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The axial form factor plays a crucial role in quasielastic neutrino-nucleus scattering, but the error of the
theoretical cross section due to uncertainties of GA remains to be established. Conversely, the extraction of
GA from the neutrino nucleus cross section suffers from large systematic errors due to nuclear model
dependencies, while the use of single-parameter dipole fits underestimates the errors and prevents an
identification of the relevant kinematics for this determination. We propose to use a generalized axial-
vector-meson dominance in conjunction with large-Nc and high-energy QCD constraints to model the
nucleon axial form factor, as well as the half-width rule as an a priori uncertainty estimate. The minimal
hadronic ansatz comprises the sum of two monopoles corresponding to the lightest axial-vector mesons
being coupled to the axial current. The parameters of the resulting axial form factor are the masses and
widths of the two axial mesons as obtained from the averaged Particle Data Group values. By applying the
half-width rule in a Monte Carlo simulation, a distribution of theoretical predictions can then be generated
for the neutrino-nucleus quasielastic cross section. We test the model by applying it to the ðνμ; μÞ
quasielastic cross section from 12C for the kinematics of the MiniBooNE experiment. The resulting
predictions have no free parameters. We find that the relativistic Fermi gas model globally reproduces the
experimental data, giving χ2=#bins ¼ 0.81. A Q2-dependent error analysis of the neutrino data shows that
the uncertainties in the axial form factor GAðQ2Þ are comparable to the ones induced by the a priori half-
width rule. We identify the most sensitive region to be in the range 0.2≲Q2 ≲ 0.6 GeV2.
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I. INTRODUCTION

Since the first measurement of the muon neutrino
charged-current quasielastic double differential cross sec-
tion [1–3] many attempts have been made to characterize an
effective axial-vector form factor of the nucleon [4–7]. This
is often made in terms of a dipole axial massMA, assuming
a dipole form [8,9], for Q2 > 0,

Gdipole
A ðQ2Þ ¼ gA

ð1þQ2=M2
AÞ2

: ð1Þ

The world average value of the nucleon dipole axial mass is
MA ∼ 1 GeV [10] (see, e.g., Ref. [11] for a review and
references therein) which is obtained as a weighted sum of
different oncoming dipole fits to independent experiments.
However, this does not mean that the full spread of axial
form factors can be described by a single dipole mass with a
given uncertainty in a statistically significant way. Actually,
there is a great variety of often largely incompatible
experimental data from different processes which for
illustration can be seen in Fig. 1. The correct discrimination
and selection of these mutually compatible data is a
complicated problem in data analysis (which requires

proper weighting of experimental ranges and falsifiable
reliable theoretical input and not just parametrizations)
which awaits resolution and will not be addressed here.
Nonetheless, given the present rather confusing state of
affairs and the lack of further qualified information on what
data on the axial form factor one should objectively prefer,
we will face the problem from a different and somewhat
unconventional perspective where the traditional fitting
strategy is sidestepped by the use of a theoretically based
axial form factor with an inherent error band.
The MiniBooNE cross section data values are too large

compared to the theoretical models of quasielastic neutrino
scattering in the impulse approximation, unless a signifi-
cant larger value of MA ∼ 1.35 GeV is employed in the
nuclear axial current. Microscopic explanations of the
large value ofMA have been proposed based on ingredients
involving nucleon spectral functions and multinucleon
emission induced by short-range correlations and meson-
exchange currents [8,21,22]. Recently, studieswith amonop-
ole parametrization have been performed in Ref. [23] as
well as nucleon mean-field effective mass analyses of
blurred electron scattering data [24]. In the absence of
reliable theoretical uncertainty estimates, the disparatevalues
obtained upon consideration of different nuclear effects can
so far be regarded as a genuine source of systematic errors.
Those turn out to be much larger than the alleged statistical

*amaro@ugr.es
†earriola@ugr.es

PHYSICAL REVIEW D 93, 053002 (2016)

