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We present a factorization formula for the inclusive production of the Higgs boson at large transverse
momentum PT that includes all terms with the leading power of 1=P2

T . The cross section is factorized into
convolutions of parton distributions, infrared-safe hard-scattering cross sections for producing a parton, and
fragmentation functions that give the distribution of the longitudinal momentum fraction of the Higgs
relative to the fragmenting parton. The infrared-safe cross sections and the fragmentation functions are
perturbatively calculable. The most important fragmentation functions are those for which the fragmenting
parton is the top quark, gluon, W, Z, and the Higgs itself. We calculate the fragmentation functions
at leading order in the Standard Model coupling constants. The factorization formula enables the
resummation of large logarithms of PT=MH due to final-state radiation by integrating evolution equations
for the fragmentation functions. By comparing the cross section for the process qq → Htt from the leading-
power factorization formula at leading order in the coupling constants with the complete leading-order
cross section, we infer that the error in the factorization formula decreases to less than 5% for
PT > 600 GeV at a future 100 TeV collider.
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I. INTRODUCTION

The discovery of the Higgs boson by the Atlas and CMS
collaborations completed the list of elementary particles in
the Standard Model of particle physics [1,2]. It determined
the only previously unknown parameter in the Standard
Model, which is the Higgs mass MH. It also demonstrated
the relevance of the Brout-Englert-Higgs mechanism for
spontaneous breaking of the electroweak symmetry [3,4].
Precise measurements of the properties of the Higgs
provide strong constraints on new particles and forces
beyond the Standard Model. Among the basic properties of
the Higgs are its production rates in high energy collisions.
In hadron collisions, the Higgs is produced primarily with
transverse momentum PT smaller than MH. However, its
production rate at much larger PT is important, because it
may be more sensitive to physics beyond the Standard
Model, such as the decay of a much heavier particle into
the Higgs.
The straightforward path to increasing the accuracy of

theoretical predictions for Higgs production in the Standard
Model is complete higher-order perturbative calculations.
Most phenomenologically relevant production mechanisms
have been calculated with an accuracy of at least next-to-
leading order (NLO) in the QCD coupling constant αs [5].
In particular, the PT distribution of the Higgs in association
with a top-quark pair has been calculated to NLO [6]. In
calculations of the Higgs PT distribution, the important
scales include its mass MH, the mass of the particle from
which the Higgs is emitted, and the center-of-mass energy

ffiffiffî
s

p
of the colliding partons, which may be comparable to

PT . The multiscale nature of Higgs production makes the
complete calculation at the next order in αs extremely
difficult. The difficulty can be decreased by separating
some of the scales. If PT and

ffiffiffî
s

p
are smaller than the top-

quark massMt, the scale ofMt can be separated from other
scales by using the Higgs effective field theory (HEFT) in
which virtual top-quark loops are replaced by local inter-
actions of the Higgs with the vector bosons. Several
production processes have been calculated beyond NLO
using the dimension-5 operator in HEFT [5]. In particular,
the PT distribution of the Higgs has recently been calcu-
lated to next-to-next-to-leading order (NNLO) [7–10].
Comparison with complete NLO calculations indicates
that the difference between the exact and HEFT results
exceeds 5% at PT ¼ 150 GeV and increases with PT [11].
The effects of the dimension-7 operators in HEFT on the
Higgs PT distribution have recently been considered
[12,13]. The expansion in the higher-dimension operators
of HEFT breaks down for PT above about 150 GeV.
One way to simplify calculations at large PT and to

increase their accuracy is to separate the scale PT from the
smaller scales in the problem. In the case of inclusive
hadron production at large PT , QCD factorization theorems
[14] imply that the leading power in the expansion of the
cross section in powers of 1=P2

T comes from single-parton
fragmentation: a parton is produced with larger transverse
momentum by a hard collision and the observed hadron is
subsequently produced in the hadronization of the hard
parton into a jet. The leading-power (LP) factorization
formula expresses the cross section as convolutions of
cross sections for producing the hard parton and fragmen-
tation functions Dðz; μÞ that give the distribution of the
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longitudinal momentum fraction z of the hadron relative to
the hard parton at themomentum scale μ. All the dependence
on PT is in the cross sections for producing the hard parton.
They can be calculated as expansions in the QCD coupling
constant αs. The fragmentation functions are nonperturba-
tive, but their evolutionwithμ is perturbative. Their evolution
equations can be used to sum large logarithms ofPT=ΛQCD in
the cross sections to all orders in αs.
The LP factorization formula can be applied to the

production of heavy quarkonium at PT much larger than the
heavy-quark mass M. In this case, the scale PT can be
separated from the scaleM by including all the dependence
on M in the fragmentation functions Dðz; μÞ. The scale M
can be further separated from the nonperturbative scales in
the fragmentation functions by using nonrelativistic QCD
(NRQCD) factorization [15]. The evolution equations for
the fragmentation functions can be used to sum large
logarithms of PT=M in the cross sections to all orders in
αs. The LP factorization formula with NRQCD factoriza-
tion simplifies calculations at large PT compared to fixed-
order calculations with NRQCD factorization by separating
the scales PT and M, which makes it easier to calculate
higher-order corrections. The LP factorization formula can
increase the accuracy compared to fixed-order calculations
by using evolution equations for the fragmentation func-
tions to sum large logarithms of PT=M to all orders in αs.
The factorization formulas of QCD for inclusive hadron

production at large PT can be adapted straightforwardly to
the production of the weak bosons of the Standard Model,
namelyW�, Z0, and Higgs. The factorization formulas give
the inclusive production rate at PT much larger than the
mass M of the weak boson. At the leading power of 1=PT ,
the production mechanisms are single-parton fragmenta-
tion. One difference from hadron production in QCD is that
the weak boson itself must be included as one of the
fragmenting partons. The LP factorization formula sim-
plifies calculations at large PT compared to fixed-order
calculations by separating the scales PT and M, which
makes calculations of higher-order corrections easier. The
LP factorization formula can increase the accuracy com-
pared to fixed-order calculations by integrating evolution
equations for the fragmentation functions to sum large
logarithms of PT=M to all orders. For PT of order MH,
there are also large threshold logarithms whose resumma-
tion has a significant effect on the PT distribution [16]. In
this paper, we consider only the region PT ≫ MH in which
logarithms of PT=MH may need to be resummed.
The LP factorization formula for Higgs production has

been applied previously by Dawson and Reina to the
associated production of the Higgs with a tt pair [17].
They extracted the leading-order (LO) fragmentation
function for a top quark into a Higgs from the LO cross
section for qq → ttH at large center-of-momentum energy
Ecm. They calculated an approximation to the NLO
fragmentation function using MH ≪ Mt ≪ Ecm and using

a soft-gluon-emission approximation. They used that frag-
mentation function to estimate the NLO cross section for
ttH. A subsequent complete NLO calculation gave results
that were qualitatively compatible with the fragmentation
estimate [18].
The LP factorization formula has recently been used to

calculate inclusive production rates of the weak vector
bosons W� and Z0 at large PT [19,20]. In Ref. [19], this
factorization formula was used to calculate production rates
at NLO in αs at the LHC and at a possible future proton-
proton collider. The leading logarithms of PT=M, whereM
is the mass of the vector boson, were summed to all orders
in αs. The only nontrivial fragmentation function required
at this order is for a quark to fragment into the vector boson
at leading order in the electroweak interaction.
In this paper, we present the LP factorization formula for

inclusive production of the Higgs at PT much larger than its
mass MH. In Sec. II, we briefly review the QCD factori-
zation formula and point out the necessary modifications to
apply it to Higgs production. In Sec. III, we present our
results for the leading-order fragmentation functions forW,
Z, and the top quark into the Higgs. They can be identified
as the fragmentation functions at appropriate initial scales.
In Sec. IV, we sum up the leading logarithms in the
fragmentation functions at much higher scales by solving
their evolution equations. In Sec. V, we compare the cross
section for qq → Htt from the LP factorization formula at
LO with the complete LO cross section in order to estimate
the minimum PT above which the LP factorization formula
is reliable. A summary and outlook are given in Sec. VI.

II. LEADING-POWER FACTORIZATION
FORMULA

In this section, we present the LP factorization formula for
inclusive Higgs production at large PT in hadron collisions.
We compare it to the LP factorization formula for inclusive
hadron production in QCD. We describe how the LP
factorization formula can simplify perturbative calculations
by separating the scale PT from the scales of the Higgs mass
MH and the masses of other Standard Model particles. We
also describe how the LP factorization formula can improve
upon the accuracy of perturbative calculations by summing
large logarithms of PT to all orders.

A. Initial-state factorization

The differential cross section for the inclusive production
of a Higgs boson in the collision of hadrons A and B can be
written in a factorized form [14],

dσAB→HþXðPA; PB; PÞ

¼
X
a;b

Z
1

0

dxafa=Aðxa; μÞ
Z

1

0

dxbfb=Bðxb; μÞ

× dσ̂ab→HþXðpa ¼ xaPA; pb ¼ xbPB; P; μÞ; ð1Þ
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where P is the momentum of the Higgs, PA and PB are the
momenta of the colliding hadrons, and pa and pb are the
momenta of the colliding partons. The errors are of order
Λ2
QCD=M

2
H, where MH is the mass of the Higgs. The sums

in Eq. (1) are over the types of QCD partons, which consist
of the gluon and the quarks and antiquarks that are lighter
than the top quark. The integrals in Eq. (1) are over the
longitudinal momentum fractions of the colliding QCD
partons. The separation of the hard momentum scales of
order MH and larger from the nonperturbative QCD
momentum scale ΛQCD involves the introduction of an
intermediate but otherwise arbitrary factorization scale μ.
The hard-scattering cross sections dσ̂ in Eq. (1) are
sensitive only to momentum scales much larger than
ΛQCD, so they can be calculated perturbatively as expan-
sions in powers of αs and the other coupling constants of
the Standard Model. The parton distribution functions fa=A
and fb=B are nonperturbative, but their evolution with μ is
perturbative. Their evolution equations can be used to sum
logarithms of M2

H=Λ
2
QCD to all orders in perturbation

theory. The colliding hadrons and the colliding partons
are all treated as massless particles. Thus, the 4-momentum
of the colliding parton from hadron A is pμ

a ¼ xaP
μ
A. The

integration range of xa is from 0 to 1, up to kinematic
constraints from dσ̂ab→HþX.
If one or both colliding partons is a heavy (charm or

bottom) quark with mass mQ, the errors in the factorization
formula in Eq. (1) are actually of order m2

Q=M
2
H. However,

as shown by Collins, proofs of factorization can be
extended to heavy quarks [21]. If the mass mQ of the
heavy quark is taken into account appropriately in the hard-
scattering cross sections dσ̂, the errors in the factorization
formula are reduced to order Λ2

QCD=M
2
H. The expression for

the 4-momentum pQ of an incoming heavy-quark parton
is necessarily more complicated. The direction of the
3-momentum pQ can be taken to coincide with the direction
of the 3-momentum PA of the parent hadron A in the center-
of-momentum frame of the colliding hadrons A and B. The
magnitude of pQ can be chosen so that xQ is the light-front
momentum fraction of the heavy quark in that frame:

xQ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

Q þ jpQj2
q

þ jpQj
2jPAj

ðPA þ PB ¼ 0Þ: ð2Þ

Given xQ and jPAj, this is a linear equation for jpQj. It implies
a lower limit on the range of integration of xQ: xmin ¼
mQ=ð2jPAjÞ. The 4-momentum of the heavy quark in the
center-of-momentum frame of the colliding hadrons is

pμ
Q ¼ 1

4xQjPAj2
�
ð4x2QjPAj2 þm2

QÞjPAj;

ð4x2QjPAj2 −m2
QÞPA

�
μ ðPA þ PB ¼ 0Þ: ð3Þ

It satisfies the mass-shell constraint p2
Q ¼ m2

Q and the
longitudinal momentum constraint p0

Q þ jpQj ¼ xQð2jPAjÞ.
An explicit factorization prescription named ACOT

(after the initials of its authors) that defines hard-scattering
cross sections order by order in αs when the colliding
partons include heavy quarks was proposed by Aivazis,
Collins, Olness, and Tung [22]. Factorization theorems
using the ACOT prescription were proven by Collins [21].
Kramer, Olness, and Soper introduced a simpler alternative
to the ACOT prescription named S-ACOT (for simplied
ACOT) in which a colliding heavy-quark parton is treated
as massless [23]. Three possible prescriptions for the
heavy-quark mass in the factorization formula are

(i) zero-mass-heavy-quark prescription. The heavy-
quark mass is set to zero in the diagrams for the
hard-scattering cross sections dσ̂. The 4-momentum
of a colliding heavy-quark parton from hadron A is
pμ
Q ¼ xPμ

A with 0 < x < 1. The errors are order
m2

Q=Q
2, where Q is the momentum transfer.

(ii) ACOT prescription. The heavy-quark mass is mQ in
the diagrams for the hard-scattering cross sections
dσ̂. The 4-momentum of a colliding heavy-quark
parton is given by a complicated expression, such as
that in Eq. (2). The errors are order Λ2

QCD=Q
2.

(iii) S-ACOT prescription. The heavy-quark mass is set
to zero everywhere along the heavy-quark line
attached to an incoming heavy-quark parton, but
the mass mQ is used for all other heavy-quark lines
in a diagram for a hard-scattering cross section dσ̂.
The 4-momentum of a colliding heavy-quark parton
from hadron A is pμ

Q ¼ xPμ
A with 0 < x < 1. The

errors are order Λ2
QCD=Q

2.
The S-ACOT prescription is numerically equivalent to the
ACOT prescription, even for momentum transfers of order
mQ or smaller. Its advantages are the simple expression for
the 4-momentum of a colliding heavy-quark parton and a
significant simplification of the expressions for some of the
hard-scattering amplitudes. There are other prescriptions
for taking into account the heavy-quark mass in the
factorization formula in addition to the three prescriptions
itemized above. Various prescriptions for taking into
account the bottom quark mass in the associated production
of a Higgs and a bb pair were recently studied in Ref. [24].

