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It is shown that an idea proposed in 1996 that relates in a qualitatively correct way the interfamily mass
hierarchies of the up quarks, down quarks, charged leptons, and neutrinos, can be combined with a predictive
scheme recently proposed for relating quark mixing and neutrino mixing. In the resulting model, the entire
flavor structure of the quarks and leptons is expressible in terms of two “master matrices”: a diagonal matrix
that gives the interfamily mass ratios, and an off-diagonal matrix that controls all flavor mixing.
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I. INTRODUCTION

The flavor problem has two aspects: explaining the
pattern of quark and lepton mixing angles and explaining
the pattern of interfamily mass hierarchies. In this paper
we show that an idea proposed in 1996 [1] for explaining
the mass hierarchies can be successfully combined with
an idea proposed in 2012 [2] for explaining the mixing. We
shall refer to these as the “BB idea” and the “BC idea”
respectively. The two ideas are actually complementary,
and by combining them a model emerges that is simpler
and more explanatory than either by itself.
The BB idea was based on the observation that the

interfamily mass hierarchy is strongest for the up quarks
ðu; c; tÞ, is intermediate for the down quarks ðd; s; bÞ and
charged leptons ðe; μ; τÞ, and seemingly is weakest for the
neutrinos ðν1; ν2; ν3Þ. It was noted in [1] that this can be
explained if the mass matrices of these four types of
fermions have the forms Mu ¼ HmuH, Md ¼ Hmd,
Ml ¼ mlH, and Mν ¼ mν, where H is a diagonal matrix
with a hierarchy among its elements, and where mu, md,
ml, and mν are matrices with no special form, that is with
all elements of the same order. Moreover, it was shown how
these insertions of the hierarchy matrix H can arise in a
simple and natural way from mixing between the three
chiral fermion families and extra 10þ 10 multiplets.
TheBC ideawas based on the observation that interfamily

mixing is weaker for the left-handed quarks than for the left-
handed leptons, and that this can be explained if the fermion
mass matrices have the form Mu ¼ mu, Md ¼ mdA,
Ml ¼ ATml, and Mν ¼ ATmνA, where A is a “master
matrix” that controls all interfamily mixing, and where
the matrices mu, md, ml, and mν are diagonal and hierar-
chical and therefore have no mixing. Moreover, it was
shown in [2] how these insertions of the master matrixA can
arise in a simple and natural way from mixing between the
three chiral fermion families and extra 5þ 5̄multiplets. The
resulting model was shown in [2] to be highly predictive.
These two ideas are clearly similar in a number of

respects. In the BB idea one matrix H controls all the

interfamily mass hierarchies, while in the BC idea one
matrix A controls all interfamily mixing. In both ideas,
these master matrices arise from the mixing of the three
chiral families with vectorlike fermions. And the forms of
the fermion mass matrices that arise in both schemes are
products of diagonal, hierarchical matrices with nondiag-
onal, nonhierarchical matrices.
In Sec. II, we shall briefly review the two ideas. In

Sec. III, we will show how they can be combined. In
Sec. IV, we deal with the question of introducing breaking
of SUð5Þ into the fermion mass matrices so as to avoid the
well-known minimal SUð5Þ relations md ¼ me, ms ¼ mμ,
and mb ¼ mtau at the unification scale. In Sec. V, we
show that the relative magnitudes of the various interfamily
mass hierarchies (of the up quarks, down quarks, charged
leptons, and neutrinos) come out to be of the right
magnitude in the combined scheme without parameters
having to be tuned to unnatural values. Section VI sum-
marizes the conclusions.

II. BRIEF REVIEW OF THE BB AND BC IDEAS

The BB idea was based on the observation that the
interfamily mass hierarchy of the up quarks ðu; c; tÞ is
stronger than those of the down quarks ðd; s; bÞ and
charged leptons ðe; μ; τÞ, which in turn are stronger than
that of the neutrinos. Reference [1] pointed out that the
strengths of these hierarchies correlate, in an SUð5Þ
framework, with the number of fermion 10-plets that
appear in the corresponding Yukawa terms. Up quark
masses come from ð10 10Þ5H terms, which have two
factors of fermion 10-plets. Down quark and charged
lepton masses come from ð10 5̄Þ5̄H terms, which have
only one such factor. And the neutrino masses come from
effective dimension-5 ð5̄ 5̄Þ5H5H terms, which contain no
such factors.
The BB idea was that every fermion 10-plet in a Yukawa

term is accompanied by a factor in the mass matrix of a
hierarchical, diagonal matrix H, which one can write as
H ¼ diagðα; β; 1Þh, where α ≪ β ≪ 1. This can happen as

PHYSICAL REVIEW D 93, 053009 (2016)

