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We reexamine the improved effective vector boson approximation which is based on two-vector-boson
luminosities Lpol for the computation of weak gauge-boson hard scattering subprocesses V1V2 → W in
high-energy hadron-hadron or e−eþ collisions. We calculate these luminosities for the nine combinations
of the transverse and longitudinal polarizations of V1 and V2 in the unitary and axial gauge. For these
two gauge choices the quality of this approach is investigated for the reactions e−eþ → W−Wþνeνe and
e−eþ → ttνeνe using appropriate phase-space cuts.
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I. INTRODUCTION

Although the discovery of the 125 GeV Higgs boson
[1,2] at the Large Hadron Collider strongly supports the
Higgs mechanism of electroweak symmetry breaking
(EWSB), it does not exclude the possibility that additional
(spin-zero) resonances linked to EWSB with masses in or
below the TeV range exist. Therefore, the detailed explo-
ration of this issue remains to be one of the prime present
and future research goals at this machine and at future high-
energy proton-proton or electron-positron colliders that are
presently being discussed. One of the most direct probes
of the dynamics of EWSB is the high-energy scattering
of electroweak gauge bosons V ¼ W�, Z, especially of
longitudinally polarized ones [3–6]. As weak gauge-boson
beams are not available, V1V2 scattering or fusion can be
studied at pp or e−eþ colliders only through reactions of
the form f1f2 → f01f

0
2W, where the fi, f0i denote quarks

(leptons) in the case of pp ðe−eþÞ colliders. Typical final
statesW of interest are a heavy non-standard Higgs boson,
a weak gauge-boson pair V 0

1V
0
2, or a top-quark top

antiquark ðttÞ pair. At very high energies such reactions,
which involve the scattering or fusion of two vector bosons,
have often been analyzed by means of the effective vector
boson approximation (EVBA) [7–9]. In this approximation
the vector boson V radiated off an (anti)quark or electron/
positron is treated as a constituent of the respective fermion.
In the pioneering works [7–9] the weak gauge boson
distribution functions were computed in the leading log-
arithmic approximation. The QCD radiative corrections to
these functions were calculated in [10]. The method was
validated in [11] within the axial gauge for the case of
heavy Higgs-boson production [11] that is dominated by
the fusion of two longitudinally polarized weak gauge
bosons, and more recently in [12] using the same gauge.
The applicability and limitations of the EVBA in the

leading logarithmic approximation and of improved ver-
sions [14,15] to heavy fermion production and to V1V2 →
V 0
1V

0
2 scattering have been analyzed in many papers,

including [11–13,16–24]. To date one may question the
need of this approximation, which singles out a certain
class of contributions to the complete scattering amplitude,
especially in view that powerful computer packages exist,
including [25,26] at leading order and [26–28] at next-to-
leading order, which allow us to numerically compute the
respective processes exactly at the respective order of
perturbation theory. Yet, the EVBA may still be useful
in appropriate kinematic regions as a tool for analyzing in a
transparent way weak gauge-boson reactions that are
relevant for the physics of electroweak symmetry breaking;
cf. for instance, the recent applications [12,29].
A critical point of the EVBA in the leading logarithmic

expansion are the approximations in the computation of the
vector-boson distribution functions FλðξÞ. [Here FλðξÞ has
the usual interpretation as the probability of finding a vector
boson with helicity λ and longitudinal momentum fraction
ξ in an incoming high-energy fermion f.] While the leading
logarithmic approximation works reasonably well for a
longitudinally polarized vector boson if ξ > 0.05 and the
center-of-mass energy of the initial state is larger than
∼1 TeV, the distribution functions FTðξÞ for a transversely
polarized weak gauge boson computed in the leading
logarithmic expansion considerably overestimate the
respective exact distribution functions [14]. The distribu-
tion functions presented in [14] were calculated without
approximations related to kinematics. A further improve-
ment of the EVBA was worked out in [15] for the case
of two-vector boson processes, which are the reactions of
interest for probing the dynamics of EWSB. Simple
convolutions of two single vector boson distribution func-
tions do not account for themutual influence of the emission
of boson V1 on the probability for the emission of V2 and
vice versa. This is incorporated in the two-vector-boson
luminosities derived in [15] in the unitary gauge. Moreover,
nondiagonal terms in the summation over the polarizations
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of V1 and V2 were also taken into account in this work,
and no kinematic approximations were used. In this
approach, a dynamical approximation remains, namely the
on-mass-shellcontinuationof theV1V2 → W hardscattering
cross section.Yet the set of these correlated two-vectorboson
luminosities is gauge-dependent.
The fact that the subset of diagrams to the reactions

f1f2 → f01f
0
2W which describe the scattering of two off-

shell gauge bosons V1V2 → W is gauge dependent is
another critical point of the (improved) EVBA. It is
well-known that in particular in the unitary gauge the
off-shell hard scattering subamplitudes show, apart from
specific examples, a bad high-energy behavior [13]. It was
argued in [11,12] that in the axial gauge and using the
EVBA in the leading logarithmic approximation the prob-
lem of bad off-shell behavior can be avoided and the
effective vector boson approximation works in this gauge if
certain (kinematic) conditions are met. In [21] numerical
studies of WþW− production were performed by comput-
ing both the full set of Feynman diagrams and the subset of
scattering diagrams associated with WþW− → WþW−,
using the unitary, axial, and a covariant gauge. It was
found that when computing the cross section with the
scattering diagrams only, the axial gauge (for a specific
choice of the associated vector nμ) yields within these
gauge-choices the best approximation to the full, gauge-
independent cross section. Applications of the improved
EVBA formulation of [15], which uses the dynamical
approximation mentioned above (cf. Sec. II), include
[21,22,30], with conclusions that are not unanimous.
While [21] states that this framework provides not more
than a very rough estimate, Ref. [22] and [30] report, for
W ¼ WþW− and W ¼ ZZ, an agreement of this approxi-
mation with the full result within about 20% to 25% and
10%, respectively.
The effective vector boson approximation in the axial

gauge using the EVBA in the leading logarithmic approxi-
mation was recently analyzed in detail for single W-boson
emission [12]. One may ask whether the improved EVBA
setup with correlated two-vector-boson luminosities [15]
derived in the axial gauge provides a useful approximation to
processes that involve the scattering of two gauge bosons.
In this paper we revisit the approach of [15] which we

call here the improved effective vector boson approxima-
tion. We reexamine the two-vector-boson luminosities
given in [15] in the unitary gauge and clarify an issue
related to relative minus signs. As a new aspect we compute
the two-vector-boson luminosities which involve a parity-
odd combination of the vector and axial vector coupling of
V1 or V2. They are relevant for processes where the hard-
scattering matrix element V1ðλ1ÞV2ðλ2Þ → W involves
parity-violating interactions. This is the case, for instance,
for W ¼ tt in the standard model. In addition we compute
the two-vector-boson luminosities in the axial gauge.
To our knowledge this is a new result. Moreover, we

investigate the quality of the improved EVBA in both
gauges for two examples. To be specific we consider high-
energy e−eþ collisions and analyze the processes e−eþ →
W−Wþνeνe and e−eþ → ttνeνe to lowest order in the
standard model. We compute the respective tree-level cross
sections both within the improved EVBA and fully with
the computer code MADGRAPH [26], i.e., taking into
account all contributing Feynman diagrams, and compare
the relative differences using appropriate cuts on the final-
state particles.
The paper is organized as follows. In Sec. II we outline

the approach of Kuss and Spiesberger (KS) [15] in deriving
improved two-vector-boson luminosities. We clarify an
issue related to relative minus signs and we compute
luminosities which involve parity-even and parity-odd
combinations of the vector and axial vector coupling of
V1 or V2. The formulas apply to both incoming quarks and
leptons. ForW−Wþ bosons radiated off e−eþ, we compare
our results for the “parity-even” luminosities with those of
[15]. In Sec. III we compute the two-vector-boson lumi-
nosities in the axial gauge. Section IV contains our
comparison of the cross sections for e−eþ → W−Wþνeνe
and e−eþ → ttνeνe computed exactly and with the
improved EVBA. We conclude in Sec. V. Appendixes A
and B contain our results for the four-fold differential
luminosities in the unitary and axial gauge.

