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General neutrino-scalar couplings appear in many extensions of the Standard Model. We can probe these
neutrino-scalar couplings by a leptonic decay of mesons and from a heavy neutrino search. Our analysis
improves the present limits to jgej2 < 1.9 × 10−6 and jgμj2 < 1.9 × 10−7 at 90% C.L. for massless scalars.
For massive scalars, we found for the first time the constraints for g2α couplings to be 10−6 − 10−1,
respectively, for scalar masses between up 100 MeV, and we have no limits for masses above 300 MeV.
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I. INTRODUCTION

Although in the Standard Model there are no couplings
between neutrinos and scalar fields due to the nonexistence
of right-handed neutrino fields, many of its extension
contains an enlarged scalar sector that may result in
nonuniversal Yukawa interactions that couples neutrinos
and those new scalars.
Nonuniversal neutrino-scalar couplings can have inter-

esting consequences such as: (i) existence of new decay
channels for particle decays, especially meson decays and
lepton decays [1,2], (ii) induced neutrino decay [3–7],
(iii) the presence of new channels for the energy loss of
supernovae caused by an enhanced emission of neutrinos
and scalars χ [8], (iv) new channels for a neutrinoless
double β decay with the emission of massless χ in the final
state [9], and (v) a change in flavor ratios of high energy
neutrinos from astrophysical sources [10,11].
In general, we can parametrize the neutrino-scalar

Lagragian to be

−L ¼ 1

2
gABν̄AνBχ1 þ

i
2
hABν̄Aγ5νBχ2; ð1Þ

where χ1 (χ2) is the hypothetical scalar (pseudoscalar), the
νA are the neutrinos, which may or may not have a right-
handed part, and the coupling constant gAB (hAB), where A,
B runs over two possible basis: (i) A;B ¼ Greek index:
neutrino flavor eigenstates e, μ, and τ, and
(ii) A;B ¼ Roman index: neutrino mass eigenstates 1,2,
and 3, that are related by,

gij ¼ U�
iαUβjgαβ; ð2Þ

and equivalently, for h.
Most modern experiments that can probe neutrino-scalar

interaction cannot distinguish between neutrino final states,

so it is convenient to define an effective coupling constant
squared:

jglj2 ≡
X
α

ðjglαj2 þ jhlαj2Þ ð3Þ

with α; l ¼ e, μ, τ, where U is the mixing matrix of the three
lightest neutrinos.
Previous constraints on these couplings are jgej2 <

4.4 × 10−5, jgμj2 < 3.6 × 10−4, and jgτj2 < 2.2 × 10−1 at
90% C.L. and were obtained from meson as well as from
lepton decays analysis [2].
For the absence of detection of neutrinoless double β

decay, it was found that jgej2 < ð0.8–1.6Þ × 10−5 at
90% C.L. [9], where the uncertainties came from the
computation of nuclear matrix elements of the neutrinoless
double β decay. All these limits were made in the limit of
massless scalar field χ.
The effective Lagrangian for neutrino-scalar couplings

shown in Eq. (1) can be embedded in different extensions
of the Standard Model. The general trend is to have the
inclusion of new scalar particles in different representations
with nonuniversal couplings between the different families
and also the addition of new sterile neutrino states. For
instance, Ref. [11] presents a model with a SUð3Þc ⊗
SUð2ÞL ⊗ Uð1ÞY ⊗ Uð1ÞH symmetry that included as new
fields one extra singlet scalar boson and three right-handed
neutrinos. Another example is the model with a SUð3Þc ⊗
SUð3ÞL ⊗ Uð1ÞN symmetry that due to an anomaly can-
cellation requirement has already nonuniversal couplings
[12]. Recently, a lot of theoretical models with scalars that
have vacuum expectation values (vev) that are significantly
smaller then the vev of the Standard Model Higgs, vSM ¼
246 GeV were proposed. Examples of these models
involve neutrophilic scalars as in Ref. [13] with vev
∼eV and models with gauged B-L symmetry [14,15] that
also have vev much smaller than the SM vev resulting in
small scalar masses, ranging from eV to TeV values.
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This opens an interesting point to study the consequences
of nonuniversal neutrino-scalar couplings for massive
scalar fields χ that have not been studied so far. Then
our goal is to revisit the bounds on neutrino-scalar
couplings for massless scalars and to compute the bounds
on the neutrino with light massive scalars.
Notice that χ1;2 are not the SMHiggs field for an analysis

of the consequences of the Higgs coupling to neutrinos, see
[16]. Also, the interaction between the neutrino scalar may
or may not be reminiscent of a neutrino mass generating
mechanism, this has to be analyzed case by case.
This paper is organized as follows. In Sec. II, we discuss

the computation of meson decay when we have nonuni-
versal neutrino-scalar couplings, then in Sec. III, we discuss
the available data for meson decay rate and spectrum. In
Sec. IV, we made the analysis and extract the constraints on
the neutrino-scalar couplings. In Sec. V, we translated the
bounds on the mass basis, and we conclude in Sec. VI
summarizing our main results.

