratio
between the Tsallis temperature τ and the Hagedorn
temperature T.

IV. DISCUSSION

In order to make clear the structure of the thermofractal,
it will be interesting to analyze what happens when one
considers the first level after the initial one in the fractal
structure. From Eq. (28), one has

Ω ¼
Z

∞

0

Z
∞

0

AF
3N0
2
−1 exp½−F=kT�

× ½exp½−γðεÞF=kT�½PðεÞ�νdðFεÞ�dF; ð37Þ
where

γðεÞ ¼ ε

kT
: ð38Þ

Considering that γðεÞF ¼ E and that dðFεÞ ¼ dE, one can
see that the term between brackets is the internal energy
distribution. Considering the internal energy is distributed
statistically among the N constituent subsystems, and
considering that they are independent of each other, it is
possible to write

dE ¼ dE1…dEN
0 ð39Þ

and

PðεÞ ¼ P1ðεÞ…PN
0ðεÞ ð40Þ

with Ei and Pi corresponding to the energy and the
probability density for the ith subsystem, respectively.
Due to properties 1 and 2 of thermofractals, all density

distributions are identical, since here the self-consistent
solution is under consideration1; therefore, Eq. (37) can be
written as

Ω¼
Z

∞

0

AF
3N0
2
−1exp½−F=kT�

×

�Z
∞

0

exp

�
−
X
i

Ei=kT

��Y
i

PiðεÞ
�
ν

dE1…dEN
0
�
dF:

ð41Þ

The kinetic energy F can be written in terms of the
individual subsystems, as described above in the case of an
ideal gas, resulting in

Ω ¼
�Z

∞

0

AF
3
2
−1
i exp½−Fi=kT�

×

�Z
∞

0

exp½−Ei=kT�½PiðεÞ�νdEi

�
dFi

�
N0

; ð42Þ

with Fi being the kinetic energy of the ith subsystem,
with F ¼ P

iFi.
Notice that the term between square brackets represents

the internal energy distribution of one subsystem of the
original thermofractal. Therefore, according to property 1,
the subsystem is also a thermofractal, and due to property 2,
its energy Ei can be separated into two parts, Ei ¼ F0

i þ E0
i,

with F0
i being the kinetic energy of the components of the

subsystem, and E0
i, the subsystem internal energy. Then,Z

∞

0

exp½−Ei=kT�½PiðεÞ�νdEi

¼
Z

∞

0

Z
∞

0

exp½−αF0
i=kT�½PiðεÞ�νdϵdF0

i: ð43Þ

The equation above shows that it is possible to factorize
the probability distributions of each subsystem, and it
explicitly shows that each of them has an internal energy
distribution that has the same form of the original system,
according to Eq. (28).
In Eq. (33), A is a normalizing constant, which gives

A ¼ 2 − q
kτ

: ð44Þ

The average energy of the thermofractal is then

hεi ¼ A
Z

∞

0

ε

�
1þ ðq − 1Þ ε

kτ

�
− 1
q−1
dε; ð45Þ

resulting in

hεi ¼ kτ
3 − 2q

: ð46Þ

From Eq. (16) and the mean value for ε, one has

hεi
kT

¼ hEi
hFi ¼

q − 1

3 − 2q
N: ð47Þ

Considering also Eq. (36), it is possible to observe that,
while the temperature τ regulates the average energy of the
system, the temperature T regulates the ratio between the
kinetic energy, F, and the internal energy, E.
Defining r ¼ hEi=hFi, it is possible to write the ratio

R ¼ hEi=N0

hUi ¼ r=N0

1þ r
; ð48Þ

and using Eq. (47), one obtains

R ¼ ðq − 1ÞN=N0

3 − 2qþ ðq − 1ÞN ; ð49Þ

which represents the ratio between the internal energy of
one of the thermofractal constituent subsystems and the
total energy of the main fractal.

1For the self-affine solution, a similar reasoning can be
applied.
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It is known that as q → 1 Tsallis statistics approaches
Boltzmann statistics, so it is interesting to analyze the
thermofractal in that limit. Due to Eq. (31), as q → 1, also
ν → 1, and from Eq. (32), one notices that there are two
ways to get this limit: one by letting τ → 0 and the other
keeping τ constant.
In the case τ → 0, the Boltzmann limit is not obtained. In

fact, in this case, one has ν → 1, as in the case of the self-
affine solution, but with q independent of the hierarchical
level. This is possible only for τ → 0 corresponding to the
trivial case of a thermofractal with energy U → 0. This also
indicates that the self-similar solution is not a special case
of the self-affine solution but represents a different system.
The Boltzmann limit is obtained if τ is constant, which

means that ð1 − νÞT remains constant as ν → 1; therefore,
T → ∞. Hence, the Boltzmann limit is obtained if almost
all energy of the gas appears in the form of kinetic energy
of its constituents. In this case, the system is insensitive to
the subsystem internal energy, behaving therefore as an
ideal gas that can be described by Boltzmann entropy.

