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We reexamine the improved effective vector boson approximation which is based on two-vector-boson
luminosities L, for the computation of weak gauge-boson hard scattering subprocesses V,V, = W in
high-energy hadron-hadron or e~e™ collisions. We calculate these luminosities for the nine combinations
of the transverse and longitudinal polarizations of V| and V, in the unitary and axial gauge. For these
two gauge choices the quality of this approach is investigated for the reactions e"e™ - W-W*v,U, and

e~ et — fiv,U, using appropriate phase-space cuts.
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I. INTRODUCTION

Although the discovery of the 125 GeV Higgs boson
[1,2] at the Large Hadron Collider strongly supports the
Higgs mechanism of electroweak symmetry breaking
(EWSB), it does not exclude the possibility that additional
(spin-zero) resonances linked to EWSB with masses in or
below the TeV range exist. Therefore, the detailed explo-
ration of this issue remains to be one of the prime present
and future research goals at this machine and at future high-
energy proton-proton or electron-positron colliders that are
presently being discussed. One of the most direct probes
of the dynamics of EWSB is the high-energy scattering
of electroweak gauge bosons V = W*, Z, especially of
longitudinally polarized ones [3-6]. As weak gauge-boson
beams are not available, VV, scattering or fusion can be
studied at pp or e~ e™ colliders only through reactions of
the form f,f, — f) 3V, where the f;, f: denote quarks
(leptons) in the case of pp (e”e™) colliders. Typical final
states VY of interest are a heavy non-standard Higgs boson,
a weak gauge-boson pair V|V), or a top-quark top
antiquark (77) pair. At very high energies such reactions,
which involve the scattering or fusion of two vector bosons,
have often been analyzed by means of the effective vector
boson approximation (EVBA) [7-9]. In this approximation
the vector boson V radiated off an (anti)quark or electron/
positron is treated as a constituent of the respective fermion.
In the pioneering works [7-9] the weak gauge boson
distribution functions were computed in the leading log-
arithmic approximation. The QCD radiative corrections to
these functions were calculated in [10]. The method was
validated in [11] within the axial gauge for the case of
heavy Higgs-boson production [11] that is dominated by
the fusion of two longitudinally polarized weak gauge
bosons, and more recently in [12] using the same gauge.
The applicability and limitations of the EVBA in the
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leading logarithmic approximation and of improved ver-
sions [14,15] to heavy fermion production and to V|V, —
V1 V) scattering have been analyzed in many papers,
including [11-13,16-24]. To date one may question the
need of this approximation, which singles out a certain
class of contributions to the complete scattering amplitude,
especially in view that powerful computer packages exist,
including [25,26] at leading order and [26-28] at next-to-
leading order, which allow us to numerically compute the
respective processes exactly at the respective order of
perturbation theory. Yet, the EVBA may still be useful
in appropriate kinematic regions as a tool for analyzing in a
transparent way weak gauge-boson reactions that are
relevant for the physics of electroweak symmetry breaking;
cf. for instance, the recent applications [12,29].

A critical point of the EVBA in the leading logarithmic
expansion are the approximations in the computation of the
vector-boson distribution functions F,;(&). [Here F(¢) has
the usual interpretation as the probability of finding a vector
boson with helicity 4 and longitudinal momentum fraction
£ in an incoming high-energy fermion f.] While the leading
logarithmic approximation works reasonably well for a
longitudinally polarized vector boson if £ > 0.05 and the
center-of-mass energy of the initial state is larger than
~1 TeV, the distribution functions F(&) for a transversely
polarized weak gauge boson computed in the leading
logarithmic expansion considerably overestimate the
respective exact distribution functions [14]. The distribu-
tion functions presented in [14] were calculated without
approximations related to kinematics. A further improve-
ment of the EVBA was worked out in [15] for the case
of two-vector boson processes, which are the reactions of
interest for probing the dynamics of EWSB. Simple
convolutions of two single vector boson distribution func-
tions do not account for the mutual influence of the emission
of boson V| on the probability for the emission of V, and
vice versa. This is incorporated in the two-vector-boson
luminosities derived in [15] in the unitary gauge. Moreover,
nondiagonal terms in the summation over the polarizations
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of V; and V, were also taken into account in this work,
and no kinematic approximations were used. In this
approach, a dynamical approximation remains, namely the
on-mass-shell continuation ofthe V,V, — Whardscattering
cross section. Yet the set of these correlated two-vector boson
luminosities is gauge-dependent.

The fact that the subset of diagrams to the reactions
fif2 = f1f5VV which describe the scattering of two off-
shell gauge bosons V,V, - W is gauge dependent is
another critical point of the (improved) EVBA. It is
well-known that in particular in the unitary gauge the
off-shell hard scattering subamplitudes show, apart from
specific examples, a bad high-energy behavior [13]. It was
argued in [11,12] that in the axial gauge and using the
EVBA in the leading logarithmic approximation the prob-
lem of bad off-shell behavior can be avoided and the
effective vector boson approximation works in this gauge if
certain (kinematic) conditions are met. In [21] numerical
studies of W W~ production were performed by comput-
ing both the full set of Feynman diagrams and the subset of
scattering diagrams associated with WTW~ - WTWw-,
using the unitary, axial, and a covariant gauge. It was
found that when computing the cross section with the
scattering diagrams only, the axial gauge (for a specific
choice of the associated vector n*) yields within these
gauge-choices the best approximation to the full, gauge-
independent cross section. Applications of the improved
EVBA formulation of [15], which uses the dynamical
approximation mentioned above (cf. Sec. II), include
[21,22,30], with conclusions that are not unanimous.
While [21] states that this framework provides not more
than a very rough estimate, Ref. [22] and [30] report, for
W = W*HtW~ and W = ZZ, an agreement of this approxi-
mation with the full result within about 20% to 25% and
10%, respectively.

The effective vector boson approximation in the axial
gauge using the EVBA in the leading logarithmic approxi-
mation was recently analyzed in detail for single W-boson
emission [12]. One may ask whether the improved EVBA
setup with correlated two-vector-boson luminosities [15]
derived in the axial gauge provides a useful approximation to
processes that involve the scattering of two gauge bosons.

In this paper we revisit the approach of [15] which we
call here the improved effective vector boson approxima-
tion. We reexamine the two-vector-boson luminosities
given in [15] in the unitary gauge and clarify an issue
related to relative minus signs. As a new aspect we compute
the two-vector-boson luminosities which involve a parity-
odd combination of the vector and axial vector coupling of
V| or V,. They are relevant for processes where the hard-
scattering matrix element V(1;)V,(4,) - W involves
parity-violating interactions. This is the case, for instance,
for WW = ft in the standard model. In addition we compute
the two-vector-boson luminosities in the axial gauge.
To our knowledge this is a new result. Moreover, we
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investigate the quality of the improved EVBA in both
gauges for two examples. To be specific we consider high-
energy e~ e collisions and analyze the processes e”e™ —
W-Wty,U, and e"e” — tiv,U, to lowest order in the
standard model. We compute the respective tree-level cross
sections both within the improved EVBA and fully with
the computer code MADGRAPH [26], i.e., taking into
account all contributing Feynman diagrams, and compare
the relative differences using appropriate cuts on the final-
state particles.