II. BOUNDS USING MESON DECAY

The leptonic decay rate of a meson P, P → lþ ν̄l at three
level is given by

Γ0ðP → lνlÞ ¼
G2

Ff
2
PjVqq0 j2m3

P

8π
ðxl þ α − ðxl − αÞ2Þ

× λ1=2ð1; xl; αÞ; ð4Þ

where xl ¼ ðmνl
mP
Þ2 and α ¼ ðml

mP
Þ2, where mνl is the neutrino

mass andml is the lepton mass,GF is the Fermi constant, fP
the meson decay constant, Vqq0 is the corresponding
CKM-matrix element of the decay, and λðx; y; zÞ is the
well-known kinematic triangular function [17].
Precise branching ratio measurements of mesons open a

window to probe the scalar interaction due to the fact that it
is chiral suppressed, e.g., for massless neutrinos, mνl → 0,
the total rate is proportional to α ∝ ml and is very small
when mP ≫ ml.
The precision of π and K meson decay rate requires also

the inclusion of electromagnetic and weak radiative cor-
rections that can be parametrized as follows:

ΓðP → lνlÞ ¼ Γ0ðP → lνlÞSEWð1þ αelGradÞ: ð5Þ

The electromagnetic radiative corrections Grad came from
short and long range corrections and were computed for
pions in Ref. [18] at one loop level and at 2 loop level for
pions and kaons in Ref. [19]. A nice review of these
computations can be found in Ref. [20]. The electroweak
radiative corrections SEW are given in Ref. [18].
When we add the interaction from nonuniversal neu-

trino-scalar couplings shown in Eq. (1), the meson have a
three body decay

P → lþ ν̄α þ χ; ð6Þ

where the Feynman diagram is given by Fig. 1. The rate
was computed in Ref. [1]. The differential rate for this
process is

dΓðP → lναχÞ ¼ ΓðP → lνxÞdR; ð7Þ

where the rate ΓðP → lνxÞ is similar to the two-body rate of
Eq. (4) replacing the mass of the real neutrino of the two
body decay in the final state νl by a virtual neutrino νx of an
invariant mass m2

νx as shown in Fig. 1. The rate ΓðP → lνxÞ
is given by

ΓðP → lνxÞ ¼
G2

f f
2
pjVqq0 j2m3

P

8π
ðxþ α − ðx − αÞ2Þ

× λ1=2ð1; x; αÞ; ð8Þ

where we made the replacement xl → x ¼ ðmνx
mP

Þ2 in Eq. (4).
To obtain the full rate of the three body decay, we should
integrate over all possible invariant mass mνx of the virtual
neutrino whose phase space is not a Dirac delta fixed by
energy conservation but it is an additional independent
variable. The factor dR in Eq. (7) is as follows:

dR ¼ ðx2 þ β2 þ 6xβ − γx − γβÞλ1=2ðx; β; γÞ
ðx − βÞ2x2

jglαj2
32π2

dx;

ð9Þ

where γ ¼ ðmχ

mP
Þ2, and the mχ is mass of scalar χ, and glα is

the coupling of the vertex neutrino-neutrino-scalar νl −
να − χ from Eq. (1). The integration limits are γ ≤
x ≤ ð1 − ffiffiffi

α
p Þ2. Notice that for β; γ → 0, this integration

is infrared (IR) divergent. Previous calculations did
not present a formal treatment of this divergence,
Ref. [1] assumed mχ ; mν ∼ 1 eV, and Ref. [21] took
mν ∼ 0.1 MeV. We present a finite calculation in the
Appendix A.

III. LEPTONIC DECAY DATA

The experimental data used in this work comes from
various meson decays measurements, shown in Table I.
The analysis is subdivided into two groups of data:
(a) The first group comes from rates of leptonic decay of

mesons.

FIG. 1. Tree level Feynman diagram of the three-body decay.
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(b) The second group is obtained from charged lepton
spectrum of mesons decay.