2470-0010=2016=93(5)=053002(10) 053002-1 © 2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.93.053002
http://dx.doi.org/10.1103/PhysRevD.93.053002
http://dx.doi.org/10.1103/PhysRevD.93.053002
http://dx.doi.org/10.1103/PhysRevD.93.053002


uncertainties which, if taken literally, would lead to the most
precise determination of the axial form factor to date in the
range Q2 ≲ 2 GeV2. A careful statistical analysis has been
undertaken more recently [25] and some tension among
different data in different models has been reported.
The popular dipole form factor parametrization enjoys

the perturbative QCD (pQCD) result [26] asymptotically,
GA ∼ 1=Q4, but despite the phenomenological success for
separate and independent experiments, it finds no further
theoretical support at finite Q2, nor does it describe all
experiments globally with an acceptable χ2 value.
Moreover, a one-parameter fit such as the dipole form
introduces an artificial bias linking high and low energies
unnaturally and tightly; it is unclear if the statistical
fluctuations inherited from the uncertainties in experimen-
tal neutrino-nucleus scattering data are faithfully repre-
sented by the corresponding fluctuations in the dipole mass.
This is a well-known issue in the statistical analysis of data
since the goodness of fit and the parameter confidence level
are based on estimating the probability that the proposed
parametrization is the correct one, and this implies a
mapping between data fluctuations and the fitting param-
eter fluctuations. To overcome this limitation a model-
independent analysis of the axial form factor using
dispersion relations under definite convergence assump-
tions and based on neutrino scattering was performed [27],
with the expected finding that errors inferred from a dipole
ansatz analysis may be underestimated. A duality-based
parametrization has been proposed searching for significant
deviations to the widely used dipole form [28]. To be fair
one should say that the neutrino scattering vs nucleon axial

form factor is a kind of red herring; the significance of
nuclear effects is claimed after a fit of the dipolar mass to
the data is undertaken, in which case astonishingly precise
values for the dipolar mass are inferred (see, e.g., Ref. [8]
where extremely accurate values for MA are quoted). Since
neutrino-based determinations often imply certain and
sometimes questionable assumptions, it is instructive to
review other sources of information which at least do not
rest on the same assumptions.
On a fundamental level, ab initio calculations allow a

direct evaluation of the axial-current matrix elements.
The first lattice QCD determination of the axial form factor
[29] providedMA ¼ 1.03ð5Þ GeV in agreement with world
average neutrino data at the time, MA¼1.032ð36ÞGeV.
However, subsequent calculations [30] yielded MA¼
1.5GeV, a number which has recently been confirmed
[31] for unphysical pion masses (about twice the physical
value); the corresponding dipolar axial mass is larger than
the experimental one, although there is some trend towards
agreement as the pion mass approaches the physical
value. The role of excited states has been analyzed in a
more recent lattice analysis [32] confirming these results.
In addition, light-cone QCD sum rules also overestimates
the experimental dipole fit by 30% [33] in the range
1 < Q2 < 4 GeV2, a trend checked by subsequent analyses
[34,35] and that also agrees with lattice calculations. While
these QCD calculations are still subjected to many improve-
ments, one should also recognize that they generate a family
of axial nucleon form factors which fall within the exper-
imental band which is wide enough to pose again the
pertinent question of which are the correct ones within
uncertainties. This situation makes an interesting case of
lifting the conventional fitting strategy based on ad hoc
parametrizations and incompatible data in favor of assuming
a theoretically founded axial nucleon form factor with a
credible uncertainty band generated by independent fluc-
tuations and not directly based on the neutrino-nucleus data
under discussion. In this paper we propose a simple scheme
furnishing these requirements (see Sec. II), and provide a
framework where the significance of different nuclear
effects might be addressed.
On the more phenomenological hadronic level, the

algebra of fields [36] which yields field-current identities
[37] implies a generalized meson dominance which has
proven as a convenient tool to analyze many important
hadronic properties, most notably generalized vertex func-
tions and hadronic form factors [38]. In the particular case
of conserved currents, and more specifically axial-vector
currents the general form of the form factor is expected
to be a sum of infinitely many monopoles with isovector
axial meson masses, whereas the pQCD result [26] yields
GA ∼ 1=Q4. The goodness of the axial-vector-meson
dominance (AVMD) for the axial nucleon form factor
was posed in Ref. [39] by including the strong vertex
corrections. However, meson dominance implies exchange

