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We discuss the computation of the Higgs boson decay amplitude to two photons through the W-loop
using dispersion relations. The imaginary part of the form factor FWðsÞ that parametrizes this decay is
unambiguous in four dimensions. When it is used to calculate the unsubtracted dispersion integral, the
finite result for the form factor FWðsÞ is obtained. However, the FWðsÞ obtained in this way differs by a
constant term from the result of a diagrammatic computation, based on dimensional regularization. It is
easy to accommodate the missing constant by writing a once-subtracted dispersion relation for FWðsÞ but it
is unclear why the subtraction needs to be done. The goal of this paper is to investigate this question in
detail. We show that the correct constant can be recovered within a dispersive approach in a number of ways
that, however, either require an introduction of an ultraviolet regulator or unphysical degrees of freedom;
unregulated and unsubtracted computations in the unitary gauge are insufficient, in spite of the fact that
such computations give a finite result.
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I. INTRODUCTION

The decay rate of the Higgs boson to two photons
through the W-loop was computed in the literature at least
14 times [1–14]. The recent flurry of activity around this
process, important for understanding Higgs boson proper-
ties, was caused by the fact that the original computations
of the H → γγ decay rate [1–3], performed almost 40 years
ago, were challenged in Refs. [4,5]. Among the follow-up
computations [6–14], only Ref. [14] agreed with the
findings of Refs. [4,5].
A good way to describe the controversial situation is as

follows. Consider the H → γðk1Þγðk2Þ decay amplitude,
focusing on the W-boson loop, and write it as

M ¼ α

4πv
FWðm2

HÞðkμ1ϵν1 − kν1ϵ
μ
1Þðk2μϵ2ν − k2νϵ2μÞ: ð1Þ

Here v ¼ 2mW=g ¼ ðGF

ffiffiffi
2

p Þ−1=2 is the Higgs field vacuum
expectation value and ϵ1;2 are the photon polarization
vectors. The form factor FWðsÞ reads

FWðsÞ ¼ F∞
W þ Fc

WðsÞ;
Fc
WðsÞ ¼ 3β þ 3βð2 − βÞfðβÞ; ð2Þ

where β ¼ 4m2
W=s and

fðβÞ ¼ −
1

4

�
ln
1þ ffiffiffiffiffiffiffiffiffiffiffi

1 − β
p

1 −
ffiffiffiffiffiffiffiffiffiffiffi
1 − β

p − iπ

�
2

: ð3Þ

The constant term F∞
W in Eq. (2) is the gist of the current

discussion: according to Refs. [1–3,6–13] F∞
W ¼ 2 and

according to Refs. [4,5,14], F∞
W ¼ 0. The two groups

[4,5,14] that claim F∞
W ¼ 0 have used two different

techniques in their computations that, however, have two
important features in common. Indeed, both groups refuse
to use the dimensional regularization, so that all the
algebraic manipulations are performed in four dimensions
and both groups insist on using only physical degrees of
freedom in their calculations, i.e. the unitarity gauge for the
W-bosons.
The authors of Refs. [4,5] do this in the context of

Feynman diagrams and loop integrations. This is a
delicate matter since all the individual diagrams are
divergent and need to be combined before the actual
integration over the loop momentum to ensure the finite
result. It is understandable that this method of calculation
drew criticism from Refs. [6,8,9,15]. Interestingly, the
authors of Refs. [4,5] recognize this issue and try to
ameliorate it by imposing an additional requirement on
their result. This requirement is the heavy Higgs boson
decoupling condition FWðs → ∞Þ ¼ F∞

W ¼ 0 whose val-
idity was, however, criticized in Refs. [6,8–10]. Indeed,
the decoupling limit, β ¼ 4m2

W=m
2
H → 0, can also be

viewed as the limit mW → 0. It is well known that in
the mW → 0 limit the Higgs boson interaction with vector
bosons, 2Hm2

WW
†
μWμ=v, does not vanish for the longi-

tudinal polarizations of the W bosons. This is in contrast
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to the Higgs interactions with fermions that do vanish in
the zero fermion mass limit.
On the other hand, the computation of Ref. [14], based

on the dispersive approach, is well grounded at first sight. If
one wants to use the four-dimensional setup and physical
degrees of freedom, the best thing to do is to use dispersion
relations for the form factor FWðsÞ whose imaginary part
can be computed from tree-level Feynman diagrams. As it
is seen from Eqs. (2) and (3), ImFWðsÞ does not depend on
the ambiguity in F∞