II. THE KS LUMINOSITY FORMULA

We consider the production of an arbitrary stateW by the
scattering of two light fermions:

f1ðl1Þ þ f2ðl2Þ → f01ðl01Þ þ f02ðl02Þ þWðpWÞ; ð1Þ

where fi ðf0iÞ denote the fermions in the initial (final) state
and the symbols in brackets are the associated four-
momenta. The cross section of this process is given by

σf1f2 ¼
1

2s

Z
dΓ2d ~pWδð4Þðl1 þ l2 − l01 − l02 − pWÞ

× jMf1f2→f0
1
f0
2
W j2; ð2Þ

where s ¼ ðl1 þ l2Þ2, dΓ2 ≡ d3~l01d3~l
0
2=ð16π2E0

1E
0
2Þ, and

d ~pW ≡ d3pW=½ð2πÞ32EW �. Moreover, jMj2 denotes the
squared matrix element of (1) which is averaged and
summed over the helicities (and colors, in the case of
quarks) of the fermions fi and f0i, respectively.
In the following we consider processes (1) which

proceed via the exchange of two off-shell weak gauge
bosons V1, V2 ðV ¼ W;ZÞwith massesm1,m2, as depicted
in Fig. 1.
In the unitary gauge, which was used in [15], the matrix

element which corresponds to the diagram Fig. 1 takes the
form
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Mf1f2→f0
1
f0
2
W ¼ j1μðl1; l01Þ

iPμμ0 ðk1Þ
k21 −m2

1

× j2νðl2; l02Þ
iPνν0 ðk2Þ
k22 −m2

2

MW
μ0ν0 ; ð3Þ

where ki ¼ li − l0i ðk2i ≤ 0Þ and PαβðkÞ ¼ −gαβ þ kαkβ=m2
V

for massive gauge-bosons in the unitary gauge. The four-
vectors jμ1, jν2 denote the charged or neutral fermion
currents and MW

μ0ν0 is the vector-boson fusion amplitude
for the process V1V2 → W that must be evaluated for off-
shell gauge bosons.
Depending on whether the pairs f1, f01 and f2, f02 are

particles or antiparticles, the current jμ1 or jν2 is either
composed of u or v Dirac spinors:

euf0 ðl0Þðaγμ þ bγμγ5ÞufðlÞ or

evfðlÞðaγμ þ bγμγ5Þvf0 ðl0Þ; ð4Þ
where e denotes the positron charge. We are interested in the
processes (1) at high energies where the masses of the light
fermions fi, f0i can be safely neglected, i.e., where k

μ
i jiμ ¼ 0

ði ¼ 1; 2Þ holds to very good approximation. In order to
decompose gμν we introduce two sets of polarization vectors
εμj ðλÞ ðj ¼ 1; 2Þ that are mutually orthogonal and orthogonal
to kμj and obey the normalization convention

εjðλÞ · ε�jðλ0Þ ¼ ð−1Þλδλ;λ0 ; j ¼ 1; 2; λ ¼ 0;�1: ð5Þ

An explicit representation of εμj ðλÞ in the center-of-mass
frame of V1 and V2 is given in Appendix A. With these
polarization vectors one obtains

−gμν ¼ −
kμj k

ν
j

k2j
þ

X
λ¼�1;0

ð−1Þλþ1ε�μj ðλÞενjðλÞ; j ¼ 1; 2

ð6Þ
which holds for any spacelike four-momentum kμj .

With (6) one can rewrite (3):

Mf1f2→f0
1
f0
2
W ¼ i2

X
λ1;λ2

ð−1Þλ1þλ2
j1ðl1; l01Þ · ε�1ðλ1Þ

k21 −m2
1

×
j2ðl2; l02Þ · ε�2ðλ2Þ

k22 −m2
2

MW
λ1λ2

; ð7Þ

where the labels λ1, λ2 take the values 0;�1 and
MW

λ1λ2
≡ εμ1ðλ1Þεν2ðλ2ÞMW

μ;ν.
Squaring (7) and averaging and summing over the spins

(and colors, in the case of quarks) of the initial-state and
final-state fermions fi, f0i, one gets

jMf1f2→f0
1
f0
2
W j2 ¼ 4

X
λ1;λ01;λ2;λ

0
2

ð−1Þλ1þλ2þλ0
1
þλ0

2
T1ðλ1; λ01Þ
ðk21 −m2

1Þ2

×
T2ðλ2; λ02Þ
ðk22 −m2

2Þ2
MW

λ1λ2
MW�

λ0
1
λ0
2

ð8Þ

with

Tiðλi; λ0iÞ ¼
1

4

X
jiðli; l0iÞ · ε�i ðλiÞj�i ðli; l0iÞ · εiðλ0iÞ; ð9Þ

and the sum in (9) refers to fermion-spin summation.
In [15] both the diagonal ðλi ¼ λ0iÞ and nondiagonal

ðλi ≠ λ0iÞ components of the helicity tensors (9) were taken
into account in the computation of the vector boson
luminosities. The results of [15] derived in the unitary
gauge show that the nondiagonal vector-boson luminosities
are (significantly) smaller than the diagonal ones if
0.2≲ x < 1, where

x ¼ ðk1 þ k2Þ2
s

≡ ŝ
s
: ð10Þ

We consider in the following only the diagonal components
of (9) because (i) the domain of applicability of the
vector boson approximation is the region where x is not
very small and (ii) because of the following conceptual
issue. This approach loses its simplicity and appeal if the
nondiagonal components are taken into account. Then the
resulting cross section can no longer be represented as in
Eq. (23) below as a sum of products of two-vector-boson
luminosities times the respective hard scattering V1V2 cross
sections.
In order to simplify the notation we use TiðλiÞ≡

e−2Tiðλi; λiÞ from now on. Furthermore, we define

~σðŝ; k21; k22; λ1; λ2Þ

≡ 1

2κ0

Z
d ~pWð2πÞ4δð4Þðk1 þ k2 − pWÞjMW

λ1λ2
j2; ð11Þ

FIG. 1. Generic weak gauge-boson scattering diagram.
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where

κ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ŝ2 þm4

1 þm4
2 − 2ŝm2

1 − 2ŝm2
2 − 2m2

1m
2
2

q
ð12Þ

and ŝ is the squared invariant mass of the intermediate
gauge-boson pair defined in (10). Equation (11) may be
interpreted as the cross section for off-shell gauge-boson
fusion V1V2 → W, where the on-shell flux factor κ0 is
introduced by convention and for later convenience. Using
(8), keeping only the diagonal contributions, and using the
definition (11), Eq. (2) becomes

σf1f2→f0
1
f0
2
W ¼

�
α

π

�
2 4κ0

s

Z
dΓ2

X
λ1;λ2

1

ðk21 −m2
1Þ2

1

ðk22 −m2
2Þ2

× Lλ1λ2 ~σðλ1; λ2Þ; ð13Þ

where α ¼ e2=ð4πÞ denotes the electromagnetic fine struc-
ture constant and

Lλ1λ2 ¼ T1ðλ1ÞT2ðλ2Þ: ð14Þ

The helicity tensors Ti defined in (9), which are needed for
computing the quantities Lλ1λ2 , can be decomposed as
follows:

TiðλiÞ ¼ ðv2i þ a2i ÞCiðλiÞ þ 2viaiSiðλiÞ; i ¼ 1; 2; ð15Þ

where

CjðλjÞ¼ðlμj l0νj þ l0μj l
ν
j− lj · l0jg

μνÞε�jμðλjÞεjνðλjÞ;
SjðλjÞ¼−ið−1Þrjϵμνρσl0μj ε�νj ðλjÞlρjεσj ðλjÞ; j¼1;2: ð16Þ

Here we use the convention ϵ0123 ¼ −1 and vi, ai are the
vector and axial vector couplings of the gauge boson Vi
in the parametrizations (4) of the currents. For charged
currents in the standard model they are given by vi ¼
−ai ¼ 1=ð2 ffiffiffi

2
p

sin θWÞ, times the Cabibbo-Kobayashi-
Maskawa mixing matrix element Vqq0 in the case of quarks.

