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The current short baseline reactor experiments, Daya Bay and RENO (Double Chooz) have measured
(or are capable of measuring) an effective Δm2 associated with the atmospheric oscillation scale of
0.5 km=MeV in electron antineutrino disappearance. In this paper, I compare and contrast the different
definitions of such an effective Δm2 and argue that the simple, L/E independent definition given by
Δm2

ee ≡ cos2 θ12Δm2
31 þ sin2 θ12Δm2

32, i.e. “the νe weighted average of Δm2
31 and Δm2

32,” is superior to all
other definitions and is useful for both short baseline experiments mentioned above and for the future
medium baseline experiments JUNO and RENO-50.
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I. INTRODUCTION

The short baseline reactor experiments, Daya Bay [1],
RENO [2], and Double Chooz [3], have been very
successful in determining the electron neutrino flavor
content of the neutrino mass eigenstate with the smallest
amount of νe, the state usually labeled ν3. The parameter
which controls the size of this flavor content is the mixing
angle θ13, in the standard PDG convention,1 and the current
measurements indicate that sin2 2θ13 ≈ 0.09 with good
precision (∼5%).
The mass of the ν3 eigenstate has a mass squared

splitting from the other two mass eigenstates, ν1 and ν2,
of approximately �2.4 × 10−3 eV2 given by Δm2

31≡
m2

3−m2
1 and Δm2

32 ≡m2
3 −m2

2; the sign determines the
atmospheric mass ordering. The mass squared difference
between ν2 and ν1, Δm2

21 ≡m2
2 −m2

1 ≈þ7.5 × 10−5 eV2,
is about 30 times smaller than both Δm2

31 and Δm2
32, and

hence Δm2
31 ≈ Δm2

32. However, the difference between
Δm2

31 and Δm2
32 is ∼3%.

Recently, two of these reactor experiments, Daya Bay
(see [4–6]) and RENO [7], have extended their analysis of
their data, from just fitting sin2 2θ13 to a two-parameter fit
of both sin2 2θ13 and an effective Δm2. The measurement
uncertainty on this effective Δm2 is approaching the
difference betweenΔm2

31 andΔm2
32. So it is now a pertinent

question: “What is the physical meaning of this effective
Δm2?” Clearly, the effective Δm2 measured by these
experiments is some combination of Δm2

31 and Δm2
32.

Answering the question “What is the combination of
Δm2

31 and Δm2
32 that is measured in such a short baseline

reactor experiment?” is the primary purpose of this paper,

The outline of this paper is as follows: in Sec. II, I review
the ν̄e survival probability as calculated in terms of an
effective Δm2 which naturally arises in this calculation;
then this definition is applied to the short baseline reactor
experiments, L=E < 1 km=GeV. In Sec. III, I compare and
contrast other possible definitions of an effective Δm2,
including two new ones as well as the two definitions
invented by the Daya Bay Collaboration. The new effective
Δm2’s are essentially equal to the effective Δm2 of Sec. II
whereas the two invented by Daya Bay are L/E dependent
and their original definition is discontinuous. This is
followed by a conclusion and Appendixes A and B.

II. ν̄e SURVIVAL PROBABILITY IN VACUUM

The exact ν̄e survival probability in vacuum (see Fig. 1)
is given by2

Pxðν̄e → ν̄eÞ ¼ 1 − 4jUe2j2jUe1j2 sin2 Δ21

− 4jUe3j2jUe1j2 sin2Δ31

− 4jUe3j2jUe2j2 sin2Δ32

¼ 1 − cos4 θ13 sin2 2θ12 sin2 Δ21

− sin2 2θ13ðcos2 θ12 sin2 Δ31

þ sin2 θ12 sin2Δ32Þ; ð1Þ
using Δij ≡ Δm2

ijL=4E.
It was shown in [8] that to an excellent accuracy

cos2θ12sin2Δ31 þ sin2θ12sin2Δ32 ≈ sin2Δee

*parke@fnal.gov
1A more informative notation for mixing angles ðθ12; θ13; θ23Þ

is ðθe2; θe3; θμ3Þ, respectively, such that Ue2 ¼ cos θe3 sin θe2,
Ue3 ¼ sin θe3e−iδ and Uμ3 ¼ cos θe3 sin θμ3.