FIG. 1. The axial-meson dominance band prediction is
compared with the experimental data from the nucleon and with
the dipole prediction bands of Ref. [8] using the Fermi gas
approximation and some relevant nuclear and reaction effects
thereof. Experimental data are from Refs. [12–16] (exp1) and
Refs. [17–20] (exp2). The axial form factor and the data are
normalized to FAð0Þ ¼ 1.
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of resonances which have a mass spectrum characterized by
a mass and a width. Amazingly there is a theoretical limit
where meson dominance with narrow resonances is
realized in QCD, namely the large Nc-limit introduced
by ’t Hooft andWitten long ago [40,41]; within the large-Nc
expansion mesons become stable particles. Their width-
to-mass ratio is ΓR=MR ¼ Oð1=NcÞ ∼ 0.33which turns out
to give the correct order of magnitude of the average
experimental value 0.12(8) [42]. The phenomenological
implications of meson dominance within a large-Nc
approach have been analyzed in Ref. [43] and, after natural
uncertainty estimates based on the resonance width, a good
description of experimental data and lattice results was
achieved, with competitive accuracy.
Motivated by these theoretical insights, in the present

paper we explore the large-Nc-inspired parametrization of
the nucleon axial form factor [43] (see Sec. II), and explore
the consequences of axial-vector dominance directly. We
apply these findings to neutrino-nucleus scattering by
starting with the simplest nuclear model, i.e., the relativistic
Fermi gas (see Sec. III), which can be performed analyti-
cally. We do this without fitting any neutrino data in
Sec. IV. This simple approach allows us to address more
clearly some important issues from a statistical point of
view, and in particular to pin down the region of Q2 values
where the axial nucleon form factor fits are more sensitive
to the existing neutrino-nucleus scattering data (see
Sec. V). We finally summarize our results in Sec. VI.

II. AXIAL-VECTOR-MESON DOMINANCE
AND THE AXIAL FORM FACTOR

AVMDwas first introduced by Lee and Zumino [37] into
particle physics as a very natural generalization of the
successful realization that vector-meson dominance
explained the bulk of electromagnetic form factors. It
simply states that the axial-vector current is given by the
current field identity, which for just u, d quarks reads

~JμA ¼ 1

2
q̄γμγ5~τq ¼

X
A

fA∂ν ~Aμν þ
X
P

fP∂μ
~P; ð2Þ

where fA and fP are the decay amplitudes of the
axial-vector A ¼ a1; a10 ;… and pseudoscalar mesons

P ¼ π; π0;…, respectively, and ~Aμν ¼ ∂μ
~Aν − ∂ν

~Aμ is the
corresponding field-strength tensor of the axial meson.
This equation yields a generalized partially conserved axial
current (PCAC), which implies in turn a generalization
[44–49] of the celebrated Goldberger-Treimann relation.
As a consequence the axial form factor of the nucleon

can be written as a sum of monopole form factors,

GAðQ2Þ ¼ gA
X
n

cn;a
m2

n;a

m2
n;a þQ2

; ð3Þ

where cn;a ¼ fn;agn;aNN=gA, and fn;a, gn;aNN , and mn;a are
the vacuum amplitude, the coupling to the nucleon, and
the mass (respectively) of the corresponding isovector-
axial-vector meson n. From GAð0Þ ¼ gA we have the
normalization condition