2470-0010=2016=93(5)=053009(8) 053009-1 © 2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.93.053009
http://dx.doi.org/10.1103/PhysRevD.93.053009
http://dx.doi.org/10.1103/PhysRevD.93.053009
http://dx.doi.org/10.1103/PhysRevD.93.053009


the result of the mixing of the 10-plets in the usual three
chiral families, which we denote by 100i þ 5̄0i , with “extra”
vectorlike 10-plets, which we denote by 100i þ 1̄00i (i ¼ 1,
2, 3). Let the “underlying” Yukawa terms that give
electroweak-breaking quark and lepton masses be of the
form

ð100i Yu
ij10

0
jÞ5H þ ð100i Yij5̄0jÞ5̄H þ ð100i yij5̄0jÞ45H

þ ð5̄0i Yν
ij5̄

0
jÞ5H5H=MR: ð1Þ

The role of the term with the 45H of Higgs fields is to
give different contributions to the mass matrices of the
down quarks and charged leptons [3,4] and thus avoid the
“bad” predictions of minimal SUð5Þ that me ¼ md, and
mμ ¼ ms at the GUT scale. Suppose that 100i and 10

0
i mix in

a family-diagonal way to produce a light linear combina-
tion 10i that contains standard model fermions and an
orthogonal linear combination 10hi that is superheavy. Then
one can write

100i ¼ cos θi10i þ sin θi10hi : ð2Þ

Substituting this into Eq. (1), one obtains for the effective
Yukawa terms of the standard model fermions

ð10i cos θiYu
ij cos θj10jÞ5H þ ð10i cos θiYij5̄0jÞ5̄H

þ ð10i cos θiyij5̄0jÞ45H þ ð5̄0i Yν
ij5̄

0
jÞ5H5H=MR: ð3Þ

Therefore, the effective quark and lepton mass terms of
the standard model quarks and leptons can be written

Mu ¼ HmuH;

Md ¼ Hmd;

Ml ¼ mlH;

Mν ¼ mν; ð4Þ

where

H ¼

0
B@

cos θ1 0 0

0 cos θ2 0

0 0 cos θ3

1
CA≡

0
B@

α 0 0

0 β 0

0 0 1

1
CAh; ð5Þ

and where ðmuÞij¼Yu
ijv5, ðmdÞij¼Yijv5̄þyijv45, ðmlÞij ¼

Yijv5̄ − 3yijv45, and ðmνÞij ¼ Yν
ijðv25=MRÞ. These four

“underlying” mass matrices mu, md, ml, and mν are not
assumed to have any special form, and therefore for each of
them one expects all the elements to be roughly of the same
order. From Eqs. (4) and (5) one has

Mu ∼

0
B@

α2 αβ α

αβ β2 β

α β 1

1
CAμu; Mν ∼

0
B@

1 1 1

1 1 1

1 1 1

1
CAμν

Md ∼

0
B@

α α α

β β β

1 1 1

1
CAμd; Ml ∼

0
B@

α β 1

α β 1

α β 1

1
CAμl; ð6Þ

where “∼” means that the various elements are of the given
order of magnitude. This obviously gives

mu∶mc∶mt ∼ α2∶β2∶1

md∶ms∶mb ∼ α∶β∶1

me∶mμ∶mτ ∼ α∶β∶1

mν1∶mν2∶mν3 ∼ 1∶1∶1: ð7Þ

This reproduces well, in a qualitative way, the strengths
of the interfamily mass hierarchies of the different types of
fermions. Also from inspection of Eq. (6) it is apparent that

UMNS ∼

0
B@

1 1 1

1 1 1

1 1 1

1
CA; VCKM ∼

0
B@

1 α=β α

α=β 1 β

α β 1

1
CA:

ð8Þ

This gives Oð1Þ MNS mixing angles and small CKM
mixing angles, with jVubj ∼ jVusVcbj, which also is quali-
tatively correct. On the other hand, since there are no
constraints on the forms of the four underlying 3 × 3 mass
matrices mu, md, ml, and mν, the BB idea in this form has
many free parameters and can only make qualitative post-
dictions rather than precise quantitative predictions.
We turn now to a review of the BC idea [2]. The BC idea

is that all interfamily mixing among the standard model
fermions arises from a single source. This source is the
mixing between the 5̄ multiplets in the three chiral families
and those in extra 5̄þ 5 vectorlike pairs. Because mixing
comes from the 5̄multiplets of SUð5Þ, there is large mixing
only for left-handed leptons and right-handed quarks,
thus also explaining why the MNS mixing is large and
the CKM mixing is small. (This is the basic idea of so-
called “lopsided models” [1,5].)
The specific assumption in the BC model is that if there

existed only the three chiral families, then the quark and
lepton mass matrices would be diagonal due to Abelian
family symmetries. But the extra 5̄þ 5 vectorlike multip-
lets, which are assumed not to transform under the family
symmetries, are able to mix with the chiral families due to
spontaneous breaking of those symmetries. This induces
mixing among the families of standard model quarks and
leptons.
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In the BC model, the fermion content consists of
ð100i þ 5̄0i Þ þ ð5̄0A þ 50AÞ, where i ¼ 1, 2, 3 and
A ¼ 1; 2;…; N. There are Abelian symmetries