2The standard PDG conventions with the kinematical phase are
given by Δij ≡ Δm2

ijL=4E or 1.267Δm2
ijL=E depending on

whether one is using natural or (eV2, km, MeV) units. Also,
matter effects shift the Δm2 by ð1þOðE=10 GeVÞÞ, where
E < 10 MeV, so are negligible for typical reactor neutrino
experiments.
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where

Δm2
ee ≡ cos2θ12Δm2

31 þ sin2θ12Δm2
32

for L=E < 0.8 km=MeV. A variant of this derivation is
given in Appendix A.

However, in this article we will use an exact formula-
tion given in [9], which follows Helmholtz [10] in
combining the two oscillation frequencies, proportional
to Δ31 and Δ32, into one frequency plus a phase.
The exact survival probability is given by (see
Appendix B)

Pxðν̄e → ν̄eÞ ¼ 1 − cos4θ13sin22θ12sin2Δ21

−
1

2
sin22θ13

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − sin22θ12sin2Δ21

q
cosΩ

�
ð2Þ

with Ω ¼ ðΔ31 þ Δ32Þ þ arctanðcos 2θ12 tanΔ21Þ:

Ω consists of two parts: one that is even under the
interchange of Δ31 and Δ32 and is linear in L/E,
(Δ31 þ Δ32), and the other which is odd under this
interchange and contains both linear and higher (odd)
powers in L/E, arctanðcos 2θ12 tanΔ21Þ; remember that
Δ21 ¼ Δ31 − Δ32.

The key point is the separation of the kinematic phase,Ω,
into an effective 2Δ (linear in L/E) and a phase, ϕ. For short
baseline experiments, it is natural to expand Ω in a power
series in L/E and identify the coefficient of the linear term
in L=2E as the effective Δm2 and include all the higher
order terms in the phase.3 Then,

Ω ¼ 2Δee þ ϕ ð3Þ

where Δm2
ee ≡ ∂Ω

∂ðL=2EÞ
����
L
E→0

¼ cos2θ12Δm2
31 þ sin2θ12Δm2

32 ð4Þ

and ϕ≡Ω − 2Δee

¼ arctanðcos 2θ12 tanΔ21Þ − Δ21 cos 2θ12: ð5Þ

With this separation, 2Δee varies at the atmospheric scale,
0.5 km=MeV, whereas ϕ varies at the solar oscillation
scale, 15 km=MeV, and

ϕ ¼ 0;
∂ϕ

∂ðL=2EÞ ¼ 0 and
∂2ϕ

∂ðL=2EÞ2 ¼ 0 at
L
E
¼ 0;

therefore, in a power series in L/E, ϕ starts at ðΔm2
21L=EÞ3

[see Eq. (11)].
Since Ω only appears as cosΩ, it is useful to redefine

Ω ¼ 2jΔeej � ϕ, so that the sign associated with the mass
ordering appears only in front of ϕ. If and only if this sign
is determined can the mass ordering be determined in νe
disappearance experiments.
There are three things worth noting about writing the

exact νe survival probability as in Eq. (2), with Ω given
by Eq. (3):

FIG. 1. The vacuum survival probability for ν̄e as a function of
L/E. Blue is for the normal mass ordering (NO) and red is the
inverted mass ordering (IO) with Δm2

31 and Δm2
32 chosen in such

a fashion that the two survival probabilities are identical at small
L/E, i.e. Δm2

31ðIOÞ ¼ −Δm2
31ðNOÞ þ 2 sin2 θ12Δm2

21. Near the
solar oscillation minimum, L=E ∼ 15 km=MeV, the phase of the
θ13 oscillations advances (retards) for the normal (inverted) mass
ordering and the two oscillation probabilities are distinguishable,
in principle. Also near the solar minimum, the amplitude of the
θ13 oscillations is significantly reduced compared to smaller
values of L/E. The short baseline experiments, Daya Bay, RENO
and Double Chooz, probe L=E < 0.8 km=MeV and the medium
baseline, JUNO and RENO-50, probe 6 < L=E < 25 km=MeV,
as indicated.