The paper is organized as follows. In Sec. II we outline
the approach of Kuss and Spiesberger (KS) [15] in deriving
improved two-vector-boson luminosities. We clarify an
issue related to relative minus signs and we compute
luminosities which involve parity-even and parity-odd
combinations of the vector and axial vector coupling of
V4 or V,. The formulas apply to both incoming quarks and
leptons. For W~W™ bosons radiated off e~e™, we compare
our results for the “parity-even” luminosities with those of
[15]. In Sec. Il we compute the two-vector-boson lumi-
nosities in the axial gauge. Section IV contains our
comparison of the cross sections for e~et - W Wty,7,
and e~et — fiv, U, computed exactly and with the
improved EVBA. We conclude in Sec. V. Appendixes A
and B contain our results for the four-fold differential
luminosities in the unitary and axial gauge.

II. THE KS LUMINOSITY FORMULA

We consider the production of an arbitrary state ) by the
scattering of two light fermions:

Fi(h) + foly) = f£1(1) + £5(5) + Wipw), (1)

where f; (f) denote the fermions in the initial (final) state
and the symbols in brackets are the associated four-
momenta. The cross section of this process is given by

1 -
Of fy = z_s/drzdpw5(4>(l1 +hL =1 =1~ pw)
X | My, pyp ol (2)

where s = (I, + ,)2, dTI', = &°I,d°>/(167E|E}), and
dpyy = d&*pyy/[(27)32E)y]. Moreover, |M|?> denotes the
squared matrix element of (1) which is averaged and
summed over the helicities (and colors, in the case of
quarks) of the fermions f; and f’, respectively.

In the following we consider processes (1) which
proceed via the exchange of two off-shell weak gauge
bosons V, V, (V = W, Z) with masses m, m,, as depicted
in Fig. 1.

In the unitary gauge, which was used in [15], the matrix
element which corresponds to the diagram Fig. 1 takes the
form
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FIG. 1. Generic weak gauge-boson scattering diagram.
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My e = Ju(l, 1)

X jau(b ) —5—— M wve (3)
where k; = I; — I (k? < 0) and P (k) = —g* + kK’ /m3,
for massive gauge-bosons in the unitary gauge. The four-
vectors ji, j4 denote the charged or neutral fermion
currents and ML/,VU, is the vector-boson fusion amplitude
for the process V;V, — W that must be evaluated for off-
shell gauge bosons.

Depending on whether the pairs f, f| and f,, f} are
particles or antiparticles, the current j| or jj is either
composed of u# or v Dirac spinors:

ety (') (ay* + by'ys)ug(l) or
vy (D) (ar" + by'ys)vp(l'), (4)

where e denotes the positron charge. We are interested in the
processes (1) at high energies where the masses of the light
fermions f;, f% can be safely neglected, i.e., where k% Jiu=0
(i =1,2) holds to very good approximation. In order to
decompose ¢g"* we introduce two sets of polarization vectors
€;(2) (j = 1,2) that are mutually orthogonal and orthogonal

to k’j’ and obey the normalization convention
&(4) - ;(4) = (-

An explicit representation of ¢;(1) in the center-of-mass

frame of V| and V, is given in Appendix A. With these
polarization vectors one obtains

1)151721, ]: 1,2, /1 - O,il (5)

Kk )
—gr = =T Y (CDE @), =12
J A==%1,0

which holds for any spacelike four-momentum k’]‘
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With (6) one can rewrite (3):

: Nl ) - e ()
My pypipy = 2 (S5
Ao 1 1
]2(12,1 ) e5(da) |
— : (7)
k2 _ m% My

where the labels A;, 4, take the values 0,£1 and
Mmz = 8?(/11)85(/12)/\4%-

Squaring (7) and averaging and summing over the spins
(and colors, in the case of quarks) of the initial-state and
final-state fermions f;, f%, one gets

|Mflf2—>f’1f’2W|2 _ 4/11 /VZAM/ (_1)/11+/12+/1' +4) éz(fil’m’?))z
B M MY ®)
with
Ti(4. A7) = ZJ, (i 1) - & ()i (1. 1) - (%), (9)

and the sum in (9) refers to fermion-spin summation.

In [15] both the diagonal (4; =4}) and nondiagonal
(4; # A) components of the helicity tensors (9) were taken
into account in the computation of the vector boson
luminosities. The results of [15] derived in the unitary
gauge show that the nondiagonal vector-boson luminosities
are (significantly) smaller than the diagonal ones if
0.2 <x < 1, where

(10)

We consider in the following only the diagonal components
of (9) because (i) the domain of applicability of the
vector boson approximation is the region where x is not
very small and (ii) because of the following conceptual
issue. This approach loses its simplicity and appeal if the
nondiagonal components are taken into account. Then the
resulting cross section can no longer be represented as in
Eq. (23) below as a sum of products of two-vector-boson
luminosities times the respective hard scattering V'V, cross
sections.

In order to simplify the notation we use T;(4;) =
e2T;(4;, 4;) from now on. Furthermore, we define

5(§5 k%a k%’il’iZ)

1 N
=5 dpyy (27)*6W (ky + ky
Ko

= pw)IMLPE (1)
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where

Ko = \/ +m} +m3 —28m3 — 25m3 —2mim3  (12)

and § is the squared invariant mass of the intermediate
gauge-boson pair defined in (10). Equation (11) may be
interpreted as the cross section for off-shell gauge-boson
fusion V;V, — W, where the on-shell flux factor x, is
introduced by convention and for later convenience. Using
(8), keeping only the diagonal contributions, and using the
definition (11), Eq. (2) becomes

4]('0 1
X 5/1,/125(/11’/12)» (13)

where a = e?/(4r) denotes the electromagnetic fine struc-
ture constant and

L5, =Ti1(4)T2(42). (14)

The helicity tensors 7'; defined in (9), which are needed for
computing the quantities £, ;,, can be decomposed as
follows:

Ti(4) = (v +a?)Ci(4) + 2v,a;,8;(&;), i=1,2, (15)
where
Ci(4))= (l”l'"+l/ﬂl”—l Lig™)er, (27)e(4)),

Si(A) =—i(=1) i€l e (A)e5(4;), j=1.2.  (16)

uvpc' j ]

Here we use the convention €y;,3 = —1 and v;, a; are the
vector and axial vector couplings of the gauge boson V;
in the parametrizations (4) of the currents. For charged
currents in the standard model they are given by v, =
—a; = 1/(2y/2sin@y,), times the Cabibbo-Kobayashi-
Maskawa mixing matrix element V. in the case of quarks.
The neutral current couplings are v; = (T35 — 2sin*Oy)/
(2sin @y cos Oy ) and a; = —T?/(Z sin @y, cos Oy ).