Zð1Þ
2 × Zð2Þ

2 × Zð3Þ
2 , such that under ZðjÞ

2 the fields 10i and
5̄i are odd if i ¼ j but even if i ≠ j. As a consequence, the
“underlying” Yukawa terms of the three chiral families
have the family-diagonal form

ð100i Yu
i 10

0
i Þ5H þ ð100i Yi5̄0i Þ5̄H þ ð100i yi5̄0i Þ45H

þ ð5̄0i Yν
i 5̄

0
i Þ5H5H=MR: ð9Þ

The Abelian family symmetries are broken spontane-
ously by the VEVs of standard-model-singlet scalars 1Hi,

i ¼ 1, 2, 3. (Like the fermions, 1Hi is odd under Z
ðjÞ
2 if i ¼ j

and even otherwise.) This allows the chiral fermions and
the extra vectorlike fermions to mix through the following
Yukawa terms: yiAð5̄0i 50AÞh1Hii þ y0ABð5̄0A50BÞh1Hi. Because
of these terms, the 5̄0i and 5̄0A mix to produce three linear
combinations, 5̄i, which contain standard model quarks and
leptons, and N linear combinations 5̄hA that are orthogonal
to them and superheavy. One can therefore write

5̄0i ¼ Aij5̄j þ BiA5̄hA; ð10Þ

where A and B are nondiagonal matrices satisfying
AA† þ BB† ¼ I. Substituting Eq. (10) into Eq. (9), one
finds that the effective mass terms for the standard model
quarks and leptons can be written

Mu ¼ mu;

Md ¼ mdA;

Ml ¼ ATml;

Mν ¼ ATmνA; ð11Þ

where ðmuÞij ¼ δijYu
i v5, ðmdÞij ¼ δijðYiv5̄ þ yiv4̄5Þ,

ðmlÞij ¼ δijðYiv5̄ − 3yiv4̄5Þ, and ðmνÞij ¼ δijYν
i ðv25=MRÞ.

The nonzero elements of these diagonal matrices are free
parameters of the model. To fit the observed quark and
lepton masses they must be hierarchical, but the BC model
does not attempt to explain these hierarchies or relate them
to each other.
As shown in [2], the matrix A can be brought by changes

of basis to the form

A ¼ DAΔU; ð12Þ

where U is a unitary matrix, D is the diagonal matrix
diagðδ; ϵ; 1Þd, and AΔ is a triangular matrix of the form

AΔ ¼

0
B@

1 b ceiθ

0 1 a

0 0 1

1
CA; ð13Þ

and a, b, and c are real numbers. The matrix U can be
eliminated by redefining the fields of the right-handed
quarks and left-handed leptons. These redefinitions do not
affect the CKM or MNS mixing matrices. (They do not
affect the CKM matrix, as only a redefinition of the right-
handed quarks is involved. They do not affect the MNS
mixing matrix, since the same redefinition is done on the
neutrinos and charged leptons.) The diagonal matrix D
can be absorbed into the diagonal matrices: m̄u ≡mu,
m̄d ≡mdD, m̄l ≡mlD, and m̄ν ¼ mνD2. After these
redefinitions one has

Mu ¼ m̄u;

Md ¼ m̄dAΔ;

Ml ¼ AT
Δm̄l;

Mν ¼ AT
Δm̄νAΔ: ð14Þ

The elements of the diagonal matrix m̄u are obviously
just the masses of the up quarks, m̄u ¼ diagðmu;mc;mtÞ.
One can also easily show that to a very good approximation
the elements of the diagonal matrices m̄d and m̄l are
the masses of down quarks and charged leptons:
m̄d ≅ diagðmd;ms;mbÞ, and m̄l ≅ diagðme;mμ; mτÞ. That
means that in the basis in which the up quark mass matrix is
diagonal the mass matrix of the down quarks is given by

Md ¼

0
B@

md mdb mdceiθ

0 ms msa

0 0 mb

1
CA: ð15Þ

From this one can read off directly that jVusj ≅ md
ms
b,

jVcbj ≅ ms
mb

a, and Vub ≅
md
mb

ceiθ. Therefore, the triangular
matrix AΔ can be written

AΔ ¼

0
BBBBB@

1

���� ms
md

Vus

����
���� mb
md

Vub

����eiδKM

0 1

���� mb
ms
Vcb

����
0 0 1

1
CCCCCA: ð16Þ

The mass matrix Ml ¼ AT
Δm̄l of the charged leptons,

given in Eq. (14), is obviously not diagonal. However, it is
easily seen that it is diagonalized by rotations of the right-
handed leptons by angles that are of order me=mμ, mμ=mτ,
and me=mτ, while the required rotations of the left-handed
leptons are only of order the squares of these ratios, and
thus negligible. As far as the left-handed charged leptons
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are concerned, therefore, we are effectively in the mass
basis. Combining Eq. (14) and (16), one has the following
expression for the neutrino mass matrix