3Appendix A of [9] contains a discussion of an effective Δm2

as a function of L/E for arbitrary L/E. At L=E ¼ 0 this definition
is identical to Δm2

ee.
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(i) The effective atmospheric Δm2 associated with θ13
oscillation is a simple combination of the funda-
mental parameters [see Eq. (4) above or in Ref. [8] as
they are identical],

Δm2
ee ¼ cos2 θ12Δm2

31 þ sin2 θ12Δm2
32

¼ Δm2
31 − sin2 θ12Δm2

21

¼ Δm2
32 þ cos2 θ12Δm2

21

¼ m2
3 − ðcos2 θ12m2

1 þ sin2 θ12m2
2Þ:

Thus Δm2
ee is simply the “νe average of Δm2

31 and
Δm2

32,” since the νe ratio of ν1 to ν2 is cos2 θ12 to
sin2 θ12, and determines the L/E scale associated
with the θ13 oscillations.

(ii) The modulation of the amplitude associated with the
θ13 oscillation is manifest in the square root multi-
plying the cosΩ oscillating term, where

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − sin22θ12sin2Δ21

q

¼
�
1 at Δ21 ¼ nπ

cos 2θ12 ≈ 0.4 at Δ21 ¼ ð2nþ 1Þπ=2 ð6Þ

for n ¼ 0; 1; 2;…. Thus, at solar oscillation minima,
when Δ21 ¼ 0; π; 2π;…, the oscillation amplitude is
just sin2 2θ13, whereas at solar oscillation maxima,
when Δ21 ¼ π=2; 3π=2;…, the oscillation ampli-
tude is cos 2θ12 sin2 2θ13 i.e. reduced by approxi-
mately 60%.

(iii) The phase, ϕ, causes an advancement (retardation)
of the θ13 oscillation for the normal (inverted) mass
ordering of the neutrino mass eigenstates. ϕ is a
“rounded” staircase function,4 which is zero and
has zero first and second derivatives at L=E ¼ 0
(Δ21¼0), but then between L=E∼10−20 km=MeV
(Δ21 ∼ π

3
− 2π

3
) rapidly jumps by 2π sin2 θ12, and

this pattern is repeated for every increase of L=E ∼
30 km=MeV (Δ21 by π), i.e.

ϕðΔ21 � πÞ ¼ ϕðΔ21Þ � 2π sin2 θ12; ð7Þ

see Fig. 2. Also shown on the same plot is 2jΔeej
divided by 80. This number 80 was chosen so that
2jΔeej fits on the same plot and to demonstrate that
2jΔeej ≥ 80ϕ so that the shift in phase caused by ϕ
is never bigger than a 1.25% effect. Also for
L=E < 5 km=MeV, the shift in phase is much
smaller than this; see next section.

A. Short baseline experiments
(0 < L=E < 1 km=MeV)

For reactor experiments with baselines less than 2 km,
the exact expression Eq. (2) contains elements which
require measurement uncertainties on the oscillation prob-
ability to better than one part in 104. This is way beyond the
capability of the current or envisaged experiments. This
occurs because for experiments at these baselines some
elements of Eq. (2) dependent on higher powers of Δ21.
Note the following conditions on the kinematic phases are
satisfied,

0 < jΔ31j ≈ jΔ32j < π ⇒ 0 < Δ21 < 0.1: ð8Þ

These elements are
(i) The modulation of the θ13 oscillation amplitude

which when expanded in powers of Δ21 is given by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − sin22θ12sin2Δ21

q
¼ 1 − 2sin2θ12cos2θ12Δ2

21 þOðΔ4
21Þ ð9Þ

¼ 1þOð< 10−3Þ: ð10Þ

Remember, this amplitude modulation factor is
multiplied by 1

2
sin2 2θ13 ∼ 0.05, reducing the effect

FIG. 2. The L/E dependence of the two components that make
up the kinematic phase Ω ¼ 2jΔeej � ϕ associated with the θ13
oscillation [Eq. (20)]. ϕ is the black staircase function which
increases by 2π sin2 θ12 for every increase in Δ21 by π; see
Eq. (7). The blue straight line is 2jΔeej=80, which is always
greater than or equal to ϕ. The green curve is the Δ3

21

approximation to ϕ given in Eq. (11), which is an excellent
approximation for L=E < 8 km=MeV.