1 ¼
X
n

cn;a: ð4Þ

The asymptotic pQCD result [26], GA ∼ 1=Q4, requires

0 ¼
X
n

cn;am2
n;a: ð5Þ

In this paper we use the minimal hadronic ansatz for the
axial nucleon form factor furnishing meson dominance and
proper pQCD behavior,

GAðQ2Þ ¼ gAFAðQ2Þ ¼ gA
m2

a1m
2
a0
1

ðm2
a1 þQ2Þðm2

a0
1
þQ2Þ ; ð6Þ

with gA ¼ 1.267, and where the axial-meson masses are
ma1 ¼ 1.230GeV,ma0

1
¼ 1.647GeV. As noted in Ref. [43],

one of the problems with this ansatz is that generally the
interpolating fields are resonances which have a mass and a
width, and we stand by the solution proposed there to use
the width as a genuine uncertainty of the meson-dominance
ansatz. This generates a full band of predictions which
provide an uncertainty range for a formula of the form of
Eq. (6). The experimental widths are Γa1 ¼ 0.425 GeV and
Γa0

1
¼ 0.254 GeV as listed in the Particle Data Group

(PDG) compilation [50].1 The masses are only the central
values of the axial-mesons’ spectra. We use the half-width
rule to generate random values for ma1 and ma0

1
following

Gaussian distributions with variances Γa1=2 and Γa1 0=2,
respectively. This provides a distribution band for the axial
form factor [43] which is slightly above the bulk of the
abundant and incompatible GA data (see Fig. 1) but agrees
well with the lattice [30–32] and light-cone QCD sum rules
estimates [33–35].
It might be useful to provide a parametrization of

the uncertainty bands of the AVMD form factor as
Flower
A ðQ2Þ ≤ FAðQ2Þ ≤ Fupper

A ðQ2Þ. The lower and upper
axial form factors are defined as the boundaries of the usual
1σ 68% confidence level region. They can be parametrized
as a product of two monopoles, similarly to Eq. (6), as

1Of course this ansatz provides a value for the mean square
axial radius, hr2iA ¼ 6=m2

a1 þ 6=m2
a10
. One can add a further

axial state fixing the radius to its precise value, and comply to the
pQCD short-distance constraint but the effect is not large. This
way, one might take into account the tiny and predictable
differences between axial radii determined by either electro-
production or neutrino scattering.
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Fα
AðQ2Þ ¼ Λ2

αΛ2
α0

ðΛ2
α þQ2ÞðΛ2

α0 þQ2Þ ; ð7Þ

with α ¼ upper, lower. In the range 0≤Q2 ≤ 3GeV2,
corresponding to the blue band of Fig. 1, the cutoff
parameters turn out to be ðΛlower;Λlower0 Þ ¼ ð0.97486;
1.73345Þ and ðΛupper;Λupper0 Þ ¼ ð1.5436; 1.54194Þ, respec-
tively (in GeV). These values illustrate the fact that the
fluctuations of the form factor do not necessarily correspond
to a single dipole mass fluctuation.
We will thus apply this axial form factor band for the

neutrino cross section theoretical predictions. Our point of
view is that given the many effects which might contribute
to neutrino-nucleus scattering it may be sensible to use a
credible form factor with an error estimate based on a
different source of data, without resting on a specific fit to
the neutrino data. It was found in Ref. [43] that the large-Nc
meson-dominated form factors with pQCD constraints and
supplemented with the half-width rule for an uncertainty
estimate worked well also for other form factors, such as
electromagnetic, scalar, and gravitational form factors. As a
general rule uncertainties turned out to be comparable or
smaller than lattice QCD predictions but larger than
experimental data.
After presenting our main results, for completeness

we will also analyze the conventional approach of fitting
Eq. (6) to the MiniBooNE data. We want to investigate
the traditional point of view of assuming certain nuclear
effects before undertaking a fit of the axial form factor
of the nucleon. For example, in Ref. [8] a model with
nucleon spectral functions, RPA correlations, and meson
exchange currents has been considered and a fit to the
axial form factor has been undertaken assuming a fixed
Δ − N-transition form factor. We want to understand
why in these studies one can extract more accurate
information on the axial form factor than on the nuclear
model response functions.
Anticipating some of the results to be discussed