Mν ¼ μν

0
BBBBB@

1 0 0���� ms
md

Vus

���� 1 0���� mb
md

Vub

����eiδKM

���� mb
ms
Vcb

���� 1

1
CCCCCA

×

0
B@

qeiθq 0 0

0 peiθp 0

0 0 1

1
CA

×

0
BBBBB@

1

���� ms
md

Vus

����
���� mb
md

Vub

����eiδKM
0 1

���� mb
ms
Vcb

����
0 0 1

1
CCCCCA: ð17Þ

The five free parameters p, θp, q, θq, and μν determine
all nine neutrino properties: the three neutrino masses, three
MNSmixing angles, the DiracCP phase of the leptons, and
the two Majorana CP phases. So there are four predictions.
These are discussed in detail in [2]. What was found there
was that a good fit is obtained to the three neutrino mixing
angles and to the neutrino mass splittings, and that the
Dirac CP phase of the leptons is predicted to be roughly
210 degrees. The values of the parameters that gave the best
fits were p ¼ 0.1525, q ¼ 0.01405, θp ¼ −2.73 radians,
and θq ¼ −0.352 radians. The values of p and q are
important for our later discussions.

III. COMBINING THE TWO IDEAS

In the BB idea, all the interfamily mass hierarchies come
from the single matrix H, while in the BC idea all the
interfamily mixing comes from the single matrix A. The
question naturally arises whether these two ideas can be
combined in such a way that the whole flavor structure can
be accounted for with only the matrices A and H, thereby
producing a more predictive and explanatory model. The
answer is yes, as we shall now show by describing a
specific model that does this.
The fermion content of the model consists of the

following SUð5Þ multiplets:

ð100i þ 5̄0i Þi¼1;2;3 þ ð100A þ 100AÞA¼1;2;3

þ ð5̄0m þ 50mÞm¼1;2;…N: ð18Þ

Yukawa terms involving only 100i and 5̄
0
i will give rise to

“underlying”mass matrices that get multiplied by factors of
the matrices H and A. In order for H and A to account for
all the flavor structure, the underlying mass matrices should

have a trivial flavor structure, i.e., they should be propor-
tional to the identity matrix. This can be the case if there is
an SOð3Þ family symmetry under which the 100i and 5̄0i
transform as triplets. The underlying Yukawa terms would
then have the form

Yuð100i 100i Þ5H þ Ydð100i 5̄0i Þ5̄H þ Yνð5̄0i 5̄0i Þ5H5H=MR:

ð19Þ

Note that unlike Eqs. (1) and (9) there is no term herewith
the 45H of Higgs fields. Since all the underlying Yukawa
terms must be flavor-independent, due to the SOð3Þ sym-
metry, adding a term with the 45H in Eq. (19) would still
leave the down quark and charged lepton mass matrices
proportional to each other at the GUT scale. Therefore, the
group-theoretical factors needed to avoid the “bad”minimal
SUð5Þ relation Md ¼ MT

l must appear in either the H or A
matrices. In the model we are describing, they will appear in
the H matrix, as will be seen.
The matrix A arises, in exactly the manner explained

earlier, from the mixing of the 5̄0i with the “extra” 5̄
0
m, which

are assumed not to transform under any flavor symmetry.
Let there be at least two standard-models-singlet Higgs
fields that are triplets under SOð3Þ, denoted by 1niH, where n
labels the Higgs triplet and i is the SOð3Þ index. Then one
can write the following mass and Yukawa terms for the
fermion 5-plets:

Mmnð50m5̄0nÞ þ ymnð50m5̄0i Þh1niHi
¼ 50mðMmn5̄0n þ Δmi5̄0i Þ; ð20Þ

where Δmi ¼
P

nymnh1niHi. We assume that the matrices M
and Δ are superheavy and of the same order. (For example,
they may both be of order the GUT scale.) These terms will
make N linear combinations of the 5̄ fields superheavy and
leave three linear combinations light. These light linear
combinations, which contain standard model quarks and
leptons, will be denoted 5̄i. The superheavy combinations
will be denoted by 5̄hm.
It is easily seen that if A≡ ½I þ T†T�−1=2 and B≡