A. Leptonic rates constraints

Assuming zero neutrino mass (or small enough), and that
the experiment cannot differentiate between emitted neu-
trinos, it is possible to write the correction to the decay
rate as,

ΓðP → LeptonicÞ ¼ ΓSM þ jglj2Γ0; ð10Þ
where ΓSM is the expected SM contribution to the
P-leptonic decay. jglj2Γ0 represents the contribution of
the scalar and pseudoscalar couplings of Eq. (1),

jglj2 ¼
X

α¼e;μ;τ

jglαj2 þ jg0lαj2; ð11Þ

and Γ0 is a numerical factor obtained by integrating Eq. (7)
that depends on the particle masses. Notice that if jglj2 → 0,
we recover the SM results.
The data from meson leptonic decay for light mesons

(π and K) include all available space of a three body decay
due to the fact that it is hard to separate P → lνl and
P → lνlγ; thus, to obtain the correction Γ0, we can safely
include an all x integration limit. This makes the ratio
Γ0
ΓSM

reaches orders of 102–103 due to the chiral suppression
that combined with the smallness of the experimental error
allow us to put stringent bounds from such decays.
For heavy mesons such as D, Ds, and B, the leptonic

decay rate of heavy mesons is suffering from a large
background of hadronic decays, and the measurement of
meson decay is triggered by the detection of the charged
lepton in the final state and a missing four momentum. In
the SM, the missing energy comes from the neutrino of the
two body decay that we are assuming to be very small,
which is equivalent to M2

Miss ¼ m2
νl ∼ 0. Nevertheless,

experiments can only select leptonic events with M2
Miss ≲

0.1 GeV2 due to detector limitations. This opens a window
to probe scalar masses different from zero, we can relate the
missing energy with the xl variable M2

Miss ¼ xlm2
P with the

SM two-body decay. When we include the three body
decay, the relevant variable is x, and we can relate
M2

Miss ¼ xm2
P. Thus, the experimental cut ðM2

MissÞmax ≲
0.1 GeV2 translates to an upper limit in the range of
variable x, γ ≤ x ≤ xmax, where xmax ¼ ðM2

MissÞmax=m2
P.

Two points should be considered when we compare the
data from the meson leptonic decay rate and the theoretical
predictions: the value of the meson constant fP and of
the CKM elements jVqq0 j2. Both quantities usually were
obtained from the two-body leptonic decay (see, for
example, Ref. [17]), and then if we want to test the
two-body for new physics, we cannot use these values.
In previous Refs. [1,2], it was decided to use the fP and
jVqq0 j2 due to the fact that we cannot extract the constraints
to neutrino-scalar couplings without these assumption. In
this work, we decided to use the information for fP and
jVqq0 j2 from other places in the following way:

(i) Some precise measurements of the CKM matrix
elements (D;Ds, and B) comes exactly from the fit
of meson leptonic decay rate measurements [17];
thus, those results could be contaminated by exactly
the decays we want to find. The solution is to use
other measurements of CKMmixing matrix, such as
the meson β decay (e.g., D → πlν) and pay the price
of less precise values. Table II compares the most
precise values of CKM mixing matrix, and the ones
used here that do not come from leptonic decays.

(ii) Meson decay constant, fP, is also measured from the
leptonic decay for light mesons (π and K). Recently,
lattice QCD was able to obtain them with good
precision, enabling this kind of analysis for the first
time. The numerical values of fP can be found in
Ref. [29], and we listed them in Table III.

B. Leptonic spectrum constraints

The second group is obtained from a heavy neutrino
search which scans the charged lepton spectrum for peaks
of two-body decays. This is the first time that this kind of
data is used to restrict neutrino-scalar couplings. We obtain

TABLE I. Reactions used in this work.

Reaction Reference

P → lν̄ (π, K) [17]
P → lν̄ (D;Ds; B) [22–26]
πþ → eþνH [27]
Kþ → μþνH [28]
Brðπþ → eþνeνν̄Þ < 5 × 10−6Þ [17]
BrðKþ → μþνeνν̄Þ < 6 × 10−6Þ [17]

TABLE II. Most precise VCKM matrix elements compared to
those used here. All of the values comes from the Particle Data
Group (PDF) [17].

Element Most precise Not from Leptonic decay

jVudj … 0.97425(22)
jVusj 0.2253(10) 0.2253(14)
jVcdj 0.225(8) 0.220(12)
jVcsj 0.986(16) 0.953(25)
jVubj 4.22ð42Þ × 10−3 4.13ð49Þ × 10−3

TABLE III. Form factors fp from lattice QCD [29].

fP [MeV]

π 130.2(1.4)
K 156.3(0.9)
D 209(3.3)
Ds 250(7)
B 186(4)
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the best constraints on these couplings from the spectrum
analysis.
Inspection of the light meson decay spectrum that was

used to search for heavy neutrinos, of mass mH, by peak
search, in special [27,28] found no evidence, putting
bounds on the heavy neutrino mass and its mixing matrix
to the active neutrinos. The contribution to the charged
lepton spectrum can be parametrized on the following
form [28]:

dΓðP → lνHÞ ¼ ρΓ0jUeHj2δðppeak − plÞdpl: ð12Þ

With Γ0 from Eq. (4) setting mν ¼ 0, jUeHj2 is the mixing
of the heavy neutrino presented in the decay P → eþ νH,
pl is the charged lepton momentum. The heavy neutrino
mass information is contained only in ppeak, the charged
lepton momentum expected for a two-body decay of
meson P,

ppeak ¼
λ1=2ðm2

P;m
2
l ; m

2
HÞ

2mP
; ð13Þ

and in the variable ρ that is given by

ρ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðα − βÞ2 − 2ðαþ βÞ

p
ðαþ β − ðα − βÞ2Þ

αð1 − αÞ2 ;