In Eq. (16) the power r; = 0 (r; = 1) if the label j = I,
2 refers to a particle (antiparticle) pair f}, f7, i.e., the sign
factor depends on whether the fermionic currents (4)
involve u- or v-spinors.

Rather than working with the nine quantities £, ; ,
it is convenient to use in (13) the following linear
combinations:

PHYSICAL REVIEW D 93, 053018 (2016)
Lrr=Li+ L +L +L_
= 4(v] + a}) (13 + a3)C, (+)Ca(+),
Lom=Ly— Lo +L —L__
= 8(v7 + a7)(12a2)Cy (+) 81 (+),
Lyp=Loa+ L —Ly—L_
=8(via1)(v3 + a3)S) (+)Ca(+),

Lyz=Li—Li —L  +L_
= 16(v1a1)(0202)S1(+)S2(+),
L= Lo+ Log=2(v] +a7)(v3 + a3)Ci (+)C(0),
Lir= Loy + Lo- = 2(v7 +a7)(v3 + a@3)C1(0)Cy(+),
Ly =Ly — Ly =4(v1a1) (03 + a3)S(+)C2(0),
L7 = Loy — Lo- = 4] + a7)(v,0,)C(0)S,(+),
7)

)
L = Lop = (v] + ai)(v3 + a3)C1(0)C5(0). (17)

The V,V, — W cross sections 6(4;,4,) in (13) have to
be transformed accordingly. One gets nine linear combi-
nations in analogy to (17), but for each index T or T an
overall factor 1/2 is present. Thus, for instance,

orr = 7[6(+ +) +6(+,-) +6(= +) +6(= )],

R = A=

[6(+.0) =6(=,0)], oL =6(0,0), (18)

T =
etc. Then (13) takes the form

24K, 1 1
X ‘Cpol&polv (19)

where “pol” labels the nine polarization indices as in (17);
ie., pol =TT, TT, etc.

A basic issue of the effective vector boson method is the
modeling of the dependence of the off-shell cross section
Gpot(8. k3, k3) on k7. If both V and V, are transversely
polarized, it turns out that 6, is only slowly varying with
k2. Thus, one can put orp(3, k3, k3) = 6pp (8, m3, m3) to
good approximation. If longitudinal polarizations are
involved, &, (3.k},k3) contains in the unitary gauge
kinematic singularities at k? = 0 which result from the
longitudinal polarization vectors £ (0). The dependence on
k2 of £(0) [see (A2), (A3)] suggests the following
extrapolation [15] of the on-shell V|V, — W cross sec-
tions to off-shell values of k?:

6pol(§a k%, k%) ~ fpol(k%’ k%)a-pol(s" m%? m%)? (20)
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where 6, is the on-shell V|V, — W cross section and

fr=fe=Iam=/=1
2 o ming
S =fq = kz’ fLT:fo:_—k%, fLL:W-
(21)

The quantities £, defined in (17) are computed using
(14)—(16). Because the helicities of a massive particle are
dependent on the Lorentz frame, we define the associated
polarization vectors in the center-of-mass frame of V; and
V,, as already mentioned above. They are given in
Egs. (A2), (A3) of Appendix A. The Minkowski scalar
products which appear in the expressions for the form
factors Cy, S, (C», S,) are conveniently evaluated in a Breit
frame B; (B,) which is defined such that only the z
component of the four-momentum & (k) is nonvanishing
in By (B,). The polarization vectors of V| (V,) defined in
the V,V, center-of-mass frame must be Lorentz-
transformed to B; (B,). The resulting polarization vectors
and four-momenta of V| (V,) in B, (B,) are given in [15].
We have computed the form factors C;, and S;, using
these parametrizations. Our results agree with those given
in Appendix B'of [15], up to an overall sign factor (—1)"i
associated with §;. This factor appears if the form factor §;
is defined according to Eq. (16).

It is appropriate to rewrite the phase- space integral in
(19) in terms of new variables. One uses that k7 , < 0 in the
physical region. Moreover, one uses (10) and

u = 2k1 . lz + 12 = 2k1 . 12, (22)

and the azimuthal angle ¢, (¢b,) of the final-state fermion
f1 (f%) in the Breit system B; (B,). With (20) the cross
section (19) in the improved effective vector boson
approximation (IEVBA) in the unitary gauge takes the form

Ot W = > dXLpol )6pa1($ = xs,mi, m3),
pO] Xmin
(23)
where
Ko
L i (%) E< > / dkz/ dkz/—
pol 27 —s+5 —s+5 xS
24
) <k2—m1> <k2 g T ()
and
1 27‘[d¢ 2ﬂd¢
jpol EW/ 1/ L (25)
152

"The formula for C,(00) given in Appendix B of [15] contains
a misprint. The sign in front of the third term in the square bracket
should be positive.
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The integration boundaries in (23) and (24) are as follows:
Ximin = Smin/ S, Where 8 = piz/\/,min is the minimal value of
§ for the production of the final state WW. The variables §
and X which appear in the boundaries of the integrals in (24)
are given by

v 5 1 1
S_s—|-k%s’ x-s(y+2K), (26)
where
1,
v—k,-kzzi(s—k%—kg), Kk =2/ —kk3.  (27)

The dimensionless functions L, (x) are the vector-
boson pair luminosities of V; and V,. The product
L 01 (x)dx can be interpreted as the probability for emitting
from f| and f, the vector bosons V| and V, with specified
polarizations and with squared V|V, center-of-mass energy
in the interval [xs, (x 4- dx)s]. The nine functions 7, that
depend, for fixed f,f, center-of-mass energy +/s, on the
four variables k2, k3, x and u, are called differential
luminosities. Our results for these functions are given in
Appendix A.

Integrating the 7, given in Appendix A with respect
to u (which can be done analytically), with the boundaries
as in (24), we obtain three-fold differential luminosities.
For pol =TT, LT, TL, LL, TT these three-fold differential
luminosities were calculated before in [15]. We agree with
the results® of [15] for pol = TT, LT, TL, LL, up to different
normalization conventions used. The differential luminos-
ity Jgp originates from the product S;(+)S,(+) as
Eq. (17) shows. If the fermion line f|, f," in Fig. 1 refers
to particles and f», f,' to antiparticles or vice versa, this
product gets an overall factor (—1) as explained below
Eq. (16). This distinction is not made in [15] in the
corresponding expression for J= T

Our results for pol = TT, TT, LT, and TL are not given
in [15]. As mentioned in the introduction these luminosities
are required if the matrix element V{(4;)V,(4,) - W
receives also contributions from parity-violating inter-
actions, cf. Sec. IV.