½I þ T†T�−1=2T†, where T ¼ M−1Δ, then 5̄0 ¼ A5̄þ B5̄h.
Exactly as in the BC model, when substituted into Eq. (19),
this leads to factors of A in the effective mass matrices of
the standard model quarks and leptons.
The factors of H in those matrices arise, as in the BB

scheme, from the mixing of 100i with the 10
0
A. In order forH

to come out diagonal, the 100A þ 100A must transform under
a flavor symmetry. A simple possibility is an Abelian

symmetry Zð1Þ
2 × Zð2Þ

2 × Zð3Þ
2 , such that 100A and 100A are odd

under ZðBÞ
2 if A ¼ B and even otherwise. Let there be three

standard-model-singlet Higgs fields 1AiH , which are triplets

under SOð3Þ and transform under Zð1Þ
2 × Zð2Þ

2 × Zð3Þ
2 in the
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obvious way. Then the following mass and Yukawa terms
of the fermion 10-plets are allowed

100AðYA1H þ yA24HÞ100A þ 100AðY 0
A1

Ai
H þ y0A24

Ai
H Þ100i :

ð21Þ

The role of the adjoint Higgs fields 24H and 24AiH is to
introduce SUð5Þ breaking into the quark and lepton mass
matrices, through H, and thus avoid the “bad” minimal
SUð5Þ prediction that the down quark masses equal the
charged lepton masses at the GUT scale. It is notationally
simpler, however, to explain the mixing of the 10-plets
without considering the effects of the adjoint fields in
Eq. (21), so we will first discuss the unrealistic case where
their VEVs are set to zero (which we will call the “minimal
model”) and then later discuss the realistic case where their
VEVs are nonzero.
If certain coefficients in the Higgs potential are positive

then the VEVs of 1AiH will be orthogonal to each other in
SOð3Þ space: Pih1AiH ih1BiH i ¼ cAδAB. (In particular, if the
coefficients of the terms ðP3

i¼1 1
Ai
H 1BiH Þ2 are positive it will

ensure this orthogonality.) Without loss of generality, one
can then choose a basis in SOð3Þ space such that the axes
are aligned with the VEVs of the three singlet VEVs. That
is, so that h1AiH i ¼ sAδAi. Defining, YAh1Hi≡MA and
Y 0
Ah1AiH i≡ ΔAδ

Ai, Eq. (21) with adjoint VEVs set to zero
gives

100AðMA100A þ ΔAδ
Ai100i Þ: ð22Þ

The three linear combinations of 10-plets appearing with
the parentheses in Eq. (22) are superheavy and will be
denoted 10hA, whereas the three linear combinations
ð−ΔA100A þMAδ

Ai100i Þ that are orthogonal to them contain
standard model fermions and will be denoted 10i. This
gives

100i ¼ cos θi10i þ sin θiδAi10hA; ð23Þ

where cosθi≡δAiMA=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jMAj2þjΔAj2

p
and sinθi≡δAiΔA=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jMAj2þjΔAj2
p

. Substituting this into Eq. (19), one finds
that every factor of 10i in the effective Yukawa couplings
of the standard model fermions is accompanied by a factor
of cos θi, as in Eq. (3). We will assume a hierarchical
pattern jΔ1=M1j ≫ jΔ2=M2j ≫ 1 ≫ jΔ3=M3j. Then we
can define a matrix H by

H ≡
0
B@

cos θ1 0 0

0 cos θ2 0

0 0 cos θ3

1
CA

≡
0
B@

α 0 0

0 β 0

0 0 γ

1
CA; where α ≪ β ≪ γ ≅ 1: ð24Þ

Substituting 5̄0 ¼ A5̄þ B5̄h and Eq. (23) into Eq. (19)
and using Eq. (24), the effective mass matrices of the
standard model quarks and leptons can then be written

Mu ¼ ðH2Þμu
Md ¼ ðHAÞμd → Md ¼ ðHDÞAΔμd;

Ml ¼ ðATHÞμd → Ml ¼ AT
ΔðDHÞμd;

Mν ¼ ðATAÞμν → Mν ¼ AT
ΔðD2ÞAΔμν; ð25Þ

This is the basic result of the model. Other than certain
overall mass scales (μu, μd, and μν) all the flavor structure
of the quarks and leptons is controlled by two matrices: a
mixing matrix A and a hierarchy matrix H. In going to the
last expressions in each line of Eq. (25), we have used
A ¼ DAΔU and absorbed U by field redefinitions (as
explained previously). We write the matrix D as D ¼
diagðδ; ϵ; 1Þd and absorb the factors of d into redefined
mass scales μ0d and μ0ν. One therefore ends up with the
following result (for the “minimal” version of the model):