4In the limit sin2 θ12 →
1
2
, one recovers the well-known result

that this rounded staircase function becomes a true staircase or
step function.
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of the amplitude modulation to less than one part
in 104.

(ii) The advancement or retardation of the kinematic
phase, Ω, caused by ϕ whose sign depends on
the mass ordering. For small values of Δ21 the
advancing/retarding phase can be written as

ϕ ¼ 1

3
cos 2θ12 sin2 2θ12Δ3

21 þOðΔ5
21Þ: ð11Þ

Then using this approximation in the kinematic
phase Ω, we have

cosð2jΔeej � ϕÞ
¼ cosð2jΔeejÞ cosϕ∓ sinð2jΔeejÞ sinϕ

¼ cosð2jΔeejÞ∓ 1

3
cos 2θ12sin22θ12Δ3

21 sinð2jΔeejÞ
þOðΔ5

21Þ
¼ cosð2jΔeejÞ þOð< 10−4Þ: ð12Þ

Again remember that we have a further reduction by
1
2
sin2 2θ13 ∼ 0.05, making the phase advancement or

retardation significantly smaller than even the am-
plitude modulation for these experiments.

Using this information in the νe survival probability, we
can replace Eq. (2) by

Pshortðν̄e → ν̄eÞ ¼ 1 − cos4 θ13 sin2 2θ12 sin2Δ21

− sin2 2θ13 sin2 jΔeej; ð13Þ

which is accurate to better than one part in 10−4. In Fig. 3
the fractional difference between Eqs. (2) and (13) is shown
for an experiment with a baseline of 1.6 km. Since the
measurement uncertainty on the νe survival probability is
much greater (>0.01%) than the difference between the
exact [Eq. (2)] and the approximate [Eq. (13)] survival
probabilities, use of either will result in the same measured
values of the parameters sin2 2θ13 and jΔm2

eej; i.e. the
measurement uncertainties will dominate.
If new, extremely precise, short baseline experiments

ever need a more accurate survival probability, one could
easily add the first correction of the amplitude modulation,
giving

Pxshortðν̄e → ν̄eÞ ¼ 1 − cos4 θ13 sin2 2θ12 sin2 Δ21

− sin2 2θ13½sin2 jΔeej
þ sin2 θ12 cos2 θ12Δ2

21 cosð2jΔeejÞ�
ð14Þ

and this would improve the accuracy of the approximation
to better than one part in 105.

An alternative way to derive these approximate
survival probabilities, Eqs. (13) and (14), is given in
Appendix A.

III. OTHER POSSIBLE DEFINITIONS
OF AN EFFECTIVE Δm2

A. A new definition of the effective Δm2

Another possible way to define an effective Δm2 (here I
will use the symbol Δm2

XX) is as follows:

Δm2
XX ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2 θ12ðΔm2

31Þ2 þ sin2 θ12ðΔm2
32Þ2

q
: ð15Þ

Clearly this definition is independent of L/E and it
guarantees that, in the limit L=E → 0,

sin2ΔXX ¼ cos2 θ12 sin2Δ31 þ sin2 θ12 sin2Δ32: ð16Þ

One can then show that

jΔm2
XXj ¼ jΔm2

eej
�
1þO

��
Δm2

21

Δm2
ee

	
2

	

: ð17Þ

FIG. 3. The fractional difference between the exact survival
probability, Eq. (1), and a sequence of approximate survival
probabilities, where cos2θ12 sin2Δ31þsin2θ12 sin2Δ32 is replaced
with sin2ðΔm2

rrL=4EÞ with Δm2
rr ≡ ð1 − rÞΔm2

31 þ rΔm2
32.

