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We propose a novel algorithm to compute the width of any generic n-body decay involving multiple off-
shell particles having zero and nonzero spins. Starting from a toy example, we show the computations for
three different processes that contain spin-0, -1

2
, and -1 off-shell particles. We check that our results match

with the existing results at the analytical level. This proposal can be automatized and should be useful to
compute the phase space for long cascade decays, without any Monte Carlo sampling.
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I. INTRODUCTION

A standard problem in quantum field theory is to
calculate the decay width Γ of a parent particle A to n
number of daughter particles. As is well known, the physics

resides in the spin-averaged matrix element squared jMj2
for the transition, but there are two kinematic factors also,
namely, the initial flux (which is given by the mass of A if it
is at rest) and the n-body phase space. While the calculation
of Γ for 1 → 2 processes is an undergraduate exercise, the
phase space integration gets complicated for n ≥ 3, and
even more so if all the particle masses are kept in the
calculation. Often, this has to be done by someMonte Carlo
sampling [1], introducing further uncertainties and also
taking a lot of computer time. Depending on the complexity
of the phase space, one has to compromise between the
accuracy and the computer time needed, even more so if a
huge number of events are to be generated.
In this paper we would like to propose an algorithmic

approach to deal with the 1 → n cascade decays, mediated
by virtual particles. The algorithm does not work if one or
more of the intermediate particles are on shell; one must
apply the algorithm separately for different cascade
branches. The algorithm consists of the following steps.
Several examples are provided later on, as well as estimates
of numerical accuracy of the approach.

1. Cut each and every off-shell propagator into two
pieces such that the full cascade can be decomposed
in terms of multiple 1 → 2 decays. This is, of course,
not the usual prescription of Cutkosky [2] of cutting
an on-shell propagator to get the absorptive part of
the amplitude. Rather, this is an artificial cut, and
one must remember that the cut propagator is still off
shell. Thus, (i) the spin sum over the off-shell leg

cannot be done at this stage, and (ii) the phase space
becomes imaginary.

2. Assign spin (for fermions) and polarization (for
gauge bosons) indices for all particles, both on
and off shell. Our convention for the following
examples will be to use the latin (greek) alphabet
for fermion (gauge boson) polarization indices. We
will call both of them spin, as there should not be
any chance of confusion.

3. While squaring the amplitude, one must not sum
over the external leg spins that are off shell, as
mentioned in rule 1. The indices that appear in the
vertices are to be summed over as usual. Following
this prescription, we calculate a few quantities
(examples are provided later) which are analogous

to the scalar quantities like jMj2 or Γ that one
usually computes. However, because of the floating
indices, they are not scalars in our case; rather, they
are tensors in spin indices.

4. Once we compute all such variables necessary for
the full cascade decay, we will club them according
to their appearance in the cascade such that all the
spin indices are contracted leading to the trace of the
full matrix in spin space. The final trace is a scalar
quantity. For an off-shell scalar propagator, the entire
trace can be decomposed into the product of two
traces.

5. The most important part is to write the 1 → 2 phase
space function in terms of the invariant masses of the
off-shell particles and then integrate over all possible
values of the invariant mass.
For n off-shell particles there will be n such

integrals. This integral takes into account the off-
shell propagator too. This is the crux of the algo-
rithm and should better be followed by the following
examples.

6. All the intermediate “partial decay widths” ~Γ are to
be defined in the prescribed way. Their dimensions
need not be that of mass.
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7. Finally, for identical particles in the final state, we
need to incorporate the symmetry factor in the form
of ð1 − 1

2
δIJÞ for the decay Að�Þ → IJ.