ð14Þ

which is the correction for the two-body meson decay for a
heavy neutrino H with mass mH and β ¼ ðmH

mP
Þ2 compared

with a massless neutrino limit of Eq. (4).
We can use this information to constrain the neutrino-

scalar couplings in the following way. The spectrum with a
heavy neutrino should have a peak at a mass of aa heavy
neutrinomH proportional to the mixing of a heavy neutrino
jUeHj2 with the electron neutrino (see Fig. 2). The three
body decay from the Feynman diagram shown in Fig. 1 has
a continuous spectrum shown in Fig. 2 by the dashed, solid,
and dotted-dashed curves, respectively, that has numerical
values above, equal, and below the maximum values of the

spectrum of a heavy neutrino in two body decays. Saying,
in other words, we can put a bound by comparing the
number of events in peak search area (below the two-body
heavy neutrino search) and the three body search.
Effectively, the rate of the heavy meson decay given in
Eq. (12) has to be equal to the three body decay rate given
in Eq. (7):

jUlHj2 ¼
ΓðP → lνxÞ
ρðα; x; βÞΓ0

dR
dpl

����
β→x

ð15Þ

and using the constraints from heavy neutrino that constrain
the variables jUlHj2 ×mh [28], we can get constraints on
neutrino-scalar couplings.

IV. ANALYSIS AND RESULTS

We are going to get the bounds from neutrino-scalar
couplings for different values of a scalar particle. First, we
are going to do the case studied so far in the literature [1,2],
when the scalar has zero mass, mχ → 0 in Sec. IVA and in
the Sec. IV B for the case of mχ ≠ 0.

A. Case I: mχ ¼ 0

To obtain bounds on the Yukawa coupling constants, we
used a χ2 method, defining it as,

χ2 ¼
X
i

�
ΓðiÞ
Teo − ΓðiÞ

Exp

�
2

σ2i
; ð16Þ

where i runs over the experimental data points. To obtain
those bounds, we marginalized all three CKM elements
(Vus; Vcd; Vcs) by varying four parameters: jVCKMj’s (and a
coupling constant jglj2 to find the χ2min). Our results on
mχ ¼ 0 can be compared with previous bounds found in the
literature in Table IV. It is possible to see that in this
scenario, the gτ coupling constant is poorly constrained due
to the fact that the errors from the mesons decays and CKM
matrix are rather large.
In contrast, the case of assuming the fixed central value

of jVCKMj using the second column of Table II, we can
bound it as jgτj2 < 8, which is still bigger than the previous
bounds obtained from τ decay [2]. The other coupling
constants with fixed CKM are described in red in Table IV.

mH

UlH

FIG. 2. This plot shows three hypothetical scenarios, the red
line represents the peak search, the dashed line a signal, and the
dotted-dashed a negative signal, the solid line is the limiting case.

TABLE IV. Comparison between previous bounds [2,9] with
our results with mχ ¼ 0, using the rates of the meson decay at
90% C.L. In black, the bounds marginalizing VCKM; in red,
taking the central value of uncorrelated measurements.

Constants Ref. [2] Ref. [9] Our results

jgej2 <4.4 × 10−5 <ð0.8–1.6Þ × 10−5 <4.4ð4.4Þ × 10−5

jgμj2 <3.6 × 10−4 < 4.5ð3.6Þ × 10−6

jgτj2 <2.2 × 10−1 <40ð8Þ
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Notice that our analysis is more complete than those from
the literature that have not taken into account the possible
correlation between the measurements from jVCKMj and the
bounds on jglj2.
From the Eq. (15), we can get the constraints from

Refs. [27,28] and translate to bounds on neutrino-scalar
couplings.
The data from heavy neutrino search can be used to put

bounds on the coupling constants too; all results are
summarized in Table V. One can see that a heavy neutrino
search is 1 to 3 orders of magnitude more stringent than
those from branching ratios, since it takes into account the
decay spectrum. The meson decay analysis shows that the
SMþ scalar has a minimum Δχ2 for jglj2 ≠ 0, which can
be seen for l ¼ e case in Fig. 3. Thus, to evaluate whether
or not the SMþ scalar with jglj2 ≠ 0 is a better model than
assuming only the SM, we compared both situations by
using Bayesian inference taking the prior as a normalized
Gaussian distribution around each experimental point as
evidence p,

pðgjdata;MSMþχÞ ¼ Ne−
1
2
χ2ðg2Þ ð17Þ

then using the Bayes factor, which can be defined as [30]