Mu ¼

0
B@

jαj2 0 0

0 jβj2 0

0 0 0

1
CAμu;

Md ¼ MT
l ¼

0
B@

jαδj 0 0

0 jβϵj 0

0 0 1

1
CA
0
B@

1 b ceiθ

0 1 a

0 0 1

1
CAμ0d;

Mν ¼

0
B@

1 0 0

b 1 0

ceiθ a 1

1
CA
0
B@

δ2 0 0

0 ϵ2 0

0 0 1

1
CA
0
B@

1 b ceiθ

0 1 a

0 0 1

1
CAμ0ν:

ð26Þ

Of course, the form obtained forMν is the same as shown
in Eq. (17). The parameters called peiθp and qeiθq in
Eq. (17) are here called ϵ2 and δ2. It should be noted that in
Eq. (26), the phases of δ, ϵ, α, and β do not matter for
the matricesMu,Md, andMl, as they can be absorbed into
the fermion fields. But for the neutrino mass matrixMν the
phases of δ and ϵ do make a difference, and have to take
definite values to fit the neutrino masses and mixing angles.
One easily sees from Eq. (26) that in this “minimal

model” one has, to very good approximation, the following
“postdictions”:
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mu∶mc∶mt ¼ jαj2∶jβj2∶1;
md∶ms∶mb ¼ me∶mμ∶mτ ¼ jαδj∶jβϵj∶1;

q2∶p2∶1 ¼ jδj2∶jϵj2∶1: ð27Þ

From fitting the neutrino masses and mixing angles [2],
one can determine jϵj ¼ ffiffiffiffi

p
p ≅

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0.1525

p ¼ 1
2.56 and

jδj ¼ ffiffiffi
q

p ≅
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0.0141

p ¼ 1
8.44. [See the discussion after

Eq. (17).] And one can obtain the values of jαj and jβj
directly from the up quark mass ratios: jβj ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

mc=mt

p ¼
1

19.2 and jαj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mu=mt

p ¼ 1
424

. (We take the fermion masses
here and in the following equation to be the masses at
2 × 1016 as run up to that scale using the MSSM renorm-
alization group equations with tan β ¼ 10 [6].) From these
values one has the following result:

minimal model hierarchy jαδj∶jβϵj∶1 ¼ 1

3; 579
∶

1

49.2
∶1

actual lepton ratios me∶mμ∶mτ ¼
1

3; 679
∶

1

17.5
∶1

actual quark ratios md∶ms∶mb ¼
1

1142
∶

1

60.1
∶1:

ð28Þ

One sees that the minimal model works surprisingly
well, in fact better than in the BB idea taken by itself, where
the interfamily mass ratios of the charged leptons and of the
down quarks are α∶β∶1, as shown in Eq. (7). (That would
giveme=mτ ∼md=mb ∼ α ∼ 1

393
, which is off by an order of

magnitude for the electron.) Thus the factors of δ and ϵ,
which come from combining the BB and BC ideas, give
more realistic down quark and charged lepton mass
hierarchies.
The combined model we are describing (so far in a

minimal form) is more explanatory than the BC model. In
the BC model the interfamily mass hierarchies of the up
quarks, down quarks, charged leptons, and neutrinos are
completely unrelated, being determined by four diagonal
matrices whose elements are free parameters. In the
combined model, these hierarchies are all related, and
related in a way that we have just seen is qualitatively
correct. The 12 parameters in the four hierarchical diagonal
matrices of the BC model are replaced by just 7 parameters
in the minimal model: jαj, jβj, jδj, jϵj, μu, μ0d, and μ0ν. This
would be a huge increase in predictivity, but of course it is
too predictive, since the minimal model gives the “bad”
minimal SUð5Þ prediction that the charged lepton masses
are equal to the down quark masses at the GUT scale. To
cure this problem requires that group-theoretical factors
reflecting the breaking of SUð5Þ appear in the fermion mass
matrices. The simplest way for this to happen is through the
matrix H as a result of the adjoint Higgs fields in Eq. (21)
getting nonzero VEVs. We shall now look at this in detail.

IV. THE GROUP-THEORETICAL FACTORS
THAT DISTINGUISH Md FROM Ml

As can be seen from Eq. (28) [and below from Eq. (30)],
the group-theoretical factors must enhance the muon mass
and d quark mass by factors of about 3 or 4, while having
little effect on the other quark and lepton masses. Again
using the results of [6] with quark and lepton masses run up
to 2 × 1016 GeV using the MSSM renormalization group
equations, and normalizing those masses to the b quark
mass, one has

ðmd;ms;mbÞ=mb ¼
�

1

1142
;

1

60.14
; 1

�
;

ðme;mμ; mτÞ=mb ¼
�

1

2; 967
;

1

14.1
; 1.24

�
: ð29Þ

Then using the values of jαδj and jβϵj given in Eq. (28)
one has

�
md

jαδj ;
ms

jβϵj ; mb

�
=mb ¼ ð3.13; 0.817; 1Þ;�

me

jαδj ;
mμ

jβϵj ; mτ

�
=mb ¼ ð1.21; 3.49; 1.24Þ: ð30Þ

The ratios given in Eq. (30), which are all predicted to be
equal to 1 in the minimal model, must be accounted for by
the group-theoretical factors.
Seemingly, the simplest way to do this is through the

coupling of adjoint Higgs fields to the 10-plets of fermions,
as shown in Eq. (21). Let us first just consider the effect of
the VEV of the 24H, which couples as 100AðyA24HÞ100A. If
we define κA by yAh24Hi