Thus, the width for the decay A → B�C�, B� → DE,
C� → FG should typically be of the form

Γ ¼ 1

mA

Z �
1

π

dm2
DE

ðm2
DE −m2

BÞ2
��

1

π

dm2
FG

ðm2
FG −m2

CÞ2
�

× ~ΓðA → BCÞ ~ΓðB → DEÞ ~ΓðC → FGÞ; ð1Þ

where, for example,

~ΓðB → DEÞ ¼ 1

2

Z
dB→DE
PS jMðB → DEÞj2; ð2Þ

which is easy to evaluate; the only thing to keep in mind is
to use mDE instead of mB because B is off shell. The factor
of 1=mA is the flux factor evaluated in the rest frame of the
parent particle. If the intermediate state B has a large width,
we should replace

ðm2
DE −m2

BÞ2 → ðm2
DE −m2

BÞ2 þm2
BΓ2

B; ð3Þ

where ΓB is the decay width of B. Here we will work in the
narrow width approximation.
Why is this proposal working? An intuitive justification

is that when one integrates over the invariant masses, the
invariant mass can effectively be used in place of the
physical mass for the parent particle. Using the invariant
mass has the extra advantage that the phase space is always
real. We are effectively decomposing the full phase space of
the entire cascade into several parts, writing each of them in
terms of trivial 1 → 2 phase spaces. Now these individual
subdiagrams have been computed using the standard
techniques of quantum field theory, so there is no ambi-
guity. The essential part of our proposal is to provide the
prescription to join those contributions, maintaining the
flow of polarizations through off-shell propagators. Thus
this method can be applied to any tree level cascade decay,
irrespective of the spin of the intermediate propagators, and
the number of such propagators. However, at this present
form, it cannot be applied to calculate loop integrals, unless
they can be reduced to some effective operators.
A few examples will now follow. We will, however, not

show the detailed evaluation of jMj2, which is an under-
graduate exercise.
The paper is arranged as follows. In Sec. II, we will

provide a “toy” example with an off-shell scalar propagator.
In Sec. III, more examples will be provided, including
numerical checks with the existing software. We conclude
in Sec. IV.

II. A “TOY” EXAMPLE

The first example follows from Ref. [3] where an outline
of the algorithm was given for scalar propagators only.
Consider the decay of a heavy lepton l0 to three leptons l1,
l2, and l3 mediated by scalars which we will call Δ. The
coupling of Δ with li and lj will be denoted by yij.
Suppose the decay chain is l0 → l1Δ�, Δ� → l2l3.
According to our proposal, the virtual decay width
of Δ� → l2l3 is given by

~ΓΔ�
l2l3 ¼

�
1 −

1

2
δl2l3

�Z
dΔ

�→l2l3
PS

jMðΔ� → l2l3Þj2
2

¼
�
1 −

1

2
δl2l3

�
λ1=2ðm2

23; m
2
l2
; m2

l3
Þ

16πm2
23

× jy23j2ðm2
23 −m2

l2
−m2

l3
Þ; ð4Þ

where m23 is the momentum transfer through Δ; note the
use of the invariant mass m23 in this step. The decay width,
therefore, is

Γ123 ¼
1

2ml0

Z
dm2

23

πðm2
23 −m2

ΔÞ2

×
Z

dl0→l1Δ�
PS jMðl0 → l1Δ�Þj2 ~ΓΔ�

l2l3

¼
�
1 −

1

2
δl2l3

�Z ðml0
−ml1

Þ2

ðml2
þml3

Þ2
dm2

23

πðm2
23 −m2

ΔÞ2

×

�
λ1=2ðm2

l0
; m2

23; m
2
l1
Þ

16πm3
l0

jy01j2ðm2
l0
þm2

l1
−m2

23Þ
�

×

�
λ1=2ðm2

23; m
2
l2
; m2

l3
Þ

16πm2
23

jy23j2ðm2
23 −m2

l2
−m2

l3
Þ
�
:

ð5Þ

Note again the integration over m23 over its entire range.
The integration may have to be done numerically if all
lepton masses are kept.