B. Final-state factorization

If the transverse momentum PT of the Higgs is much
larger than its massMH, it is reasonable to expand the hard-
scattering differential cross section dσ̂ in Eq. (1) in powers
of 1=P2

T . The leading power in dσ̂=dP2
T can be determined

by dimensional analysis to be 1=P4
T . The factorization

formula for the leading power can be inferred from the
perturbative QCD factorization formula for inclusive
hadron production at large transverse momentum [14].
The LP factorization formula for the hard-scattering
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differential cross section for the inclusive production of a
Higgs in the collision of QCD partons a and b is

dσ̂ab→HþXðpa; pb; PÞ

¼
X
i

Z
1

0

dzd ~σab→iþXðpa; pb; pi ¼ ~P=z; μÞDi→Hðz; μÞ;

ð4Þ

where pi is the momentum of the fragmenting parton and ~P
is a lightlike 4-vector whose 3-vector component P in the
center-of-momentum frame of the colliding partons is the
3-momentum of the Higgs:

~Pμ ¼ ðjPj;PÞμ ðpa þ pb ¼ 0Þ: ð5Þ

This can be expressed in the covariant form

~Pμ ¼ Pμ −
P · ðpa þ pbÞ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½P · ðpa þ pbÞ�2 −M2

Hŝ
p

ŝ
× ðpa þ pbÞμ; ð6Þ

where ŝ ¼ ðpa þ pbÞ2. The errors in the factorization
formula in Eq. (4) are of order M2

H=P
2
T. The sum over

partons i is over the types of elementary particles in the
Standard Model. The most important fragmenting partons
for Higgs production are the weak vector bosons W and Z,
the top quark t, the top antiquark t, the gluon g, and the
Higgs itself. The integral in Eq. (4) is over the longitudinal
momentum fraction z of the Higgs relative to the fragment-
ing parton. The integration range of z is from 0 to 1, up to
kinematic constraints from d ~σab→iþX. The fragmentation
functions Di→Hðz; μÞ are distributions for z that depend on
MH and on the mass Mi of the fragmenting parton. The
only dependence on PT in Eq. (4) is in the cross sections d ~σ
for producing the parton i. The massMi of the fragmenting
parton is set to zero in these cross sections. Note that the
hard-scattering cross section dσ̂ on the left side of Eq. (4)
has mass singularities in the limits MH → 0 and Mi → 0.
Since the parton production cross sections d ~σ have no
mass singularities, we will refer to them as infrared-safe
cross sections. The infrared-safe cross sections d ~σ and the
fragmentation functions can all be calculated perturbatively
as expansions in powers of αs and the other coupling
constants of the Standard Model. The separation of the
hardest scale PT from the softer scalesMH andMi involves
the introduction of an arbitrary factorization scale μ. We
will refer to it as the fragmentation scale to distinguish it
from the factorization scale in the initial-state factorization
formula in Eq. (1).
The LP factorization formula in Eq. (4) simplifies

perturbative calculations compared to the initial-state
factorization formula in Eq. (1) by separating scales in
the cross section. The fragmentation functions Di→H are

dimensionless functions of z, the masses MH and Mi, and
the fragmentation scale μ. In the infrared-safe cross sections
d ~σab→iþX, which are functions of the transverse momentum
pT of the fragmenting parton, the masses MH and Mi are
set equal to zero. The zero-mass limits are of course taken
only after expressing the interactions of the Higgs in terms
of dimensionless coupling constants. Since the only
momentum scale in the infrared-safe cross sections is
pT , it is much easier to calculate higher-order corrections.
The LP factorization formula in Eq. (4) can be used to

improve upon the accuracy of fixed-order perturbative
calculations using the initial-state factorization formula
in Eq. (1). Radiative corrections produce logarithms of
PT=MH and PT=Mi at higher orders in the coupling
constants. Each successive order in perturbation theory
can produce an additional factor of a logarithm. The
dependence of the fragmentation functions Di→H on the
fragmentation scale μ can be expressed in terms of
evolution equations that have the form

μ2
∂
∂μ2 Di→Hðz; μÞ ¼

X
j

Z
1

z

dy
y
Pi→jðz=y; μÞDj→Hðy; μÞ:

ð7Þ

The sum over j is over all the fragmenting partons,
including the Higgs. The functions Pi→j are splitting
functions that can be calculated perturbatively. If the
fragmentation functionsDj→Hðz; μ0Þ are calculated at some
initial scale μ0 using fixed-order perturbation theory, the
logarithms of μ=μ0 in Dj→Hðz; μÞ can be summed to all
orders by using Eq. (7) to evolve the fragmentation
functions from μ0 to a larger scale μ. The logarithms of
PT=MH or PT=Mi in the cross section in Eq. (4) can then
be summed to all orders simply by using the evolved
fragmentation functions with the fragmentation scale μ of
order PT.
Since our LP factorization formula for inclusive Higgs

production in Eq. (4) is motivated by the corresponding
factorization formula for inclusive hadron production, we
describe briefly the theoretical status of the QCD factori-
zation formula. The LP factorization formula for the
inclusive production of a hadron separates the scale of
the transverse momentum PT of the hadron from the
nonperturbative momentum scale ΛQCD. In the case of a
light hadron, the errors in the factorization formula are of
order Λ2

QCD=P
2
T. The LP factorization formula for the

inclusive production of a light hadron in eþe− annihilation
was proven by Collins and Soper [25]. There is no apparent
obstacle to extending the proof to hadron collisions [14]. In
the case of a hadron that contains a single heavy quark with
mass mQ, the LP factorization formula separates the scale
PT from the scale mQ as well as ΛQCD. The heavy-quark
mass does not present an essential complication in the proof
of factorization, but the errors in the factorization formula
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are now of order m2
Q=P

2
T. In the case of heavy quarkonium,

which contains a heavy quark and antiquark, the heavy-
quark mass is an essential complication. A proof of the LP
factorization formula for the production of heavy quarko-
nium was sketched by Nayak, Qiu, and Sterman [26].
The proof has been extended to the next-to-leading power
(NLP) of 1=P2

T by Kang, Ma, Qiu, and Sterman [27–30].
The NLP factorization formula has also been derived by
Fleming, Leibovich, Mehen, and Rothstein using soft
collinear effective theory [31,32]. The leading corrections
are suppressed by m4

Q=P
4
T or Λ2

QCD=P
2
T. At NLP, there is a

new production mechanism called double-parton fragmen-
tation: a pair of collinear partons, such as a heavy quark and
antiquark, is produced with larger transverse momentum by
a hard collision, and the heavy quarkonium is subsequently
produced in the hadronization of the collinear parton pair.
The LP factorization formula for inclusive Higgs produc-
tion can presumably be extended to NLP by taking into
account double-parton fragmentation.
There are important differences between the factoriza-

tion formula in Eq. (4) for inclusive Higgs production at
large PT and the analogous QCD factorization formula for
inclusive hadron production. One difference is that a Higgs
can be produced directly in the hard scattering. Thus, the
Higgs is included in the sum over fragmenting partons
in Eq. (4). In contrast, a hadron at large PT cannot be
produced directly in the hard scattering. Another difference
is that the fragmentation functions for Higgs production are
completely perturbative. They can be calculated order by
order in the Standard Model coupling constants. In con-
trast, the fragmentation functions for hadron production are
nonperturbative, although their evolution with the frag-
mentation scale is perturbative.

C. Top-quark mass

The top quark is the only particle in the Standard Model
of which the mass is larger than that of the Higgs. Those
terms in the LP factorization formula in Eq. (4) for which
the infrared-safe cross section d ~σ has a top quark in the final
state have fractional errors that are of order M2

t =P2
T instead

of order M2
H=P

2
T. The errors can be decreased to order

M2
H=P

2
T by taking into accountMt in the infrared-safe cross

section d ~σ. Infrared-safe cross sections d ~σ that depend
on Mt but have no mass singularities as Mt → 0 can be
constructed order by order in the coupling constants
by using the same strategy as in the ACOT scheme for
taking into account the heavy-quark mass in initial-state
factorization [22].
If the top-quark mass is not neglected, the relation

between the 4-momenta P of the Higgs and p of the
fragmenting top quark is necessarily more complicated than
the expression p ¼ ~P=z in Eq. (4). The direction of the
3-momentum p can be taken to coincide with that of the
Higgs 3-momentum P in the center-of-momentum frame of

the colliding partons a and b. The magnitude of p can be
chosen so that z is the light-front momentum fraction of the
Higgs in that frame:

z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

H þ jPj2
p

þ jPjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

t þ jpj2
p

þ jpj ðpa þ pb ¼ 0Þ: ð8Þ

Given z and jPj, this is a linear equation for jpj. It implies
an upper limit on z that is less than 1 if
jPj < ðM2

t −M2
HÞ=ð2MtÞ:

zmax ¼ min
�
1;
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2
H þ jPj2

q
þ jPj

�
=Mt

�
: ð9Þ

The 4-momentum of the top quark in the center-of-
momentum frame of the colliding partons is

pμ ¼ 1

2z

�ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jPj2 þM2

H

p
þ jPjÞ2 þ z2M2

tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jPj2 þM2

H

p
þ jPj ;

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jPj2 þM2

H

p
þ jPjÞ2 − z2M2

t

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jPj2 þM2

H

p
þ jPjÞjPj P

�
μ

ðpa þ pb ¼ 0Þ: ð10Þ

This satisfies the mass-shell constraint p2 ¼ M2
t and the

longitudinal momentum constraint P0 þ jPj ¼ zðp0 þ jpjÞ.
One can obtain the improved accuracy of the factoriza-

tion formula with a massive top quark and some of the
simplifications of the factorization formula with a zero-
mass top quark by using a hybrid factorization prescription
analogous to the S-ACOT prescription for the heavy-quark
mass in the initial-state factorization formula [23]. In this
hybrid prescription, the mass of the top quark is set to zero
in an infrared-safe cross section if that top quark is the
fragmenting parton. Three possible prescriptions for the
top-quark mass in the factorization formula are:

(i) zero-mass-top-quark (ZMTQ) prescription. The top-
quark mass is set to zero in the diagrams for the
infrared-safe cross sections d ~σ. The 4-momentum
of a fragmenting top quark is pμ ¼ ~Pμ=z with
0 < z < 1. The errors are order M2

t =P2
T.

(ii) massive-top-quark (MTQ) prescription. The top-
quark mass is Mt in the diagrams for the infrared-
safe cross sections d ~σ. This prescription is the analog
of the ACOT prescription for initial-state factoriza-
tion. The 4-momentum of the fragmenting top quark
is given by a complicated expression, such as that in
Eq. (10). The errors are order M2

H=P
2
T.

(iii) hybrid prescription. The top-quark mass is set to
zero everywhere along the top-quark line attached to
a fragmenting top quark, but the mass Mt is used
for all other top-quark lines in a diagram for an
infrared-safe cross section d ~σ. This prescription
is the analog of the S-ACOT prescription for
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initial-state factorization. The 4-momentum of a
fragmenting top quark is pμ ¼ ~Pμ=z with 0 <
z < 1. The errors are order M2

H=P
2
T.

Based on experience with the heavy-quark mass in initial-
state factorization, the hybrid prescription can be expected
to be numerically equivalent to the MTQ prescription for
PT ≫ MH. Its advantages are the simple expression for the
4-momentum of the fragmenting top quark and significant
simplifications in some of the infrared-safe cross sections.
The issue of how the mass of a fragmenting parton should

be taken into account arises also in applications of the LP
factorization formula to the inclusive production of charm or
bottom hadrons at large PT . The effects of prescriptions for
taking into account the charm quark mass on the inclusive
production of charm hadrons at large PT at NLO in αs has
been studied in Ref. [33]. The masses analogous to Mt and
MH are the mass of the charm quark and the mass of the
charm hadron, respectively. For eþe− annihilation at the Z0

resonance, the effects of the masses are negligible. For eþe−

annihilation in the bb threshold region, the effects of the
charm hadron mass are appreciable, but the effects of the
charm quark mass are less important.

III. LEADING-ORDER
FRAGMENTATION FUNCTIONS

In this section, we present the most important fragmen-
tation functions for Higgs production in the Standard
Model at leading order in the strong, electroweak, and
Yukawa coupling constants. The most important fragment-
ing partons are the Higgs itself, the weak vector bosons W
and Z, the top quark, and the gluon.

A. Diagrammatic calculation

Fragmentation functions can be defined to all orders in
the coupling constants in terms of matrix elements of
composite operators in a quantum field theory [34]. The
composite operators consist of a local source operator and a
local sink operator that are connected by an eikonal factor
that may also be an operator. The source and sink operators
and the eikonal factor depend on a lightlike 4-vector n. The
fragmentation functions can be calculated diagrammati-
cally using Feynman rules introduced by Collins and Soper
[34]. The Feynman rules are summarized in Appendix A.
The diagrams have a source vertex that creates one or more
virtual partons and a sink vertex that annihilates virtual
partons. The source and sink vertices are connected by an
eikonal line. The momentum K flowing from the source
into the virtual partons and the eikonal line can be
interpreted as the momentum of the fragmenting parton.
There is a cut through the diagram that separates the source
and the sink, passes through the eikonal line, and also cuts
other lines. The other cut lines can be interpreted as a final
state from the fragmentation of the virtual parton. The cut
lines include a Higgs that is on its mass shell with a

specified momentum P. The longitudinal momentum
fraction of the Higgs is defined by z ¼ P · n=K · n. The
expression for a diagram involves integrals over the phase
space of the cut lines other than the Higgs. The expression
may also involve integrals over loop momenta. Ultraviolet
divergences in the phase space integrals and the loop
integrals are cancelled by renormalization of the composite
operator and by the conventional renormalization of the
quantum field theory.
The LO contribution to most fragmentation functions

for Higgs production comes from a tree-level process
i� → H þ i, where the asterisk indicates that the fragment-
ing parton is a virtual particle. The diagram for the LO
fragmentation function Di→Hðz; μÞ is a cut diagram with a
tree-level diagram on each side of the cut. The source
operator creates a single virtual particle i�. The cut lines are
the Higgs and the on-shell particle i. The integral over the
phase space of particle i can be reduced to an integral over
the invariant mass squared t of H þ i. The integral over t is
ultraviolet divergent. The definition of the factorization
prescription must include a prescription for removing that
divergence. We will consider two prescriptions for remov-
ing the ultraviolet divergence:

(i) The MS factorization scheme is defined to all orders
in perturbation theory by dimensional regularization
and modified minimal subtraction. This prescription
introduces an arbitrary fragmentation scale μ
through multiplicative factors of μ4−D, where D is
the number of space-time dimensions. The subtrac-
tion followed by the limit D → 4 results in loga-
rithmic dependence on μ.