YAh1Hi ¼ κAYf=2, where f stands for the

fermion type u, uc, d, or lc, then the effect is that in
Eq. (22), MA gets replaced by MAð1þ κAYf=2Þ, where
Yf=2 is the weak hypercharge of the fermion of type f.
Suppose that we assume that jΔ1=M1j ≫ jΔ2=M2j ≫
jΔ3=M3j ∼ 1, then the angles defined after Eq. (23) are
different for different fermion types and given approxi-
mately by

cos θf1 ≅
����M1

Δ1

ð1þ κ1Yf=2Þ
����

≪ cos θf2 ≅
����M2

Δ2

ð1þ κ2Yf=2Þ
����

≪ cos θf3 ≅
�
1þ

���� Δ3

M3

����2ð1þ κ3Yf=2Þ−2
����−1=2 ≅ 1: ð31Þ

Then the matrix H defined in Eq. (24) is replaced by
matrices Hf, which are different for different types of
fermion in the 10-plets:
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Hf ≡
0
B@

cos θf1 0 0

0 cos θf2 0

0 0 cos θf3

1
CA; ð32Þ

and the fermion mass matrices have the forms

Mu ¼ ðHuHucÞμu
Md ¼ ðHdAÞμd → Md ¼ ðHdDÞAΔμd;

Ml ¼ ðATHlcÞμd → Ml ¼ AT
ΔðDHlcÞμd;

Mν ¼ ðATAÞμν → Mν ¼ AT
ΔðD2ÞAΔμν; ð33Þ

If we consider the masses of the charged fermions of the
second and third families, there are four mass ratios (mc

mt
, ms
mb
,

mμ

mτ
, and mτ

mb
) that must be fit using the parameters in Eq. (31),

and there are four such parameters, namely jΔ3=M3j, κ3,
jΔ2=M2j, and κ2.
Consider first the ratio mτ=mb. As is well-known this is

predicted in minimal SUð5Þ to be 1 at the GUT scale, as is
also the case in the minimal version of the present model. In
reality, however, this ratio is not exactly 1, though it is near
to 1 (especially in the MSSM). In fact, for tan β ¼ 10 it is
1.24 at the GUT scale as shown in Eq. (30). With the group-
theoretic factors of Eq. (31) one sees that it is given by

1.24 ¼
�
mτ

mb

�
MGUT

¼ cos θl
c

3

cos θd3
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ j Δ3

M3
j2ð1þ 1

6
κ3Þ−2

1þ j Δ3

M3
j2ð1þ κ3Þ−2

vuut ;

ð34Þ

which is indeed close to but not exactly 1, for Δ3=M3 < 1.
We can also write [putting in the values given in Eq. (30)]:

0.817 ¼ ms=mb

ϵ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
mc=mt

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

6
κ2

1 − 2
3
κ2

s �
1þ j Δ3

M3
j2ð1þ 1

6
κ3Þ−2

1þ j Δ3

M3
j2ð1 − 2

3
κ3Þ−2

�1=4

; ð35Þ

and

3.49 ¼ mμ=mb

ϵ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
mc=mt

p
¼ 1þ κ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þ 1
6
κ2Þð1 − 2

3
κ2Þ

q �
1þ j Δ3

M3
j2ð1þ 1

6
κ3Þ−2

1þ j Δ3

M3
j2ð1 − 2

3
κ3Þ−2

�1=4

:

ð36Þ

Equations (34) to (36) contain three equations with three
unknowns κ2, κ3, and jΔ3=M3j. They are solved by
the values κ2 ¼ 11.2, κ3 ¼ −2, and jΔ3=M3j ¼ 0.86.

The remaining ratio mc=mt can then be fit by the
choice jΔ2=M2j ¼ 110.
Fitting the first family masses is more involved. There

are three additional masses to be fit (me, md, and mu), but
the expressions in Eqs. (31) have only two additional
parameters (κ1 and jΔ1=M1j. Indeed, it turns out that there
is no fit. It is for this reason that one must include the effect
of the term containing 24AiH in Eq. (21). Actually, only one
such adjoint Higgs field is required to obtain a good fit,
namely 241iH. However, as the expressions are somewhat
complicated looking, we do not show them.
One sees, then, that introducing the group-theoretic

factors required to break the well-known minimal SUð5Þ
mass degeneracies means that the model ends up with as
many free parameters as there are in the BC model of [2].
Thus combining that model with the BB idea leads to no
increase in the number of precise quantitative predictions.
However, there is a gain in explanatory power, in that the
interfamily mass hierarchies of the different types of
fermions are related to each other in a way that is
qualitatively correct.