A. Thermofractal dimensions

1. Haussdorf dimension

Consider a hypothetical experiment where the energy of
the thermofractal is measured with resolution r. This means
that energy fluctuations smaller than r can be neglected,
defining in this way the level n of the thermofractal
structure where the subsystems internal degrees of freedom
can be ignored, according to property 3 above. The level n
is such that Rn ¼ r, so

n ¼ log r
logR

: ð50Þ

The Haussdorf fractal dimension D [3,4] is determined
by considering that when the energy is measured in units of
r the total energy scales as r−1 while the energy of each
subsystem scales as r−D such that

N r−D ∝ r−1; ð51Þ
where N is the number of boxes necessary to completely
cover all subsystem energies of a thermofractal. The well-
known relation follows

D − 1 ¼ logN
log r

: ð52Þ

Since at the level n all subsystems have distinguishable
energies at the given resolution, then N is the number of
subsystems at this level, i.e., N ¼ N0n. From here, it
follows that

D ¼ 1þ logN0

logR
: ð53Þ

2. Fractal spectrum

There are several parameters that characterize multi-
fractals, and in the following some of those will be
investigated. Among these quantities, the Lipshitz-Hölder
mass exponent and the fractal spectrum are the most used
[4]. In this context, the probability pðxiÞ for the event xi is
related to the mass exponent αi by

pδðxiÞ ∝ δαi ; ð54Þ
where δ is the linear dimension of the basic box in which
the phase space is partitioned.
The partition function

Zð ~qÞ ¼
X
i

p ~q
δðxiÞ ∼

X
i

δ ~qαi : ð55Þ

This partition function is also written in another form,

Zð ~qÞ ¼
X
αi

δ ~qαiηðαiÞ; ð56Þ

with

ηðαiÞ ∝ δ−fðαiÞ ð57Þ
so that

Zδð ~qÞ ∝ δtð ~qÞ; ð58Þ
where2

tð ~qÞ ¼ ~qαi − fðαiÞ; ð59Þ
using, for the sake of simplicity, αi ¼ αðxiÞ. The function
fðαÞ is the multifractal spectrum.
Let us consider the thermofractal which presents a

probability density given by Eq. (33). In order to avoid
confusion with the symbols used for probability, we will
indicate it by ρðxÞ, with x ¼ 1þ ε=kτ. One has

ρðxÞ ∝ x
1

q−1; ð60Þ
so the probability to find particles in the box with
dimension δ around x is

pðxÞ ¼ N ρðxÞΔx ∝ x−
1

q−1δ ∼ δαðxÞ ð61Þ
with

N ¼ N0n: ð62Þ
It follows that the mass exponent, αðxÞ, is

2The usual notation is τðqÞ, but here tð ~qÞ is made use of to
avoid confusion with the Tsallis temperature and the entropic
index.
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αðxÞ − 1 ¼ n
logN0

log δ
−

1

q − 1

log x
log δ

: ð63Þ

Using Eq. (50), one has

αðxÞ − 1 ¼ logN0

logR
−

1

q − 1

log x
log δ

: ð64Þ

The fractal spectrum is related to the number of boxes
with the same index α. Therefore, consider the probability

ΔpðxÞ ¼ N ρðxÞδΔx: ð65Þ
Now, the number of boxes with dimension δ corresponding
to the interval Δx is given by the relation

Δx ¼ ηðxÞδ: ð66Þ
Using this result in Eq. (65) and considering Eq. (60), one
obtains

ηðxÞδ ¼ x
1

q−1N −1: ð67Þ
From the equation above, one can see that

ηðxÞ ¼ δ−fðαÞ ð68Þ
with

fðαÞ − 1 log δ ¼ n logN0 −
1

q − 1
log x: ð69Þ

Applying Eq. (50), one gets

fðαÞ − 1 ¼ logN0

logR
− 1 −

1

q − 1

log x
log nδ

: ð70Þ

Comparing Eqs. (64) and (70), one gets

fðαÞ ¼ α: ð71Þ
Note that this result was already expected from the multi-
fractal dimension theory [3,4]. Also, α corresponds to the
Haussdorf dimension given in Eq. (53).
In the limit δ → 0, one gets(

fðαÞ ¼ α ¼ D

D ¼ 1þ logN0
logR :