III. FURTHER EXAMPLES WITH FERMION
AND GAUGE PROPAGATORS

A. μ → νμW�, W� → eν̄e
Muon decay is instructive because the intermediate W

propagator has spin indices. Cutting it as shown in Fig. 1,
we get

Γðμ→eν̄eνμÞ ¼
1

mμ

Z �
1

π

�
dm2

12

ðm2
12 −m2

WÞ2
��

× Tr½ ~Γðμ → νμW�Þ ~ΓðW� → eν̄eÞ�: ð6Þ
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The virtual decay width for ðμ → νμW�Þ is

½ ~Γðμ → νμW�Þ�αν ¼
1

2

Z
d
μ→νμW�

PS ½jM1ðμ → νμW�Þj2�αν ; ð7Þ

where, following the momentum convention shown in Fig. 1, and using fermion spin summation and the trace identities,

½jM1j2�αν ¼
g2

8
ϵαλðp2Þϵμ�λ ðp2Þ½ūsðp3ÞγμÞð1 − γ5Þvs0 ðp4Þ�½v̄s0 ðp4Þγνð1 − γ5Þusðp3Þ�

¼ g2

8
ϵαλðp2Þϵμ�λ ðp2ÞTr½ðp3 −meÞγμð1 − γ5Þðp4Þγνð1 − γ5Þ�

¼ g2

2
ϵαλðp2Þϵμ�λ ðp2Þðp3μp4ν þ p3νp4μ − gμνðp3:p4Þ − iϵμρνσpρ

3p
σ
4Þ: ð8Þ

Similarly,

½ ~ΓðW� → eν̄eÞ�να ¼
1

2

Z
dW

�→eν̄e
PS ½jM2ðW� → eν̄eÞj2�να;

ð9Þ

where

½jM2j2�να ¼
g2

8
ϵ�αλ0 ðp2Þϵ�βλ0 ðp2ÞTr½pνμγ

βð1 − γ5Þ
× ðp1 þmμÞγνð1 − γ5Þ�: ð10Þ

Next, we sum over the W spin,
P

λϵ
�μ
λ ðpÞϵνλðpÞ ¼ −gμν

(the p2μp2ν term gives zero with massless fermions in the
final state), and evaluate the scalar trace, Tr½jM1j2jM2j2�¼
4g4½ðp1:p4Þðpνμ:p3Þ�, and average over the initial μ spin,
to get

Γðμ→eν̄eνμÞ ¼
1

2mμ

Z �
1

π

dm2
12

ðm2
12 −m2

WÞ2
Z

d
μ→νμW�

PS

×
Z

dW
�→eν̄e

PS fg4ðp1:p4Þðpνμ:p3Þg
�
: ð11Þ

Again, note the same logic: two 1 → 2 phase space
integrals, and an integration over the free variable m12.
In the rest frame of the muon, the decay width can be

written (after neglecting the electron mass) as

Γðμ → eν̄eνμÞ ¼
g4m5

μ

6144π3m4
W
: ð12Þ

Keeping the electron mass, a numerical integration gives
Γ ¼ 6.91095 × 10−11g4=m4

W (in GeV). Both the results are
in complete agreement with that in the literature.

B. H → W−Wþ�, Wþ� → tb̄

The next example is the decayH → W−Wþ�,Wþ� → tb̄,
with the momenta as shown in Fig. 2. The masses mH and
mt are kept as free parameters. The decay width is given by

ΓðH → W−tb̄Þ ¼ 1

mH

Z �
1

π

dm2
12

ðm2
12 −m2

WÞ2
�

× Tr½ ~ΓðH → W−Wþ�Þ ~ΓðWþ� → tb̄Þ�:
ð13Þ

The virtual decay widths are

½ ~ΓðH → WW�Þ�αν ¼
Z

dH→WW�
PS

2
½jM1ðH → WW�Þj2�αν ;

½ ~ΓðW� → tb̄Þ�να ¼
Z

dW
�→tb̄

PS

2
½jM2ðW� → tb̄Þj2�να; ð14Þ

FIG. 1. Feynman diagram for μ → νμW� → νμν̄ee.
FIG. 2. Feynman diagram for the cascade decay: H →
W−Wþ� → W−tb̄.
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and

½jM1j2�αν ¼
�
2m2

W

v

�
2

½ϵαλðp2Þϵμ�λ ðp2Þϵμλ0 ðkÞϵ�νλ0 ðkÞ�;