B ¼ pðdjMSMÞ
pðdjMSMþχÞ

¼ pðg2jd;MSMþχÞ
pðg2jMSMþχÞ

����
g2¼0

; ð18Þ

we can compare the models by calculating B: (I) if B ≪ 1,
the model with more parameters is favored over the model
with less parameters, on the other hand, (II) if B ≫ 1, the
model with less parameters is favored due to the description

of the data. (III) If B ≈ 1, the data points do not contribute
significantly to distinguish between both models. The last
equality in Eq. (18) is true when the model Mχ has one
extra parameter, g compared to MSM and reduces to the
same results when g2 ¼ 0. Then, pðg2jd;MÞ is the prob-
ability of the value g2 of the parameter given the data points
and assuming M true, and pðg2jMÞ is the probability
distribution of g2 in the model, in this case, pðg2jMχÞ ¼
ð4πÞ−1 for g2

4π < 1 and zero otherwise. We have found the B
values for jgij2 ≠ 0, and we have shown it in Table VI.
For the three couplings constants, the preference of
SMþ scalar model over the SM is less then 2σ away
and from this, we conclude there is no stronger preference
for jgij2 ≠ 0.

B. Case II: mχ ≠ 0

This case was never studied and corresponds to the
general case when mχ ≠ 0. We proceeded similarly with
Sec. IVA, but using the central value from Table II for the
CKM mixing elements and thus, using Eq. (9). Now we
have two independent variables from the neutrino-scalar
lagrangian, the mχ and the couplings jglj2 as defined in
Eq. (11). Our results are shown in Figs. 4,5, and 6,
respectively, for jgej2, jgμj2, and jgτj2 for the constraints
from the rate of leptonic meson decay and the lepton
spectrum, respectively, in the green and yellow curves at
90% C.L. Notice that in both cases jgej2 and jgμj2, the

TABLE V. Comparison between previous bounds [2,9] with
our results at mχ ¼ 0 with meson decay rate and lepton spectrum
from a heavy neutrino search at 90% C.L.

Constants Ref. [2] Ref. [9] Our results

jgej2 <4.4 × 10−5 <ð0.8–1.6Þ × 10−5 <1.9 × 10−6

jgμj2 <3.6 × 10−4 <1.9 × 10−7

TABLE VI. Bayes Factor of SMþ scalar over SM.

Parameter ln½B�
jgej2 5.7
jgμj2 7.2
jgτj2 1.5

10–5 10–40

5

10

15

20
10–5 10–4

ge
2

Δ 2χ

FIG. 3. Marginalized Δχ2 as a function of the value of jgej2.

100 101 102
10–7

10–6

10–5

10–4

10–3

10–2
100 101 102

10–7

10–6

10–5

10–4

10–3

10–2

mχ [MeV]

ge
2

Constraints from meson decay at 90% of C. L.
Constraints from heavy neutrino at 90% of C. L.
Curve for Gχ=GF

FIG. 4. Bounds on jgej2 versus mχ . The blue curve comes from
heavy neutrino and the red curve comes from meson decay at
90% C.L.
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bounds can be assumed to be constant up to masses of an
order of ∼200 MeV and ∼100 MeV, respectively. The
constraints for jgτj2 are weaker due to low statistics of
experimental data and also, the larger is the lepton mass, the
less effective is the chiral suppression of the two-body
meson decay. To have an intuitive idea of the size of our
constraints, for the case of mχ ≠ 0, we can compare the
strength of a neutrino-scalar interaction represented by
Gχ ≡ jglj2=m2

χ , l ¼ e, μ, τ with the strength of the weak
interaction GF. They are equal when

Gχ ¼
jglj2
m2

χ
≤ GF; ð19Þ

where l ¼ e, μ, τ, and the value of GF is taken from [17].
We shown in Figs. 4 and 5, the black curve shows this
equality, and any value of jglj2 and mχ above this curve is
stronger than its weak interaction.

C. Higgs decay

One important consequence that may arise from the
existence of low mass scalar particles is that it may induce
invisible decays of the Higgs field. New LHC constrains
such a decay at Brðh → invisibleÞ < 12% [31–33].
In general, those invisible decays comes from couplings

of the form

L ¼ −
λ

4
jHj2jχj2 ð20Þ

that allow three point interactions like hjχj2 after symmetry
breaking H → hþ v. This implies that λv ≤ mχ and
Brðh → χχÞ ≤ m2

χ=32πmh, which for current values of
the Higgs mass and scalar mass sensitivity imply
Brðh → χχÞ < 0.47%, below the present experimental
accuracy.