below and for a comparison, we depict also in Fig. 1
the results found in the analysis of Ref. [8] where the
role of nuclear effects beyond the local Fermi gas have
been addressed when a dipole form factor is fitted to the
neutrino scattering data. As can be deduced from Fig. 1
the statistical errors are comparable when including
the additional nuclear effects and the large and quite
visible systematic change between the two fits is
comparable to the spread generated by our AVMD form
factor. Following the scheme of Ref. [28] we also plot
in Fig. 2 the ratio between the AVMD form factor and
the dipole form factor, Eq. (1), with MA ¼ 1.014 GeV in
terms of the dimensionless variable ξ defined there.
This quotient was fitted in Ref. [28] by including an
interpolating polynomial without discarding any of the
compiled data which, as we have mentioned, are

incompatible as a whole.2 As we can see that the
AVMD model produces a spread compatible with the
spread of the region covered by the form factor data.
In both Fig. 1 and Fig. 2 we also highlight in shaded gray

the main Q2 region where fluctuations in the axial form
factor have a sizable impact in the MiniBooNE data, as will
be discussed below in Sec. V. Thus, our AVMD-motivated
axial form factor describes reasonably well the known data
spread in the Q2 region relevant for the MiniBooNE
experiment.

III. QUASIELASTIC NEUTRINO SCATTERING

In this paper we are interested in the charged-current
quasielastic (CCQE) reactions in nuclei induced by neu-
trinos. In particular, we compute the ðνμ; μ−Þ cross section.
The total energies of the incident neutrino and detected
muon are ϵ ¼ Eν, ϵ0 ¼ mμ þ Tμ, and their momenta are
k;k0. The four-momentum transfer is kμ − k0μ ¼ ðω;qÞ,
with Q2 ¼ q2 − ω2 > 0. If the lepton scattering angle is θ,
the double-differential cross section can be written as
[51,52]

d2σ
dTμdcosθ

ðEνÞ¼
�

M2
W

M2
WþQ2

�
2G2cos2θc

4π

k0

ϵ
v0S�: ð8Þ

FIG. 2. The axial-meson dominance band prediction divided by
the dipole parametrization for MA ¼ 1.014 MeV as a function of
the dimensionless variable ξ ¼ 2=ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4m2

N=Q
2

p
Þ defined

in Ref. [28]. Experimental data are from Refs. [12–16] (exp1) and
Refs. [17–20] (exp2). The form factors and data are normalized to
one for Q2 ¼ 0.

2If would be interesting to check if the rather small uncer-
tainties obtained in Ref. [28] are triggered by the inevitable large
χ2 values which are usually obtained when fitting mutually
incompatible data and by the stiffness against fitting parameter
variations. Unfortunately, no χ2 value has been quoted and it is
difficult to asses the goodness of fit.
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Here G ¼ 1.166 × 10−11 MeV−2 ∼ 10−5=m2
p is the Fermi

constant, θc is the Cabibbo angle, cos θc ¼ 0.975, and the
kinematical factor v0 ¼ ðϵþ ϵ0Þ2 − q2.
The nuclear structure function S� is defined as a linear

combination of the five nuclear response functions (þ is for
neutrinos and − is for antineutrinos)

S� ¼ VCCRCC þ 2VCLRCL þ VLLRLL

þ VTRT � 2VT 0RT 0 ; ð9Þ

where the VK coefficients depend only on the neutrino and
muon kinematics and do not depend on the details of the
nuclear target,