½jM2j2�να ¼
g2jVtbj2

8
Tr½ðp3 −mtÞγνð1 − γ5Þðp4 þmbÞ

× γβð1 − γ5Þ�ϵλ00α ðkÞϵλ00�β ðkÞ: ð15Þ

We have kept only the spin indices of the cut propagator as
free and used

X
λ

ϵ�μλ ðkÞϵνλðkÞ ¼ −gμν þ kμkν

m2
W

: ð16Þ

Taking the parent H to be at rest and using k2 ¼ m2
12,

we get

ΓðH → Wtb̄Þ ¼ Ncg2m4
W

4mHv2
jVtbj2

×
Z �

1

π

dm2
12

ðm2
12 −m2

WÞ2
�

×
Z

dW
�→tb̄

PS

Z
dH→WW�
PS F ; ð17Þ

where F evaluated from the spin sum and the trace is

F ¼ 16

m4
W
½2m2

Wðp2:p3Þðp2:p4Þ þ 4m2
Wðk:p3Þðk:p4Þ − 2m2

Wm
2
12ðp3:p4Þ − 2ðk:p2Þðk:p3Þðp2:p4Þ

−2ðk:p2Þðk:p4Þðp2:p3Þ þ 2ðk:p2Þ2ðp3:p4Þ þm4
12ðp3:p4Þ − 2m2

12ðk:p3Þðk:p4Þ
þ2m−2

W ðk:p2Þ2ðk:p3Þðk:p4Þ −m−2
W m2

12ðp3:p4Þðk:p2Þ2 þm4
Wðp4:p3Þ�: ð18Þ

A comparison of our method, where the integration is
done numerically byMATHEMATICA [4], and the result from
CALCHEP v.3.6.25 [1], is shown in Table I. The typical
uncertainty in the evaluation of the decay width through
Monte Carlo sampling is about 10%, and our method is in
complete agreement.

C. H → tt̄�, t̄� → b̄W−

This is an analogous case with a fictitious heavy Higgs
boson and involving an off-shell fermion. The Feynman
diagram including the spin and momentum labels is shown
in Fig. 3. Thus

ΓðH → tb̄WÞ ¼ 1

mH

Z
1

π

dm2
12

ðm2
12 −m2

t Þ2
× Tr½ ~ΓðH → tt̄�Þ ~Γðt̄� → b̄WÞ�: ð19Þ

The virtual decay widths are

½ ~ΓðH → tt̄�Þ�c1b2 ¼
Z

dH→tt̄�
PS

2
½jM1ðH → tt̄�Þj2�c1b2 ;

½ ~Γðt̄� → b̄WÞ�b2c1 ¼
Z

dt̄
�→b̄W
PS

2
½jM2ðt̄� → b̄WÞj2�b2c1 ;

ð20Þ

TABLE I. Decay widths for different values of mt and mH.
Central values from CALCHEP v.3.6.25 [1] with a typical error of
10% are shown in parentheses. We have taken mb ¼ 0 and
Vtb ¼ 1.

mt (GeV) mH (GeV) Γ (GeV)

0 82 2.962ð2.942Þ × 10−11

125 2.771ð2.739Þ × 10−4

150 4.007ð3.954Þ × 10−3

25 106 2.595ð2.687Þ × 10−10

120 1.989ð1.916Þ × 10−5

130 1.478ð1.419Þ × 10−4

50 132 2.846ð2.869Þ × 10−8

140 1.901ð1.833Þ × 10−5

150 4.040ð3.859Þ × 10−4
FIG. 3. Feynman diagram for H → tt̄�, t̄� → b̄W−.
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and the amplitudes can be written as

½jM1j2�c1b2 ¼
g2m2

t

4m2
W
f½ūs1ðp2Þ�c1 ½us1ðp2Þ�d1 ½v̄s2ðkÞ�d1 ½vs2ðkÞ�b2g;