(ii) The invariant-mass-cutoff (IMC) factorization
scheme is defined at LO in perturbation theory by
imposing an upper limit t < μ2 on the integral over
the invariant mass of the Higgs and the additional
particle.

The IMC factorization scheme may only be applicable at
LO. The obstacles to extending it to higher orders are that
the invariant-mass cutoff is not sufficient to remove ultra-
violet divergences beyond LO and that the invariant mass is
not gauge invariant beyond LO.
In the IMC scheme, the fragmentation scale μ has a simple

physical interpretation as the maximum invariant mass of the
jet that includes the Higgs. For the tree-level fragmentation
process i� → H þ i, there is a lower limit on the invariant
mass of the final-state particles: t > M2

H=zþM2
i =ð1 − zÞ.

The minimum invariant mass is μ0;i ¼ MH þMi, which
occurs at z ¼ MH=ðMH þMiÞ. In the MS scheme, the
fragmentation scale μ does not have any direct physical
interpretation. By comparing LO fragmentation functions in
theMSschemeand the IMCscheme in the limitμ ≫ MH, the
fragmentation scale μ in the MS scheme can be related to the
maximum invariant mass of the jet that includes the Higgs.
Radiative corrections to the fragmentation functions

produce logarithms of μ=MH at higher orders in the
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coupling constants. Each successive order in perturbation
theory can produce an additional factor of a logarithm. The
leading logarithms of μ=MH from higher orders in pertur-
bation theory can be summed to all orders by solving the
evolution equation in Eq. (7) with the boundary condition
that the fragmentation function at some initial scale μ0 of
orderMH is equal to the fixed-order fragmentation function
at that scale. The evolution of the fragmentation functions
will be discussed in Sec. IV.
We will find below that there are large differences

between fragmentation functions in the MS scheme and
the IMC scheme. However, when we add the terms in the
LP factorization formula in Eq. (4), the differences in a
hard-scattering cross section are suppressed by a factor of
M2

H=P
2
T . This will be illustrated in Sec. V, where we

compare the contributions from the subprocess qq → Htt
to the LP factorization formula at LO and to the complete
LO cross section for inclusive Higgs production at a
100 TeV pp collider.
The invariant-mass-cutoff scheme for the fragmentation

functions of light quarks into weak vector bosons was
used by Berger et al. in Ref. [19] to sum the leading
logarithms of PT=MV in the cross sections for the pro-
duction of W� and Z0 at NLO in αs. Comparing with
fixed NLO predictions, the resummed NLO predictions
show a moderate reduction of the theoretical uncertainly
and an increase in the PT distribution by about 5%
at PT ≳ 500 GeV.

B. Higgs fragmentation

Perhaps the most important parton that fragments into
the Higgs is the Higgs boson itself. The LO fragmentation
function for a Higgs into a Higgs is a delta function:

DH→HðzÞ ¼ δð1 − zÞ þOðg2W; y2t Þ: ð11Þ
The leading corrections are of order g2W from the coupling
of the Higgs to weak vector bosons and of order y2t from the
Yukawa coupling of the Higgs to the top quark.
If we insert the LO fragmentation function forH → H in

Eq. (11) into the factorization formula in Eq. (4), the i ¼ H
term reduces to d ~σab→HþXðpa; pb; pH ¼ ~P; μÞ, which cor-
responds to the direct production of a massless Higgs in the
hard scattering. The infrared-safe cross section d ~σab→HþX
can be obtained from the hard-scattering cross section
dσ̂ab→HþX defined by the initial-state factorization formula
in Eq. (1) by first subtracting mass singularities and then
setting the Higgs mass and the masses of other particles to
zero. This procedure of course offers no simplifications
over the complete LO calculation of the hard-scattering
cross section dσ̂ab→HþX. However, it is possible to obtain
the infrared-safe cross section d ~σab→HþX through a much
simpler calculation that involves only the scale pT . One
would start with the hard-scattering cross section dσ̂ab→HþX
with all masses set to zero and with the mass singularities
dimensionally regularized. One would subtract the mass

singularities and then finally take the limit D → 4 to
get d ~σab→HþX.
If we insert the LO fragmentation function for H → H in

Eq. (11) into the evolution equation in Eq. (7), the j ¼ H
term reduces to the inhomogeneous termPi→Hðz; μÞ. All the
other terms are homogeneous in the fragmentation functions.
If the only relevant term in the renormalization of the
composite operator is the convolution of the i → H splitting
kernel with the LO fragmentation function for H → H, we
can determine the LO splitting function Pi→H for i ≠ H
simply by differentiating the LO fragmentation function:

PLO
i→Hðz; μÞ ¼ μ2

∂
∂μ2D

LO
i→Hðz; μÞ: ð12Þ

This relation applies to all the fragmentation functions
calculated in this paper.

C. Weak vector boson fragmentation

The weak vector bosons in the Standard Model are Wþ,
W−, and Z0. In the cross section for producing a weak
vector boson V, the leading power of 1=PT comes from a
transversely polarized V. The Feynman rules for a V
fragmentation function are described in Appendix A.
The leading-order contribution to the fragmentation func-
tion for V into the Higgs comes from the tree-level process
V� → H þ V. The cut diagram is shown in Fig. 1. It can be
expressed as an integral over the invariant mass squared t of
the final state H þ V from M2

H=zþM2
V=ð1 − zÞ to ∞. The

minimum invariant mass is μ0;V ¼ MH þMV .
The LO fragmentation function for V into the Higgs in

the MS factorization scheme is

DV→Hðz;μÞ¼
y2V
8π2

zð1−zÞ
�
log

μ2

M2
V
− log½z2þ4ζVð1− zÞ�

þ 2

z2þ4ζVð1− zÞ
�
; ð13Þ

FIG. 1. Feynman diagram for the V → H fragmentation func-
tion at LO. The open circles are vertices for the source and sink
operators. The double line connecting them represents the eikonal
factor.
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where ζV ≡M2
H=ð4M2

VÞ and yV ¼ MV=v. The numerical
values of the mass-squared ratios are ζW ¼ 0.611 and
ζZ ¼ 0.475. The numerical values of the coupling con-
stants are yW ¼ 0.327 and yZ ¼ 0.371. By differentiating
Eq. (13) with respect to μ2 as in Eq. (12), we obtain the LO
splitting function for V → H:

PV→HðzÞ ¼
y2V
8π2

zð1 − zÞ: ð14Þ

The LO fragmentation function for V into the Higgs in
the IMC factorization scheme is

DIMC
V→Hðz; μÞ ¼

Z
μ2

0

dt
t
dV→Hðz; tÞ; ð15Þ

where the integrand is

dV→Hðz; tÞ ¼
y2V
8π2

�
zð1 − zÞt
t −M2

V
þ ½2 − z2 − 4ζVð1 − zÞ�M2

Vt
ðt −M2

VÞ2
�

× θ

�
t −

M2
H

z
−

M2
V

1 − z

�
: ð16Þ

The θ function provides the lower limit on the integral over
t in Eq. (15). Evaluating the integral, we obtain an analytic
expression for the fragmentation function:

DIMC
V→Hðz;μÞ¼

y2V
8π2

zð1−zÞ
�
log

μ2−M2
V

M2
V

þ log½zð1− zÞ�

− log½z2þ4ζVð1− zÞ�þ ½2− z2−4ζVð1− zÞ�

×
	

1

z2þ4ζVð1− zÞ−
M2

V

zð1−zÞðμ2−M2
VÞ

�

×θ

�
μ2−

M2
H

z
−

M2
V

1− z

�
: ð17Þ

By differentiating Eq. (15) with respect to μ2 as in Eq. (12),
we obtain the LO splitting function for V → H:

PIMC
V→Hðz; μÞ ¼ dV→Hðz; μ2Þ: ð18Þ

For μ ≫ MV, we can drop terms in DIMC
V→Hðz; μÞ that are

suppressed by M2
V=μ

2. In this limit, the difference between
the fragmentation functions in the IMC scheme in Eq. (17)
and in the MS scheme in Eq. (13) is simple:

DIMC
V→Hðz;μÞ≈DV→Hðz;μÞþ

y2V
8π2

zð1− zÞðlog½zð1− zÞ�−1Þ:
ð19Þ

The additional term can be absorbed into DV→Hðz; μÞ by
making the substitution μ2→e−1zð1−zÞμ2. Thus, the frag-
mentation function in the IMC scheme is approximately

equal to the fragmentation function in the MS scheme with
a z-dependent factorization scale.
The LO fragmentation functions for W� into the Higgs

and Z0 into the Higgs are illustrated in Fig. 2. The LO
fragmentation functions in the MS scheme and in the IMC
scheme are shown at the initial scale μ0;V ¼ MH þMV ,
which is 206 MeV for W� and 217 GeV for Z0, and at
μ ¼ 500 GeV. In the MS scheme, the fragmentation func-
tions are positive, and they vanish at the endpoints z ¼ 0; 1.
The initial fragmentation function at μ ¼ μ0;V has its
maximum at z ¼ 0.59 for W → H and at z ¼ 0.57 for
Z → H. As μ increases, the fragmentation function
increases, and the position of its maximum shifts downward,
asymptotically approaching z ¼ 0.5. In the IMC scheme, the
initial fragmentation function at μ0;V is zero. At larger scales
μ, it is nonzero only in the subinterval ðz−; zþÞ, where

z� ¼ μ2 −M2
V þM2

H � ½ðμ2 −M2
V −M2

HÞ − 4M2
VM

2
H�1=2

μ2
:

ð20Þ

FIG. 2. Fragmentation functions for W� into a Higgs and Z0

into a Higgs at LO. The fragmentation functions in the MS
scheme are shown at the scales μ0;V ¼ MH þMV (solid curves)
and 500 GeV (thicker dashed curves). The fragmentation
functions in the IMC scheme, which are equal to zero for all
z at the scale μ0;V , are shown at the scale 500 GeV (thinner dashed
curves).
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For μ just above μ0;V , the fragmentation function is nonzero
only for z near 0.61 forW → H and near 0.58 forZ → H. As
μ increases, the interval ðz−; zþÞ expands toward its asymp-
totic limit (0,1). The fragmentation functions in the IMC
scheme remain well below those in the MS scheme until μ is
very large. In the central region of z, the IMC fragmentation
functions at the scale μ ¼ 500 GeV are still below those
for the MS fragmentation functions at the initial scale μ0;V .
They are smaller than the MS fragmentation functions at
μ ¼ 500 GeV by about a factor of 2.

D. Top-quark fragmentation

The leading-order contribution to the fragmentation func-
tion for a top quark into a Higgs comes from the tree-level
process t� → H þ t. The Feynman diagram is shown in
Fig. 3. The Feynman rules for a t fragmentation function are
described in AppendixA. The fragmentation function can be
expressed as an integral over the square of the invariant mass
of the final stateH þ t fromM2

H=zþM2
t =ð1 − zÞ to∞. The

minimum invariant mass is μ0;t ¼ Mt þMH.
The LO fragmentation function for t → H in the MS

factorization scheme is

Dt→Hðz; μÞ ¼
y2t

16π2
z
�
log

μ2

M2
t
− log½z2 þ 4ζtð1 − zÞ�

þ 4ð1 − ζtÞ
1 − z

z2 þ 4ζtð1 − zÞ
�
; ð21Þ

where ζt ≡M2
H=ð4M2

t Þ ≈ 0.13. The fragmentation function
for t → H is the same. By differentiatingwith respect to μ2 as
in Eq. (12), we obtain the LO splitting function for t → H:

Pt→HðzÞ ¼
y2t

16π2
z: ð22Þ

The LO fragmentation function for t → H in the IMC
factorization scheme is

DIMC
t→Hðz; μÞ ¼

Z
μ2

0

dt
t
dt→Hðz; tÞ; ð23Þ

where the integrand is

dt→Hðz; tÞ ¼
y2t

16π2

�
zt

t −M2
t
þ 4ð1 − ζtÞ

M2
t t

ðt −M2
t Þ2

�

× θ

�
t −

M2
H

z
−

M2
t

1 − z

�
: ð24Þ

The θ function provides the lower limit on the integral over
t in Eq. (23). Evaluating the integral, we obtain an analytic
expression for the fragmentation function:

DIMC
t→Hðz;μÞ ¼

y2t
16π2

z
�
log

μ2 −M2
t

M2
t

þ log½zð1− zÞ�

− log½z2 þ 4ζtð1− zÞ�

þ 4ð1− ζtÞ
	

1− z
z2 þ 4ζtð1− zÞ−

M2
t

zðμ2 −M2
t Þ

�

× θ

�
μ2 −

M2
H

z
−

M2
t

1− z

�
: ð25Þ

By differentiating Eq. (23) with respect to μ2 as in Eq. (12),
we obtain the LO splitting function for t → H:

PIMC
t→Hðz; μÞ ¼ dt→Hðz; μ2Þ: ð26Þ

For μ ≫ Mt, we can drop terms in DIMC
t→Hðz; μÞ that are

suppressed by M2
t =μ2. In this limit, the difference between

the fragmentation functions in the IMC scheme in Eq. (25)
and in the MS scheme in Eq. (21) is simple:

DIMC
t→Hðz; μÞ ≈Dt→Hðz; μÞ þ

y2t
16π2

z log½zð1 − zÞ�: ð27Þ

The additional term can be absorbed into Dt→Hðz; μÞ by
making the substitution μ2 → zð1 − zÞμ2. Thus, the frag-
mentation function in the IMC scheme is approximately
equal to the fragmentation function in the MS scheme with
a z-dependent fragmentation scale.
The LO fragmentation functions for t into a Higgs are

illustrated in Fig. 4. The fragmentation functions in the
MS scheme and in the IMC scheme are shown at the
initial scale μ0;t ¼ Mt þMH, which is 298 MeV, and at
μ ¼ 2 TeV. In the MS scheme, the fragmentation function
is positive, and it vanishes at z ¼ 0. At the initial scale μ0;t,
it has a maximum at z ¼ 0.49. As μ increases, the
fragmentation function increases, and the position of its
maximum moves to larger z, reaching z ¼ 1 at
μ ¼ 2.06 TeV. It remains at z ¼ 1 for larger z. In the
IMC scheme, the initial fragmentation function at μ0;t is 0.
At larger scales μ, it is nonzero only in a subinterval
ðz−; zþÞ of (0, 1). For μ just above μ0;V , the fragmentation
function is nonzero only for z near 0.42. As μ increases, the
interval ðz−; zþÞ expands toward its asymptotic limit (0, 1).