Clearly, r ¼ sin2 θ12 minimizes the absolute value of the
fractional difference between the exact and approximate
survival probabilities. Thus, the approximation of replacing
cos2 θ12 sin2 Δ31 þ sin2 θ12 sin2 Δ32 with sin2 Δee gives an
approximate survival probability that is better than one part in
104 over the L/E range of the Daya Bay, RENO and Double
Chooz experiments.
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So jΔm2
XXj is essentially equal to jΔm2

eej up to correction on
the order of 104, including the effects of the solar mixing
angle.5

A variant of this definition of an effective Δm2 (here
I will used the subscripts “xx”), is defined in terms of
the position of the first extremum of ðcos2 θ12 sin2 Δ31 þ
sin2 θ12 sin2Δ32Þ in L/E. If this extremum occurs at
ðL=EÞj1, then define

Δm2
xx ≡ 2π

ðL=EÞj1
; ð18Þ

so that, at this extremum, Δm
2
xxL

4E ¼ π
2
. With this definition it

is again easy to show that,

jΔm2
xxj ¼ jΔm2

eej
�
1þO

��
Δm2

21

Δm2
ee

	
2

	

: ð19Þ

Again, this is essentially equal to Δm2
ee.

In both jΔm2
XXj and jΔm2

xxj, the corrections of order

ðΔm2
21

Δm2
ee
Þ2 come from the amplitude modulation of the θ13

oscillation and the coefficients are 1
2
sin2 θ12 cos2 θ12 and

sin2 θ12 cos2 θ12 respectively. Note that these corrections
are mass ordering independent.

B. Daya Bay’s original definition of the effective Δm2

In Refs. [4] and [5], the Daya Bay experiment used the
following definition for an effective Δm2 (here I will use
the symbol Δm2

YY),

sin2 ΔYY ≡ cos2 θ12 sin2Δ31 þ sin2 θ12 sin2Δ32; ð20Þ
which implies that

Δm2
YY ≡

�
4E
L

	
arcsin

×
h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðcos2θ12sin2Δ31 þ sin2θ12sin2Δ32Þ
q i

: ð21Þ

For L=E < 0.3 km=MeV, so that sin2Δ3i ¼ Δ2
3i is a

good approximation, Δm2
YY is approximately independent

of L/E. However, for larger values of L/E, Δm2
YY is L/E

dependent, exactly in the L/E region, 0.3 < L=E <
0.7 km=MeV, where the bulk of the experimental data
from the far detectors of the Daya Bay experiment is
obtained. In the center of this L/E region, L=E≈
0.5 km=MeV, is the position of the oscillation minimum.
Furthermore, the definition given by Eq. (20) is discon-

tinuous at oscillation minimum (OM). This occurs because
as you increase L/E, the lhs of Eq. (20) can go to 1, whereas

the rhs never reaches 1. So to satisfy Eq. (20), as you
increase L/E, your effective Δm2 must be discontinuous at
OM and the size of this discontinuity is given by6

δΔm2
EEjOM ¼ sin 2θ12Δm2

21 ð22Þ

which is of the order of 3%. In Fig. 4, the variousΔm2’s are
plotted as a function of L/E.
The relationship between Daya Bay’s Δm2

YY and that of
the previous section is as follows:

Δm2
YY jL=E→0 ¼ Δm2

ee

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1þ sin2 θ12 cos2 θ12

�
Δm2

21

Δm2
ee

	
2
	s
:

ð23Þ

Therefore they are identical up to corrections of Oð10−4Þ
as L=E → 0.

FIG. 4. Daya Bay’s original definition (see [4] and [5]) for an
effective Δm2, Δm2

YY , is given by the solid red line. Notice the
sizable L/E dependence near oscillation minimum and maximum
(vertical black dotted lines). At all oscillation extrema, this
definition is discontinuous and the size of the discontinuity is
sin 2θ12Δm2

21 ∼ 3%. The first discontinuity occurs in the middle
of the experimental data of the Daya Bay, RENO and Double
Chooz experiments. For the L/E independent lines, Δm2

ee ≡
cos2 θ12Δm2

31 þ sin2 θ12Δm2
32 is the blue dashed, and Δm2

31 and
Δm2

32 are the labeled black lines. This figure is for normal mass
ordering with sin2 θ12 ¼ 0.30 and Δm2

ee ¼ 2.453 × 10−3 eV2.