W and equals

ImFWðsÞ¼
3π

2
θð1−βÞβð2−βÞ ln1þ

ffiffiffiffiffiffiffiffiffiffi
1−β

p
1−

ffiffiffiffiffiffiffiffiffiffi
1−β

p : ð4Þ

Note that the imaginary part does vanish in the β → 0 limit.
The full function FWðsÞ is then reconstructed using the

unsubtracted dispersion relation in s,

FWðsÞ ¼
1

π

Z∞

4m2
W

ds1Im½FWðs1Þ�
s1 − s − i0

: ð5Þ

The result of the integration in Eq. (5) is the form factor Fc
W

shown in Eq. (2), which implies that F∞
W ¼ 0. The authors

of Ref. [14] interpret this result as the supporting evidence
for the computation reported in Refs. [4,5]. However, it
should be recognized that the use of the unsubtracted
dispersion relation assumes that the form factor FWðsÞ
vanishes at s → ∞, i.e. F∞

W ¼ 0. In other words, decou-
pling is assumed, rather than proved in Ref. [14]. Without
such an assumption, one can just add any real constant to
the right-hand side of Eq. (5).
The constant F∞

W then either needs to be computed with a
method that is different from the dispersion relations or
one should have a physical argument that determines the
value of the form factor FWðsÞ for one value of s. The most
well-known example of the latter is the requirement that the
Dirac form factor of the electron equals to one at zero
momentum transfer.
In the case of the form factor FWðsÞ, the low-energy

theorem of Ref. [3] fixes its value at s ¼ 0 to be the
W-boson contribution to the coefficient of the one-loop
QED β-function bW ,

lim
s→0

FW ¼ bW ¼ 7: ð6Þ

It is straightforward to check, using Eq. (2), that this
condition at s ¼ 0 implies that F∞

W ¼ 2.
Nevertheless, we can ask under which conditions the

dispersion relations without the integral over the infinitely
remote contour and the subtraction constant can be used
in general. The answer to this question is well known.
Such a possibility should exist if a finite form factor is
computed in a renormalizable theory since each indepen-
dent subtraction term corresponds to an independent

renormalization condition that usually is fixed by con-
sidering divergent, rather than finite, quantities. Also, the
use of unsubtracted dispersion relations should be pos-
sible if one combines an ultraviolet (UV) regularization,
such as dimensional or Pauli-Villars, with the dispersion
relations. Indeed, taking the dimensional regularization
as an example, any integral over the infinitely remote
integration contour can be discarded since FWðsÞ ∼ s−ϵ for
dimensional reasons and ϵ can always be chosen in such a
way that such an integral vanishes. In case of the Pauli-
Villars regularization, FWðsÞ is also decreasing for values
of

ffiffiffi
s

p
that are larger than the ultraviolet cutoff, given by

the regulator mass MPV.
Combining these observations with the fact that the

ImFWðsÞ in Eq. (4) is finite and integrable in the dispersion
integral, and that the Standard Model is, obviously, a
renormalizable theory, we conclude that something unusual
should occur in ImFWðsÞ in the limit when the regulators are
taken to their limiting values (ϵ → 0 or MPV → ∞). Indeed,
as we will see, this is exactly what happens and an additional
contribution to the imaginary part of the form factor is
generated at

ffiffiffi
s

p
of the order of the ultraviolet cutoff. This

additional contribution to the dispersion integral changes
FWðsÞ if s is in the range mW ≪

ffiffiffi
s

p
≪ MPV, effectively

leading to a nonvanishing “constant” contribution to FW .
Although this approach may look somewhat unphysical

because it refers to the behavior of the theory for values of
Higgs masses that are larger than the UV cutoff of the
theory, we will see that it is consistent with an infrared
condition, e.g. the fixed value of FW at s ¼ 0. We
investigate how this happens in detail in this paper.