FIG. 3. Feynman diagram for the t → H fragmentation function
at LO.
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At μ ¼ 2 TeV, the IMC fragmentation function is a little
lower than the MS fragmentation function in the central
region of z, but it is much lower near z ¼ 1, where it
vanishes.
In Ref. [17], Dawson and Reina deduced the fragmen-

tation function for t → H from the energy distribution of
the Higgs in the process qq → ttH. The longitudinal
energy fraction at leading order is z ¼ 2E=

ffiffiffi
s

p
, where E

is the energy of the Higgs in the center-of-momentum
frame and

ffiffiffi
s

p
is the center-of-mass energy of the colliding

qq. They expressed the LO differential energy distribution
as

dσ½qq → ttH� ¼ 2σ½qq → tt�Dt→HðzÞdz: ð28Þ

Taking the limit M2
H ≪ M2

t ≪ s, they obtained the LO
fragmentation function

Dt→HðzÞ ¼
y2t

16π2

�
z log

ð1 − zÞs
M2

t
þ 4ð1 − zÞ

z

�
: ð29Þ

This can be obtained from the LO fragmentation function in
the MS factorization scheme in Eq. (21) by setting ζt ¼ 0

and by making the substitution μ2 → z2ð1 − zÞs. Thus, the
fragmentation function in Eq. (29) can be approximated by
the MS fragmentation function with a z-dependent renorm-
alization scale. Dawson and Reina also calculated an
approximation to the NLO fragmentation function using
MH ≪ Mt ≪ Ecm and using a soft-gluon-emission
approximation. [17]. It would be interesting to calculate
the complete NLO fragmentation function and compare the
result with their approximation.

E. Gluon fragmentation

If a Higgs boson has momentum smaller than 2Mt, its
couplings to gluons can be described by the vertices of an
effective field theory in which the top quark has been
integrated out. There is a region of PT above the Higgs
massMH but not too far above the top-quark-pair threshold
2Mt þMH in which gluon fragmentation into a Higgs can
be calculated using this effective theory. The LO fragmen-
tation function for a gluon into a Higgs comes from the
tree-level process g� → H þ gwith an effective ggH vertex.
The phase space integral is quadratically ultraviolet diver-
gent. In the MS factorization scheme, the quadratic
divergence is removed by analytic continuation, and the
fragmentation function is order α2sM2

H=v
2. In the invariant-

mass-cutoff scheme, the quadratic divergence gives an
additional term proportional to α2sμ2=v2. We do not present
this fragmentation function here, because it is two orders
higher in αs than the fragmentation function for t → H.
For PT well above the top-quark-pair threshold

2Mt þMH, the leading-order contribution to the fragmen-
tation function for a gluon into a Higgs comes from the
tree-level process g� → H þ tt and is order αsy2t . It is
smaller than the fragmentation function for t → H by a
factor of αs. We do not present this fragmentation function
here, because it is one order higher in αs than the
fragmentation function for t → H.

IV. EVOLUTION OF FRAGMENTATION
FUNCTIONS

If a fragmentation function for Higgs production is
specified at some initial scale μ0, the solution of the
evolution equation in Eq. (7) gives the fragmentation
functions at a larger scale μ, with the leading logarithms
of μ=μ0 summed to all orders. In this section, we identify
appropriate initial conditions for the fragmentation func-
tions in the MS scheme and in the IMC scheme. We
calculate the effects of QCD evolution on the fragmentation
function for t → H. We also calculate the fragmentation
function for g → H induced by QCD evolution.

A. Initial conditions

In this work, we only consider the resummation of the
leading logarithms from QCD interactions. They are
expected to be numerically dominant, because leading
logarithms from electroweak evolution are suppressed by
the smaller coupling constant. At leading order in αs, the
evolution equation in Eq. (7) reduces to

μ2
∂
∂μ2Di→Hðz;μÞ

¼Pi→Hðz;μÞþ
X
j≠H

Z
1

z

dy
y
Pi→jðz=y;μÞDj→Hðy;μÞ: ð30Þ

FIG. 4. Fragmentation functions for a top quark into a Higgs at
LO. The fragmentation function in the MS scheme is shown at the
scale μ0;t ¼ Mt þMH (solid curve) and 2 TeV (thicker dashed
curve). The fragmentation function in the IMC scheme, which is
equal to zero for all z at the scale μ0;t, is shown at the scale 2 TeV
(thinner dashed curve).
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The nonhomogenous term comes from the LO fragmenta-
tion function for H → H in Eq. (11). The homogeneous
terms on the right side of Eq. (30) are nonzero only if the
fragmenting parton i is a quark or gluon. The intermediate
parton j must also be a quark or gluon. If the fragmentation
function is known for all z at an initial scale μ0, the
evolution equation in Eq. (30) can be integrated to obtain
the fragmentation function at any higher scale μ.
We first discuss the evolution of fragmentation functions

in the IMC scheme. In Sec. III, we calculated the LO
fragmentation functions DIMC

i→Hðz; μÞ for V → H and t → H
in this scheme. The invariant-mass constraint μ2 >
M2

H=zþM2
i =ð1 − zÞ for the tree-level process i�→Hþ i

implies that the LO fragmentation function is nonzero
only for zwithin a subinterval ðz−; zþÞ of the interval (0, 1).
As μ decreases, the length zþ − z− of the subinterval
decreases, reaching zero at the scale μ0;i ¼ MH þMi. It
is natural to take the vanishing ofDIMC

i→Hðz; μÞ at this scale as
the initial condition on the fragmentation function:

DIMC
i→Hðz; μ ¼ μ0;iÞ ¼ 0: ð31Þ

At larger scales μ, DIMC
i→Hðz; μÞ is obtained by solving the

inhomogeneous evolution equation in Eq. (30). If we also
define the LO fragmentation function to be zero for
μ < μ0;i, it is a continuous function for all positive μ
and 0 < z < 1. To complete the prescription for the
evolution of the fragmentation functions in the IMC
scheme, we need to specify the splitting functions in
Eq. (30). We take the inhomogeneous term to be the
splitting function PIMC

i→Hðz; μÞ obtained by differentiating the
LO fragmentation function in the IMC scheme, as in
Eq. (12). We take the QCD splitting functions Pi→jðz; μÞ
to be the LO splitting functions in the MS scheme. The
splitting function PIMC

i→Hðz; μÞ has a θ function factor that
ensures that the inhomogeneous term in the evolution
equation in Eq. (30) gives nonzero contributions only
for z inside the subinterval ðz−; zþÞ in which the LO
fragmentation function is nonzero. However, the homo-
geneous terms in Eq. (30) will give nonzero contributions
in the entire interval (0, 1).
We next discuss the evolution of fragmentation functions

in the MS scheme. In Sec. III, we calculated the LO
fragmentation functions Di→Hðz; μÞ for V → H and t → H
in this scheme. Since the renormalization scale μ in the MS
scheme has no direct physical interpretation, it is necessary
to choose an initial scale μ0 for the fragmentation function.
A simple choice for μ0 is the minimum invariant mass of
the partons in the final state for the LO fragmentation
process. For the tree-level process i� → H þ i, this scale
is μ0;i ¼ MH þMi. Our initial condition on Di→Hðz; μÞ is
equal to the LO fragmentation function at that scale:

Di→Hðz; μ ¼ μ0;iÞ ¼ DLO
i→Hðz; μ0;iÞ: ð32Þ

At larger scales μ, Di→Hðz; μÞ is obtained by solving the
evolution equation in Eq. (30). If we also define the LO
fragmentation function to be 0 for μ < μ0;i, it changes
discontinuously from zero for all z to nonzero as μ
increases through μ0;i. To complete the prescription for
the evolution of the fragmentation functions in the MS
scheme, we need to specify the splitting functions in
Eq. (30). We take the inhomogeneous term to be the
splitting function obtained by differentiating the LO frag-
mentation function in the MS scheme, as in Eq. (12). We
take the QCD splitting functions Pi→jðz; μÞ to be the LO
splitting functions in the MS scheme. Since the MS scheme
ignores constraints on the invariant mass of final-state
partons, the fragmentation function may not have a simple
physical interpretation as a probability distribution for the
longitudinal momentum fraction z in a jet. In particular, it
can be negative in some regions of z. However, in the LP
factorization formula in Eq. (4), the unphysical aspects of a
fragmentation function are cancelled by a subtraction term
that removes mass singularities from an infrared-safe cross
section. Thus, the sum over fragmenting partons gives a
physical hard-scattering cross section dσ̂.

B. Weak vector boson fragmentation

Since we only resum the large logarithms due to QCD
interactions, theW and Z fragmentation functions decouple
from the top-quark and gluon fragmentation functions. The
only term in the LO evolution equation for the fragmenta-
tion function for a weak vector boson into a Higgs is the
inhomogeneous term PV→H in Eq. (30). The solution to the
evolution equation for μ > μ0;V is therefore just the LO
fragmentation function evaluated at the scale μ. The
fragmentation functions for W� and Z0 into a Higgs at
any scale μ are given by Eq. (13) in the MS scheme and by
Eq. (17) in the IMC scheme. The dependence of the
fragmentation functions on μ are illustrated in Fig. 2.

C. QCD evolution equations at LO

The QCD evolution equations for the top quark and
gluon fragmentations are coupled, so they must be solved
together. They have the schematic forms

μ2
d
dμ2

Dt→H ¼ Pt→H þ Pt→g ⊗ Dg→H þ Pt→t ⊗ Dt→H;

ð33aÞ

μ2
d
dμ2

Dg→H ¼ Pg→H þ Pg→g ⊗ Dg→H þ 2Pg→t ⊗ Dt→H:

ð33bÞ

The fragmentation functions from other quark flavors q are
not important, since they are suppressed either by αs or by
y2q=y2t , where yq is the Yukawa coupling of quark flavor q.
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The factor of 2 in the last term in Eq. (33b) takes into
account the fragmentation of both t and t. The inhomo-
geneous term Pg→H in Eq. (33b) is order α2sy2t for μ between
MH and 2Mt þMH and order αsy2t for μ > 2Mt þMH.
The inhomogeneous term Pt→H in Eq. (33a) is zero for
μ < Mt þMH and order y2t for μ > Mt þMH. The QCD
splitting functions Pg→g, Pg→t, Pt→g, and Pt→t are order αs.
The LO fragmentation functions Di→H are the same order
as Pi→H.
The thresholds for H, H þ t, and H þ tt are the

boundaries between three regions of μ in which the terms
in the evolution equations at the first nonvanishing order are
different:
(1) MH < μ < Mt þMH: In this region, the top quark

can be integrated out completely, and we can set
Dt→Hðz; μÞ ¼ 0. The evolution equation for
Dg→Hðz; μÞ reduces to Eq. (33b) with the Pg→H

and Pg→g ⊗ Dg→H terms only.
(2) Mt þMH < μ < 2Mt þMH: In this region, we can

set Dg→Hðz; μÞ ¼ 0, because Pg→H is suppressed by
αs compared to Pt→H and because μ is below the
threshold for the Pg→t ⊗ Dt→H term. The evolution
equation for Dt→Hðz; μÞ reduces to Eq. (33a) with
the Pt→H and Pt→t ⊗ Dt→H terms only.

(3) μ > 2Mt þMH: In this region, we can set Pg→H to
0, because it is suppressed by αs compared to Pt→H.
All the other terms in Eqs. (33) must be included.