V. COMPARISON WITH NEUTRINO
DECAY BOUNDS

This nonuniversal coupling can induce neutrino decays
[3] that have an interesting phenomenology to make
seasonal changes in the solar neutrinos rate [6] and affect
neutrino oscillation behavior from long baseline experi-
ments [4] such as MINOS [34] and T2K [35].
From Eq. (1) and assuming that the scalar mass is tiny

enough, the mass eigenstate neutrinos can decay into one
another during propagation via the decay νi → νj þ χ. The
neutrino lifetime from such a decay was computed by [36]
assuming the third mass eigenstate to be much heavier than
the light ones, m3 ≫ mlight,

τ3
m3

¼ 128π

ðP jg3jj2 þ jh3jj2Þm2
3

: ð21Þ

The Ref. [4] analyzes MINOS and T2K experiments and
compared the expected flux only from oscillated neutrinos
and oscillated neutrinos plus decay to obtain a bound on
the neutrino lifetime of τ3=m3 > 2.8 × 10−12 s=eV at
90% C.L. Inserting this result in Eq. (21), the obtained
bound can be translated to

X
j¼1;2

jg3jj2 þ jh3jj2 < 3 × 10−2
�
eV
m3

�
2

; ð22Þ

where g and h are, respectively, the neutrino couplings in
the mass basis with scalars and pseudoscalars. This limit is
independent of a mass neutrino hierarchy between the
states 2 and 3.
Another analysis taking into account the decay effects on

solar neutrino data was performed by [6] whose neutrino
life time obtained was τ2=m2 ≥ 7.2 × 10−4 s · eV−1 at
90% C.L. which would give a bound of
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Constraints from meson decay at 90% of C. L.

FIG. 6. Bounds on jgτj2 versus mχ , the red curve comes from
the meson decay at 90% C.L.
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curve comes from rate of meson decay at 90% C.L.
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jg21j2 þ jh21j2 < 1.5 × 10−5
�
eV
m2

�
2

ð23Þ

at 90% C.L.
Our bounds listed in Tables IV and V are in a neutrino-

scalar flavor basis. We can translate these bounds to a
neutrino mass basis using the relation of Eq. (3). From the
analysis of neutrino experiments [37], we can have the
allowed range for the matrix elements of the mixing matrix
U. First, we assume the bounds for jgej2 and/or jgμj2 from
Tables IV and V are valid, then

jg1jj2<3×10−6; jg2jj2<4×10−7; jg3jj2<5×10−7;

ð24Þ

where j ¼ 1; 2; 3; otherwise, if we assume that only the
bounds on jgτj2 are valid, then the limits are much weaker:
jg1jj2 < 7 × 10−3, jg2jj2 < 2 × 10−1, jg3jj2 < 1 × 10−1.
The constraints from the neutrino decay in Eqs. (23)
and (22) are dependent on the mass of the heavier neutrino
mass eigenstate. For the degenerate mass scenario of
m3 ∼m2 ∼ 1 eV, the constraints from neutrino decay, in
Eqs. (23) and (22) are always less restrictive then the results
of this work, Eq. (24).

VI. CONCLUSION

We have computed the bounds for Yukawa interactions
between Neutrinos and Hypothetical scalar particles χ
using recent data and decay rates in two cases: (I)
mχ ¼ 0, obtaining the neutrino-scalar (pseudo-scalar) cou-
plings in the flavor basis jgej2 < 1.9 × 10−6, jgμj2 < 1.9 ×
10−7 at 90% C.L., which is an improvement on previous
results in literature and for the first time. And (II) mχ ≠ 0
showing that those bounds for χ ¼ 0 can be safely used up
to 100 MeV scale. Also no bounds can be put for masses
mχ ≳ 300 MeV. For the mass basis the upper bound on
neutrino-scalar couplings are jg1jj2 < 3 × 10−6,
jg2jj2 < 4 × 10−7, and jg3jj2 < 5 × 10−7 which are much
better then the indirect constrain from neutrino decay. In
conclusion, there are no evidence for non-universal cou-
plings between neutrino and scalar (pseudo-scalar).
We can conclude that we have no evidence for nonuni-

versal couplings between neutrino and scalar (pseudosca-
lar), and we get the best bounds from the meson decay rate
and spectrum data.
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APPENDIX: IR TREATMENT

The differential rate given by Eq. (7) is infrared (IR)
divergent, as can be seen by expanding it for small x and
mχ ; β → 0,

dΓðP → lναχÞ→
x→β

Γ0

jglj2
32π2

1

x
dx; ðA1Þ

which integrated goes as logðxÞ being divergent for the
integration limits 0 < x < ð1 − ffiffiffi

α
p Þ2.