II. LONGITUDINAL POLARIZATIONS

The issue of nondecoupling at mW ¼ 0 refers to the
longitudinally polarized W bosons. To describe these polar-
izations at large energies, E ≫ mW , one can substituteWμ ¼∂μϕ=mW where ϕ is the charged scalar field; this statement
is the essence of the equivalence theorem [16–18]. When
written in terms of ϕ-fields, the interaction of the W-bosons
with the Higgs field 2ðH=vÞm2

WW
†
μWμ takes the form

Sint ¼
Z

d4x
H
v
∂μ∂μðϕ†ϕÞ: ð7Þ

Technically, this interaction looks as a dimension-five, i.e.
nonrenormalizable, operator. This fact alone should act like a
warning sign for the application of unsubtracted dispersion
relations, even if the result of the computation turns out to be
finite.
We will study the contribution of the ϕ particles to the

form factor for the two-photon Higgs decay assuming that
Higgs-ϕ interaction is given by Eq. (7) and denoting their
masses as mϕ. We will see that this toy model captures all
the essential features of the problem discussed in the
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Introduction. The counterpart of the full form factor FWðsÞ
of Eq. (2) in our toy model is denoted by FϕðsÞ.
There are two ways to deal with the operator in Eq. (7).

The first one is based on the observation that for the
purpose of computing H → γγ decay amplitude, it is
possible to improve the ultraviolet properties of the action
in Eq. (7). To this end, we integrate by parts in Eq. (7), use
equations of motion for the Higgs particle ∂μ∂μH ¼
−m2

HH and obtain

Sint ¼ −
m2

H

v

Z
d4xHϕ†ϕ: ð8Þ

This transformation makes the interaction between the
Higgs and the ϕ’s explicitly renormalizable and guarantees
that an unsubtracted dispersion relation for suitably defined
form factor should be applicable.
To proceed further, we parametrize the matrix element

hγγjϕ†ϕj0i as follows:

hγγjϕ†ϕj0i ¼ −ΦðsÞ · α
4π

fμν1 f2;μν; ð9Þ

where fμνi ¼ kμi ϵ
ν
i − kνi ϵ

μ
i . The physical form factor is

then FϕðsÞ ¼ m2
HΦðsÞ ¼ sΦðsÞ.

The form factor ΦðsÞ at large s ¼ ðk1 þ k2Þ2 ≫ m2
ϕ

equals [3,19,20]

ΦðsÞ ¼ 2

s
: ð10Þ

After multiplying Eq. (9) by the “coupling constant” m2
H,

identifying m2
H with s and taking the s → ∞ limit, we

obtain lims→∞FϕðsÞ ¼ 2, which reproduces the nondecou-
pling constant in Eq. (2).
It is straightforward to reproduce this result in the

dispersive approach. Indeed, by unitarity the imaginary
part of the hγγjϕ†ϕj0i amplitude is

2Imhγγjϕ†ϕj0i ¼
Z

dLipsðp1; p2; K12ÞMγγ
ϕϕ; ð11Þ

where dLips denotes the element of standard Lorentz
invariant phase space of two ϕ particles with momenta
p1 and p2 and Mγγ

ϕϕ is the amplitude of ϕðp1Þ þ ϕ̄ðp2Þ →
γðk1Þ þ γðk2Þ annihilation,

Mγγ
ϕϕ ¼ 2e2

�
ðϵ1ϵ2Þ −

ðp1ϵ1Þðp2ϵ2Þ
ðp1k1Þ

−
ðp1ϵ2Þðp2ϵ1Þ

ðp1k2Þ
�
:

ð12Þ

After integration over the phase space of two ϕ particles,
we obtain

ImΦðsÞ ¼ −πθð1 − βϕÞ
βϕ
s
ln
1þ ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − βϕ
p

1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − βϕ

p : ð13Þ

We use this result in the unsubtracted dispersion relation
and find

ΦðsÞ ¼ 1

π

Z∞

4m2
ϕ

ds1ImΦðs1Þ
s1 − s − i0

¼ 2

s
ð1 − βϕfðβϕÞÞ; ð14Þ

where βϕ ¼ 4m2
ϕ=s. This expression coincides with Eq. (9)

at large s but it is valid for all s. To obtain the form factor
FϕðsÞ, we multiply the real and imaginary parts ofΦ bym2

H

and identify m2
H with s. We find

FϕðsÞ ¼ sΦðsÞ;

ImFϕðsÞ ¼ −πθð1 − βϕÞβϕ ln
1þ ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − βϕ
p

1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − βϕ

p ;

FϕðsÞ ¼ 2ð1 − βϕfðβϕÞÞ: ð15Þ

Note that the physical form factor FϕðsÞ contains the
constant contribution in the limit s → ∞ and, therefore,
does not support the s → ∞ decoupling condition.
We can now ask what is the dispersion relation that the

form factor FϕðsÞ satisfies, provided that ΦðsÞ satisfies an
unsubtracted dispersion relation. It is straightforward to
answer this question. We start from the unsubtracted
relation for ΦðsÞ in Eq. (14), write Φ ¼ Fϕ=s, and obtain