ð72Þ

The calculations performed here are valid everywhere
but for the case of α corresponding to the lowest range
of probabilities, which is indicated by αmax. Due to the
asymptotic behavior of the probability density, one has
pðx → ∞Þ → 0 so αmax → ∞ and also the number of boxes
ηðx → ∞Þ → ∞; hence, fðαÞ → ∞. But since the proba-
bility does not diverge, one has

Zαmax
¼ δαmax−fðαmaxÞ → 0; ð73Þ

therefore, αmax − fðαmaxÞ → ∞.

The Lipshitz-Hölder exponent is given by Eq. (58). With
the results obtained so far, one has

Zð ~qÞ ¼ δ ~qα−fðαÞ; ð74Þ
so

tð ~qÞ ¼ ð ~q − 1Þα: ð75Þ
The exponent tð ~qÞ can be observed experimentally, as
discussed below.

B. Thermofractals and hadrons

Before considering using the thermofractal to get some
knowledge about the hadron structure, a few comments are
needed. In the construction of the thermofractal formalism,
antisymmetrization was not taken into account. The effects
of antisymmetrization, however, are expected to be small
[10,14] since the phase space is sufficiently large to
consider the hadronic states of interest as a dilute gas.
Another aspect is that the treatment used here is semi-

relativistic, with the energy of the particles calculated as

E ¼ p2

2m
þm; ð76Þ

where the internal energy is identified with the subsystem
mass, m. This may be a good approximation when the
temperature T is small so that E is sufficiently larger
than F.
The formalism derived in the last section is very general

even though it has been motivated by the definitions
of hadrons given by Hagedorn [10] and Frautschi [14].
Many aspects of this system can be investigated, as its
fractal dimensions or its thermodynamical functions. In
what follows, some aspects of the fractal structure and
its phase-space occupation will be addressed, as well as a
possible connection between the microscopic interaction of
the constituents of the thermofractal and the entropic index
q which characterizes its nonextensive statistics. Further
analyses on the fractal structure or the possible implications
of this formalism on the study of QCD in high energy
collisions will be given in future papers. From now on it is
supposed that hadrons have a thermofractal structure.
Fractal aspects in hadron production and in hadron struc-
ture have been already studied in many works [41–45].

1. Hadron fractal dimension

In order to calculate the fractal properties of hadrons,
one needs two parameters that characterize the hadronic
thermodynamics, namely, the ratio τ=T and the entropic
index q. These values have been thoroughly investigated
in analyses of pT distributions from high energy pp
collisions [19–23], in an analysis of the hadronic
mass spectrum [23], and in the comparison of the
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thermodynamical calculations with LQCD data [38]. The
values found are q ¼ 1.14 and τ=T ¼ 0.32 [38,40].
Proceeding to calculate the thermofractal properties, one

has, using Eq. (36), N ¼ 2.3, and using N ¼ N0 þ 2=3,
one gets N0 ¼ 1.7. From Eqs. (49), one has R ¼ 0.104.
Finally, using Eq. (53), one gets D ¼ 0.69, so from
Eq. (72), also α ¼ 0.69.
The exponent tð ~qÞ can be observed experimentally

through the intermittency in experimental data, which
has been studied in many works on high energy collisions
[41–48]. Intermittency allows a direct measure of that
exponent and has been used as an indication of fractal
aspects in multiparticle production. The value calculated
here is in fair agreement with the results of analyses of
experimental data in hadron-hadron collisions [49–53],
which range between 0.43 and 0.65.
The agreement described above needs to be discussed in

more detail. In fact, the analysis of intermittency is made
through a sophisticated methodology that was developed
some decades ago to extract fractal parameters from
experimental data [41–44] and has been applied since then
to study mainly data from heavy ion collisions in emulsion
[54–57]. But aside from the technical difficulties, there is
the unavoidable problem described in Refs. [58,59], where
it is shown that when multiple fractal sources are present
the measured intermittency is weaker than the real fractal
dimension would imply. In fact, experimental data where
one supposed fewer sources are present tend to present
stronger intermittency effects when measured with the
available technique. This may explain the fact that the
intermittency in nucleus-nucleus collisions, which is
∼0.97, is much weaker than that from hadron-hadron or
eþe− collisions, which is ∼0.4 [49].
The fair agreement found between calculation and