We consider the evolution of the fragmentation functions
only at LO in αs, which is order y2t . At this order, both
the top-quark and the gluon fragmentation functions are
zero in region 1. In region 2, we impose the initial condition
on the top-quark fragmentation function at the scale
μ0;t ¼ Mt þMH. In the MS scheme, Dt→Hðz; μ0;tÞ is
obtained by setting μ ¼ Mt þMH in Eq. (21). In the
IMC scheme, Dt→Hðz; μ0;tÞ is zero for all z. The fragmen-
tation functions at Mt þMH < μ < 2Mt þMH are
obtained by solving the evolution equation

μ2
d
dμ2

Dt→Hðz; μÞ

¼ Pt→Hðz; μÞ þ
Z

1

z

dy
y
Pt→tðz=y; μÞDt→Hðy; μÞ: ð34Þ

In the MS scheme, the t → H splitting function Pt→Hðz; μÞ
is independent of μ and is given in Eq. (22). In the IMC
scheme, the t → H splitting function is given in Eq. (26). In
this region, the gluon fragmentation function is identically
zero in both MS and IMC schemes.
In region 3, we impose as the initial condition on the

top-quark fragmentation function at the scale μ0;tt ¼ 2Mt þ
MH the result obtained from integrating Eq. (34). The
initial gluon fragmentation function Dg→Hðz; μ0;ttÞ is zero
for all z. The fragmentation functions at larger μ are
obtained by solving the evolution equations

μ2
d
dμ2

Dt→Hðz; μÞ ¼ Pt→Hðz; μÞ

þ
Z

1

z

dy
y
Pt→tðz=y; μÞDt→Hðy; μÞ

þ
Z

1

z

dy
y
Pt→gðz=y; μÞDg→Hðy; μÞ;

ð35aÞ

μ2
d
dμ2

Dg→Hðz; μÞ ¼
Z

1

z

dy
y
Pg→gðz=y; μÞDg→Hðy; μÞ

þ 2

Z
1

z

dy
y
Pg→tðz=y; μÞDt→Hðy; μÞ:

ð35bÞ

D. Top-quark fragmentation

The effect of evolution on the fragmentation function for
a top quark into a Higgs is illustrated in Fig. 5 by showing
fragmentation functions at the scale μ ¼ 2 TeV. The LO
fragmentation function in the MS scheme at that scale is
obtained by setting μ ¼ 2 TeV in Eq. (21). The LO
fragmentation function in the IMC scheme at that scale
is obtained by setting μ ¼ 2 TeV in Eq. (25). The corre-
sponding evolved fragmentation functions at that scale are
obtained by integrating the coupled differential equations in
Eqs. (35) from the initial scale up to 2 TeV.
In both the MS and IMC schemes, the effect of evolution

on the top-quark fragmentation function is to suppress it at
large z and to enhance it at small z. The effect of evolution
is milder in the IMC scheme compared to the MS scheme.
Because of the rapid decrease in the parton distributions
of the proton at large x, the production of the Higgs in pp
collisions is dominated by fragmentation at large z.
Consequently, the evolution of the top-quark fragmentation

FIG. 5. LO fragmentation functions (solid curves) and evolved
fragmentation functions (dashed curves) for a top quark into a
Higgs at μ ¼ 2 TeV in the MS scheme (thicker curves) and in the
IMC scheme (thinner curves).
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suppresses the production of the Higgs collinear to a
top quark.

E. Gluon fragmentation

The effect of evolution on the fragmentation function for
a gluon into a Higgs is illustrated in Fig. 6 by showing
fragmentation functions at the scale μ ¼ 2 TeV. The
fragmentation function at order y2t is zero. However, the
evolved fragmentation functions obtained by solving
the coupled differential equations in Eqs. (35) with the
appropriate initial conditions have terms of order
y2t ½αs logðμ2=M2

HÞ�n, which is order y2t for sufficiently large
μ. The evolved fragmentation functions in the MS scheme
and in the IMC scheme are shown at the scale 2 TeV.
In both the MS and IMC schemes, the initial gluon

fragmentation function is zero at μ ¼ 2Mt þMH. The
nonzero value is initially generated by the second term
on the right side of Eq. (35b). The gluon fragmentation
function grows more rapidly at smaller z due to the larger
integration region of y on the right side of Eq. (35b). The
gluon fragmentation function is much smaller in the IMC
scheme compared to MS scheme. At μ ¼ 2 TeV, the gluon
fragmentation function at small z is almost as large as the
top-quark fragmentation function. However, the gluon
fragmentation function at large z region is only approx-
imately 1% of the top-quark fragmentation function. Since
the production of the Higgs in pp collisions is dominated
by fragmentation at large z, gluon fragmentation can be
ignored compared with top-quark fragmentation.

V. COMPARISON WITH A COMPLETE
LO CALCULATION

In this section, we apply the LP factorization formula
in Eq. (4) to the process qq → Htt at LO, where q is a
massless quark, and no resummation contribution is con-
sidered. We compare the LO cross sections from the LP

factorization formula using the zero-mass-top-quark and
hybrid factorization prescriptions to the complete LO cross
section. We estimate the minimum Higgs transverse
momentum PT , above which the LP factorization formula
is reliable.

A. Infrared-safe cross sections

The process qq → Htt proceeds at LO through the
Feynman diagrams in Fig. 7. The LO cross section is
order α2sy2t . The complete expression for the differential
cross section dσ̂=dP2

Tdŷ, where PT is the transverse
momentum of the Higgs and ŷ is its rapidity in the qq
center-of-momentum frame, is given in Appendix B. It has
a mass singularity in the limits MH → 0 and Mt → 0.
At LO, the LP factorization formula in Eq. (4) for the

process qq → Htt has two terms,

dσ̂ðfpÞ
qq→Htt

ð ~PÞ ¼ d ~σðfpÞ
qq→Hþtt

ð ~P; μÞ

þ 2

Z
1

0

dzd ~σðfpÞ
qq→tþt

ðp ¼ ~P=zÞDt→Hðz; μÞ;

ð36Þ

where P is the momentum of the Higgs with massMH, ~P is
the corresponding momentum for a massless Higgs defined
in Eq. (6), and p is the momentum of the fragmenting top
quark. We call the two terms on the rhs of Eq. (36) the
direct contribution and the fragmentation contribution. We
have explicitly used the fact that the fragmentation con-
tributions from t and t are the same. The superscripts (fp) in
Eq. (36) indicate the terms that depend at this order on the
factorization prescription. The factorization prescriptions
we consider are the MTQ prescription, the ZMTQ pre-
scription, and the hybrid prescription, which were
described in Sec. II C.
The infrared-safe cross sections d ~σ in Eq. (36) are

constructed order by order in the coupling constants from
the hard-scattering cross sections dσ̂. The infrared-safe
cross section for qq → H þ tt is order α2sy2t . The infrared-
safe cross section for qq → tþ t is order α2s. The frag-
mentation function for t → H is order y2t . We begin at order
α2s by determining the infrared-safe cross section d ~σ for

FIG. 6. Evolved fragmentation functions for a gluon into a
Higgs at μ ¼ 2 TeV in the MS scheme (thicker curve) and in the
IMC scheme (thinner curve).

(a) (b)

FIG. 7. Feynman diagrams for the hard-scattering cross section
σ̂qq̄→Hþtt̄ at leading order in the coupling constants.
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qq → tþ t. This is easy because the corresponding hard-
scattering cross section dσ̂ is already infrared safe.
Depending on the factorization prescription, the limit
Mt → 0 may or may not be taken in this cross section.
Having determined d ~σ for qq → tþ t, we proceed to the
next order in the coupling constants, which is α2sy2t . After
replacing dσ̂ on the left side of Eq. (36) by the complete LO
hard-scattering cross section for qq → Htt, we solve for the
infrared-safe cross section for qq → H þ tt:

d ~σðfpÞ
qq→Hþtt

ð ~P;μÞ¼ dσ̂qq→HttðPÞ

−2

Z
1

0

dzd ~σðfpÞqq→tþtðp¼ ~P=zÞDt→Hðz;μÞ:

ð37Þ

The limitMH → 0 is taken on the right side. Depending on
the factorization prescription, the limitMt → 0may or may
not also be taken.
In the MTQ prescription, Mt is kept at its physical value

in both infrared-safe cross sections,

d ~σðMTQÞ
qq→tþt

ðpÞ ¼ dσ̂qq→ttðpÞ; ð38aÞ

d ~σðMTQÞ
qq→Hþttð ~P; μÞ ¼ lim

MH→0
dσ̂qq→HttðPÞ

− 2

Z
zmax

0

dzd ~σðMTQÞ
qq→tþt

ðp ≈ ~P=zÞ

× lim
MH→0

Dt→Hðz; μÞ; ð38bÞ

where p ≈ ~P=z represents the complicated expression for
the top-quark 4-momentum in Eq. (10) that respects the
mass-shell constraint p2 ¼ M2

t and a longitudinal momen-
tum constraint. The upper limit zmax on the integral over z is
given in Eq. (9). The limit of the fragmentation function as
MH → 0 is obtained by setting ζt ¼ 0 in Eq. (21) or (25).
The subtraction on the right side of Eq. (38b) cancels the
cross section in the collinear region, in which the Higgs is
produced collinearly with the top quark. Both terms on the
right side of Eq. (38b) have mass singularities in the limit
Mt → 0, but those singularities are regularized by the
top-quark mass. The simplifications provided by the LP
factorization formula compared with the complete LO
calculation are not evident from the presentation above,
because we used the hard-scattering cross section dσ̂ for
qq → Htt that depends onMt andMH. However, we could
have set MH ¼ 0 from the beginning in the calculation of
this cross section, which would have made the calculation
much simpler. This introduces fractional errors of order
M2

H=M
2
t in the collinear region and fractional errors of

order M2
H=P

2
T in the noncollinear region. Since the collin-

ear region is subtracted in Eq. (38), the fractional error in
the LP factorization formula in Eq. (36) is order M2

H=P
2
T.

In the ZMTQ prescription, the limit Mt → 0 is taken in
both infrared-safe cross sections,

d ~σðZMTQÞ
qq→tþt

ðpÞ ¼ lim
Mt→0

dσ̂qq→ttðpÞ; ð39aÞ

d ~σðZMTQÞ
qq→Hþtt

ð ~P; μÞ ¼ lim
Mt→0

�
lim

MH→0
dσ̂qq→HttðPÞ

− 2

Z
1

0

dzd ~σðZMTQÞ
qq→tþt

ðp ¼ ~P=zÞ

× lim
MH→0

Dt→Hðz; μÞ
�
; ð39bÞ

where ~P is the lightlike momentum defined in Eq. (6). The
subtracted term on the right side of Eq. (39b) cancels the
mass singularity in the first term, leaving a cross section that
has a well-behaved limit asMt → 0. The fractional error in
the LP factorization formula is of order M2

t =P2
T. The

calculation of the infrared-safe cross section for qq → H þ
tt can be greatly simplified by setting MH ¼ 0 from the
beginning in the calculation of the hard-scattering cross
section dσ̂ for qq → Htt. The calculation can be simplified
much further by setting bothMH ¼ 0 andMt ¼ 0 from the
beginning in the calculation of the hard-scattering cross
sections dσ̂ for qq → Htt and qq → tt and by using
dimensional regularization in D space-time dimensions
to regularize the mass singularities. The mass singularities
cancel between the two terms on the right side of Eq. (39b),
and the same infrared-safe cross section d ~σ is obtained in the
limit D → 4. With the ZMTQ prescription, the absence of
any mass scales in the infrared-safe cross sections dramati-
cally simplifies the calculation of higher-order corrections.
In the hybrid prescription, the physical value of Mt is

used in the infrared-safe cross section for qq → H þ tt, but
the limit Mt → 0 is taken in the infrared-safe cross section
for qq → tþ t because the top quark is the fragmenting
parton:

d ~σðhybridÞqq→tþtðpÞ ¼ lim
Mt→0

dσ̂qq→ttðpÞ; ð40aÞ

d ~σðhybridÞ
qq→Hþtt

ð ~P; μÞ ¼ lim
MH→0

dσ̂qq→HttðPÞ

− 2

Z
1

0

dzd ~σðhybridÞ
qq→tþt

ðp ¼ ~P=zÞ

× lim
MH→0

Dt→Hðz; μÞ: ð40bÞ

The error with the hybrid description is order M2
H=P

2
T, the

same as with the MTQ prescription, which may be some-
what surprising. This can be seen explicitly at LO by
subtracting the LP factorization formulas with the two
prescriptions and expressing the infrared-safe cross sec-
tions d ~σ in terms of hard-scattering cross sections dσ̂ and
their limits as Mt → 0 and MH → 0. The cross sections dσ̂
for qq → Htt cancel, and the remaining terms reduce to
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dσ̂ðhybridÞ
qq→Htt

ð ~P; μÞ − dσ̂ðMTQÞ
qq→Htt

ð ~P; μÞ ¼ 2

Z
1

0

dzð lim
Mt→0

dσ̂qq→ttðp ¼ ~P=zÞÞ½Dt→Hðz; μÞ − lim
MH→0

Dt→Hðz; μÞ�

− 2

Z
zmax

0

dzdσ̂qq→ttðp ≈ ~P=zÞ½Dt→Hðz; μÞ − lim
MH→0

Dt→Hðz; μÞ�: ð41Þ

The difference between the fragmentation functions is order M2
H=M

2
t . The difference between the hard-scattering cross

sections for qq → tt is order M2
t =P2

T. Thus, the difference between the hard-scattering cross sections for qq → Htt is
order M2

H=P
2
T.