If one applies cuts on the rapidities of the particles in the
final state then the integration range of u is affected. Details
are given in Appendix A. Thus in applications it is adequate
to perform this integration numerically, see Sec. IV.

The differential luminosities 7, given in Appendix A
and the formulas (23) and (24) apply to both quarks and
leptons in the initial state. In Figs. 2 and 3 we show the
luminosities L, (x) of finding a W~W™ pair in unpolar-
ized e”e™ at \/s = 2 TeV. For the computations of these

*The formula for J;; in Eq. 40 of [15] contains a misprint: the
first term in the square bracket of the second line should read
3s%v.
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FIG. 2. The luminosities Lyp(x) (solid red), Ly r(x) (dotted
magenta), L (x) (dot-dashed blue), and (—1)Lpg(x) (dashed
black) in the unitary gauge fora W~ W™ pair in e"e™ collisions at
Vs =2 TeV.

luminosities we used a = 1/137.035, my, = 80.385 GeV
my; =91.1876 GeV and cos 6y = my/my. Figure 2
shows the cases pol = TT, LT, LL, and TT. CP invariance
implies that the luminosity Ly, = Ly1. The luminosities
for pol = TT, LT, LL agree with those displayed in Fig. 2 of
[15]. Our luminosity for pol = TT, which is negative,
differs from the corresponding one given in [15] by an
overall minus sign. This sign is convention-independent.
The sign difference can be traced back to Eq. (16). The
form factor S, (+) has a relative minus sign compared with
Si(+) because the incoming fermion f, =e* is the
antiparticle of f.

Figure 2 shows that the luminosity Lyt for transversely
polarized W pairs is the largest one. Needless to say, this
does not imply that the contributions to (23) from trans-
versely polarized W bosons are always the dominant ones.

Figure 3 shows the luminosities for pol = TT, LT that
involve parity-odd combinations of vector and axial vector
couplings. The first (second) polarization index refers to the
polarization of W~ (W) radiated from e~ (e"). These
luminosities were not given in [15]. For the example
considered here, that is, e¥ - W¥v,/7,, and for the case
qg— W~ ¢ and § > W'g, CP invariance implies that

Lzp(x) = =Log(x), L (x) = -Li5(x).  (28)
Relations between differential luminosities integrated with
respect to u are given, for a general reaction (1), in
Eq. (A14) of Appendix A.

If V; and/or V, is a Z boson, the corresponding
luminosities can be obtained in analogous fashion by
changing the value of the vector-boson mass m; and/or
m,, using the vector and axial-vector neutral current
couplings given below (A13), and by integrating J .
The V;V, luminosities for vector bosons radiated off
quarks are computed analogously.

PHYSICAL REVIEW D 93, 053018 (2016)

10° } k

107 .
0.01 0.1 1

FIG. 3. The luminosities Lpt(x) (solid black) and Lyg(x)
(dashed blue) in the unitary gauge for a W~ W™ pair in e”e™
collisions at /s =2 TeV.

The above two-boson luminosities do not factorize into
single boson distributions, because in the above formu-
lation, the emission of a gauge boson V; with definite
helicity (defined in the V|V, center-of-mass frame) from
f1 does depend on the squared off-shell mass k3 of V,,
and vice versa. At high energies it seems justified to
neglect this mutual dependence on k2, because the fusion
process is dominated by small momentum transfers.
Neglecting the dependence of the form factors Cy, S,
(C5,S,) on k3 (k%) one obtains a luminosity formula
Loi¥(x) which can be represented as a convolution of
single vector boson distributions. These single V distri-
butions were first derived in [14]. A further approxima-
tion, the so-called leading logarithmic approximation
[7-9] (LLA), yields simplified expressions which have
often been used in the literature. Here one performs the
integral [ J poidu/u in (24) analytically. One neglects in
the resulting expression the dependence on the k2,
performs the high-energy limit s < m?, and keeps only
the leading logarithmic terms.

In this way, Ly, — Lij*. These two approximations
were analyzed in detail in [15]. It was also shown by these
authors that the ratios L701/ L are significantly larger
than one for almost all values of x; only for x close to one,
these ratios are also close to one. Moreover, the ratio
L ;" /Lol is even larger. For x — 1 this ratio is approx-

imately close to one only for pol = LL.

III. THE VECTOR-BOSON PAIR LUMINOSITY
IN THE AXITAL GAUGE

In this section we derive the vector-boson pair luminosity
in the axial gauge

Let us first recapitulate the salient features of the
electroweak standard model in the axial gauge. The
gauge-fixing term is chosen to be
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L= 5[4+ (n-BY), (29)
where Aj and B, denote the SU(2), und U(1), gauge
fields and »n* is a constant vector. As is well-known ghost
fields are absent in this gauge, but the Goldstone fields are
still present. We parametrize the SM Higgs doublet field by
® = (¢py, (v+H +ip,)/\/2), where H is the physical
Higgs field. The part of the Lagrangian bilinear in the
gauge and Goldstone fields contains terms that mix these
fields. In order to proceed one may either use propagators
that are nondiagonal in the gauge-fields (cf. [11]), or one
diagonalizes these bilinear terms by appropriate shifts of
the Goldstone fields, as was done in [31]. As a conse-
quence, the gauge and Goldstone fields decouple in the
propagators, but the Feynman rules for the interactions
vertices, given also in [31], become more complicated than
those in the covariant renormalizable gauges. We use the
approach of [31]. In this framework, the W boson propa-
gator is given in the limit £ — oo by

iN,,
K —m3, + ie’

n,k, +n,k, n?

N, (k) = <—g,w +T kk, ars k)2>' (30)

iDy (k) =

The Z-boson (photon) propagator is obtained from (30) by
the replacement m%, — m% (m%, — 0).