VCC ¼ 1 − δ2
Q2

v0
; ð10Þ

VCL ¼ ω

q
þ δ2

ρ0
Q2

v0
; ð11Þ

VLL ¼ ω2

q2
þ
�
1þ 2ω

qρ0
þ ρδ2

�
δ2

Q2

v0
; ð12Þ

VT ¼ Q2

v0
þ ρ

2
−
δ2

ρ0

�
ω

q
þ 1

2
ρρ0δ2

�
Q2

v0
; ð13Þ

VT 0 ¼ 1

ρ0

�
1 −

ωρ0

q
δ2
�
Q2

v0
; ð14Þ

where we have defined the dimensionless factors

δ ¼ m0=
ffiffiffiffiffiffi
Q2

p
, proportional to the muon mass m0,

ρ ¼ Q2=q2, and ρ0 ¼ q=ðϵþ ϵ0Þ.
We evaluate the five nuclear response functions RK , K ¼

CC;CL; LL; T; T 0ðC ¼ Coulomb; L ¼ longitudinal;
T ¼ transverseÞ. following the simplest approach that treats
exactly relativity, gauge invariance, and translational invari-
ance, which is the relativistic Fermi gas model (RFG)
[51,52]. The single nucleons are described by plane-wave
spinors and the response functions are analytical. It is a
remarkable result that the nuclear response function RK of
the RFG is proportional to a single-nucleon response
function UK times the so-called scaling function fðψÞ,

RK ¼ NξF
mNη

3
Fκ

UKfðψÞ; ð15Þ

where N is the neutron number, ηF ¼ kF=mN , and
ξF ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ η2F

p
− 1. The scaling function is defined as

fðψÞ ¼ 3

4
ð1 − ψ2Þθð1 − ψ2Þ; ð16Þ

where θ is the Heaviside step function and ψ is the scaling
variable

ψ2 ¼ 1

ξF
max

�
κ

ffiffiffiffiffiffiffiffiffiffiffi
1þ 1

τ

r
− λ − 1; ξF − 2λ

�
; ð17Þ

where λ ¼ ω=ð2mNÞ, κ ¼ q=ð2mNÞ, and τ ¼ κ2 − λ2.
Finally, we give the single-nucleon responses UK . For

K ¼ CC it is the sum of the vector and axial-vector
responses, in turn is written as the sum of conserved (c.)
plus nonconserved (n.c.) parts,

UCC ¼ UV
CC þ ðUA

CCÞc: þ ðUA
CCÞn:c:: ð18Þ

For the vector CC response we have

UV
CC ¼ κ2

τ

�
ð2GV

EÞ2 þ
ð2GV

EÞ2 þ τð2GV
MÞ2

1þ τ
Δ
�
; ð19Þ

where GV
E and GV

M are the isovector electric and magnetic
nucleon form factors (we use Galster’s parametrization),
and

Δ ¼ τ

κ2
ξFð1 − ψ2Þ

�
κ

ffiffiffiffiffiffiffiffiffiffiffi
1þ 1

τ

r
þ ξF

3
ð1 − ψ2Þ

�
: ð20Þ

The axial-vector CC response is the sum of conserved (c.)
plus nonconserved (n.c.) parts,

ðUA
CCÞc: ¼

κ2

τ
G2

AΔ; ð21Þ

ðUA
CCÞn:c: ¼

λ2

τ
ðGA − τGPÞ2; ð22Þ

where GA is the nucleon axial-vector form factor and GP is
the pseudoscalar axial form factor. From PCAC the
pseudoscalar form factor is

GP ¼ 4m2
N

m2
π þQ2

GA: ð23Þ

Similarly, for K ¼ CL;LL we have

UCL ¼ UV
CL þ ðUA

CLÞc: þ ðUA
CLÞn:c:; ð24Þ

ULL ¼ UV
LL þ ðUA

LLÞc: þ ðUA
LLÞn:c:: ð25Þ

The vector and conserved axial-vector parts are determined
by current conservation,