V. THE TYPICAL VALUES OF δ AND ϵ

We now turn to a discussion of the values of δ and ϵ, the
elements of the diagonal matrix D. It is a nontrivial
condition for the viability of the model that the same
values of jδj and jϵj give realistic results both for the
neutrino properties and for the mass hierarchies of the down
quarks and charged leptons. As we have seen, the model
clears this hurdle. The fit to the neutrino properties obtained
in [2] gives jδj ≅ 1

8.44 and jϵj ≅ 1
2.56, and these values also

give realistic mass hierarchies, as shown in Eq. (27).
The question arises whether these are natural values for

jδj and jϵj to have. Why should there be any hierarchy in the
elements of D? And why should that hierarchy be parallel
to the hierarchy inH, with the diagonal elements increasing
from the first to the third family? And why should they
have these particular values? It turns out that the values of
jδj and jϵj needed for good fits are indeed natural, in the
sense that they lie in the middle of the range of values that
are most “likely” given the values of the elements of the
triangular matrix AΔ, as we will now show.
The matrix D ¼ diagðδ; ϵ; 1Þ arises from bringing the

matrix A to the form A ¼ DAΔU, as previously explained.
The matrix A, in turn, is defined by A≡ ðI þ T†TÞ−1=2,
where T ¼ M−1Δ, andM and Δ are the matrices appearing
in Eq. (20). It is natural to assume that the matrices M and
Δ are both roughly of order the grand unification scale, but
there is no symmetry reason whyM and Δ should have any
special form. Consequently, the matrix T has no reason to
have any special form either.
Suppose that the elements of T are treated as random

complex variables all of which have the same probability
distribution. For each choice of T, one can compute the
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matrix A, and from that determine the matrices D and AΔ.
Not surprisingly, one finds that the elements of D are
correlated with those of AΔ. In fact, simple arguments show
that if the elements of AΔ that we have called a and b are
large, then typically jδj ∼ 1=ab and jϵj ∼ 1=a. Since fitting
the CKM angles gives a ∼ 2 and b ∼ 4, as can be seen from
Eq. (16), the most likely values are jδj ∼ 1=8 and jϵj ∼ 1=2.
This is confirmed by a numerical search treating the

elements of T as random variables. We have randomly
generated one million matrices T whose elements are given
by Tij ¼ 10rijeiθij, with −1 < rij < þ1 and 0 < θij < 2π
with uniform probability distribution. We compute the
matrices AΔ and D for each randomly generated T, and
require that the parameters in AΔ (i.e., a, b, c, and θ) agree
with the values in Eq. (16) within experimental limits. For
those that meet this requirement, we plot the values of jϵj−1
and jδj−1 in Fig. 1. One sees that there indeed tends to be a
mild hierarchy jδj < jϵj < 1. The dark cross in Fig. 1
represents the values that give the best fit to the neutrino
properties according to [2]: ðjϵj−1; jδj−1Þ ¼ ð2.56; 8.44Þ. It is
apparent fromFig. 1 that these lie in themost probable range.

VI. CONCLUSIONS

We have shown that an idea proposed to explain the
relative strengths of the interfamily mass hierarchies of
different types of fermions [1] can be combined with an
idea proposed to explain the relative strengths of inter-
family mixing angles [2]. The former idea was based on all
interfamily mass hierarchies coming from a single master
hierarchy matrix H, the latter was based on all interfamily
mixing angles coming from a master mixing matrix A. In
both ideas, the master matrix arose from the mixing of the
three chiral fermion families of the standard model with
new vectorlike fermions.
As we have shown in this paper, the two ideas

dovetail together quite naturally. Moreover, we have
shown that a certain conceptual simplification arises from
the combination of the two ideas: in the combined model,
all the standard model mass matrices can be expressed in
terms of only the two master matrices, with some
group-theoretic factors (analogous to the well-known
“Georgi-Jarlskog factors” [4]) introduced to avoid the
well-known “bad” minimal SUð5Þ relations between the
charged lepton masses and down quark masses. If it were
not for the need to introduce these group-theoretic factors,
the combined model would have several fewer free param-
eters than the model of [2] and many fewer than that
of [1]. The way that we introduced the group-theoretical
factors in this paper made the number of free parameters to
be the same as in [2]. There may be a simpler way to
introduce these group-theoretic factors, leading to an even
more predictive model, a possibility that deserves further
study.
We have also shown that the typical interfamily mass

hierarchies that arise in the combined model are qualita-
tively correct. Specifically, given the mass hierarchy among
the up quarks ðu; c; tÞ and the known CKM mixing
parameters, the strengths of all the other interfamily mass
hierarchies, namely those of ðd; s; bÞ, ðe; μ; τÞ, and
ðν1; ν2; ν3Þ, are predicted up to group-theoretical factors
of order 1, and come out to be of the right magnitude. This
is a very nontrivial and unexpected result, which perhaps
lends some credibility to the basic approach proposed in
the paper.
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