5The following, useful identity is easy to prove by writing
Δm2

21 ¼ Δm2
31 − Δm2

32: ðcos2 θ12Δm2
31 þ sin2 θ12Δm2

32Þ2 ¼
½cos2 θ12ðΔm2

31Þ2 þ sin2 θ12ðΔm2
32Þ2� − cos2 θ12 sin2 θ12ðΔm2

21Þ2.

6The following identity is useful to understand this point,
sin2ðπ

2
� ϵÞ ≈ 1 − ϵ2 where here ϵ ¼ s12c12Δ21. Similarly at

oscillation maximum, sin2ðπ � ϵÞ ≈ ϵ2.
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Given that Δm2
YY is L/E dependent one should take the

average of Δm2
YY over the L/E range of the experiment

hΔm2
YYi ¼

R ðL=EÞmax
ðL=EÞmin

dðL=EÞΔm2
YY

½ðL=EÞmax − ðL=EÞmin�
: ð24Þ

For the current experiments this range is from
½0; 0.8� km=MeV and then from Fig. 4 it is clear that

hΔm2
YYi ≈ Δm2

ee; ð25Þ

if the discontinuity at OM is averaged over in a symmetric
way. In practice, of course, one needs to weight the average
over the L/E range by the experimental L/E sensitivity. This
is something that can only be performed by the experiment.
This was not performed in Ref. [4] or [5].

C. Daya Bay’s new definition of the effective Δm2

After the issue with Δm2
YY was pointed out to the Daya

Bay Collaboration [11], the Daya Bay Collaboration
defined a new effective Δm2 in the supplemental material
of Ref. [6]. Here I will use the symbol Δm2

ZZ for this new
definition which is defined in terms of the kinematic phase,
Ω, given Eq. (3), as

Δm2
ZZ ≡ 2E

L
Ω;¼ jΔm2

eej �
2E
L

ϕ: ð26Þ

Unfortunately, since ϕ is not a linear function in L/E,Δm2
ZZ

is also L/E dependent. In contrast remember that, from
Eq. (4), Δm2

ee ≡ ∂Ω
∂ðL=2EÞ jLE→0.

For short baseline experiments, such as Daya Bay,
RENO and Double Chooz, this dependence is small, and
can be calculated analytically from Eq. (11):

Δm2
ZZ ¼ jΔm2

eej
�
1� 1

6
cos 2θ12sin22θ12

�
Δm2

21

Δm2
ee

	
Δ2

21

þO
��

Δm2
21

Δm2
ee

	
Δ4

21

	


≈ jΔm2
eej

�
1� 6 × 10−6

�
L=E

0.5 km=MeV

	
2


: ð27Þ

Given the current and expected future accuracy of the
current short baseline experiments, the L/E dependence in
Δm2

ZZ can be ignored.
However for future experiments such as JUNO [12] and

RENO-50 [13], the L/E dependence of Δm2
ZZ is significant;

see Fig. 5. These experiments explore an L/E range from
6 to 25 km=MeV. In this range, Δm2

ZZ changes by ∼1%
whereas the expected accuracy of the measurement is better
than 0.5%; see [12]. So this definition of Δm2

ZZ is not
appropriate for these experiments unless the experimenters

want to do the L/E averaging as discussed in the previous
section.

IV. CONCLUSIONS

Having a single, L/E independent effective Δm2 which
can be used for reactor experiments of any L/E is highly
desirable. Δm2

ee, defined in Eq. (4), is the best effective
Δm2 for νe disappearance in the literature for the following
reasons:

(i) It is independent of L/E for all values of L/E.
(ii) It is a simple combination of fundamental parameters:

Δm2
ee ≡ cos2 θ12Δm2

31 þ sin2 θ12Δm2
32

¼ Δm2
31 − sin2 θ12Δm2

21

¼ Δm2
32 þ cos2 θ12Δm2

21

¼ m2
3 − ðcos2 θ12m2

1 þ sin2 θ12m2
2Þ:

(iii) It has a direct, simple, physical interpretation: Δm2
ee

is “the νe weighted average of Δm2
31 and Δm2

32,”
since the ratio of the νe fraction in ν1∶ν2 is
cos2θ12∶sin2θ12.