There are large differences between the LO fragmentation functions in the MS scheme and the IMC scheme that were
calculated in Sec. III. Despite those large differences, the difference between the LP factorization formulas in the two
schemes is small. The cross sections dσ̂ for qq → Htt cancel, and the remaining terms reduce to

dσ̂ðfp;MSÞ
qq→Htt

ð ~P; μÞ − dσ̂ðfp;IMCÞ
qq→Htt

ð ~P; μÞ ¼ 2

Z
1

0

dzd ~σðfpÞ
qq→tt

ðp ¼ ~P=zÞ½Dt→Hðz; μÞ − lim
MH→0

Dt→Hðz; μÞ�

− 2

Z
zþ

z−

dzd ~σðfpÞ
qq→tt

ðp ¼ ~P=zÞ½DIMC
t→Hðz; μÞ − lim

MH→0
DIMC

t→Hðz; μÞ�; ð42Þ

where z− and zþ are given in Eq. (20). Inside the interval
ðz−; zþÞ, the difference between the fragmentation func-
tions is the logarithm in Eq. (27) plus terms suppressed by
M2

t =μ2, and the subtractions of theirMH → 0 limits reduce
the difference further to order M2

H=μ
2. If μ is chosen to be

order PT, the contribution to the difference in the hard-
scattering cross sections is order M2

H=P
2
T. Since z− ≈

M2
H=μ

2 and 1 − zþ ≈M2
t =μ2 for μ ≫ Mt and since the

subtraction of the MH → 0 limit of the fragmentation
function makes the integrand of order M2

H=M
2
t , the con-

tributions from the endpoint regions are also suppressed by
at leastM2

H=μ
2. This is orderM2

H=P
2
T if μ is chosen to be of

order PT.
In the following subsections, we focus on the double

differential cross section as a function of the Higgs trans-
verse momentum PT and its rapidity ŷ in the qq center-of-
momentum frame. We consider only the hybrid prescrip-
tion and the ZMTQ prescription. With these prescriptions,
the top quark is treated as massless in the infrared-safe
cross section for qq → tþ t, so its rapidity coincides with
the rapidity ŷ of the Higgs. The LP factorization formula at
LO is given by Eq. (36):

d2σ̂ðfpÞ
qq→Htt

dP2
Tdŷ

¼
d2 ~σðfpÞ

qq→Hþtt

dP2
Tdŷ

þ2

Z
1

0

dz
z2
d2 ~σðfpÞ

qq→tþt

dp2
Tdŷ

ðp¼ ~P=zÞDt→HðzÞ: ð43Þ

The infrared-safe differential cross-sections in the hybrid
prescription are given by Eq. (40):

d2 ~σðhybridÞ
qq→tþt

dp2
Tdŷ

¼ lim
Mt→0

d2σ̂qq→tt

dp2
Tdŷ

; ð44aÞ

d2 ~σðhybridÞ
qq→Hþtt

dP2
Tdŷ

¼ lim
MH→0

d2σ̂qq→Htt

dP2
Tdŷ

−2

Z
1

0

dz
z2
d2 ~σðhybridÞ

qq→tþt

dp2
Tdŷ

ðp¼ ~P=zÞ lim
MH→0

Dt→HðzÞ:

ð44bÞ

In the ZMTQ prescription, the limitMt → 0 is also taken in
Eq. (44b). The calculations of these two infrared-safe cross
sections are presented in the next two subsections.

B. Fragmentation contribution

The fragmentation contribution to the LO cross section
for qq → Htt is the second term on the right side of
Eq. (43). The fragmentation function Dt→Hðz; μÞ is calcu-
lated in the MS factorization scheme in Eq. (21) and in the
IMC factorization scheme in Eq. (25). To complete the
calculation of the fragmentation contribution to the LP
factorization formula in Eq. (43), we only need to calculate
the infrared-safe cross section for qq → tþ t. We denote
the momenta of q, q, and the fragmenting top quark by k1,
k2, and p, respectively. The Mandelstam variables are
ŝ ¼ ðk1 þ k2Þ2, t̂ ¼ ðk1 − pÞ2, and û ¼ ðk2 − pÞ2. In both
the hybrid prescription and the ZMTQ prescription, we set
Mt ¼ 0 in the cross section. The corresponding averaged
matrix element at LO is

jMj2qq→tt ¼
4ð4πÞ2α2s

9ŝ2
ðt̂2 þ û2Þ: ð45Þ

In the double differential cross section in the transverse
momentum pT and rapidity ŷ of the top quark in the qq
center-of-momentum frame, the integral over the tþ t
phase space is overconstrained. We convert the extra
δ-function into a δ-function of z using p ¼ ~P=z:
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d2σ̂qq→tt

dp2
Tdŷ

ðp ¼ ~P=zÞ

¼ 2πα2sz
9ŝ2

ð1þ tanh2ŷÞδðz − 2 cosh ŷPT=
ffiffiffî
s

p
Þ; ð46Þ

where PT and ŷ are the transverse momentum and the
rapidity of the Higgs boson in the qq center-of-momentum
frame. The integral over z in Eq. (43) is then trivial.
Inserting the MS fragmentation function in Eq. (21) into
Eq. (43) and integrating over z, we obtain the fragmentation
contribution in the hybrid and ZMTQ prescriptions:

Z
1

0

dz
z2

d2 ~σqq→tþt

dp2
Tdŷ

ðp ¼ ~P=zÞDt→Hðz; μÞ

¼ α2sy2t
72πŝ2

ð1þ tanh2ŷÞ

×

�
log

μ2

4M2
t
− log

cosh2ŷP2
T þ ζt

ffiffiffî
s

p ð ffiffiffî
s

p
− 2 cosh ŷPTÞ

ŝ

þ ð1 − ζtÞ
ffiffiffî
s

p ð ffiffiffî
s

p
− 2 cosh ŷPTÞ

cosh2ŷP2
T þ ζt

ffiffiffî
s

p ð ffiffiffî
s

p
− 2 cosh ŷPTÞ

�
: ð47Þ

In Eqs. (46) and (47), we have suppressed the superscript
(hybrid) or (ZMTQ) on d2 ~σ that specifies the factorization
prescription. The logarithm of 1=M2

t becomes a mass
singularity in the limit Mt → 0.

C. Direct contribution

The direct contribution to the LO cross section for qq →
Htt is the first term on the right side of Eq. (43). In this
subsection, we use the hybrid factorization prescription.
The infrared-safe cross section is defined in Eq. (44b). The
subtraction term can be calculated in Eq. (47) by setting
ζt → 0. The other term is the differential cross section
d2σ̂qq→Htt=dP

2
Tdŷ, which can be calculated from the two

Feynman diagrams in Fig. 7. The averaged matrix element
can be expressed as

jMj2 ¼ jMj2aa þ jMj2ab þ jMj2ba þ jMj2bb; ð48Þ

where jMj2ij is the product of the amplitude for Feynman
diagram i and the complex conjugate of the amplitude for
Feynman diagram j, averaged over initial spins and colors
and summed over final spins and colors. We can express the
differential cross section as

d2σ̂ðhybridÞqq→Htt

dP2
Tdŷ

¼ 2 lim
MH→0

�
d2σ̂aa

dP2
Tdŷ

þ d2σ̂ab

dP2
Tdŷ

�
; ð49Þ

where the superscripts aa and ab have the same meaning as
the subscripts in Eq. (48).

The three-body phase space integral can be expressed as
an iterated integral over the phase space of the Higgs and
the two-body phase space of tt. We denote the momenta
of q, q, and the Higgs by k1, k2, and P, respectively. A
convenient set of Lorentz invariants is

ŝ ¼ ðk1 þ k2Þ2; ð50aÞ

ŝ1 ¼ ðk1 þ k2 − PÞ2; ð50bÞ

Y ¼ ðk1 · PÞðk2 · PÞ: ð50cÞ

Making use of Lorentz invariance, we can evaluate the tt
two-body phase-space integral in the rest frame of tt, with
the Higgs momentum in the z direction. We set MH ¼ 0 in
the calculation of dσ̂, which greatly simplifies the phase-
space integration. The individual terms in the differential
cross section in Eq. (49) are

lim
MH→0

d2σ̂ij

dP2
Tdŷ

¼ α2sy2t
36πŝ3ŝ1ðŝ − ŝ1Þ4

�
Cijðŝ; ŝ1; YÞ

× log
ð ffiffiffiffiffi

ŝ1
p þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ŝ1 − 4M2

t

p
Þ2

4M2
t

þDijðŝ; ŝ1; YÞ
ffiffiffiffiffi
ŝ1

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ŝ1 − 4M2

t

q �
: ð51Þ

The functions Cij and Dij are polynomials in the Lorentz
invariants ŝ, ŝ1, and Y and in M2

t . In the contribution to the
cross section from diagram a, the functions are

Caa ¼ ŝŝ1ðŝ − ŝ1Þ2½ðŝ − ŝ1Þ2 − 8Y�
− 8ŝŝ1M2

t ½ŝ1ðŝ − ŝ1Þ2 − 8Yðŝþ 2ŝ1Þ�; ð52aÞ

Daa ¼ −ŝðŝ − ŝ1Þ2ðŝ2 − 6ŝŝ1 þ ŝ21Þ
þ 8Yðŝ3 − 5ŝ2ŝ1 − ŝŝ21 þ ŝ31Þ
þ 16M2

t ½ŝŝ1ðŝ − ŝ1Þ2 − 2Yðŝ2 þ 6ŝŝ1 þ ŝ21Þ�: ð52bÞ

In the contribution to the cross section from the interference
between diagrams a and b, the functions are

Cab ¼ 8ŝŝ1M2
t ½ŝðŝ − ŝ1Þ2 − 8Yŝ1�

þ 16ŝŝ1M4
t ½ðŝ − ŝ1Þ2 − 8Y�; ð53aÞ

Dab ¼ ŝðŝ − ŝ1Þ4 − 8Yðŝ − ŝ1Þ2ðŝþ ŝ1Þ
− 8M2

t ½ŝŝ1ðŝ − ŝ1Þ2 − 4Yðŝ2 þ 4ŝŝ1 þ ŝ21Þ�: ð53bÞ

Following Eq. (39b) and (40b), substituting Eqs. (51) into
Eq. (49) and subtracting the fragmentation term in Eq. (47),
we obtain the infrared-safe differential cross section for
qq → H þ tt in the hybrid factorization prescription.
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The only mass singularity in Eq. (51) is in the Caa term.
The singular part is

lim
MH→0

d2σ̂aa

dP2
Tdŷ

����
singular

¼ α2sy2t
36πŝ2ðŝ − ŝ1Þ2

½ðŝ − ŝ1Þ2 − 8Y�

× log
ð ffiffiffiffiffi

ŝ1
p þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ŝ1 − 4M2

t

p
Þ2

4M2
t

: ð54Þ

The logarithm of 1=M2
t becomes a mass singularity in the

limit Mt → 0. By using Y=ðŝ − ŝ1Þ2 ¼ ð1 − tanh2 ŷÞ=16,
we see that the coefficient of the mass singularity is the
same as in the fragmentation term in Eq. (47). The

differential cross section d2 ~σðhybridÞ
qq→Hþtt

=dP2
Tdŷ defined by

the subtraction in Eq. (44b) is therefore infrared safe in the
Mt → 0 limit. We can obtain the corresponding infrared-
safe cross section in the ZMTQ prescription by taking the
Mt → 0 limit in Eq. (44b).

D. Results

We now compare the LP factorization formula at LO
with the complete LO result for the contribution to
inclusive Higgs production at a 100 TeV pp collider from
the specific partonic process qq → Htt. Our goal is not to
give quantitative predictions for Higgs production in pp
collisions, which is dominated by gg → Htt and gq → Htt,
but rather to estimate the minimum Higgs transverse
momentum PT above which the LP factorization formula
is reliable. Neither do we consider the top-quark initiated
process, which might have nonnegligible contribution [35].
A thorough treatment of the Higgs PT distribution in pp
collisions using the LP factorization formula at LO will be
presented in a future work.
We consider the double differential cross section in the

transverse momentum PT and rapidity y of the Higgs. The
LP factorization formula at LO for the contribution from
qq → Htt is given in Eq. (36). The rapidity y of the Higgs
in the pp center-of-momentum frame is related to its
rapidity ŷ in the qq center-of-momentum frame by

y ¼ ŷþ 1

2
logðxa=xbÞ; ð55Þ

where xa and xb are the longitudinal momentum fractions
of the colliding partons from the protons A and B. We use
the fragmentation function for t → H in the MS factori-
zation scheme in Eq. (43), and we consider both the ZMTQ
and hybrid factorization prescriptions. We do not consider
the resummation of large logarithms, so the t → H frag-
mentation function depends only linearly on the logarithm
of the fragmentation scale μ.
In Fig. 8, we compare the complete LO result for the

transverse momentum distribution of the Higgs boson at
rapidity y ¼ 0, which is given in Appendix B, with three
approximations: the complete LO cross section with

MH ¼ 0, the LP factorization formula at LO using the
ZMTQ prescription, and the LP factorization formula at LO
using the hybrid prescription. The MS scheme is used for
the t → H fragmentation function. We consider pp colli-
sions with center-of-mass energy

ffiffiffi
s

p ¼ 100 TeV. We use
CTEQ6.6M parton distributions [36] and αsðMZÞ ¼ 0.13,
both with nf ¼ 5. We choose the factorization scale and the

fragmentation scale to both be μ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
T þM2

H

p
. The four

curves in Fig. 8 are
(i) complete LO: complete LO cross section with

Mt ¼ 173 GeV and MH ¼ 125 GeV.
(ii) complete LO (MH ¼ 0): complete LO cross section

with Mt ¼ 173 GeV and MH ¼ 0.
(iii) LP at LO (ZMTQ): LP factorization formula at LO

using the ZMTQ prescription in whichMt ¼ 0 in the
infrared-safe cross section for qq → tþ t and
MH ¼ Mt ¼ 0 in the infrared-safe cross section
for qq → H þ tt.

(iv) LP at LO (hybrid): LP factorization formula at
LO using the hybrid prescription in which Mt ¼ 0
in the infrared-safe cross section for qq → tþ t and
MH ¼ 0 and Mt ¼ 173 GeV in the infrared-safe
cross section for qq → H þ tt.