Because N*“n, = 0 the symmetric propagator matrix
N (k) has rank 3. Thus its spectral decomposition can be
made in terms of three mutually orthogonal four-vectors
e*(4), A==+1,0. We obtain, for any spacelike four-
momentum k*:

Nw(k) = > e (A)e”
A=%1

where the dependence of the € on k is not exhibited. The
vectors that describe transverse polarization have to satisfy

) — e (0)e(0),  (31)

ke =n,e" =0, e(d)- (X)) =64, A=+l

Furthermore we get

_k2 n2

H0) = | ———5| n* — k). (32
¢(0) (k-n)z—n2k2<n (k- n) > (32)

In the axial gauge the weak gauge-boson scattering
amplitude depicted in Fig. 1 is supplemented by diagrams
where one or both of the propagators of the weak gauge
bosons Vi, V, are replaced by the propagators of the
Goldstone bosons ¢y, ¢p,. However, because the couplings
of ¢, ¢ to the fermions f;, f} (i = 1,2) are proportional
to the fermion masses, these contributions vanish in the
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limit m;, m; — 0, which we consider. Therefore, the scat-
tering amplitude analogous to (3) is given by

. k) .
M.?‘T?zl—»f’,f; Jlﬂ(ll’l/) k2 ( lz)Jzu(lzvl/)
iN“ (k
use <2> A 53

We decompose the two propagator matrices in (33)
according to (31), (32). Then the matrix element (33) takes
the same form as the corresponding matrix element (7).
Therefore the computation of the cross section of ff, —
f1/5W in the IEVBA in the axial gauge proceeds as the
derivation in the unitary gauge in Sec. II. What is different
now is the modeling of the relation between the off-shell
and on-shell cross section for V,;V, — V. Because the
longitudinal polarization vectors ¢/(0) do not contain
kinematic singularities at ki2 = 0 we use, instead of (20),
the approximation

g’é}a'(s k3, k3 )Na—pol(ﬁ,m%,mg), (34)
where 6, is the on-shell V'V, — W cross section, which

is gauge-independent. That is, we put all the factors
Spot = 1. In our view, there is no physical argument for
using in the axial gauge factors f,; # 1 in the extrapolation
of the off-shell hard scattering cross section to the on-shell
cross section, as done in the unitary gauge.

The IEVBA approximation to the cross section of
fif2 = fif5WV is then given, in analogy to (23), by

IEVBAaxial __ ax1al P 2 2
Uflfz—>f’1f’2W / dXLpol x pol(s Xs, my, mz),
pol Xmin

(35)

where L% (x) is obtained from (24) using fp, = 1 and
T
determined by the integral (25) of Eg’(‘)ll“l These quantities
are defined as in (17) with the form factors C;, S; defined in
(16) to be computed in the axial gauge. One can choose the
two sets of transverse polarization vectors &/ (£1) to be
identical to those in the unitary gauge if n” is appropriately
chosen. Then only those (differential) luminosities change
with respect to the corresponding ones in Sec. II where
the label “pol” contains at least one index L. We compute
the axial-gauge form factors C;(0) and C,(0) in the Breit
frames B and B,, respectively, which were defined below
(21). For definiteness we choose in the following n* to be
lightlike, and we use n* = (1,0,0,—1) in the V|V, center-
of-mass frame. According to [21] a lightlike n* yields the
best approximation to the cross-section ratio 6£YBA /™!l for
fif2 = f1f5W*TW~. For this choice of n* the polarization

In twrn the differential luminosities J g’é‘lal are
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FIG. 4. The luminosities L (x) (dot-dashed blue), L (x)
(dotted magenta), and L4 (x) (dashed black) for a W=W* pair
in ee™ collisions at /s = 2 TeV.

vectors &; (0) are given in Appendix B in the V,V, center-
of-mass frame and in the frames B;. Moreover, in this
appendix we list also those J%" which differ from their
counterparts in the unitary gauge. In the following the term
“axial gauge” refers to this choice of n*.

Let us now consider, in analogy to Sec. II, the luminos-
ities Lial(x) of finding a W=W pair in unpolarized e~e™*

pol .
collisions at /s =2 TeV. As mentioned above, L,
axial axial __ __y axial : : :
Lﬁ , and LTT = LT,T are identical to those in the

unitary gauge shown in Figs. 2 and 3. The other luminos-
ities are plotted in Fig. 4 where the same parameter values
as in Sec. II were used. The relations (28) hold also in the
axial gauge. Moreover, L&l (x) = Laxial(x).

Comparing the luminosities displayed in Fig. 4 with the
corresponding ones in Figs. 2 and 3 we get the following.
The luminosity L®2(x) is larger than Ly (x) by a factor
~3 for x ~0.01-0.2. The ratio of these two luminosities
increases to ~7 for x> 0.6. The luminosities L¥ (x),
L (x) are larger than the corresponding ones in the

unitary gauge by a factor of ~2-3. This is mainly due to the
fact that in the axial gauge the factors (21) were not taken
into account which suppress the unitary-gauge luminosities
in the region |k?| > m?.

IV. APPLICATIONS AND COMPARISON
WITH FULL COMPUTATIONS

In this section we analyze the quality of the improved
effective vector boson approximation—that is, the quality
of the formulas (23) and (35)—for the production cross
section of W~W bosons and top-quark top antiquark (#7)
pairs at high energies. To be specific we consider the
processes e~et - W-W'y,0, and e"e" — i+ v,D, in
the Standard Model and compute the tree-level cross
sections both in the IEVBA using the weak-boson pair
luminosities determined above in the unitary and axial
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gauge and fully, that is, taking all SM contributions into
account, with the computer code MADGRAPH [26]. We
determine the relative deviation of the IEVBA from the
respective full cross section in dependence of several
phase-space cuts. In both examples, nondiagonal interfer-
ence contributions are not taken into account. As men-
tioned above, in our view the IEVBA loses its simplicity
and appeal with these nondiagonal contributions.

Besides the weak gauge-boson masses stated above, we
use my = 125 GeV, m, = 173 GeV, and m;, = 4.7 GeV
for the Higgs-boson, top-quark, and b-quark mass,
respectively.

A.eme™ - W Why,p,

We consider the reaction
e“et > W Why,r, (36)

for unpolarized e~e™ collisions and center-of-mass ener-
gies /s in the TeV range. At tree-level in the SM there are
56 diagrams that contribute to (36), while in the effective
vector boson approximation 7 diagrams contribute to
the hard scattering reactions W-W* — W-W*. Within
the TEVBA the cross section for (36), summed over the
helicities of the final-state W~W™, is given in the unitary
gauge by

] —
A =D | drLpa(x)ag " (3 = s miy m),

pol Xmin

(37)

where the sum extends over pol =TT, TT,TL,LT,LL.
An analogous formula holds in the axial gauge. Because
at lowest order in the SM the scattering amplitude of
W-W* - W-WT is not affected by parity violation, the
terms &Iv)‘g W — 0 for pol = TT, TT, LT, and TL. We define
the relative deviation of (37) from the full tree-level cross
section ol computed with MADGRAPH [26] and the
corresponding deviation in the axial gauge by

IEVBA _ full
Sy — Ow-w+ ~ Ow-w
ww — oull ’
w-w+
EVBA axial __ Gfull
axial __ W WF W-W+
Sww = full : (38)
Ow-w+

In the following we choose /s = 2 TeV. The (improved)
effective vector boson approximation is known to signifi-
cantly overestimate the cross section for the reaction (36)
unless appropriate cuts on kinematic variables of WT are
made. We require a minimum value M* of the invariant
mass My =38 of the final-state W~W™ pair. First we
analyze the quality of the IEVBA for W~W™ production in
the central region. We compute, for fixed M* the relative
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TABLE 1. Relative deviations Syy(Myw > M*) and
sl (Myw > M*) defined in (38) of the IEVBA cross section
from the full result for e“e™ - W-W'wp at /s =2 TeV for
several upper cuts yy, on the moduli of the W -boson rapidities in
the laboratory frame. The additional cut pyy > 20 GeV on the
transverse momentum of the W bosons was applied.