FϕðsÞ ¼
s
π

Z∞

4m2
ϕ

ds1ImFϕðs1Þ
s1ðs1 − s − i0Þ ; ð16Þ

which is a once-subtracted dispersion relation for the form
factor FϕðsÞ. Therefore, the subtraction of the dispersion
relation for FϕðsÞ at s ¼ 0, which enforces the condition
Fϕðs ¼ 0Þ ¼ 0, appears automatically provided that we
use the unsubtracted dispersion relations only for quantities
[e.g. ΦðsÞ] that are computed in a theory where all
interactions are renormalizable by naive power counting.
This is not the case for both the toy model with the
interaction term as in Eq. (7) and the Standard Model in the
unitary gauge, so that the use of the unsubtracted dispersion
relations in both of these cases leads to incorrect results.
We elaborate on the last statement. Suppose that we do

not perform the integration by parts in the interaction term
Eq. (7) and use it directly to compute H → γγ amplitude.
Roughly speaking, this is a situation that corresponds to
calculations in the unitary gauge in the full Standard
Model. The imaginary part of this amplitude is given by
the imaginary part of the physical form factor FϕðsÞ. If we
now use this imaginary part in the unsubtracted dispersion
relation, we obtain a result that differs from FϕðsÞ in
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Eq. (16) by a subtraction constant,

−
Z

ds1
s1

Im½Fϕðs1Þ� ¼ 2: ð17Þ

We will now check that we can get the correct result for
the form factor using the unsubtracted dispersion relations
even if we work with the nonrenormalizable interaction in
Eq. (7) but regulate the theory in the ultraviolet, in spite of
the fact that the final result turns out to be finite.
A simple form of the UV regularization is an introduc-

tion of Pauli-Villars fields. In our case it means that a
contribution of the loop of charged scalar particles with the
mass mPV should be subtracted from the loop of ϕ-fields.
The introduction of the Pauli-Villars regulator leads to a
change in the imaginary part of the form factor ImFϕðsÞ at
s ≥ 4m2

PV,

ΔPV½ImFϕ� ¼ πθð1 − βRÞβR ln
1þ ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − βR
p

1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − βR

p ; ð18Þ

where βR ¼ 4m2
PV=s. We find

ΔPVFϕðsÞ ¼
1

π

Z∞

4m2
R

ds1ΔPV½Im½Fϕðs1Þ�
s1 − s − i0

¼ 2βRfðβRÞ: ð19Þ

We are interested in the limit βR ¼ 4m2
PV=s → ∞; in that

limit

ΔPVFϕðsÞ ¼ 2βRfðβRÞ → 2; ð20Þ

which is the same constant that appears in Eq. (17).
We will now demonstrate that the same result is obtained

if dimensional regularization is used for the UV cutoff. It is
convenient to choose the photon polarization vectors as

ϵ1;2 ¼ ð0; 1;�i; 0Þ=
ffiffiffi
2

p
; ϵ1 · ϵ2 ¼ −1; ð21Þ

in the reference frame where the photon momenta are along
the z axis. Then from the unitarity relation

2ImhγγjHi ¼
Z

dLipsðp1; p2; K12Þhϕϕ̄jHiMγγ
ϕϕ ð22Þ

we obtain

ImFϕ ¼ ð4πÞ2μ2ϵ
Z

dLipsðp1; p2; K12Þ
�
−1þ p2

x þ p2
y

p2
0 − p2

z

�
;

ð23Þ

where μ is the normalization point and the factor μ2ϵ

restores a correct dimension.
At d ¼ 4 this expression shows that ImFϕ ∝ m2

ϕ and
leads to ImFϕ given in Eq. (15). At d ¼ 4 − 2ϵ we should

split the ϕ particle momentum pμ into the four-dimensional
part and the part pϵ living in the remaining −2ϵ dimension.
To determine an additional part ΔϵImFϕ we put mϕ ¼ 0.
Then,

ΔϵImFϕ ¼ ð4πÞ2μ2ϵ
Z

dLipsðp1; p2; K12Þ
n2ϵ

sin2θ

¼ ϵð4πÞ2μ2ϵ
Z

dLipsðp1; p2; K12Þ

¼ Ωðd−1Þ

2d−3ð2πÞd−4 ϵ
�
s
μ2

�
−ϵ

≈ 2πϵ

�
s
μ2

�
−ϵ
: ð24Þ

In these equations nϵ ¼ pϵ=jpj, the angle θ is between p and
k, and Ωðd−1Þ is the solid angle in d − 1 spatial dimensions.
The correction to the imaginary part induces the following
change in Fϕ:

ΔϵFϕðsÞ ¼
1

π

Z∞

4m2
R

ds1ΔϵIm½Fϕðs1Þ�
s1 − s − i0

¼ 2

�
−

s
μ2

�
−ϵ
: ð25Þ

If we consider values of
ffiffiffi
s

p
that are much smaller than the

scale μ expð1=ð2ϵÞÞ, which plays a role of the UV cutoff,
ΔϵFϕðsÞ adds the required constant 2 to FϕðsÞ, that is
reconstructed from the unsubtracted and unregulated
dispersion relation.
By considering the toy model for the interaction of the

longitudinally polarized gauge bosons with the Higgs
boson, we showed that the reason for the appearance of
the constant contribution to the H → γγ form factor is the
fact that interactions between the Higgs boson and the
electroweak bosons in the unitary gauge are not renorma-
lizable by power counting. The correct result can be
obtained by either introducing an explicit ultraviolet
regulator, in spite of the fact that the computation of
the form factor leads to a finite result, or by switching
to a formulation of the theory where interactions are
renormalizable by power counting. We also note that the
UV regularization leads automatically to a result that
is consistent with the low-energy constraint which is
Fϕðs ¼ 0Þ ¼ 0 in our toy model. As we saw, imposing
this condition was sufficient for the dispersive
reconstruction. All of these approaches can be used to
compute the complete form factor FWðsÞ in the dispersive
approach; in the next section, we will do that by performing
the dispersive computation in a renormalizable Rξ gauge
and studying if the unitary gauge result is recovered in the
ξ → ∞ limit.

III. IMAGINARY PART AND THE
RENORMALIZABLE GAUGE

Our goal is to compute the form factor FWðsÞ using
unsubtracted and unregulated dispersion relations. As we
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have seen, this requires a formulation of the theory where
renormalizability is apparent. Hence, we are forced to
consider the Rξ gauges.
Similar to what has been done before, we will calculate

the form factor using dispersion relations; for this we will
need to compute its imaginary part for s ≠ m2

H. It is
important to recognize that the amplitude that describes
the transition of the off-shell Higgs to two photons becomes
gauge dependent; this applies to the dependence of the
imaginary part on the electroweak gauge parameter ξ as
well as to the loss of the transversality of the electromag-
netic current.
The second problem is easy to avoid by choosing the

nonlinear Rξ gauge where the electromagnetic gauge
invariance is explicitly maintained. To this end, we
can use

Lgauge ¼ −
1

ξ
jDμWμ − iξmWϕj2 ð26Þ

as the gauge fixing term with Dμ ¼ ∂μ − ieAμ. If we
choose this gauge, some Feynman rules of a linear Rξ

gauge get modified but this is not important for us. The
important point is that the gauge-fixing term Lgauge elim-
inates the ϕWγ vertex. In addition, it is important for what
follows that in the Rξ gauge Lagrangian, linear or not, the
only interaction vertex that explicitly contains m2

H is the
interaction vertex involving the Higgs boson and the two
Goldstone ϕ-fields,

LHϕ†ϕ ¼ −
m2

H

v
Hϕ†ϕ: ð27Þ

The interaction of the ϕ-fields with the photons is that of
the scalar QED and follow from the Lagrangian

Lϕ ¼ jDμϕj2: ð28Þ
The final remark that we need to make is that the mass
squared of the Goldstone boson ϕ is m2

ϕ ¼ ξm2
W .

As we will now show this information is all that we need
to perform the computation of FWðsÞ, given the results that
we already presented in Sec. II. To facilitate the compu-
tation of the imaginary part of the form factor FWðsÞ, we
use the already-mentioned fact that among many diagrams
that contribute to the form factor, the only interaction vertex
that is proportional to m2

H comes from the Hϕþϕ inter-
action term in Eq. (27). Motivated by this observation, we
write the imaginary part as the sum of two terms,

Im½FRξ

W ðrH; β; ξÞ� ¼ rHG1ðβ; ξÞ þ G2ðβ; ξÞ; ð29Þ
where rH ¼ m2

H=s and β ¼ 4m2
W=s. The functionsG1;2 can

be computed directly from Feynman diagrams, however
this is not necessary. Indeed, there is one constraint on the
two functions that is available to us since if we compute
the imaginary part for s ¼ m2