The neutral current couplings are vi ¼ ðTfi
3 − 2sin2θWÞ=

ð2 sin θW cos θWÞ and ai ¼ −Tfi
3 =ð2 sin θW cos θWÞ.

In Eq. (16) the power rj ¼ 0 ðrj ¼ 1Þ if the label j ¼ 1,
2 refers to a particle (antiparticle) pair fj, f0j, i.e., the sign
factor depends on whether the fermionic currents (4)
involve u- or v-spinors.
Rather than working with the nine quantities Lλ1λ2 ,

it is convenient to use in (13) the following linear
combinations:

LTT ≡ Lþþ þ Lþ− þ L−þ þ L−−

¼ 4ðv21 þ a21Þðv22 þ a22ÞC1ðþÞC2ðþÞ;
LTT ≡ Lþþ − Lþ− þ L−þ − L−−

¼ 8ðv21 þ a21Þðv2a2ÞC1ðþÞS2ðþÞ;
LTT ≡ Lþþ þ Lþ− − L−þ − L−−

¼ 8ðv1a1Þðv22 þ a22ÞS1ðþÞC2ðþÞ;
LTT ≡ Lþþ − Lþ− − L−þ þ L−−

¼ 16ðv1a1Þðv2a2ÞS1ðþÞS2ðþÞ;
LTL ≡ Lþ0 þ L−0 ¼ 2ðv21 þ a21Þðv22 þ a22ÞC1ðþÞC2ð0Þ;
LLT ≡ L0þ þ L0− ¼ 2ðv21 þ a21Þðv22 þ a22ÞC1ð0ÞC2ðþÞ;
LTL ≡ Lþ0 − L−0 ¼ 4ðv1a1Þðv22 þ a22ÞS1ðþÞC2ð0Þ;
LLT ≡ L0þ − L0− ¼ 4ðv21 þ a21Þðv2a2ÞC1ð0ÞS2ðþÞ;
LLL ≡ L00 ¼ ðv21 þ a21Þðv22 þ a22ÞC1ð0ÞC2ð0Þ: ð17Þ

The V1V2 → W cross sections ~σðλ1; λ2Þ in (13) have to
be transformed accordingly. One gets nine linear combi-
nations in analogy to (17), but for each index T or T an
overall factor 1=2 is present. Thus, for instance,

~σTT ¼ 1

4
½ ~σðþ;þÞ þ ~σðþ;−Þ þ ~σð−;þÞ þ ~σð−;−Þ�;

~σTL ¼ 1

2
½ ~σðþ; 0Þ − ~σð−; 0Þ�; ~σLL ¼ ~σð0; 0Þ; ð18Þ

etc. Then (13) takes the form

σf1f2→f0
1
f0
2
W ¼

�
α

π

�
2 4κ0

s

Z
dΓ2

X
pol

1

ðk21 −m2
1Þ2

1

ðk22 −m2
2Þ2

× Lpol ~σpol; ð19Þ

where “pol” labels the nine polarization indices as in (17);
i.e., pol ¼ TT, TT, etc.
A basic issue of the effective vector boson method is the

modeling of the dependence of the off-shell cross section
~σpolðŝ; k21; k22Þ on k2i . If both V1 and V2 are transversely
polarized, it turns out that ~σpol is only slowly varying with
k2i . Thus, one can put ~σTTðŝ; k21; k22Þ≃ ~σTTðŝ; m2

1; m
2
2Þ to

good approximation. If longitudinal polarizations are
involved, ~σpolðŝ; k21; k22Þ contains in the unitary gauge
kinematic singularities at k2i ¼ 0 which result from the
longitudinal polarization vectors εμi ð0Þ. The dependence on
k2i of εμi ð0Þ [see (A2), (A3)] suggests the following
extrapolation [15] of the on-shell V1V2 → W cross sec-
tions to off-shell values of k2i :

~σpolðŝ; k21; k22Þ ≈ fpolðk21; k22Þσ̂polðŝ; m2
1; m

2
2Þ; ð20Þ
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where σ̂pol is the on-shell V1V2 → W cross section and

fTT ¼ fTT ¼ fTT ¼ fTT ¼ 1;

fTL ¼ fTL ¼ m2
2

−k22
; fLT ¼ fLT ¼ m2

1

−k21
; fLL ¼ m2

1m
2
2

k21k
2
2

:

ð21Þ
The quantities Lpol defined in (17) are computed using

(14)–(16). Because the helicities of a massive particle are
dependent on the Lorentz frame, we define the associated
polarization vectors in the center-of-mass frame of V1 and
V2, as already mentioned above. They are given in
Eqs. (A2), (A3) of Appendix A. The Minkowski scalar
products which appear in the expressions for the form
factors C1, S1 ðC2; S2Þ are conveniently evaluated in a Breit
frame B1 ðB2Þ which is defined such that only the z
component of the four-momentum kμ1 ðkμ2Þ is nonvanishing
in B1 ðB2Þ. The polarization vectors of V1 ðV2Þ defined in
the V1V2 center-of-mass frame must be Lorentz-
transformed to B1 ðB2Þ. The resulting polarization vectors
and four-momenta of V1 ðV2Þ in B1 ðB2Þ are given in [15].
We have computed the form factors C1;2 and S1;2 using
these parametrizations. Our results agree with those given
in Appendix B1of [15], up to an overall sign factor ð−1Þrj
associated with Si. This factor appears if the form factor Si
is defined according to Eq. (16).
It is appropriate to rewrite the phase-space integral in

(19) in terms of new variables. One uses that k21;2 < 0 in the
physical region. Moreover, one uses (10) and

u ¼ 2k1 · l2 þ l22 ¼ 2k1 · l2; ð22Þ
and the azimuthal angle ϕ1 ðϕ2Þ of the final-state fermion
f01 ðf02Þ in the Breit system B1 ðB2Þ. With (20) the cross
section (19) in the improved effective vector boson
approximation (IEVBA) in the unitary gauge takes the form

σIEVBAf1f2→f0
1
f0
2
W ¼

X
pol

Z
1

xmin

dxLpolðxÞσ̂polðŝ ¼ xs;m2
1; m

2
2Þ;

ð23Þ
where

LpolðxÞ≡
�
α

2π

�
2 κ0
s

Z
0

−sþŝ
dk21

Z
0

−sþŝ0
dk22

Z
s

x̂s

du
u

×
k21

ðk21 −m2
1Þ2

k22
ðk22 −m2

2Þ2
fpolJ pol ð24Þ

and

J pol ≡ 1

k21k
2
2

Z
2π

0

dϕ1

2π

Z
2π

0

dϕ2

2π
Lpol: ð25Þ

The integration boundaries in (23) and (24) are as follows:
xmin ¼ ŝmin=s, where ŝmin ¼ p2

W;min is the minimal value of
ŝ for the production of the final state W. The variables ŝ0
and x̂which appear in the boundaries of the integrals in (24)
are given by

ŝ0 ¼ s
sþ k21

ŝ; x̂ ¼ 1

s

�
νþ 1

2
κ

�
; ð26Þ

where

ν ¼ k1 · k2 ¼
1

2
ðŝ − k21 − k22Þ; κ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ν2 − k21k