On the other hand, the correction of the neutrino
propagator given by the diagram of Fig. 7 was calculated
by Ref. [38] and changes the normalization of the neutrino
field, δZ by,

δZ ¼ −
g2

32π2
B0ðp;mχ ; mνÞ; ðA2Þ

where B0 is one of the Passarino-Veltman functions.
This induces a change in the completeness relation,

X
s

uðp; sÞūðp; sÞ ¼ pð1þ δZÞ þOðmνÞ; ðA3Þ

where p is the neutrino four momentum. Thus, one should
add to the two-body decay P → lνl the renormalization
correction,

ΓðP → lνÞ ¼ Γ0

�
1 −

jglj2
32π2

B0ðp;mχ ; mνÞ
�
: ðA4Þ

Expanding B0 around a zero neutrino mass, one gets,

B0ðp;mχ ; mνÞ !mν→0
log

�
E2

m2
χ

�
¼ log

�ðm2
P −m2

l Þ2
4m2

χm2
P

	
ðA5Þ

but

log

�ðm2
P −m2

l Þ2
4m2

χm2
P

	
¼ log

�ðmP þmlÞ2
4m2

P

	
þ
Z ð1− ffiffi

α
p Þ2

γ

dx
x
:

ðA6Þ

Thus, summing both contributions, the 1=x is canceled at
small mχ due to opposite signs between the corrections in
Eqs. (A1) and (A4).

FIG. 7. Neutrino self-energy.

BOUNDS ON NEUTRINO-SCALAR YUKAWA COUPLING PHYSICAL REVIEW D 93, 053007 (2016)

053007-7



[1] V. D. Barger, W.-Y. Keung, and S. Pakvasa, Phys. Rev. D
25, 907 (1982).

[2] A. P. Lessa and O. L. G. Peres, Phys. Rev. D 75, 094001
(2007).

[3] G. T. Zatsepin and A. Y. Smirnov, Yad. Fiz. 28, 1569 (1978)
[Sov. J. Nucl. Phys. 28, 807 (1978)].

[4] R. A. Gomes, A. L. G. Gomes, and O. L. G. Peres, Phys.
Lett. B 740, 345 (2015).

[5] J. M. Berryman, A. de Gouva, D. Hernndez, and R. L. N.
Oliviera, Phys. Lett. B 742, 74 (2015).

[6] R. Picoreti, M. M. Guzzo, P. C. de Holanda, and O. L. G.
Peres, arXiv:1506.08158.

[7] T. Abrahao, H. Minakata, H. Nunokawa, and A. A. Quiroga,
J. High Energy Phys. 11 (2015) 001.

[8] Y. Farzan, Phys. Rev. D 67, 073015 (2003).
[9] J. Albert et al. (EXO-200 Collaboration), Phys. Rev. D 90,

092004 (2014).
[10] K. Blum, A. Hook, and K. Murase, arXiv:1408.3799.
[11] L. Dorame, O. G. Miranda, and J. W. F. Valle, Front. Phys.

1, 25 (2013).
[12] D. Cogollo, H. Diniz, C. de S. Pires, and P. Rodrigues da

Silva, Eur. Phys. J. C 58, 455 (2008).
[13] P. A. N. Machado, Y. F. Perez, O. Sumensari, Z. Tabrizi, and

R. Z. Funchal, J. High Energy Phys. 12 (2015) 160.
[14] A. C. B.MachadoandV.Pleitez,Phys.Lett.B698, 128(2011).
[15] A. C. B. Machado and V. Pleitez, J. Phys. G 40, 035002

(2013).
[16] A. Pilaftsis, Z. Phys. C 55, 275 (1992).
[17] K. A. Olive (Particle Data Group), Chin. Phys. C 38, 090001

(2014).
[18] W. J. Marciano and A. Sirlin, Phys. Rev. Lett. 71, 3629

(1993).
[19] V. Cirigliano and I. Rosell, Phys. Rev. Lett. 99, 231801

(2007).

[20] V. Cirigliano, G. Ecker, H. Neufeld, A. Pich, and J. Portoles,
Rev. Mod. Phys. 84, 399 (2012).

[21] G. B. Gelmini, S. Nussinov, and M. Roncadelli, Nucl. Phys.
B209, 157 (1982).

[22] M. Ablikim et al. (BESIII Collaboration), Phys. Rev. D 89,
051104 (2014).

[23] H.-B. Li, Nucl. Phys. B, Proc. Suppl. 233, 185 (2012).
[24] J. P. Lees et al. (BABAR Collaboration) (2010).
[25] R. M. White (BABAR Collaboration), J. Phys. Conf. Ser.

347, 012026 (2012).
[26] A. Zupanc et al. (Belle Collaboration), J. High Energy Phys.

09 (2013) 139.
[27] D. I. Britton et al., Phys. Rev. D 46, R885 (1992).
[28] A. V. Artamonov et al. (E949 Collaboration), Phys. Rev. D

91, 052001 (2015); Phys. Rev. D 91, 059903(E) (2015).
[29] S. Aoki et al., Eur. Phys. J. C 74, 2890 (2014).
[30] R. Trotta, Contemp. Phys. 49, 71 (2008).
[31] J. Bernon, B. Dumont, and S. Kraml, Phys. Rev. D 90,

071301 (2014).
[32] G. Belanger, B. Dumont, A. Goudelis, B. Herrmann,

S. Kraml, and D. Sengupta, Phys. Rev. D 91, 115011
(2015).

[33] C. Bonilla, J. W. F. Valle, and J. C. Romao, Phys. Rev. D 91,
113015 (2015).