H, we should recover the

ξ-independent result for the imaginary part in the unitary
gauge. This implies

G1ðβ; ξÞ þG2ðβ; ξÞ ¼ Im½Fc
WðβÞ�; ð30Þ

where Im½Fc
WðβÞ� is the imaginary part of the form factor in

the unitary gauge defined in Eq. (4). Next, since the only

m2
H-dependent term in the calculation of Im½FRξ

W ðrH; β; ξÞ�
comes from the diagrams with ϕ†ϕ-intermediate state, we
can read off G1 from the imaginary part of the form factor
Fϕ in Eq. (15). We obtain

G1ðβ; ξÞ ¼ Im½Fϕðβϕ ¼ ξβÞ�: ð31Þ

We can use the above constraints to rewrite the imagi-
nary part of the form factor in a general Rξ gauge in a useful
way. By adding and subtracting G1, we find

Im½FRξ

W ðrH; β; ξÞ� ¼ Im½Fc
WðβÞ� þ ðrH − 1ÞIm½FϕðξβÞ�:

ð32Þ

The second term here shows that it is the off-shell behavior
that differentiates the singular unitary gauge from the
renormalizable Rξ gauge.
We can now restore the real part of the form factor from

its imaginary part using the unsubtracted dispersion rela-
tion for s ¼ m2

H. The result of the calculation should be
correct since the theory in Rξ gauge is renormalizable by
power counting. To this end, we need to compute

FWðm2
HÞ ¼

1

π

Z
ds1Im½FRξ

W ðrH; β1; ξÞ�
s1 −m2

H
: ð33Þ

To compute this integral, we use the expression for the
imaginary part as in Eq. (32) and realize that the dispersion
integral of Im½Fc

WðβÞ� reconstructs Fc
W , see Eq. (2). We also

substitute m2
H → s, to conform with the previous notations,

and write the final result for the form factor as

FWðsÞ ¼ Fc
WðsÞ −

1

π

Z∞

4ξm2
W

ds1
s1

Im½Fϕðξβ1Þ�

¼ Fc
WðsÞ þ 2: ð34Þ

We note that the integral over ImFϕ in the above equation is
ξ independent and coincides with a similar integral in the
toy model, see Eq. (17). In general, the above computation
shows that the form factors calculated in the Rξ gauge and
the unitary gauge differ by a constant, related to the
contribution of Goldstone bosons to the imaginary part
of theH → γγ amplitude. The mass of the Goldstone boson
m2

ϕ ¼ ξm2
W remains arbitrary in the calculation, so that the

limit ξ → ∞ can be studied. It follows from Eq. (34) that
the Goldstone boson contribution to FWðsÞ does not
decouple in the limit ξ → ∞; this feature leads to a
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difference between the results of the calculations in the
unitary and the Rξ gauges. Finally, the Goldstone boson
contribution does not have a pole at s ¼ m2

H and, therefore,
does not contribute to the discontinuity of the form factor;
for all practical purposes, it is a subtraction term.

IV. CONCLUSIONS

In this paper, we discussed how the dispersion relation
computation of the H → γγ decay amplitude through the
W-boson loop can be reconciled with the results of the
diagrammatic computations that employ dimensional regu-
larization. As was pointed in Ref. [14], if one computes the
imaginary part of the form factor FWðsÞ in the four-
dimensional space-time and then uses it in an unsubtracted
dispersion integral to calculate the full form factor, one
obtains the result that differs from the correct one by a
constant term. The appearance of this constant can be
interpreted as the need to perform a subtraction in a finite
dispersion integral which is quite unusual.

We have shown that the need to perform the subtraction
in the dispersion integral for form factors computed in the
unitary gauge is a consequence of the fact that the SM in
the unitary gauge is not explicitly renormalizable. If one
regularizes the (apparently finite) calculation by either
introducing explicit UV regulator or starts from the
formulation of the theory where the renormalizability is,
in fact, apparent, one always obtains an additional con-
tribution to the real part of the form factor. For values of s
below the ultraviolet cutoff, this contribution is, essentially,
a constant and can be interpreted as the subtraction term in
the dispersion relation. Unfortunately, unregulated and
unsubtracted dispersion relation calculations, that employ
unitary gauge, do not seem to be sufficient even if they lead
to finite results.
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