(iv) It can be used in the future medium baseline reactor
experiments, L=E > 6 and <25 km=MeV, using the
exact oscillation probability,

FIG. 5. Daya Bay’s new definition (see [6]) of an effective
Δm2, Δm2

ZZ, for ν̄e disappearance compared to Δm2
ee≡

cos2 θ12Δm2
31 þ sin2 θ12Δm2

32. The L/E range appropriate for
JUNO and RENO-50 is 6 to 25 km=MeV, exactly the range
in which Δm2

ZZ changes by �1%. Yet, the expected accuracy of
these two experiments is better than 0.5%. The sign of the
variation of Δm2

ZZ is mass ordering dependent. The blue and red
dashed lines are Δm2

31 for NO and IO respectively.
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Pðν̄e → ν̄eÞ
¼ 1 − cos4θ13sin22θ12sin2Δ21

−
1

2
sin22θ13

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − sin22θ12sin2Δ21

q
× cosð2jΔeej � ϕÞ

�
;

where ϕ≡ arctanðcos 2θ12 tanΔ21Þ − Δ21 cos 2θ12.
This probability can be used to determine solar
parameters sin2 θ12 and Δm2

21 as well as jΔm2
eej with

unprecedented precision and may be able to deter-
mine the atmospheric mass ordering, if the sign in
front of ϕ can be determined at a high enough
confidence level.

(v) It can be used in the current short baseline reactor
experiments, L=E < 1 km=MeV, using the approxi-
mate oscillation probability,

Pðν̄e → ν̄eÞ ≈ 1 − cos4 θ13 sin2 2θ12 sin2Δ21

− sin2 2θ13 sin2Δee:

This is trivially obtained from the exact expression,
Eq. (2), by setting both the amplitude modulation to
one and the phase advancement or retardation to
zero,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − sin2 2θ12 sin2Δ21

q
→ 1 and ϕ → 0

as these are higher order effects. This approximates
the exact oscillation probability to better than one
part in 104 and can be improved in a systematic way;
see Eq. (A2). This probability, using the current
experimental data, allows for an accurate determi-
nation of mixing angle θ13 and the atmospheric mass
splitting jΔm2

eej, independent of the atmospheric
mass ordering, and it is only very weakly dependent
on our current knowledge of the solar parameters,
through the solar term. From a measured value of
jΔm2

eej, using short baseline reactor experiments, it
is simple to calculate Δm2

31 for both mass orderings.
However, the uncertainties on Δm2

31 will be more
dependent on solar parameters, measured by other
experiments, than jΔm2

eej.
Furthermore,Δm2

ee, defined by Eq. (4), naturally appears
as the renormalized atmospheric Δm2 in neutrino propa-
gation in matter (see [14]), as using this renormalized
Δm2 significantly reduces the complexity of the oscillation
probabilities.
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APPENDIX A: ALTERNATIVE
DERIVATION OF Δm2

ee

In this appendix, an alternative derivation of why sin2Δee

is the most accurate approximation for cos2 θ12 sin2Δ31 þ
sin2 θ12 sin2Δ32 is given. Starting with the following linear
combination of Δm2

31 and Δm2
32, given by

Δrr ≡ ð1 − rÞΔ31 þ rΔ32 then

Δ31 ¼ Δrr þ rΔ21;

Δ32 ¼ Δrr − ð1 − rÞΔ21;

sinceΔ21 ¼ Δ31 − Δ32 and r is a number between [0,1]. The
relevant range of kinematic phases is 0 ≤ jΔ31j ∼ jΔ32j < π
and 0 ≤ Δ21 < π=30 ≈ 0.1. So it is a simple exercise to
perform a Taylor series expansion aboutΔrr using expansion
parameter Δ21, and obtain (using c212 ≡ cos2 θ12 and
s212 ≡ sin2 θ12)