2
2

q
: ð27Þ

The dimensionless functions LpolðxÞ are the vector-
boson pair luminosities of V1 and V2. The product
LpolðxÞdx can be interpreted as the probability for emitting
from f1 and f2 the vector bosons V1 and V2 with specified
polarizations and with squared V1V2 center-of-mass energy
in the interval ½xs; ðxþ dxÞs�. The nine functions J pol that
depend, for fixed f1f2 center-of-mass energy

ffiffiffi
s

p
, on the

four variables k21, k22, x and u, are called differential
luminosities. Our results for these functions are given in
Appendix A.
Integrating the J pol given in Appendix A with respect

to u (which can be done analytically), with the boundaries
as in (24), we obtain three-fold differential luminosities.
For pol ¼ TT;LT;TL;LL;TT these three-fold differential
luminosities were calculated before in [15]. We agree with
the results2 of [15] for pol ¼ TT, LT, TL, LL, up to different
normalization conventions used. The differential luminos-
ity J TT originates from the product S1ðþÞS2ðþÞ as
Eq. (17) shows. If the fermion line f1, f10 in Fig. 1 refers
to particles and f2, f20 to antiparticles or vice versa, this
product gets an overall factor ð−1Þ as explained below
Eq. (16). This distinction is not made in [15] in the
corresponding expression for J TT.
Our results for pol ¼ TT;TT;LT, and TL are not given

in [15]. As mentioned in the introduction these luminosities
are required if the matrix element V1ðλ1ÞV2ðλ2Þ → W
receives also contributions from parity-violating inter-
actions, cf. Sec. IV.
If one applies cuts on the rapidities of the particles in the

final state then the integration range of u is affected. Details
are given in Appendix A. Thus in applications it is adequate
to perform this integration numerically, see Sec. IV.
The differential luminosities J pol given in Appendix A

and the formulas (23) and (24) apply to both quarks and
leptons in the initial state. In Figs. 2 and 3 we show the
luminosities LpolðxÞ of finding a W−Wþ pair in unpolar-
ized e−eþ at

ffiffiffi
s

p ¼ 2 TeV. For the computations of these

1The formula for C1ð00Þ given in Appendix B of [15] contains
a misprint. The sign in front of the third term in the square bracket
should be positive.

2The formula for JTL in Eq. 40 of [15] contains a misprint: the
first term in the square bracket of the second line should read
3s2ν.
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luminosities we used α ¼ 1=137.035, mW ¼ 80.385 GeV
mZ ¼ 91.1876 GeV and cos θW ¼ mW=mZ. Figure 2
shows the cases pol ¼ TT, LT, LL, and TT. CP invariance
implies that the luminosity LTL ¼ LLT. The luminosities
for pol ¼ TT, LT, LL agree with those displayed in Fig. 2 of
[15]. Our luminosity for pol ¼ TT, which is negative,
differs from the corresponding one given in [15] by an
overall minus sign. This sign is convention-independent.
The sign difference can be traced back to Eq. (16). The
form factor S2ðþÞ has a relative minus sign compared with
S1ðþÞ because the incoming fermion f2 ¼ eþ is the
antiparticle of f1.
Figure 2 shows that the luminosity LTT for transversely

polarized W pairs is the largest one. Needless to say, this
does not imply that the contributions to (23) from trans-
versely polarized W bosons are always the dominant ones.
Figure 3 shows the luminosities for pol ¼ TT;LT that

involve parity-odd combinations of vector and axial vector
couplings. The first (second) polarization index refers to the
polarization of W− ðWþÞ radiated from e− ðeþÞ. These
luminosities were not given in [15]. For the example
considered here, that is, e∓ → W∓νe=νe, and for the case
q → W−q0 and q → Wþq0, CP invariance implies that

LTTðxÞ ¼ −LTTðxÞ; LTLðxÞ ¼ −LLTðxÞ: ð28Þ

Relations between differential luminosities integrated with
respect to u are given, for a general reaction (1), in
Eq. (A14) of Appendix A.
If V1 and/or V2 is a Z boson, the corresponding

luminosities can be obtained in analogous fashion by
changing the value of the vector-boson mass m1 and/or
m2, using the vector and axial-vector neutral current
couplings given below (A13), and by integrating J pol.
The V1V2 luminosities for vector bosons radiated off
quarks are computed analogously.

The above two-boson luminosities do not factorize into
single boson distributions, because in the above formu-
lation, the emission of a gauge boson V1 with definite
helicity (defined in the V1V2 center-of-mass frame) from
f1 does depend on the squared off-shell mass k22 of V2,
and vice versa. At high energies it seems justified to
neglect this mutual dependence on k2i , because the fusion
process is dominated by small momentum transfers.
Neglecting the dependence of the form factors C1, S1
ðC2; S2Þ on k22 ðk21Þ one obtains a luminosity formula
Lconv

pol ðxÞ which can be represented as a convolution of
single vector boson distributions. These single V distri-
butions were first derived in [14]. A further approxima-
tion, the so-called leading logarithmic approximation
[7–9] (LLA), yields simplified expressions which have
often been used in the literature. Here one performs the
integral

R
J poldu=u in (24) analytically. One neglects in

the resulting expression the dependence on the k2i ,
performs the high-energy limit s ≪ m2

i , and keeps only
the leading logarithmic terms.
In this way, Lpol → LLLA

pol . These two approximations
were analyzed in detail in [15]. It was also shown by these
authors that the ratios Lconv

pol =Lpol are significantly larger
than one for almost all values of x; only for x close to one,
these ratios are also close to one. Moreover, the ratio
LLLA

pol =Lpol is even larger. For x → 1 this ratio is approx-
imately close to one only for pol ¼ LL.

III. THE VECTOR-BOSON PAIR LUMINOSITY
IN THE AXIAL GAUGE

In this section we derive the vector-boson pair luminosity
in the axial gauge
Let us first recapitulate the salient features of the

electroweak standard model in the axial gauge. The
gauge-fixing term is chosen to be
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FIG. 2. The luminosities LTTðxÞ (solid red), LLTðxÞ (dotted
magenta), LLLðxÞ (dot-dashed blue), and ð−1ÞLTTðxÞ (dashed
black) in the unitary gauge for aW−Wþ pair in e−eþ collisions atffiffiffi
s

p ¼ 2 TeV.
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FIG. 3. The luminosities LTT̄ðxÞ (solid black) and LLT̄ðxÞ
(dashed blue) in the unitary gauge for a W−Wþ pair in e−eþ

collisions at
ffiffiffi
s

p ¼ 2 TeV.
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Lgf ¼ −
ξ

2
½ðn · AaÞ2 þ ðn · BÞ2�; ð29Þ

where Aa
μ and Bμ denote the SUð2ÞL und Uð1ÞY gauge

fields and nμ is a constant vector. As is well-known ghost
fields are absent in this gauge, but the Goldstone fields are
still present. We parametrize the SM Higgs doublet field by
Φ ¼ ðϕW; ðvþH þ iϕZÞ=

ffiffiffi
2

p Þ, where H is the physical
Higgs field. The part of the Lagrangian bilinear in the
gauge and Goldstone fields contains terms that mix these
fields. In order to proceed one may either use propagators
that are nondiagonal in the gauge-fields (cf. [11]), or one
diagonalizes these bilinear terms by appropriate shifts of
the Goldstone fields, as was done in [31]. As a conse-
quence, the gauge and Goldstone fields decouple in the
propagators, but the Feynman rules for the interactions
vertices, given also in [31], become more complicated than
those in the covariant renormalizable gauges. We use the
approach of [31]. In this framework, the W boson propa-
gator is given in the limit ξ → ∞ by

iDW
μνðkÞ ¼

iNμν

k2 −m2
W þ iϵ

;

NμνðkÞ ¼
�
−gμν þ

nμkν þ nνkμ
n · k

− kμkν
n2

ðn · kÞ2
�
: ð30Þ

The Z-boson (photon) propagator is obtained from (30) by
the replacement m2

W → m2
Z ðm2

W → 0Þ.
Because Nμνnν ¼ 0 the symmetric propagator matrix

NμνðkÞ has rank 3. Thus its spectral decomposition can be
made in terms of three mutually orthogonal four-vectors
εμðλÞ, λ ¼ �1; 0. We obtain, for any spacelike four-
momentum kμ:

NμνðkÞ ¼
X
λ¼�1

ε�μðλÞενðλÞ − εμð0Þενð0Þ; ð31Þ

where the dependence of the εμ on k is not exhibited. The
vectors that describe transverse polarization have to satisfy

kμεμ ¼ nμεμ ¼ 0; εðλÞ · ε�ðλ0Þ ¼ δλ;λ0 ; λ; λ0 ¼ �1:

Furthermore we get

εμð0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−k2

ðk · nÞ2 − n2k2

s �
nμ −

n2

ðk · nÞ k
μ

�
: ð32Þ

In the axial gauge the weak gauge-boson scattering
amplitude depicted in Fig. 1 is supplemented by diagrams
where one or both of the propagators of the weak gauge
bosons V1, V2 are replaced by the propagators of the
Goldstone bosons ϕW , ϕZ. However, because the couplings
of ϕW , ϕZ to the fermions fi, f0i ði ¼ 1; 2Þ are proportional
to the fermion masses, these contributions vanish in the

limit mi;m0
i → 0, which we consider. Therefore, the scat-

tering amplitude analogous to (3) is given by

Maxial
f1f2→f0

1
f0
2
W ¼ j1μðl1; l01Þ

iNμμ0 ðk1Þ
k21 −m2

1

j2νðl2; l02Þ

×
iNνν0 ðk2Þ
k22 −m2

2

MW
μ0ν0 : ð33Þ

We decompose the two propagator matrices in (33)
according to (31), (32). Then the matrix element (33) takes
the same form as the corresponding matrix element (7).
Therefore the computation of the cross section of f1f2 →
f01f

0
2W in the IEVBA in the axial gauge proceeds as the

derivation in the unitary gauge in Sec. II. What is different
now is the modeling of the relation between the off-shell
and on-shell cross section for V1V2 → W. Because the
longitudinal polarization vectors εμi ð0Þ do not contain
kinematic singularities at k2i ¼ 0 we use, instead of (20),
the approximation

~σaxialpol ðŝ; k21; k22Þ ≈ σ̂polðŝ; m2
1; m

2
2Þ; ð34Þ

where σ̂pol is the on-shell V1V2 → W cross section, which
is gauge-independent. That is, we put all the factors
fpol ¼ 1. In our view, there is no physical argument for
using in the axial gauge factors fpol ≠ 1 in the extrapolation
of the off-shell hard scattering cross section to the on-shell
cross section, as done in the unitary gauge.
The IEVBA approximation to the cross section of

f1f2 → f01f
0
2W is then given, in analogy to (23), by

σIEVBAaxialf1f2→f0
1
f0
2
W ¼

X
pol

Z
1

xmin

dxLaxial
pol ðxÞσ̂polðŝ ¼ xs;m2

1; m
2
2Þ;

ð35Þ

where Laxial
pol ðxÞ is obtained from (24) using fpol ¼ 1 and

J axial
pol . In turn the differential luminosities J axial

pol are

determined by the integral (25) of Laxial
pol . These quantities

are defined as in (17) with the form factors Ci, Si defined in
(16) to be computed in the axial gauge. One can choose the
two sets of transverse polarization vectors εμi ð�1Þ to be
identical to those in the unitary gauge if nμ is appropriately
chosen. Then only those (differential) luminosities change
with respect to the corresponding ones in Sec. II where
the label “pol” contains at least one index L. We compute
the axial-gauge form factors C1ð0Þ and C2ð0Þ in the Breit
frames B1 and B2, respectively, which were defined below
(21). For definiteness we choose in the following nμ to be
lightlike, and we use nμ ¼ ð1; 0; 0;−1Þ in the V1V2 center-
of-mass frame. According to [21] a lightlike nμ yields the
best approximation to the cross-section ratio σEVBA=σfull for
f1f2 → f01f

0
2W

þW−. For this choice of nμ the polarization
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vectors εμi ð0Þ are given in Appendix B in the V1V2 center-
of-mass frame and in the frames Bi. Moreover, in this
appendix we list also those J axial

pol which differ from their
counterparts in the unitary gauge. In the following the term
“axial gauge” refers to this choice of nμ.
Let us now consider, in analogy to Sec. II, the luminos-

ities Laxial
pol ðxÞ of finding aW−Wþ pair in unpolarized e−eþ

collisions at
ffiffiffi
s

p ¼ 2 TeV. As mentioned above, Laxial
TT ,

Laxial
TT

, and Laxial
TT

¼ −Laxial
TT

are identical to those in the
unitary gauge shown in Figs. 2 and 3. The other luminos-
ities are plotted in Fig. 4 where the same parameter values
as in Sec. II were used. The relations (28) hold also in the
axial gauge. Moreover, Laxial

TL ðxÞ ¼ Laxial
LT ðxÞ.

Comparing the luminosities displayed in Fig. 4 with the
corresponding ones in Figs. 2 and 3 we get the following.
The luminosity Laxial

LL ðxÞ is larger than LLLðxÞ by a factor
∼3 for x ∼ 0.01–0.2. The ratio of these two luminosities
increases to ∼7 for x≳ 0.6. The luminosities Laxial

LT ðxÞ,
Laxial

LT
ðxÞ are larger than the corresponding ones in the

unitary gauge by a factor of ∼2–3. This is mainly due to the
fact that in the axial gauge the factors (21) were not taken
into account which suppress the unitary-gauge luminosities
in the region jk2i j > m2

i .

IV. APPLICATIONS AND COMPARISON
WITH FULL COMPUTATIONS

In this section we analyze the quality of the improved
effective vector boson approximation—that is, the quality
of the formulas (23) and (35)—for the production cross
section of W−Wþ bosons and top-quark top antiquark ðttÞ
pairs at high energies. To be specific we consider the
processes e−eþ → W−Wþνeνe and e−eþ → ttþ νeνe in
the Standard Model and compute the tree-level cross
sections both in the IEVBA using the weak-boson pair
luminosities determined above in the unitary and axial

gauge and fully, that is, taking all SM contributions into
account, with the computer code MADGRAPH [26]. We
determine the relative deviation of the IEVBA from the
respective full cross section in dependence of several
phase-space cuts. In both examples, nondiagonal interfer-
ence contributions are not taken into account. As men-
tioned above, in our view the IEVBA loses its simplicity
and appeal with these nondiagonal contributions.
Besides the weak gauge-boson masses stated above, we

use mH ¼ 125 GeV, mt ¼ 173 GeV, and mb ¼ 4.7 GeV
for the Higgs-boson, top-quark, and b-quark mass,
respectively.

A. e−eþ → W−Wþνeνe
We consider the reaction

e−eþ → W−Wþνeνe ð36Þ

for unpolarized e−eþ collisions and center-of-mass ener-
gies

ffiffiffi
s

p
in the TeV range. At tree-level in the SM there are

56 diagrams that contribute to (36), while in the effective
vector boson approximation 7 diagrams contribute to
the hard scattering reactions W−Wþ → W−Wþ. Within
the IEVBA the cross section for (36), summed over the
helicities of the final-state W−Wþ, is given in the unitary
gauge by

σIEVBAW−Wþ ðsÞ ¼
X
pol

Z
1

xmin

dxLpolðxÞσ̂W−Wþ
pol ðŝ ¼ xs;m2

W;m
2
WÞ;

ð37Þ

where the sum extends over pol ¼ TT;TT;TL;LT;LL.
An analogous formula holds in the axial gauge. Because
at lowest order in the SM the scattering amplitude of
W−Wþ → W−Wþ is not affected by parity violation, the
terms ~σW

−Wþ
pol ¼ 0 for pol ¼ TT;TT;LT, and TL. We define

the relative deviation of (37) from the full tree-level cross
section σfullW−Wþ computed with MADGRAPH [26] and the
corresponding deviation in the axial gauge by

δWW ¼ σIEVBAW−Wþ − σfullW−Wþ

σfullW−Wþ
;

δaxialWW ¼ σIEVBA;axialW−Wþ − σfullW−Wþ

σfullW−Wþ
: ð38Þ

In the following we choose
ffiffiffi
s

p ¼ 2 TeV. The (improved)
effective vector boson approximation is known to signifi-
cantly overestimate the cross section for the reaction (36)
unless appropriate cuts on kinematic variables of W∓ are
made. We require a minimum value M� of the invariant
mass MWW ≡ ŝ of the final-state W−Wþ pair. First we
analyze the quality of the IEVBA forW−Wþ production in
the central region. We compute, for fixed M� the relative