UV
CL ¼ −

λ

κ
UV

CC; ð26Þ

ðUA
CLÞc: ¼ −

λ

κ
ðUA

CCÞc:; ð27Þ

UV
LL ¼ λ2

κ2
UV

CC; ð28Þ
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ðUA
LLÞc: ¼

λ2

κ2
ðUA

CCÞc:; ð29Þ

while the n.c. parts are

ðUA
CLÞn:c: ¼ −

λκ

τ
ðGA − τGPÞ2; ð30Þ

ðUA
LLÞn:c: ¼

κ2

τ
ðGA − τGPÞ2: ð31Þ

Finally, the transverse responses are given by

UT ¼ UV
T þUA

T; ð32Þ

UV
T ¼ 2τð2GV

MÞ2 þ
ð2GV

EÞ2 þ τð2GV
MÞ2

1þ τ
Δ; ð33Þ

UA
T ¼ 2ð1þ τÞG2

A þG2
AΔ; ð34Þ

UT 0 ¼ 2GAð2GV
MÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τð1þ τÞ

p
½1þ ~Δ�; ð35Þ

with

~Δ ¼
ffiffiffiffiffiffiffiffiffiffiffi
τ

1þ τ

r
ξFð1 − ψ2Þ

2κ
: ð36Þ

IV. NUMERICAL RESULTS

In Fig. 3 we show the AVMD predictions for the total
integrated CCQE cross section

σðEνÞ ¼
Z

dTμ

Z
d cos θ

d2σ
dTμd cos θ

ðEνÞ: ð37Þ

The theoretical uncertainties represented by the displayed
band have been computed by a Monte Carlo calculation
assuming a Gaussian distribution for the axial-meson mass
distributions. For comparison we show also the results
obtained with a dipole axial form factor withMA ¼ 1 GeV.
The MiniBooNE data are compatible with the axial-meson-
dominance predictions. Note that no attempts to fit the
experimental data have been made. The only parameter of
the RFG model is the Fermi momentum kF ¼ 225 MeV.
The MiniBooNE unfolded energy-dependent cross sec-

tion is model dependent based on a reconstruction of the
neutrino energies assuming a quasielastic interaction with a
neutron at rest. These data suffer from uncertainties
driven by the model dependence of the neutrino energy
reconstruction. For proper and useful comparisons, the
flux-averaged doubly differential cross section should be
used. We compute this cross section as

d2σ
dTμd cos θ

¼
R
dEνϕðEνÞ d2σ

dTμd cos θ
ðEνÞR

dEνϕðEνÞ
; ð38Þ

where ϕðEμÞ is the incident neutrino flux.
In Fig. 4 we show results for the flux-averaged doubly

differential CCQE cross section as a function of the muon
kinetic energy. The continuous bands are the axial-meson-
dominance model predictions for fixed values of cos θ at
the center of the experimental bins.
The MiniBooNE νμ CCQE flux-integrated double differ-

ential cross section is provided in bins ðti; tiþ1Þ of Tμ and
bins ðcj; cjþ1Þ of cos θ. The size of the bins are cjþ1 − cj ¼
Δc ¼ Δ cos θμ ¼ 0.1 and tiþ1−ti¼Δt¼ΔTμ¼0.1GeV.
For a meaningful comparison with the experimental data

we have computed the averaged cross section for each bin,
by integrating the doubly differential cross section over
each discrete bin,

Σij ¼
1

ΔtΔc

Z
tiþ1

ti

dTμ

Z
cjþ1

cj

d cos θ
d2σ

dTμd cos θ
: ð39Þ

The axial-vector-dominance predictions for the averaged
cross section Σij are also shown in Fig. 4, where they are
compared to the experimental data. The theoretical errors are
again computed by assuming a Gaussian distribution of the
axial-meson masses. Note that the averaged cross section
for low scattering angles (the bin cos θ ¼ 0.9 − 1.0) is quite
different from the cross section at the central value
cos θ ¼ 0.95. This is due to the strong angular dependence
of the differential cross section for small angles, as can be
seen in Fig. 5. Therefore the integration of the cross section
over the bin is crucial to get the correct average. Note also