In both the ZMTQ and hybrid prescriptions, the masses
in the t → H fragmentation function are MH ¼ 125 GeV
and Mt ¼ 173 GeV.
Figure 8 shows that the LP factorization formula with the

ZMTQ and hybrid prescriptions both give increasingly
good approximations to the complete LO result at large PT ,
with the errors decreasing to below 5% for PT > 600 GeV.
In contrast, the fractional error for the complete LO result

FIG. 8. Differential cross section for inclusive Higgs produc-
tion at central rapidity from the parton process qq̄ → tt̄H at a
100 TeV pp collider as a function of the Higgs transverse
momentum PT . The complete LO result (solid curve) is compared
to three approximations: the complete LO with MH ¼ 0 (dot-
dashed curve), the LP factorization at LO using the ZMTQ
prescription (dashed curve), and the LP factorization at LO using
the hybrid prescription (dotted curve). The LP factorization
results are calculated using the fragmentation function for
t → H in the MS scheme.
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with a massless Higgs does not go to zero at large PT . The
reason is that when the complete LO result in Appendix B
is expanded in powers of the softer scale QS (MH or Mt)
divided by the harder scale QH (PT or

ffiffiffî
s

p
), the leading-

power term includes

α2sy2t
36πŝ2

ð1þ tanh2ŷÞ
�
log

ŝ
4M2

t

− log
cosh2ŷP2

T þ ζt
ffiffiffî
s

p ð ffiffiffî
s

p
− 2 cosh ŷPTÞ

4cosh2ŷP2
Tð

ffiffiffî
s

p
− 2 cosh ŷPTÞ=

ffiffiffî
s

p

þ ð1 − ζtÞ
ffiffiffî
s

p ð ffiffiffî
s

p
− 2 cosh ŷPTÞ

cosh2ŷP2
T þ ζt

ffiffiffî
s

p ð ffiffiffî
s

p
− 2 cosh ŷPTÞ

�
; ð56Þ

where ζt ¼ M2
H=ð4M2

t Þ. SettingMH ¼ 0 in this expression
leads to an error of order M2

H=M
2
t that does not decrease

with increasing PT . Therefore, the complete LO result with
MH ¼ 0 does not converge to the complete LO result at
large PT . The expression in curly brackets in Eq. (56)
differs from that in the fragmentation contribution in
Eq. (47) only by a logarithm whose argument depends
on ŝ, PT , and ŷ but does not depend on MH or Mt.
Consequently, the terms suppressed by only M2

H=M
2
t

cancel in the infrared-safe cross section for
qq → H þ tt, which is defined in Eq. (37) by subtracting
the fragmentation contribution from the complete LO
result. Therefore, settingMH ¼ 0 in this infrared-safe cross
section only gives errors of order M2

H=P
2
T.

In Fig. 9, we show the fractional errors for five
approximations to the complete LO differential cross
section as functions of PT . The fractional error is the
difference between the approximate result and the complete

LO result divided by the complete LO result. The fractional
error does not go to zero at large PT for the complete LO
result with MH ¼ 0, but it does go to zero for the LP
factorization results at LO with either the ZMTQ or hybrid
prescriptions and with either the MS or IMC schemes. For
both the MS and IMC schemes, the LP factorization cross
section approaches the complete LO cross section from
below with the ZMTQ prescription and from abovewith the
hybrid prescription. The convergence to zero is faster for
the MS scheme than for the IMC scheme. Thus, the more
physical phase space constraints in the IMC fragmentation
function do not lead to faster convergence. In the MS
scheme, the fractional errors at large PT for both factori-
zation prescriptions are numerically consistent with the
simple estimateM2

H=P
2
T . The predicted fractional errors are

order M2
H=P

2
T with the hybrid prescription, but they are

order M2
t =P2

T with the ZMTQ prescription. For the ZMTQ
prescription, the fractional error is considerably smaller
than the simple estimate M2

t =P2
T . It is interesting that the

ZMTQ prescription, in which the top-quark mass is set to
zero in the infrared-safe cross section for qq → H þ tt,
gives essentially the same numerical convergence to the
complete LO result as the hybrid prescription, despite
having a parametrically larger error.

VI. SUMMARY AND OUTLOOK

We have presented the leading-power factorization for-
mula for Higgs production with transverse momentum PT
much larger than the mass MH of the Higgs. In hard-
scattering cross sections for Higgs production, all terms
with the leading power of 1=P2

T are expressed as con-
volutions of infrared-safe cross sections for producing a
fragmenting parton and fragmentation functions that give
the distribution of longitudinal momentum of the Higgs
in the jet produced by the fragmenting parton. The LP
factorization formula separates the scales PT andMH, with
all the dependence on PT being in the infrared-safe cross
sections and all the dependence on MH being in the
fragmentation functions. The errors in the LP factorization
formula are order M2

H=P
2
T.

The fragmentation functions for Higgs production can
be calculated diagrammatically as expansions in powers of
coupling constants. In contrast to the fragmentation func-
tions for hadron production in QCD, the fragmentation
functions for Higgs production are completely perturbative.
The fragmentation functions for W and Z into a Higgs and
for a top quark into a Higgs were calculated at LO in the
Standard Model coupling constants using two factorization
schemes: the MS scheme and the invariant-mass cutoff
scheme. The MS scheme can be defined to all orders in the
coupling constants, while the IMC scheme is defined only
at LO. In the IMC scheme, the factorization scale μ has a
physical interpretation as the maximum invariant mass of a
jet that includes the Higgs. If the factorization scale is much

FIG. 9. Fractional error in the differential cross section for
inclusive Higgs production with five approximations: complete
LO with MH ¼ 0 (dot-dashed curve), LP factorization at LO
using the ZMTQ prescription (dashed curves), and LP factori-
zation at LO using the hybrid prescription (dotted curves). The
LP factorization results are calculated using the fragmentation
function for t → H in the MS scheme (thicker curves) and in the
IMC scheme (thinner curves).
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larger than MH, the IMC fragmentation function with
factorization scale μ can be approximated by the corre-
sponding MS fragmentation function with a factorization
scale μ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zð1 − zÞp

multiplied by a constant that is different
for W and Z into a Higgs and for a top quark into a Higgs.
The fragmentation functions satisfy evolutions equations
that can be used to sum leading logarithms of μ=MH to all
orders in the coupling constants. The splitting functions in
the evolution equations can be calculated perturbatively.
Leading logarithms of PT=MH in the cross section can be
summed to all orders by choosing the fragmentation scale μ
to be of order PT. The summation of these logarithms can
improve upon the accuracy of fixed-order calculations.
The infrared-safe cross sections can be calculated dia-

grammatically order by order in the coupling constants by
subtracting mass singularities from the hard-scattering
cross sections. This procedure was carried out explicitly
for the LP factorization formula for qq → Htt at LO. We
considered three factorization prescriptions for the infrared-
safe cross sections: the massive-top-quark prescription, the
zero-mass-top-quark prescription, and a hybrid prescrip-
tion. The fractional errors are order M2

H=P
2
T for the MTQ

and hybrid prescriptions and order M2
t =P2

T for the ZMTQ
prescription. The ZMTQ and hybrid prescriptions have the
advantage of a simple relation between the momenta of the
fragmenting top quark and the Higgs, p ¼ ~P=z, where ~P is
lightlike. In the ZMTQ prescription, the only scale in the
infrared-safe cross sections is the transverse momentum pT
of the fragmenting parton, which greatly simplifies the
calculation of higher-order corrections.
The LP factorization formula was illustrated by calculat-

ing the contribution to Higgs production at a 100 TeV pp
collider from the subprocessqq → Htt. The LP factorization
formula at LO was compared to the complete LO result for
the PT distribution at central rapidity. The fractional error in
the LP factorization formula decreases at largePT like 1=P2

T .
For the ZMTQ and hybrid prescriptions using the t → H
fragmentation function in theMS scheme, the fractional error
decreases to less than 5% for PT < 600 GeV. The fractional
errors are larger for the t → H fragmentation function in the
IMC scheme. Thus, the physical phase-space constraints
in the IMC fragmentation function do not lead to faster
convergence with PT . With the MS fragmentation function,
the fractional error for the ZMTQ prescription is numerically
approximately equal to that for the hybrid prescription. This
is surprising given that the theoretical error for the ZMTQ
prescription is parametrically larger: orderM2

t =P2
T compared

toM2
H=P

2
T for the hybrid prescription. The smaller theoreti-

cal error in the hybrid prescription is obtained by taking into
account the top-quarkmass in some of the infrared-safe cross
sections, which makes the calculations much more difficult.
Our results for the specific subprocessqq → Htt suggest that
the smaller theoretical error may not be worth the additional
calculational effort.

We have calculated the infrared-safe cross sections in the
LP factorization formula at LO only for the hard-scattering
process qq → Htt. It is straightforward to calculate the
infrared-safe cross sections for the other hard-scattering
processes at order αsy2t , such as gg → Htt. The only
fragmentation function that is needed in order to subtract
the mass singularities is the t → H fragmentation function
at LO, which we have calculated in this paper. A phenom-
enologically relevant application of the LP factorization
formula at LO to inclusive Higgs production in association
with a tt pair requires that these other subprocesses be
included. It would be interesting to compare the errors in
such a calculation for the ZMTQ and hybrid factorization
prescriptions. If the errors are numerically comparable for
ZMTQ in spite of being parametrically larger, it would
further strengthen the case for using the ZMTQ prescription
at higher orders. Significantly more calculational effort
would be required to apply the LP factorization formula to
inclusive Higgs production in association with a tt pair at
NLO. The advantage over the complete NLO calculation is
that the theoretical errors could be further decreased by
using the evolution equations for the fragmentation func-
tions to sum the leading logarithms of PT=MH.
The LP factorization formula can also be applied to

inclusive Higgs production without tt. The most important
couplings of Higgs PT below the tt threshold are its
couplings to gluons in the effective field theory (HEFT)
obtained by integrating out top-quark loops. In the LP
factorization formula at LO, the only fragmentation func-
tion is the H → H fragmentation, which is given by the
delta function in Eq. (11). The infrared-safe cross sections
are just the hard-scattering cross sections with MH set to
zero. Thus, the LP factorization formula at LO is just the
cross section for producing a massless Higgs. The LP
factorization formula at NLO involves the LO fragmenta-
tion function for g → H, which comes from the tree-level
process g� → Hg through the HEFT vertex that couples the
Higgs to two gluons. Some of the infrared-safe cross
sections at this order must be obtained by the subtraction
of mass singularities. The LP factorization formula at
NNLO in HEFTwould be much more difficult to calculate.
The complete NNLO cross section in HEFTas a function of
PT has already been calculated [9,10]. The fractional error
of the LP factorization formula at NNLO relative to the
complete NNLO cross section is order M2

H=P
2
T. Given that

the applicability of the LP factorization formula in HEFT is
limited to PT below the top-quark-pair threshold, loga-
rithms of PT=MH cannot be very large. Thus, the LP
factorization formula at NNLO in HEFT cannot improve
significantly upon the accuracy of the complete NNLO
calculation in HEFT by summing logarithms. However, it
does have the advantage of greater simplicity provided by
the separation of the scales PT and MH. Thus, it may
provide physical insights into the results of the complete
NNLO calculation.
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Factorization theorems for inclusive quarkonium pro-
duction at large PT have been extended to the next-to-
leading power in 1=P2

T [27–29,31]. The NLP factorization
formula involves new production mechanisms called dou-
ble-parton fragmentation, in which the quarkonium is
produced in a jet that results from the hadronization of
two collinear partons produced in a hard collision. The
NLP factorization formula for inclusive quarkonium pro-
duction in QCD can be adapted straightforwardly to
inclusive Higgs production in the Standard Model. For
PT above the top-quark-pair threshold, double-parton
fragmentation first enters at LO, which is order α2sy2t ,
through the fragmentation function for tt → H. The frac-
tional error in the NLP factorization formula is order
M4

H=P
4
T . The simple estimate M4

H=P
4
T decreases to about

6% at PT ¼ 250 GeV. Thus, the NLP factorization formula
could be useful even at the LHC.
The LP factorization formula could be useful for

quantifying the effects of physics beyond the Standard
Model on Higgs production at large PT [37–40]. The new
physics would modify both the fragmentation functions and
the infrared-safe cross sections. This could be important if
the fraction of the cross section for Higgs production from
new physics is much larger at large transverse momentum.
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APPENDIX A: FEYNMAN RULES FOR
FRAGMENTATION FUNCTIONS

Fragmentation functions can be calculated using
Feynman rules derived by Collins and Soper in 1981
[34]. The fragmentation function is expressed as the sum
of all possible cut diagrams of a particular form. The
diagrams have an eikonal line that extends from the vertex
of a local operator on the left side of the cut to the vertex of
a local operator on the right side. The virtual parton lines
attached to the operator vertices are connected to the
fragmented particle through ordinary field theory inter-
actions, with possibly additional parton lines attached to the
eikonal line. The cut passes through the eikonal line, the
line for the fragmented particle, and possibly additional
lines that correspond to additional final-state particles.
Examples of cut diagrams for producing a Higgs boson
are shown in Figs. 1 and 3. In these figures, there is a Higgs
line that ends on each side of the cut. It is not drawn as
passing through the cut to emphasize that its momentum is
not integrated over, unlike the other cut parton lines.
The Feynman rules for the cut diagrams are relatively

simple [34]. The 4-momentum K of the fragmenting parton
enters the diagram through the operator vertex on the left

side of the eikonal line, and it exits through the operator on
the right side. Some of that momentum flows through the
virtual partons attached to the operator vertex, and the
remainder flows through the eikonal line. The fragmented
particle, which in this case is a Higgs, has a specified 4-
momentum P. The longitudinal momentum fraction z of
the Higgs is z ¼ P · n=K · n, where n is a lightlike 4-vector.
The fragmentation function depends on K only through z.
The local operator vertices in the Feynman diagram are

connected by an eikonal line. The propagator for the
eikonal line is i=ðq · nþ iϵÞ, where q is the momentum
flowing through the eikonal line. The Feynman rule for the
cut eikonal line is 2πδðq · nÞ. In QCD, the eikonal factor is
an operator that corresponds to a path-ordered exponential
of gluon fields in an appropriate color representation. Thus,
there are diagrams with eikonal vertices at which gluon
lines attach to the eikonal line. A gluon attached to the
eikonal line has a Lorentz index β and color-octet index c.
In a gluon fragmentation function, the propagator for an
eikonal line carrying momentum q on the left side of the cut
is iδde=ðq · nþ iϵÞ, and the Feynman rule for the eikonal
vertex on the left side of the cut is gsfcdenβ, where d and e
are the color-octet indices to the left and right of the
propagator or vertex. In a quark fragmentation function,
the propagator for an eikonal line carrying momentum q on
the left side of the cut is iδji=ðq:nþ iϵÞ, and the Feynman
rule for the eikonal vertex on the left side of the cut is
igsTc

jin
β, where i and j are the color-triplet indices to the

left and right of the propagator or vertex.
For a gluon fragmentation function, the local operators

in the definition of the fragmentation function are nσGb
σμ,

where Gb
σμ is the gluon field strength. The Feynman

diagrams can be rearranged in such a way that the operator
creates only a single virtual-gluon line [34]. The operator
vertex at the left end of the eikonal line is labelled by a
Lorentz index μ and an color-octet index c. If the single
virtual-gluon line attached to that operator has outgoing
momentum q, Lorentz index α, and color-octet index a, the
Feynman rule for the operator vertex is

−iðK · ngμα − qμnαÞδab: ðA1Þ
The operator vertex at the right end of the eikonal line is
labelled by a Lorentz index ν and a color-octet index c. The
gluon fragmentation function is the sum of all cut diagrams
contracted with [34]

zD−3

ðN2
c − 1ÞðD − 2Þ2πK · n

ð−gμνÞδde; ðA2Þ

where Nc is the number of quark colors, D is the number
of space-time dimensions, and d and e are the color-octet
indices of the cut eikonal propagator. The factors in the
denominator include the N2

c − 1 color states and the D − 2

physical spin states of a gluon. The factor of zD−3 arises
from an integral over a transverse momentum.