10-7

10-6

10-5

10-4

10-3

 0.1  1

L p
ol

(x
)

x

FIG. 4. The luminosities Laxial
LL ðxÞ (dot-dashed blue), Laxial

LT ðxÞ
(dotted magenta), and Laxial

LT̄ ðxÞ (dashed black) for a W−Wþ pair
in e−eþ collisions at

ffiffiffi
s

p ¼ 2 TeV.
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deviations δWW and δaxialWW for a sequence of upper cuts
y�W on the moduli of the W−- and Wþ-boson rapidities
in the laboratory frame; i.e, we restrict jyW j ≤ y�W . The
implementation of this cut is described in Appendix A.
The computation of the elastic W−Wþ → W−Wþ cross
section requires a cut in order to avoid the t-channel
photon-propagator pole. Here we use a cut on the trans-
verse momentum of the W bosons, pT;W > 20 GeV. The
same set of cuts is also applied to the calculation
of σfullW−Wþ .
The resulting values of δWW given in Table I show that

the size of the relative deviation depends quite sensitively
on the rapidity cut. For loose cuts y�W the cross section
computed in the IEVBA approximation is larger than the
exact value, while it is the other way around for very tight
upper cuts on jyW j. In the latter case the cross section is,
however, reduced significantly. Table I shows that the
IEVBA approximation agrees within ∼10% with the full
calculation if jyW j is restricted to values less than ∼1.7. The
upper cut on jyW j can be loosened if the cutM� is increased.
However, as the numbers in Table I show, jδWW j increases
again below jyW j ¼ 1.7. For jyW j < 1.5 the ratio
δWW ≃ −.30. For these tight cuts the event numbers rapidly
decrease.
As mentioned in Sec. II the luminosity LTTðxÞ was

given in [15] with the wrong sign. With the correct
luminosities and with the set of cuts used in Table I, the
approximation σIEVBAW−Wþ improves by 1% for jyW j < 2.5. The
improvement increases to 9% for jyW j≲ 1.7.
The corresponding ratios δaxialWW , which are given

also in Table I, show that for loose upper cuts on jyW j
the IEVBA approximation in the axial gauge is
worse than in the unitary gauge. This stems from the
fact that in the axial gauge we have put all factors fpol ¼ 1

(cf. Sec. III) which generates in this kinematic regime
larger contributions to σIEVBA;axialW−Wþ with labels pol ¼ TL,
LT, LL. Only for jyW j≲ 1.6 the axial-gauge IEVBA
provides a relatively good approximation to the full cross
section.

Next we analyze δWW and δaxialWW in dependence of a
minimum cut on the transverse momentum of the W∓
boson. In addition a cut jyW j ≤ 2 on the W∓ rapidity is
applied. The results given in Table II exhibit that the
unitary-gauge IEVBA approximates the exact cross section
to ∼10% only if a cut pT;W ≥ 250 GeV is imposed. The
additional cut on the W∓ rapidity improves the quality of
the IEVBA only for pT;W ≲ 200 GeV. In the kinematic
regime considered here the IEVBA in the axial gauge is in
general worse than in the unitary gauge, for reasons
mentioned above. Only for very hard cuts on pT;W the
axial-gauge IEVBA works reasonably well.

B. e−eþ → ttνeνe
As a further reaction of interest, we investigate the cross

section of

e−eþ → ttνeνe ð39Þ

for unpolarized e−eþ collisions. In the standard model
twenty-one tree-level Feynman diagrams contribute to (39)
while in the IEVBA the hard-scattering subprocess
W−Wþ → tt receives four diagram contributions. The cross
section of (39) in the IEVBA in the unitary gauge is

σIEVBA
tt

ðsÞ ¼
X
pol

Z
1

xmin

dxLpolðxÞσ̂ttpolðŝ ¼ xs;m2
W;m

2
WÞ:

ð40Þ

Here the sum extends over all nine polarization labels
introduced in (17). That is, also the four luminosities and
~σttpol that involve a parity-odd combination of vector and
axial vector couplings contribute. This is because of the
relations (28) and

σ̂tt
TT
ðxÞ ¼ −σ̂tt

TT
ðxÞ; σ̂tt

TL
ðxÞ ¼ −σ̂tt

LT
ðxÞ; ð41Þ

which follow from CP invariance. A formula analogous
to (40) holds for the IEVBA in the axial gauge.
In analogy to (38) we define the relative deviation δtt

of (40) and the analogous ratio δaxialtt from the full tree-level

TABLE I. Relative deviations δWWðMWW ≥ M�Þ and
δaxialWW ðMWW ≥ M�Þ defined in (38) of the IEVBA cross section
from the full result for e−eþ → W−Wþνν̄ at

ffiffiffi
s

p ¼ 2 TeV for
several upper cuts y�W on the moduli of theW∓-boson rapidities in
the laboratory frame. The additional cut pT;W > 20 GeV on the
transverse momentum of the W bosons was applied.

y�W 2.5 2 1.8 1.7 1.6 1.5

δWWðMWW ≥ 400 GeVÞ 3.05 0.95 0.33 0.08 −0.12 −0.26
δWWðMWW ≥ 500 GeVÞ 3.22 0.71 0.11 −0.06 −0.17 −0.27
δWWðMWW ≥ 600 GeVÞ 3.20 0.45 0.05 −0.07 −0.18 −0.26
δaxialWW ðMWW ≥ 400 GeVÞ 5.15 1.84 0.86 0.48 0.17 −0.03
δaxialWW ðMWW ≥ 500 GeVÞ 5.35 1.38 0.45 0.21 0.05 −0.06
δaxialWW ðMWW ≥ 600 GeVÞ 5.22 0.90 0.34 0.17 0.04 −0.06

TABLE II. Same as Table I, but δWWðMWW ≥ M�Þ for several
minimum cuts p�

T;W on the transverse momentum of the W∓
boson and the cut jyW j ≤ 2.

p�
T;W [GeV] 100 150 200 250 300

δWWðMWW ≥ 400 GeVÞ 0.359 0.347 0.271 0.089 −0.105
δWWðMWW ≥ 500 GeVÞ 0.440 0.395 0.312 0.130 −0.087
δWWðMWW ≥ 600 GeVÞ 0.488 0.439 0.315 0.128 −0.068
δaxialWW ðMWW ≥ 400 GeVÞ 0.746 0.684 0.552 0.314 0.069
δaxialWW ðMWW ≥ 500 GeVÞ 0.843 0.740 0.603 0.363 0.089
δaxialWW ðMWW ≥ 600 GeVÞ 0.890 0.786 0.607 0.362 0.113
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cross section σfulltt computed with MADGRAPH. We chooseffiffiffi
s

p ¼ 2 TeV and use the same set of minimum values M�
as in Sec. IVA, now for the invariant mass Mtt ≡ ŝ of the
tt pair.
First we analyze the quality of the IEVBA in the unitary

gauge. In Table III the relative deviation δtt is given for a
sequence of upper cuts y�t on the moduli of the t and t
rapidities in the laboratory frame. For rather loose cuts a
precision of about 10% or better can be obtained. However,
similar to the example analyzed in subsection IVA, the y�t
region where δtt becomes minimal is correlated with the
value of the cut on the tt invariant mass. We remark that the
improvements discussed in Sec. II [i.e., correct sign of LTT
and including the contributions to (40) with parity-odd
combinations of vector and axial vector couplings]
improves the quality of the IEVBA by about 20% (30%)
for loose cuts (y�t ≲ 2).
In addition, we analyze δtt in dependence of a minimum

cut p�
T;t on the transverse momentum of the t and t quarks.

The numbers given in Table IV show that for tt events with
Mtt ≥ 500 GeV and a moderate transverse momentum cut
pT;t ≥ 50 GeV a precision of about 10% or better, depend-
ing on the value of M�, can be obtained.
The numbers for δaxialtt given in Tables III and IV show

that in the kinematic regimes considered the IEVBA
approximation (40) in the axial gauge overestimates the
full result by a factor of about 3 to 4. The reason is that the
on-shell hard scattering cross sections σ̂ttpol are dominated
by those where W− and/or Wþ is longitudinally polarized
and the associated axial-gauge luminosities Lpol are

significantly larger than those in the unitary gauge. If
one chooses tighter cuts than those used in Tables III and IV
the deviations δaxialtt diminish, but at the cost of rapidly
decreasing event numbers.
Our results for the reactions (36) and (39) show that the

unitary-gauge IEVBA provides a relatively good approxi-
mation to the full cross section if hard cuts on jyW j and pT;W
are applied, while the axial-gauge IEVBA is worse in
general. Given a specific choice of cuts it is not possible to
make a quantitative a priori estimate of the quality of the
IEVBA. What could then be the use of the IEVBA—in
particular, in view of the fact that computer codes such as
those of [25,26] allow us to compute tree-level cross
sections exactly? One potential application, which keeps
the computational effort at bay, is to calculate the tree-level
cross section fully by taking into account all contributing
Feynman diagrams but to implement the radiative correc-
tions to the respective hard scattering process V1V2 → W
using the IEVBA. In Ref. [22] this strategy was pursued
with the unitary-gauge IEVBA for the reaction (36) and it
was argued that this leads to quantitatively satisfactory
results.