[34] P. Adamson et al. (MINOS Collaboration), Phys. Rev. Lett.
106, 181801 (2011).

[35] K. Abe et al. (T2K Collaboration), Phys. Rev. Lett. 112,
181801 (2014).

[36] C. W. Kim and W. P. Lam, Mod. Phys. Lett. A 05, 297
(1990).

[37] M. C. Gonzalez-Garcia, M. Maltoni, and T. Schwetz, J.
High Energy Phys. 11 (2014) 052.

[38] R. Schiopu, Ph.D. thesis, Mainz University, Inst. Phys.,
2007.

P. S. PASQUINI and O. L. G. PERES PHYSICAL REVIEW D 93, 053007 (2016)

053007-8

http://dx.doi.org/10.1103/PhysRevD.25.907
http://dx.doi.org/10.1103/PhysRevD.25.907
http://dx.doi.org/10.1103/PhysRevD.75.094001
http://dx.doi.org/10.1103/PhysRevD.75.094001
http://dx.doi.org/10.1016/j.physletb.2014.12.014
http://dx.doi.org/10.1016/j.physletb.2014.12.014
http://dx.doi.org/10.1016/j.physletb.2015.01.002
http://arXiv.org/abs/1506.08158
http://dx.doi.org/10.1007/JHEP11(2015)001
http://dx.doi.org/10.1103/PhysRevD.67.073015
http://dx.doi.org/10.1103/PhysRevD.90.092004
http://dx.doi.org/10.1103/PhysRevD.90.092004
http://arXiv.org/abs/1408.3799
http://dx.doi.org/10.3389/fphy.2013.00025
http://dx.doi.org/10.3389/fphy.2013.00025
http://dx.doi.org/10.1140/epjc/s10052-008-0749-5
http://dx.doi.org/10.1007/JHEP12(2015)160
http://dx.doi.org/10.1016/j.physletb.2011.02.051
http://dx.doi.org/10.1088/0954-3899/40/3/035002
http://dx.doi.org/10.1088/0954-3899/40/3/035002
http://dx.doi.org/10.1007/BF01482590
http://dx.doi.org/10.1088/1674-1137/38/9/090001
http://dx.doi.org/10.1088/1674-1137/38/9/090001
http://dx.doi.org/10.1103/PhysRevLett.71.3629
http://dx.doi.org/10.1103/PhysRevLett.71.3629
http://dx.doi.org/10.1103/PhysRevLett.99.231801
http://dx.doi.org/10.1103/PhysRevLett.99.231801
http://dx.doi.org/10.1103/RevModPhys.84.399
http://dx.doi.org/10.1016/0550-3213(82)90107-9
http://dx.doi.org/10.1016/0550-3213(82)90107-9
http://dx.doi.org/10.1103/PhysRevD.89.051104
http://dx.doi.org/10.1103/PhysRevD.89.051104
http://dx.doi.org/10.1016/j.nuclphysbps.2012.12.075
http://dx.doi.org/10.1088/1742-6596/347/1/012026
http://dx.doi.org/10.1088/1742-6596/347/1/012026
http://dx.doi.org/10.1007/JHEP09(2013)139
http://dx.doi.org/10.1007/JHEP09(2013)139
http://dx.doi.org/10.1103/PhysRevD.46.R885
http://dx.doi.org/10.1103/PhysRevD.91.052001
http://dx.doi.org/10.1103/PhysRevD.91.052001
http://dx.doi.org/10.1103/PhysRevD.91.059903
http://dx.doi.org/10.1140/epjc/s10052-014-2890-7
http://dx.doi.org/10.1080/00107510802066753
http://dx.doi.org/10.1103/PhysRevD.90.071301
http://dx.doi.org/10.1103/PhysRevD.90.071301
http://dx.doi.org/10.1103/PhysRevD.91.115011
http://dx.doi.org/10.1103/PhysRevD.91.115011
http://dx.doi.org/10.1103/PhysRevD.91.113015
http://dx.doi.org/10.1103/PhysRevD.91.113015
http://dx.doi.org/10.1103/PhysRevLett.106.181801
http://dx.doi.org/10.1103/PhysRevLett.106.181801
http://dx.doi.org/10.1103/PhysRevLett.112.181801
http://dx.doi.org/10.1103/PhysRevLett.112.181801
http://dx.doi.org/10.1142/S0217732390000354
http://dx.doi.org/10.1142/S0217732390000354
http://dx.doi.org/10.1007/JHEP11(2014)052
http://dx.doi.org/10.1007/JHEP11(2014)052