c212 sin
2 Δ31 þ s212 sin

2Δ32

¼ sin2 Δrr þ ½c212r − s212ð1 − rÞ�Δ21 sinð2ΔrrÞ
þ ½c212r2 þ s212ð1 − rÞ2�Δ2

21 cosð2ΔrrÞ

−
2

3
½c212r3 − s221ð1 − rÞ3�Δ3

21 sinð2ΔrrÞ

−
1

3
½c212r4 þ s212ð1 − rÞ4�Δ4

21 cosð2ΔrrÞ þOðΔ5
21Þ:
ðA1Þ

The choice of r ¼ s212, making Δrr ¼ Δee, does two great
things for this Taylor series expansion:
(1) the coefficient of Δ21 vanishes, since ½c212r−

s212ð1 − rÞ� ¼ 0, and
(2) the coefficient of Δ2

21 is minimized, since

∂
∂r ½c

2
12r

2 þ s212ð1 − rÞ2�j
r¼s2

12

¼ 0 and

∂2

∂2r
½c212r2 þ s212ð1 − rÞ2� > 0:

Noothervalueof r satisfies eitherof these requirements.Thus,
using r ¼ s212makes sin2 Δee the best possible approximation
to c212 sin

2 Δ31 þ s212 sin
2Δ32 for a constant Δm2 and the

corrections are tiny, of Oð10−3Þ for L=E < 1 km= MeV.
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Using this expansion the νe survival probability can be
written as

Pxshortðν̄e → ν̄eÞ
¼ 1− cos4 θ13 sin2 2θ12 sin2Δ21

− sin2 2θ13

�
sin2 jΔeej þ sin2 θ12 cos2 θ12Δ2

21 cosð2jΔeejÞ�

∓1

6
cos2θ12 sin2 2θ12Δ3

21 sinð2jΔeejÞ

−
1

48
sin2 2θ12½4− 3sin2 2θ12�Δ4

21 cosð2jΔeejÞþOðΔ5
21Þ



:

ðA2Þ

APPENDIX B: COMBINING Δm2
31 AND Δm2

32
INTO Δm2

ee PLUS A PHASE

The simplest way to show that

cos2θ12sin2Δ31 þ sin2θ12sin2Δ32

¼ 1

2

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − sin22θ12sin2Δ21

q
cosΩ

�
ðB1Þ

with

Ω ¼ 2Δee þ ϕ ðB2Þ

where Δm2
ee ≡ ∂Ω

∂ðL=2EÞ
����
L
E→0

¼ cos2θ12Δm2
31 þ sin2θ12Δm2

32 ðB3Þ

and ϕ≡Ω − 2Δee

¼ arctanðcos 2θ12 tanΔ21Þ − Δ21 cos 2θ12;

ðB4Þ

is to write

c212sin
2Δ31 þ s212sin

2Δ32

¼ 1

2
ð1 − ðc212 cos 2Δ31 þ s212 cos 2Δ32ÞÞ; ðB5Þ

using c212 ≡ cos2 θ12 and s212 ≡ sin2 θ12.
Then, if we rewrite 2Δ31 and 2Δ32 in terms of

(Δ31 þ Δ32) and Δ21, we have

c212cos2Δ31þs212 cos2Δ32

¼c212cosðΔ31þΔ32þΔ21Þþs212cosðΔ31þΔ32−Δ21Þ
¼ cosðΔ31þΔ32ÞcosΔ21−sinðΔ31þΔ32Þcos2θ12 sinΔ21:

Since

cos2Δ21 þ cos2 2θ12 sin2 Δ21 ¼ 1 − sin2 2θ12 sin2Δ21

we can then write

c212 cos 2Δ31 þ s212 cos 2Δ32

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − sin2 2θ12 sin2Δ21

q
cosΩ; ðB6Þ

where

Ω ¼ Δ31 þ Δ32 þ arctanðcos 2θ12 tanΔ21Þ:

Applying the prescription given in Sec. II to separateΩ into
an effective 2Δ and a phase, ϕ, we find

∂Ω
∂L=2E

����
L
E→0

¼ cos2θ12Δm2
31 þ sin2θ12Δm2

32 ¼ Δm2
ee

and ϕ ¼ Ω − 2Δee

¼ arctanðcos 2θ12 tanΔ21Þ − Δ21 cos 2θ12

and thus

Ω ¼ 2Δee þ ðarctanðcos 2θ12 tanΔ21Þ − Δ21 cos 2θ12Þ;
ðB7Þ

Q.E.D.
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