V. SUMMARY AND CONCLUSIONS

We revisited the improved effective vector boson
approximation [15] in the unitary gauge that was designed
to catch the essence of weak gauge boson scattering
V1V2 → W in high-energy pp and e−eþ collisions with
an improved precision compared to the EVBA in the
leading logarithmic approximation. We computed the
correlated two-vector-boson luminosities LpolðxÞ for V1,
V2 being radiated off a massless quark or lepton f1 and f2,
respectively, for the nine combinations of the transverse
and longitudinal polarizations of V1 and V2. We clarified a
sign issue that appears in some of the LpolðxÞ. Our results
for the parity-even luminosities LpolðxÞ agree with those of
[15], up to a sign in the case ofLTT. Our results for the four
luminosities that involve a parity-odd combination of
vector and axial vector couplings were, to our knowledge,
so far not available in the literature. They are required if the
hard scattering amplitude of V1V2 → W is affected also by

TABLE III. Relative deviations δtt̄ðMtt̄ ≥ M�Þ and δaxialtt̄ defined in analogy to (38) of the IEVBA cross section
from the full result for e−eþ → tt̄νν̄ at

ffiffiffi
s

p ¼ 2 TeV for several upper cuts y�t on the moduli of the t and t̄ rapidities in
the laboratory frame.

y�t 5 4 3 2 1.5 1

δtt̄ðMtt̄ ≥ 400 GeVÞ 0.090 0.090 0.090 0.076 0.011 −0.081
δtt̄ðMtt̄ ≥ 500 GeVÞ 0.064 0.064 0.064 0.045 −0.048 −0.180
δtt̄ðMtt̄ ≥ 600 GeVÞ 0.006 0.005 0.004 −0.024 −0.154 −0.296
δaxialtt̄ ðMtt̄ ≥ 400 GeVÞ 3.18 3.18 3.17 3.11 2.78 2.36
δaxialtt̄ ðMtt̄ ≥ 500 GeVÞ 3.47 3.47 3.47 3.38 2.91 2.31
δaxialtt̄ ðMtt̄ ≥ 600 GeVÞ 3.55 3.55 3.55 3.42 2.74 2.04

TABLE IV. Same as Table III, but δtt̄ðMtt̄ ≥ M�Þ for several
minimum cuts p�

T;t on the t and t̄ transverse momentum.

p�
T;t [GeV] 0 50 100 150 200

δtt̄ðMtt̄ ≥ 400 GeVÞ 0.090 0.108 0.119 0.027 −0.099
δtt̄ðMtt̄ ≥ 500 GeVÞ 0.064 0.043 0.005 0.010 −0.068
δtt̄ðMtt̄ ≥ 600 GeVÞ 0.005 −0.043 −0.110 −0.144 −0.163
δaxialtt̄ ðMtt̄ ≥ 400 GeVÞ 3.18 3.27 3.37 3.20 2.83
δaxialtt̄ ðMtt̄ ≥ 500 GeVÞ 3.47 3.38 3.21 3.21 2.97
δaxialtt̄ ðMtt̄ ≥ 600 GeVÞ 3.55 3.33 2.99 2.80 2.67
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parity-violating interactions. For instance, this is the case
for V1V2 → ff0 where f, f0 are heavy quarks or leptons.
We computed also the correlated two-vector-boson lumi-
nosities Laxial

pol ðxÞ in the axial gauge, using a specific
vector nν.
Furthermore, we studied the reactions e−eþ →

W−Wþνeνe and e−eþ → ttνeνe within the standard model
for large e−eþ center-of-mass energies by computing the
respective tree-level cross section using the IEVBA in the
unitary and axial gauge and comparing these approxima-
tions with the full SM cross section computed with
MADGRAPH [26]. Here, our aim was to probe the quality
of the formulas (23) and (35). We found that the IEVBA in
the unitary gauge provides a relatively good approximation
to the full cross section if hard cuts on the rapidities and
transverse momenta of the W−, Wþ, respectively t, t in the
final state are applied. In the case of tt the inclusion of the
luminosities with parity-odd combinations of vector and
axial vector couplings improves the quality of the IEVBA
by 20–30% depending on the chosen cuts. Using the axial-
gauge luminosities the IEVBA becomes worse in general,
for reasons discussed above.
The applicability of the (improved) effective vector

boson approximation is certainly limited because,
for a given high-energy reaction and a choice of cuts, it
seems not possible to quantify a priori the precision of the
approximation. At best one may use the IEVBA, which is
gauge dependent, for a semiquantitative estimate of the
effect of the hard scattering process V1V2 → W. For
instance, one may use it to estimate the effect of radiative
corrections to this subprocess, as mentioned at the end of
Sec. IV. The IEVBA may also be useful if new physics
effects are considered and if the new physics effects on
V1V2 → W are dominated by one or a few helicity
combinations of the weak gauge bosons.
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APPENDIX A: FOUR-FOLD DIFFERENTIAL
LUMINOSITIES IN THE UNITARY GAUGE

Here we give explicit expressions for the nine differential
luminosities J pol in the unitary gauge defined in (25). They
are calculated as follows. One starts with the center-of-mass
frame of the off-shell vector bosons V1 and V2 whose four-
momenta are given by

kμ1 ¼ ðk01; 0; 0; kÞ; kμ2 ¼ ðk02; 0; 0;−kÞ: ðA1Þ

In this frame the polarization vectors of V1 and V2 in the
unitary gauge of helicity λ1 and λ2, respectively, are given
in the Jacob-Wick phase conventions:

εμ1ð�Þ ¼ 1ffiffiffi
2

p ð0;∓1;−i; 0Þ;

εμ1ð0Þ ¼
1ffiffiffiffiffiffiffiffi
−k21

p ðk; 0; 0; k01Þ; ðA2Þ

εμ2ð�Þ ¼ 1ffiffiffi
2

p ð0;�1;−i; 0Þ;

εμ1ð0Þ ¼
1ffiffiffiffiffiffiffiffi
−k22

p ð−k; 0; 0; k02Þ: ðA3Þ

As already mentioned below Eq. (21) the four-momentum
and polarization vectors of V1 ðV2Þ and the four-momenta
of f1, f01 ðf2; f02Þ are Lorentz-transformed into the Breit
frame B1 ðB2Þ where the form factors C1, S1 ðC2;S2Þ
defined in (16) are conveniently computed. They determine
the Lpol defined in (17). Performing the integration over the
azimuthal angles in (25) we obtain the differential lumi-
nosities J pol. For the sake of brevity we omit details of the
computation; they are given in [15].
For fixed squared center-of-mass energy

ffiffiffi
s

p
of the initial

fermions f1, f2 the J pol are functions of k21, k
2
2 and the

variables x and u defined in (10) and (22), respectively. We
obtain for the reactions (1):

J TT ¼ cTT

�
1þ 4ðu− νÞ2

κ2

��
1

2
þ sðs− uÞ

u2

þ k21k
2
2

κ2u4
ðk21k22 þ u2 − 2uνÞðu2 − 6usþ 6s2Þ

�
; ðA4Þ

J LT ¼ cLT

�
1þ 4ðu− νÞ2

κ2

��
sðs− uÞ

u2

þ k21k
2
2

κ2u4
ðk21k22 þ u2 − 2uνÞðu2 − 6usþ 6s2Þ

�
; ðA5Þ

J TL ¼ cTL

�
−1þ 4ðu− νÞ2

κ2

��
1

2
þ sðs− uÞ

u2

þ k21k
2
2

κ2u4
ðk21k22 þ u2 − 2uνÞðu2 − 6usþ 6s2Þ

�
; ðA6Þ

J TT ¼ ð−1Þr1þr2
4cTT

κ2u2
ðu − νÞðk21k22 − uνÞðu − 2sÞ; ðA7Þ

J TT ¼ ð−1Þr1cTT

�
1þ 4ðu − νÞ2

κ2

�
k21k

2
2 − uν
κu2

ðu − 2sÞ;