½jM2j2�b2c1 ¼
g2jVtbj2

8
f½v̄s3ðkÞ�a1 ½γμð1 − γ5Þ�a1a2 ½vs4ðp3Þ�a2

× ½v̄s4ðp3Þ�b1 ½γνð1 − γ5Þ�b1b2 ½vs3ðkÞ�c1g½ϵλμðp4Þϵ�λν ðp4Þ�: ð21Þ

Neglecting the mass of the bottom quark, one gets

ΓðH → tb̄WÞ ¼
�

1

4mH

�
g4m2

t NcjVtbj2
32m2

W

×
Z �

1

π

�
dm2

12

ðm2
12 −m2

t Þ2
��

×
Z

dH→tt̄�
ps

Z
dt̄

�→b̄W
ps F ; ð22Þ

where

F ¼ ð16ðp2:kÞ − 16mtm12Þ
�
ðk:p3Þ þ

2ðk:p3Þðp3:p4Þ
m2

W

�

ð23Þ

obtained after performing the spin sum and trace.
The expressions for jMj2 match with the standard

expressions in the literature [5]. Our final results also
match with those using other formalisms for evaluating the
three-body phase space [6,7].
Formt ¼ 174 GeV andmH ¼ 260ð280; 300; 320Þ GeV,

we find Γ ¼ 9.327 × 10−9ð4.979 × 10−6; 8.484 × 10−5;
6.924 × 10−4Þ GeV respectively.

D. H → Z�Z�, Z� → l1l2, Z� → l3l4
For this process, as depicted in Fig. 4, the decay width

can be written as

ΓðH → l1l2l3l4Þ ¼
1

2

1

mH

Z �
1

π

�
dm2

12

ðm2
12 −m2

ZÞ2
��

×
Z �

1

π

�
dm2

34

ðm2
34 −m2

ZÞ2
��

× Tr½ ~ΓðH → Z�Z�Þ ~ΓðZ� → l1l2Þ
× ~ΓðZ� → l3l4Þ�; ð24Þ

where 1
2
¼ ð1 − δZZ=2Þ is the symmetry factor, and

½ ~ΓðH → Z�Z�Þ�αν ¼
Z

dH→Z�Z�
PS

2
½jM1ðH → Z�Z�Þj2�αν ;

½ ~ΓðZ� → liljÞ�νβ ¼
Z

d
Z�→lilj
PS

2
½jM2ðZ� → liljÞj2�νβ; ð25Þ

½jM1j2�αν ¼
g2m2

Z

cos2θW
ϵαðp2Þϵ�μðp2Þϵμðp1Þϵ�νðp1Þ;

½jM2j2�νβ ¼
g2

16cos2θW
ϵνλðp1Þϵ�σλ ðp1Þ

×Tr½ðpli −mliÞγβðcvþ γ5Þðplj þmljÞγσðcvþ γ5Þ�;
ð26Þ

where cv ¼ −1þ 4 sin2 θW .
Neglecting the lepton masses and using the spin sumP
λϵ

�μ
λ ðkÞϵνλðkÞ ¼ −gμν, the decay width can be written as

ΓðH → 4lÞ ¼ 1

16mH

Z �
1

π

�
dm2

12

ðm2
12 −m2

ZÞ2
��

×
Z �

1

π

�
dm2

34

ðm2
34 −m2

ZÞ2
��

×
Z

dH→Z�Z�
PS

Z
dZ

�→l1l2
PS

Z
dZ

�→l3l4
PS F ; ð27Þ

where
FIG. 4. Representative figure of cascade decay: H → Z�Z� →
l1l2l3l4.
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F ¼
�

g6m2
Z

256cos6θW

�
ð16ðc2v þ 1Þ2

× ½2ðpl3 :pl2Þðpl1 :pl4Þ þ 2ðpl3 :pl1Þðpl4 :pl2Þ�Þ: ð28Þ

One can further simplify the decay width after writing
the phase spaces explicitly. The similar decay processes are
discussed in [8–10]. One can easily accommodate the
interfering contribution by adding an extra term (if there
is any), Γðl1↔l3; l2↔l4Þ, in the above equation.

IV. CONCLUSIONS

In this paper we have proposed an algorithm to treat the
n-body phase space analytically, as a product of several
virtual two-body phase spaces. Compared to the standard
Monte Carlo sampling, this method is not only time saving,
particularly when a huge number of events are to be

generated, but also has comparable or even better accuracy.
We have discussed the algorithm with several examples
involving off-shell scalars, fermions, and gauge bosons,
and cross-checked our results with those available in the
literature or with standard software like CALCHEP.
Implementation of this algorithm in an easy-to-use software
is also under progress.
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