ERIC BRAATEN and HONG ZHANG PHYSICAL REVIEW D 93, 053014 (2016)

053014-20



For a quark fragmentation function in QCD, the local
operators in the definition of the fragmentation function are
the quark field operator ψ and its Hermitian conjugate. The
operator vertex at the left end of the eikonal line can be
labelled by a Dirac index and a color-triplet index, but
it is more convenient to leave those indices implicit. The
quark fragmentation function is the trace in Dirac indices
and in color-triplet indices of the sum of all cut diagrams
multiplied by [34]

zD−3

8NcπK · n
n · γ: ðA3Þ

The factors in the denominator include the Nc color
states and the two physical spin states of a quark.
The suppressed Dirac indices of the matrix n · γ are
contracted with a Dirac index of the propagator of the
virtual quark created by the operator vertex on the left and
a Dirac index of the propagator of the virtual quark
absorbed by the operator vertex on the right. There is
also an implicit unit color matrix in Eq. (A3) whose color-
triplet indices are contracted with those of the cut eiko-
nal line.
For a weak vector boson fragmentation function, the

local operators in the definition of the fragmentation
function are nσFσμ, where Fσμ is the field strength for
the vector boson. The Feynman rule for the operator vertex
is the same as in Eq. (A1), except that the color factor δac is
omitted. The fragmentation function is the sum of all cut

diagrams contracted with a factor that can be obtained from
Eq. (A2) by omitting the factors δde=ðN2

c − 1Þ.

APPENDIX B: COMPLETE LO
RESULT FOR qq → Htt

In this Appendix, we present the complete LO cross
section for qq → Htt. The two Feynman diagrams are
shown in Fig. 7, and they are labelled a and b. We denote
the momenta of the q, q, and H by k1, k2, and P,
respectively. We express the cross section in terms of the
following Lorentz invariants:

ŝ ¼ ðk1 þ k2Þ2; ðB1aÞ

ŝ1 ¼ ðk1 þ k2 − PÞ2; ðB1bÞ

Y ¼ ðk1 · PÞðk2 · PÞ: ðB1cÞ

We also use the notation λða; b; cÞ ¼ a2 þ b2 þ c2−
2ab − 2ac − 2bc.
The complete LO result for the process for qq → Htt can

be expressed in the same manner as in Eq. (49):

d2σ̂qq→Hþtt

dP2
Tdŷ

¼ 2

�
d2σ̂aa

dP2
Tdŷ

þ d2σ̂ab

dP2
Tdŷ

�
: ðB2Þ

The contribution to the cross section from diagram a is

d2σ̂aa

dP2
Tdŷ

¼ α2sy2t
36πŝ3ŝ1λ5=2ðŝ; ŝ1;M2

HÞ
�
Caaðŝ; ŝ1; YÞŝŝ1 log

½ðŝ − ŝ1 þM2
HÞŝ1=21 þ ðŝ1 − 4M2

t Þ1=2λ1=2ðŝ; ŝ1;M2
HÞ�2

4½M2
Hŝ ŝ1 þM2

t λðŝ; ŝ1;M2
HÞ�

−Daaðŝ; ŝ1; YÞ
ŝ1=21 ðŝ1 − 4M2

t Þ1=2λ1=2ðŝ; ŝ1;M2
HÞ

M2
Hŝŝ1 þM2

t λðŝ; ŝ1;M2
HÞ

�
: ðB3Þ

The functions Caa andDaa are polynomials in the Lorentz invariants ŝ, ŝ1, and Y and in the massesM2
t andM2

H. They can be
expanded in powers of M2

H:

Caaðŝ; ŝ1; YÞ ¼
X
n

Caa
n ðŝ; ŝ1; YÞðM2

HÞn; ðB4aÞ

Daaðŝ; ŝ1; YÞ ¼
X
n

Daa
n ðŝ; ŝ1; YÞðM2

HÞn: ðB4bÞ

The expansion coefficients for Caaðŝ; ŝ1; YÞ are

Caa
0 ¼ ðŝ − ŝ1Þ3½ðŝ − ŝ1Þ2 − 8M2

t ŝ1� − 8Yðŝ − ŝ1Þ½ðŝ − ŝ1Þ2 − 8M2
t ðŝþ 2ŝ1Þ�; ðB5aÞ

Caa
1 ¼ −ðŝ − ŝ1Þ½ðŝ − ŝ1Þ2ðŝþ 3ŝ1Þ þ 8M2

t ð2ŝ2 þ 3ŝŝ1 − 3ŝ21Þ� þ 8Y½ðŝ − ŝ1Þðŝ − 3ŝ1Þ − 8M2
t ð2ŝ − ŝ1Þ�; ðB5bÞ

Caa
2 ¼ 4½ŝ1ð2ŝ2 − ŝŝ1 − ŝ21Þ þM2

t ð8ŝ2 − 2ŝŝ1 þ 6ŝ21Þ� þ 8Yðŝ − 3ŝ1 þ 8M2
t Þ; ðB5cÞ
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Caa
3 ¼ 4ð2ŝþ ŝ1Þðŝ1 − 2M2

t Þ − 8Y; ðB5dÞ

Caa
4 ¼ −ðŝþ 3ŝ1Þ; ðB5eÞ

Caa
5 ¼ 1: ðB5fÞ

The expansion coefficients for Daaðŝ; ŝ1; YÞ are

Daa
0 ¼ M2

t ŝðŝ − ŝ1Þ4½ŝ2 − 6ŝŝ1 þ ŝ21 − 16M2
t ŝ1� − 8YM2

t ðŝ − ŝ1Þ2½ŝ3 − 5ŝ2ŝ1 − ŝŝ21 þ ŝ31 − 4M2
t ðŝ2 þ 6ŝŝ1 þ ŝ21Þ�; ðB6aÞ

Daa
1 ¼ 2ŝðŝ − ŝ1Þ2½ŝŝ1ðŝ − ŝ1Þ2 − 2M2

t ŝðŝ2 − 4ŝŝ1 þ ŝ21Þ − 4M4
t ðŝ2 − 2ŝŝ1 − 7ŝ21Þ�

− 8Y½ŝŝ1ðŝ − ŝ1Þ2ð2ŝþ ŝ1Þ − 4M2
t ðŝ4 − 3ŝ3ŝ1 þ 10ŝ2ŝ21 − ŝŝ31 þ ŝ41Þ þ 16M4

t ðŝþ ŝ1Þ3�; ðB6bÞ

Daa
2 ¼ −ŝ½2ŝŝ1ðŝ − ŝ1Þ2ð2ŝþ ŝ1Þ −M2

t ð7ŝ4 − 28ŝ3ŝ1 − 54ŝ2ŝ21 þ 20ŝŝ31 − 9ŝ41Þ − 32M4
t ðŝ3 þ ŝŝ21 − 2ŝ31Þ�

þ 16Y½ŝŝ1ð2ŝ2 − 3ŝŝ1 þ ŝ21Þ−M2
t ð3ŝ3 − ŝ2ŝ1 þ ŝŝ21 þ 3ŝ31Þ þ 12M4

t ðŝþ ŝ1Þ2�; ðB6cÞ

Daa
3 ¼ 4ŝ½ŝ2ŝ1ðŝþ 3ŝ1Þ −M2

t ð2ŝ3 − 6ŝ2ŝ1 − 2ŝŝ21 − 4ŝ31Þ − 4M4
t ð3ŝ − ŝ1Þðŝþ ŝ1Þ�

− 8Y½ŝŝ1ð2ŝþ ŝ1Þ − 4M2
t ðŝ2 þ ŝŝ1 þ ŝ21Þ þ 16M4

t ðŝþ ŝ1Þ�; ðB6dÞ

Daa
4 ¼ −ŝ½2ŝŝ1ð2ŝþ ŝ1Þ −M2

t ð7ŝ2 − 10ŝŝ1 − 9ŝ21Þ − 16M4
t ð2ŝþ ŝ1Þ� − 8YM2

t ðŝþ ŝ1 − 4M2
t Þ; ðB6eÞ

Daa
5 ¼ 2ŝðŝŝ1 − 2M2

t ŝ − 4M4
t Þ; ðB6fÞ

Daa
6 ¼ M2

t ŝ: ðB6gÞ

The contribution to the cross section from the interference between diagrams a and b is

d2σ̂ab

dP2
Tdŷ

¼ α2sy2t
36πŝ3ŝ1ðŝ− ŝ1þM2

HÞλ5=2ðŝ; ŝ1;M2
HÞ

�
Cabðŝ; ŝ1;YÞŝŝ1 log

½ðŝ− ŝ1þM2
HÞŝ1=21 þðŝ1−4M2

t Þ1=2λ1=2ðŝ; ŝ1;M2
HÞ�2

4½M2
Hŝ ŝ1þM2

t λðŝ; ŝ1;M2
HÞ�

þDabðŝ; ŝ1;YÞŝ1=21 ðŝ1−4M2
t Þ1=2ðŝ− ŝ1þM2

HÞλ1=2ðŝ; ŝ1;M2
HÞ
�
: ðB7Þ

The functionsCab andDab are polynomials in the Lorentz invariants ŝ, ŝ1, and Y and in the massesM2
t andM2

H. They can be
expanded in powers of M2

H as in Eqs. (B4). The expansion coefficients for Cabðŝ; ŝ1; YÞ are

Cab
0 ¼ 8M2

t ðŝ − ŝ1Þ4ðŝþ 2M2
t Þ − 64YM2

t ðŝ − ŝ1Þ2ðŝ1 þ 2M2
t Þ; ðB8aÞ

Cab
1 ¼ −2ðŝ − ŝ1Þ2½ŝðŝ − ŝ1Þ2 þ 2M2

t ð9ŝ2 − 2ŝŝ1 þ ŝ21Þ þ 16M4
t ðŝþ 2ŝ1Þ�

þ 16Y½ðŝ − ŝ1Þ2ðŝþ 2ŝ1Þ − 2M2
t ðŝ2 þ 6ŝŝ1 − 3ŝ21Þ þ 16M4

t ðŝþ ŝ1Þ�; ðB8bÞ

Cab
2 ¼ 4½ŝðŝ − ŝ1Þ3 þ 2M2

t ðŝþ ŝ1Þð9ŝ2 − 5ŝŝ1 þ 2ŝ21Þ þ 8M4
t ðŝ2 þ 3ŝ21Þ� − 32Y½ŝ2 þ 2ŝ21 − 2M2

t ŝþ 4M4
t �; ðB8cÞ

Cab
3 ¼ −4½ŝ3 − 3ŝŝ21 þ 2M2

t ð9ŝ2 þ 4ŝŝ1 þ 3ŝ21Þ þ 8M4
t ðŝþ 2ŝ1Þ� þ 16Y½ŝþ 2ŝ1 − 2M2

t �; ðB8dÞ

Cab
4 ¼ 4ðŝ2 − ŝŝ1 þ 4M2

t ð2ŝþ ŝ1Þ þ 4M4
t Þ; ðB8eÞ

Cab
5 ¼ −2ðsþ 2M2

t Þ: ðB8fÞ

The expansion coefficients for Dabðŝ; ŝ1; YÞ are
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Dab
0 ¼ ŝðŝ − ŝ1Þ2½ðŝ − ŝ1Þ2 − 8M2

t ŝ1�
− 8Y½ðŝ − ŝ1Þ2ðŝþ ŝ1Þ − 4M2

t ðŝ2 þ 4ŝŝ1 þ ŝ21Þ�;
ðB9aÞ

Dab
1 ¼ −2ŝ½ŝðŝ − ŝ1Þ2 þ 4M2

t ðŝ2 þ 2ŝŝ1 − ŝ21Þ�
þ 16Y½ŝ2 − ŝŝ1 þ ŝ21 − 4M2

t ðŝþ ŝ1Þ�; ðB9bÞ

Dab
2 ¼ 2ŝ½ŝ2 þ 2ŝŝ1 − ŝ21 þ 4M2

t ð2ŝþ ŝ1Þ�
− 8Yðŝþ ŝ1 − 4M2

t Þ; ðB9cÞ

Dab
3 ¼ −2ŝðŝþ 4M2

t Þ; ðB9dÞ

Dab
4 ¼ ŝ: ðB9eÞ
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