Y 25 2 18 17 1.6 1.5

Sww(Myw > 400 GeV) 3.05 0.95 0.33 0.08 —0.12 —0.26
Sww(Myw > 500 GeV) 3.22 0.71 0.11 —0.06 —0.17 —0.27
Sww(Myw > 600 GeV) 3.20 0.45 0.05 —0.07 —0.18 —0.26
S8 My > 400 GeV) 5.15 1.84 0.86 048 0.17 —0.03
Sl (M > 500 GeV) 5.35 138 045 021 0.05 —0.06
5am1(MWW > 600 GeV) 5.22 090 0.34 0.17 0.04 —0.06

NI 2D NS AN AN

deviations Syy and &% for a sequence of upper cuts
yiy on the moduli of the W~- and W-boson rapidities
in the laboratory frame; i.e, we restrict |yy| < yj,. The
implementation of this cut is described in Appendix A.
The computation of the elastic W™W* — W-W™ cross
section requires a cut in order to avoid the f-channel
photon-propagator pole. Here we use a cut on the trans-
verse momentum of the W bosons, pry > 20 GeV. The
same set of cuts is also applied to the calculation
of ot .

wow+

The resulting values of yy given in Table I show that
the size of the relative deviation depends quite sensitively
on the rapidity cut. For loose cuts yy, the cross section
computed in the IEVBA approximation is larger than the
exact value, while it is the other way around for very tight
upper cuts on |yy|. In the latter case the cross section is,
however, reduced significantly. Table I shows that the
IEVBA approximation agrees within ~10% with the full
calculation if |yy| is restricted to values less than ~1.7. The
upper cut on |yy| can be loosened if the cut M* is increased.
However, as the numbers in Table I show,
again below |yy|=1.7. For |yy| <15 the ratio
oww = —.30. For these tight cuts the event numbers rapidly
decrease.

As mentioned in Sec. II the luminosity Lzz(x) was
given in [15] with the wrong sign. With the correct
luminosities and with the set of cuts used in Table I, the
approximation o332 improves by 1% for |yy| < 2.5. The
improvement increases to 9% for |yy| < 1.7.

The corresponding ratios 3%, which are given
also in Table I, show that for loose upper cuts on |yy|
the IEVBA approximation in the axial gauge is
worse than in the unitary gauge. This stems from the
fact that in the axial gauge we have put all factors f,,; = 1
(cf. Sec. III) which generates in this kinematic regime

larger contributions to alulfyv]f‘,ﬁ’a’“al with labels pol = TL,
LT, LL. Only for |yy|< 1.6 the axial-gauge IEVBA
provides a relatively good approximation to the full cross

section.
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TABLE II. Same as Table I, but Sy (Myy > M*) for several
minimum cuts p7 . on the transverse momentum of the W7
boson and the cut |yy| < 2.

prw [GeV] 100 150 200 250 300
6WW(MWW > 400 GeV) 0.359 0.347 0.271 0.089 -0.105
Sww (Myw > 500 GeV) 0.440 0.395 0.312 0.130 —0.087
Sww(Myw > 600 GeV) 0.488 0.439 0.315 0.128 -0.068
3 (Myy > 400 GeV) 0.746 0.684 0.552 0.314  0.069
Sial (Myw > 500 GeV) 0.843 0.740 0.603 0.363  0.089
3 ( My > 600 GeV) 0.890 0.786 0.607 0362  0.113

Next we analyze Sy and 65 in dependence of a
minimum cut on the transverse momentum of the W+
boson. In addition a cut |yy| <2 on the W rapidity is
applied. The results given in Table II exhibit that the
unitary-gauge IEVBA approximates the exact cross section
to ~10% only if a cut pyy > 250 GeV is imposed. The
additional cut on the W rapidity improves the quality of
the IEVBA only for pyy <200 GeV. In the kinematic
regime considered here the IEVBA in the axial gauge is in
general worse than in the unitary gauge, for reasons
mentioned above. Only for very hard cuts on pry the
axial-gauge IEVBA works reasonably well.

B.eem >, p,
As a further reaction of interest, we investigate the cross
section of

e"et > 1D, (39)

for unpolarized e~e™ collisions. In the standard model
twenty-one tree-level Feynman diagrams contribute to (39)
while in the IEVBA the hard-scattering subprocess
W~W™* — (i receives four diagram contributions. The cross
section of (39) in the IEVBA in the unitary gauge is

dJCLpol( )Apol(g = XS, m%V’m%V)

pol Xmin

GIEVBA (s) =

(40)

Here the sum extends over all nine polarization labels
introduced in (17). That is, also the four luminosities and
Opor that involve a parity-odd combination of vector and

axial vector couplings contribute. This is because of the
relations (28) and

&%T(x) = 6’T’T(x) 8¥L(x) = 5;}()6) (41)

which follow from CP invariance. A formula analogous
to (40) holds for the IEVBA in the axial gauge.

In analogy to (38) we define the relative deviation
of (40) and the analogous ratio 2 from the full tree-level
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TABLE III.
from the full result for e"e™ — v at \/s =
the laboratory frame.

PHYSICAL REVIEW D 93, 053018 (2016)

Relative deviations §;(Mgz > M*) and 6“’“*‘1 defined in analogy to (38) of the IEVBA cross section
2 TeV for several upper cuts y; on the moduli of the ¢ and 7 rapidities in

v 5 1 3 2 1.5 1
84(My;; > 400 GeV) 0.090 0.090 0.090 0.076 0.011 —0.081
84(Myz > 500 GeV) 0.064 0.064 0.064 0.045 —0.048 —0.180
83(Myz > 600 GeV) 0.006 0.005 0.004 —0.024 —0.154 —0.296
S3al(M ;> 400 GeV) 3.18 3.18 3.17 3.11 278 2.36
524l (M 7 > 500 GeV) 3.47 3.47 3.47 3.38 291 2.31
524l (M ; > 600 GeV) 3.55 3.55 3.55 3.42 2.74 2.04

cross section o' computed with MADGRAPH. We choose

Vs =2 TeV and use the same set of minimum values M*
as in Sec. IVA, now for the invariant mass M; = § of the
1t pair.

First we analyze the quality of the IEVBA in the unitary
gauge. In Table III the relative deviation J; is given for a
sequence of upper cuts y; on the moduli of the ¢ and 7
rapidities in the laboratory frame. For rather loose cuts a
precision of about 10% or better can be obtained. However,
similar to the example analyzed in subsection IV A, the y;
region where J,; becomes minimal is correlated with the
value of the cut on the /7 invariant mass. We remark that the
improvements discussed in Sec. II [i.e., correct sign of L4
and including the contributions to (40) with parity-odd
combinations of vector and axial vector couplings]
improves the quality of the IEVBA by about 20% (30%)
for loose cuts (y; < 2).