ðA8Þ

J TT ¼ ð−1Þr24cTT
ðu− νÞ

κ

�
1

2
þ sðs− uÞ

u2

þ k21k
2
2

κ2u4
ðk21k22 þ u2 − 2uνÞðu2 − 6usþ 6s2Þ

�
; ðA9Þ
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J TL ¼ ð−1Þr1cTL
�
−1þ 4ðu − νÞ2

κ2

�
k21k

2
2 − uν
κu2

ðu − 2sÞ;

ðA10Þ

J LT ¼ ð−1Þr24cLT
ðu − νÞ

κ

�
sðs − uÞ

u2

þ k21k
2
2

κ2u4
ðk21k22 þ u2 − 2uνÞðu2 − 6usþ 6s2Þ

�
;

ðA11Þ

J LL ¼ cLL

�
−1þ 4ðu − νÞ2

κ2

��
sðs − uÞ

u2

þ k21k
2
2

κ2u4
ðk21k22 þ u2 − 2uνÞðu2 − 6usþ 6s2Þ

�
;

ðA12Þ

where the variables ν and κ are given in (27) and
the powers r1, r2, which are either zero or one, are
defined below Eq. (16). In (A4)–(A12) we have used the
abbreviations

cTT ¼ cLT ¼ cTL ¼ cLL ¼ ðv21 þ a21Þðv22 þ a22Þ;
cTT ¼ cLT ¼ 2ðv21 þ a21Þv2a2;
cTT ¼ cTL ¼ 2ðv22 þ a22Þv1a1;
cTT ¼ 4v1a1v2a2; ðA13Þ

where vi, ai are the vector and axial vector coupling
of the intermediate gauge boson Vi which are defined
below Eq. (16).
If no phase-space cuts are applied and if one integrates

over the variable u and defines ~J pol ¼
R
s
x̂sðdu=uÞJ pol, then

the following relations hold in the physical region defined
by the integration regions over the remaining phase-space
variables in (23), (24):

~J TL ¼ ~J LT; ~J TT ¼ ð−1Þr2−r1 cTT
cTT

~J TT;

~J LT ¼ ð−1Þr2−r1 cLT
cTL

~J TL: ðA14Þ

Finally, we describe how cuts can be applied on the
rapidities of the particles in the final state W of the
reactions (1). We introduce the variables

z≡ uþ k21
s

¼ 2k1 · l2 þ k21
2l1 · l2

; K2 ≡ uþ k21
u

k22: ðA15Þ

In terms of these variables the three-dimensional integra-
tion measure in (24) is

Z
0

−sþŝ
dk21

Z
0

−sþŝ0
dk22

Z
s

x̂s

du
u
¼
Z

1

x

dz
z

Z
0

−sð1−zÞ
dk21

Z
0

−sðz−xÞ
dK2:

ðA16Þ

In the context of the effective vector boson approxima-
tion the dominant kinematic configuration corresponds
to the intermediate vector boson V1 and V2 moving
collinear to the f1f2 beam axis. Then the variable z
defined in (A15) is approximately equal to the longi-
tudinal momentum fraction of V1 with respect to f1.
Analogously we denote by z0 the longitudinal momen-
tum fraction of V2 with respect to f2. The longitudinal
velocity of the intermediate vector-boson pair V1V2 in
the f1f2 center-of-mass frame is βV1V2

¼ðz−z0Þ=ðzþz0Þ,
and the rapidity of the pair is

yV1V2
¼ 1

2
ln

�
1þ βV1V2

1 − βV1V2

�
¼ 1

2
ln

�
z2

x

�
: ðA17Þ

We consider now a particle F in the final state W of
the reaction (1). [In the examples analyzed in Sec. IV F
corresponds to a W boson or an (anti)top quark.] The
rapidity of F in the f1f2 center-of-mass frame is
given by

yF ¼ yV1V2
þ y0F; ðA18Þ

where y0F ¼ ð1=2Þ ln ½ðE0
F þ p0

3FÞ=ðE0
F − p0

3FÞ� is the
rapidity of F in the V1V2 center-of-mass frame. Cuts
on yF can be implemented using (A16) and (A18).

APPENDIX B: FOUR-FOLD DIFFERENTIAL
LUMINOSITIES IN THE AXIAL GAUGE

Here we list explicit expressions for those differential
luminosities that differ from their counterparts in the
unitary gauge. For definiteness, we choose nμ to be
lightlike. In the V1V2 center-of-mass frame we use
nμ ¼ ð0; 0; 0;−1Þ. In this frame the four-momenta of V1

and V2 are given by (A1) and their transverse polarization
vectors can be chosen to be those listed in (A2), (A3).
Using (32) and n2 ¼ 0 the longitudinal polarization vectors
in this frame are

εμi ð0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−k2i

ðki · nÞ2

s
nμ; i ¼ 1; 2: ðB1Þ

As was done in Appendix A the four-momentum and
polarization vectors of V1 ðV2Þ and the four-momenta of
f1, f01 ðf2; f02Þ are Lorentz-transformed into the Breit frame
B1 ðB2Þ. We obtain for the longitudinal polarization vectors
of V1 and V2:
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ðεB1

1 Þμð0Þ ¼ h1ðe0; e1; 0; e3Þ;

h1 ¼
2

ffiffiffiffiffiffiffiffi
−k21

p
κ

;

e0 ¼
1ffiffiffiffiffiffiffiffi
−k21

p �
ν −

k21k
2
2

u

�
;

e1 ¼
ffiffiffiffiffiffiffiffi
−k22

p
u

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21k

2
2 þ uðu − 2νÞ

q
;

e3 ¼ −
κ

2
ffiffiffiffiffiffiffiffi
−k21

p ;

ðεB2

2 Þμð0Þ ¼ ð1; 0; 0; 1Þ: ðB2Þ

The variables u, ν, and κ are defined in (22) and (27). The
transverse polarization vectors of V1 ðV2Þ and the four-
momenta of V1, f1, f01 ðV2; f2; f02Þ in B1 ðB2Þ are given in
Appendix A of [15], which we do not reproduce here for
the sake of brevity.
With these momenta and polarization vectors one can

compute the helicity tensors (9) and the associated form
factors in the frames B1 and B2. Concerning the form
factors defined in (16) one has the following. The
Ciðλi ¼ �1Þ and Siðλi ¼ �1Þ are identical to those in
the unitary gauge. The Siðλi ¼ 0Þ are zero because the
longitudinal polarization vectors are real vectors. Thus one
has to compute only those differential luminosities J axial

pol

defined by (25) with Lpol → Laxial
pol where the label “pol”

contains at least one index L. We obtain

J axial
LL ¼ cLL

h21F
4u4k21

�
1 −

4ðu − νÞ2
κ2

�
; ðB3Þ

J axial
LT ¼ cLT

−h21F
4u4k21

�
1þ 4ðu − νÞ2

κ2

�
; ðB4Þ

J axial
LT

¼ ð−1Þr2cLT
h21F
u4k21

4ðν − uÞ
κ

; ðB5Þ

where

F ¼ 4u2ν2sðs − uÞ þ ðk21k22Þ2ðu2 − 6usþ 6s2Þ
þ k21k

2
2uðu3 − 12νs2 − 2u2ðνþ sÞ þ 2usð6νþ sÞÞ;

ðB6Þ

and the couplings cpol are defined in (A13).
Moreover, we find that

J axial
TL ¼ J TL;J axial

TL
¼ J TL: ðB7Þ

The integrands of these differential luminosities involves
the form factor C2ðλ2 ¼ 0Þ that happens to be identical
in the axial and unitary gauge. Notice, however, that the
associated luminosities Laxial

pol ðxÞ differ from those in the
unitary gauge because in the axial gauge the factors (21) are
not taken into account.
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