the experimental values indicates that the thermofractal
proposed here can indeed give a reliable description of the
fractal aspects of the multiparticle production. In addition,
it can show that the intermittency found in HEP data is
related to the fractal structure of the hadron. In fact, it is the
fractal structure of the hadrons that leads to the nonex-
tensive self-consistent thermodynamics [18] as the proper
thermodynamical description of the hadronic systems.
The study of intermittency has been used to show

multifractal aspects in the cascade dynamics behind multi-
particle production. The dynamical cascade is connected to
complex QCD diagrams which would describe the entire
particle production process [60–62]. Here, we show the
connection between intermittency and Tsallis statistics.
However, a direct connection with the scattering dynamics
governed by QCD is possible, as shown below.

2. S-matrix and entropic index

Another important result for thermofractals is that the
thermodynamical potential for the self-similar solution

Ω ¼
Z

∞

0

Z
∞

0

AF
3N
2 exp

�
−
αF
kT

�
dF

×

�
1þ ðq − 1Þ ε

kτ

�
−1=ðq−1Þ

dε ð77Þ

can be written in the form

Ω ¼ Ωo −
Z

∞

0

A exp

�
−

F
kT

�
F

3N
2
−1

×

�
1 −

Z
∞

0

exp

�
−ðq − 1Þ ε

Nkτ
F
kT

�

×
�
1þ ðq − 1Þ ε

kτ

�
−1=ðq−1Þ

dε
�
dF; ð78Þ

where Eq. (64) was used and

Ωo ¼
Z

∞

0

Z
∞

0

exp

�
−

F
kT

�
F3N=2dF ð79Þ

is the potential function for a noninteracting gas. Writing
the potential in this form allows a direct comparison with
the Dashen, Ma, and Bernstein [63] formula connecting
thermodynamics and microscopic information on the
interaction among the particles composing the gas, which
appears in terms of the scattering matrix, S, in

Ω¼Ωo−
1

4πβi

Z
∞

0

expð−E=kTÞ
�
TrS−1

∂↔
∂ES

�
C
dE; ð80Þ

where the index C indicates that the trace is performed for
the connected diagrams in the Feynman-Dyson expansion.
Direct comparison of Eqs. (79) and ([63]) gives�
TrS−1

∂
∂ES

�
C
∝ 1 − F

Z
∞

0

exp

�
−
ðq − 1Þε
Nkτ

F
kT

�

×

�
1þ ðq − 1Þ ε

kτ

�
− 1
q−1
dε; ð81Þ

which is a relation establishing constraints in the S-matrix
which will allow the interacting gas to show nonextensive
features. Equation (81) relates the S-matrix to the entropic
factor, allowing one to extract information on the micro-
scopic interaction from the nonextensive behavior of the
experimental distributions.

V. CONCLUSIONS

The present work introduces a system which has a fractal
structure in its thermodynamical functions, which is called
thermofractal. It is shown that its thermodynamics is more
naturally described by Tsallis statistics rather than the
Boltzmann statistics. A relation between the fractal dimen-
sion and the entropic index, q, is found. The ratio between
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the Tsallis temperature, τ, and the Boltzmann temperature,
T, is related to the entropic index and to the number of
subsystems, N0, in the next level of the fractal structure. It is
shown that, while τ regulates the system energy, T regulates
the fraction of the total energy that is accumulated as
internal energy of the subsystems.
The study of the self-similar thermofractal reveals that

it is a fractal with dimension determined by q and N0.
The Lipshitz-Hölder exponent is calculated in terms of
τ, q, and N0. Assuming that hadrons present a thermofractal
structure, the relevant values for the calculation are
obtained from the analyses of pT distribution and from
the observed hadronic mass spectrum, while the ratio τ=T
was already found in a work comparing the thermodynam-
ical results to the LQCD data.
The comparison between the calculated fractal dimen-

sion and the value obtained from the analysis of inter-
mittency in HEP experimental data show a fair agreement.
This result is an indication that hadrons present a fractal
structure similar to the thermofractal introduced here.
Indeed, the calculated fractal dimension is obtained from

a combination of q and τ=T determined in analyses that are
completely different from the analysis of intermittency.
Finally, for a system of interacting particles presenting

thermofractal structure, a relation between the entropic
index and the S-matrix is found for the particle interaction.
This result, on one hand, to establish allows one to
connect the entropic index to fundamental aspects of the
interaction between the constituents and, on the other
hand, to establish constraints on the S-matrix to allow
the emergence of nonextensivity in the corresponding
system.
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