In addition, we analyze J,; in dependence of a minimum
cut p7, on the transverse momentum of the ¢ and 7 quarks.
The numbers given in Table IV show that for #7 events with
M; > 500 GeV and a moderate transverse momentum cut
pr.: > 50 GeV a precision of about 10% or better, depend-
ing on the value of M*, can be obtained.

The numbers for 5?;’“5‘1 given in Tables III and IV show
that in the kinematic regimes considered the IEVBA
approximation (40) in the axial gauge overestimates the
full result by a factor of about 3 to 4. The reason is that the

on-shell hard scattering cross sections apo

by those where W~ and/or W is longitudinally polarized
and the associated axial-gauge luminosities L, are

, are dominated

TABLE IV. Same as Table III, but §;(M; > M*) for several
minimum cuts p7, on the ¢ and 7 transverse momentum.

pr. [GeV] 0 50 100 150 200
(M7 >400 GeV)  0.090 0.108 0.119 0.027 —0.099
0.064 0.043 0.005 0.010 —0.068

O
55(My > 500 GeV)
5[;(M,, > 600 GeV)  0.005 —0.043 —0.110 —0.144 —0.163
ixia (M > 400 GeV) 3.18 3.27 3.37 3.20 2.83
5&*1‘*'(M,; >500 GeV) 347 338 321 321 297
(

s¥ial(Mz > 600 GeV) 3.55 333 299 280 267

significantly larger than those in the unitary gauge. If
one chooses tighter cuts than those used in Tables III and IV
the deviations §2%! diminish, but at the cost of rapidly
decreasing event numbers.

Our results for the reactions (36) and (39) show that the
unitary-gauge IEVBA provides a relatively good approxi-
mation to the full cross section if hard cuts on |yy | and pr
are applied, while the axial-gauge IEVBA is worse in
general. Given a specific choice of cuts it is not possible to
make a quantitative a priori estimate of the quality of the
IEVBA. What could then be the use of the IEVBA—in
particular, in view of the fact that computer codes such as
those of [25,26] allow us to compute tree-level cross
sections exactly? One potential application, which keeps
the computational effort at bay, is to calculate the tree-level
cross section fully by taking into account all contributing
Feynman diagrams but to implement the radiative correc-
tions to the respective hard scattering process V,V, — W
using the IEVBA. In Ref. [22] this strategy was pursued
with the unitary-gauge IEVBA for the reaction (36) and it
was argued that this leads to quantitatively satisfactory
results.

V. SUMMARY AND CONCLUSIONS

We revisited the improved effective vector boson
approximation [15] in the unitary gauge that was designed
to catch the essence of weak gauge boson scattering
V1V, = W in high-energy pp and e~e™ collisions with
an improved precision compared to the EVBA in the
leading logarithmic approximation. We computed the
correlated two-vector-boson luminosities L, (x) for Vi,
V, being radiated off a massless quark or lepton f and f>,
respectively, for the nine combinations of the transverse
and longitudinal polarizations of V| and V,. We clarified a
sign issue that appears in some of the L (x). Our results
for the parity-even luminosities L, (x) agree with those of
[15], up to a sign in the case of L. Our results for the four
luminosities that involve a parity-odd combination of
vector and axial vector couplings were, to our knowledge,
so far not available in the literature. They are required if the
hard scattering amplitude of V|V, — W is affected also by
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parity-violating interactions. For instance, this is the case
for V|V, — ff where f, f’ are heavy quarks or leptons.
We computed also the correlated two-vector-boson lumi-
nosities Lg’(‘)ilal (x) in the axial gauge, using a specific
vector n”.

Furthermore, we studied the reactions
W-W*u,U, and e"e™ — fiv,U, within the standard model
for large e~e™ center-of-mass energies by computing the
respective tree-level cross section using the IEVBA in the
unitary and axial gauge and comparing these approxima-
tions with the full SM cross section computed with
MADGRAPH [26]. Here, our aim was to probe the quality
of the formulas (23) and (35). We found that the IEVBA in
the unitary gauge provides a relatively good approximation
to the full cross section if hard cuts on the rapidities and
transverse momenta of the W=, W™, respectively ¢, 7 in the
final state are applied. In the case of #7 the inclusion of the
luminosities with parity-odd combinations of vector and
axial vector couplings improves the quality of the IEVBA
by 20-30% depending on the chosen cuts. Using the axial-
gauge luminosities the IEVBA becomes worse in general,
for reasons discussed above.

The applicability of the (improved) effective vector
boson approximation is certainly limited because,
for a given high-energy reaction and a choice of cuts, it
seems not possible to quantify a priori the precision of the
approximation. At best one may use the IEVBA, which is
gauge dependent, for a semiquantitative estimate of the
effect of the hard scattering process V,V, - W. For
instance, one may use it to estimate the effect of radiative
corrections to this subprocess, as mentioned at the end of
Sec. IV. The IEVBA may also be useful if new physics
effects are considered and if the new physics effects on
ViV, > W are dominated by one or a few helicity
combinations of the weak gauge bosons.
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APPENDIX A: FOUR-FOLD DIFFERENTIAL
LUMINOSITIES IN THE UNITARY GAUGE

Here we give explicit expressions for the nine differential
luminosities 7, in the unitary gauge defined in (25). They
are calculated as follows. One starts with the center-of-mass
frame of the off-shell vector bosons V| and V, whose four-
momenta are given by

K{ = (ko1.0,0,k), Ky = (k2. 0,0, —k). (A1)
In this frame the polarization vectors of V; and V, in the
unitary gauge of helicity 4; and 1,, respectively, are given
in the Jacob-Wick phase conventions:
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() = 75 (0.51.-1.0)

£4(0) = (0.0, k). (a2)
1

e’g(i):%(o,il, i.0),

£4(0) = — s (0.0, ko). (A3)

As already mentioned below Eq. (21) the four-momentum
and polarization vectors of V; (V,) and the four-momenta
of f1, fi (f2.f5) are Lorentz-transformed into the Breit
frame B; (B,) where the form factors C;, S; (C,,S,)
defined in (16) are conveniently computed. They determine
the £, defined in (17). Performing the integration over the
azimuthal angles in (25) we obtain the differential lumi-
nosities .. For the sake of brevity we omit details of the
computation; they are given in [15].

For fixed squared center-of-mass energy /s of the initial
fermions f, f, the [, are functions of kf, k3 and the
variables x and u defined in (10) and (22), respectively. We
obtain for the reactions (1):

jTT:CTT<1+4(MK_2U)2> <1+S(S;u)

2 u

k2 k3
+# (k33 + u? — 2uv) (u® — 6us + 6s2)> . (A4)
du—-v)?\ [s(s—u
jLT:CLT<1+ ( K2 )>< (u2 )
kik3
+W(k%k%+u2—2u1/)(u2—6us+6s2)>, (A5)
du—-v)\ (1 s(s—u
jTL”TL(‘”%) (5*%
kik3
+W (K2k3 + u* — 2uv) (u® — 6us + 6s2)) ,  (A06)
= (=) 2T () (22 — ) (u—25), (AT
Frr = (=1 58 (0 =) (643 = w) (= 25). (A7)
. 4(u—v)*\ K2k3 — uv
jTT:(—l)'CTT<1+ " > liuz (u—2s),
(A8)

. (u=v) (1 s(s—u)
Tr5 = (=1)"4ers P 5"" 2
kik3

+—— (k{3 + u? = 2uw) (u? — 6us + 6s2)> . (A9)
K*u
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4(u—v)*\ k2k3 —uv
Tq. = (=1)"cq ( 1+ ( p )) ]ziuz (u—2s),
(A10)
u—-v) (s(s—u
Tz = (_1)r24CLT( p ) ( ( 2 )
K2k3
—|——(k2k2—|—u —2uv)(u® — 6us + 6s ))
(A1)
—1)2 -
Ju = CLL<—1 +4(u 21/) > <s(s 5 “)
K u
k2k2
—I—K 2 (k3G + u? — 2uv) (u® — 6us + 65 )>
(A12)

where the variables v and x are given in (27) and
the powers ry, r,, which are either zero or one, are
defined below Eq. (16). In (A4)-(A12) we have used the
abbreviations

crr = cip = o = e = (01 + af)(v3 + a3),

(22
et = o7 = 2(v] + aj)vya,,

(22
e = o, = 2(v; + a3)viay,

o = 4via, 0,20, (A13)
where v;, a; are the vector and axial vector coupling
of the intermediate gauge boson V; which are defined
below Eq. (16).

If no phase-space cuts are applied and if one integrates
over the variable « and defines 7 pol = f S(dufu)T pol» then
the following relations hold in the physical region defined
by the integration regions over the remaining phase-space
variables in (23), (24):

u~7TL = ~:~7LT’ ‘-7TT (

>r2 r _TT TT jTT’
TT

Tz = (-

)r2 r LT jTL' <A14)
CTL
Finally, we describe how cuts can be applied on the
rapidities of the particles in the final state W of the
reactions (1). We introduce the variables
u+ki 2k L4k u+k?

= K2 =
A 211 . 12

—1id. (Al15)

N
ll

In terms of these variables the three-dimensional integra-
tion measure in (24) is
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sd 1d 0 0
/ dkz/ dkg/ —”:/ —Z/ dk%/ dK2.
—s+5 —s+5' s U x % J=s(1-2) —s(z—x)

(A16)

In the context of the effective vector boson approxima-
tion the dominant kinematic configuration corresponds
to the intermediate vector boson V; and V, moving
collinear to the f,f, beam axis. Then the variable z
defined in (A15) is approximately equal to the longi-
tudinal momentum fraction of V; with respect to f;.
Analogously we denote by 7' the longitudinal momen-
tum fraction of V, with respect to f,. The longitudinal
velocity of the intermediate vector-boson pair VV, in
the f,f, center-of-mass frame is By, v, =(z—2')/(z+2),
and the rapidity of the pair is

1 1+ﬂv V, 1 Z2
yV v, = 1n< ﬂv , = iln ; . (A17)
2

We consider now a particle F in the final state ¥V of
the reaction (1). [In the examples analyzed in Sec. IV F
corresponds to a W boson or an (anti)top quark.] The
rapidity of F in the f;f, center-of-mass frame is
given by

YE=Yv,v, T Vs (A18)

where yy = (1/2)In[(E} + phe)/ (. — phye)] s the
rapidity of F in the V,V, center-of-mass frame. Cuts
on yr can be implemented using (A16) and (A18).

APPENDIX B: FOUR-FOLD DIFFERENTIAL
LUMINOSITIES IN THE AXIAL GAUGE

Here we list explicit expressions for those differential
luminosities that differ from their counterparts in the
unitary gauge. For definiteness, we choose n* to be
lightlike. In the V;V, center-of-mass frame we use
n* = (0,0,0,—1). In this frame the four-momenta of V,
and V, are given by (A1) and their transverse polarization
vectors can be chosen to be those listed in (A2), (A3).
Using (32) and n> = 0 the longitudinal polarization vectors
in this frame are

—k2
8/;(()) — inﬂ,

=1,2.
(ki'n)2 l

(B1)

As was done in Appendix A the four-momentum and
polarization vectors of V| (V,) and the four-momenta of
f1 f1 (f2, f%) are Lorentz-transformed into the Breit frame
B, (B,). We obtain for the longitudinal polarization vectors
of V; and V,:
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(8?] )(0) = hy(eg. 1,0, e3),

2/ —k3
hy =——.

K
w=—1(v-5k
0 e L)
/— 2
e = uz\/k%k%+u(u—2l/),
K

€3 = —

24/—i3’
(€2°)(0) = (1.0,0,1). (B2)
The variables u, v, and «x are defined in (22) and (27). The
transverse polarization vectors of V| (V,) and the four-
momenta of Vy, f1, f| (Va, f2, f5) in By (B,) are given in
Appendix A of [15], which we do not reproduce here for
the sake of brevity.

With these momenta and polarization vectors one can
compute the helicity tensors (9) and the associated form
factors in the frames B; and B,. Concerning the form
factors defined in (16) one has the following. The
Ci(4; ==£1) and S;(4; = £1) are identical to those in
the unitary gauge. The S;(4; =0) are zero because the
longitudinal polarization vectors are real vectors. Thus one
has to compute only those differential luminosities J' g’éilal

defined by (25) with Ly, — L35 where the label “pol”
contains at least one index L. We obtain

PHYSICAL REVIEW D 93, 053018 (2016)

i a 4(u—-v)?
T = ew e (1 K ) (B3)
i -nF 4(u—-v)?
T = epp oy <1 + pe . (B4)
‘ WF 4(v —u)
axial __ r M
JE = (=1)"er5 ek (B5)

where

F = 4uPs(s — u) + (k3k3)?(u* — 6us + 65%)
+ K 3u(u — 12vs? = 2u* (v + ) + 2us(6v + 5)),

(B6)
and the couplings ¢ are defined in (A13).
Moreover, we find that
%‘)Eal = jTL’ j%);jal = jTL (B7)

The integrands of these differential luminosities involves
the form factor C,(4, = 0) that happens to be identical
in the axial and unitary gauge. Notice, however, that the
associated luminosities L% (x) differ from those in the
unitary gauge because in the axial gauge the factors (21) are
not taken into account.
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