FIG. 3. Integrated quasielastic neutrino cross section of 12C.
The axial-meson-dominance band prediction is centered
around the axial-meson masses, and it is compared to the dipole
parametrization with dipolar axial mass MA ¼ 1 GeV. The
experimental data are from the MiniBooNE experiment.
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that in this region the momentum transfer takes the smallest
values compatible with energy transfer, and one expects that
the model dependence of the results is maximized. As a
matter of fact, according to Ref. [53] the shell structure

effects for both discrete and continuum excitations are
softened after integration, approaching the results of the
RFG. For larger scattering angles, the angular dependence is
mild, and thevalue of the cross section at the center of the bin
is closer to the average [Eq. (39)], as can be seen in Fig. 4.

V. GOODNESS OF THE MODEL

To get a global measure of the goodness of the theoretical
model in describing the experimental data requires includ-
ing both theoretical and experimental uncertainties. We
thus compute the distance between theory and data as given
by a χ2 metric, defined as χ2 ¼ P

i;jχ
2
ij. The χij matrix

provides the distance between theory and experiment
within each bin ði; jÞ, in units of the total uncertainty. It
is defined as

χij ¼
ΣðthÞ
ij − ΣðexpÞ

ijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΔΣðthÞ

ij Þ2 þ ðΔΣðexpÞ
ij Þ2

q ; ð40Þ

where ΔΣðexpÞ
ij is the experimental error. and ΔΣðthÞ

ij is the
theoretical uncertainty due to the physical widths of the
axial mesons. In Fig. 6 we show the matrix values χij
computed for all the bins of the MiniBooNE CCQE
neutrino experiment. We obtain χ2 ¼ 111, so that dividing
by the number of bins N ¼ 137, we get χ2=N ¼ 0.81.
Globally the model agrees remarkably well with data taking
into account that we do not minimize any χ2 and we just
compute it.
While the χ2 value seems to be acceptable, let us analyze

the assumptions underlying the comparison and its stat-
istical significance in some more detail. We are just testing
that the difference between the theory and the data should
behave as a random variable, namely a standardized normal
distribution. However, a look at Fig. 6 reveals that the level

FIG. 4. Flux-averaged doubly differential CCQE cross section
as a function of the muon kinetic energy. The continuous band
predictions (green) have been computed for fixed values of cos θ
at the center of the experimental bins. The discrete meson-
dominance predictions have been computed by integrating the
doubly differential cross section over each discrete bin.
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FIG. 6. The χij computed values for each bin pair are
represented in the ðcos θμ; TμÞ plane as a color image.

FIG. 5. Flux-averaged doubly differential CCQE cross
section for several values of cos θ, and for low scattering
angles, compared with the experimental data for the bin
cos θ ¼ 0.9 − 1.0.
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of disagreement is located at the edges of the plot, while we
should expect a more uniform pattern globally if the χij
were distributed randomly. Through a statistical analysis,
we found that there is a strong asymmetry in the residuals
χij, indicating gross systematic differences. Thus, we
believe that these large discrepancies are possibly beyond
the applicability of the RFG. At the same time one should
also admit that the double binning procedures—which are
essential for a proper comparison with the data—tend to
wash out nuclear effects.
As we anticipated in our discussion around Fig. 1 some

fits to the dipolar axial mass do generate rather good χ2

values and unprecedented accuracy for the axial form factor
[8]. Let us recall that a too low value is as bad as a too high
value, since the χ2 distribution for a large number of
degrees of freedom ν ¼ N − P behaves as a Gaussian
distribution and thus it must be χ2=ν ¼ 1� ffiffiffiffiffiffiffiffi

2=ν
p

within
the 1σ confidence level. For instance, in Ref. [8] a value of
χ2=ν ¼ 33=ð137 − 2Þ ¼ 0.24 was obtained which is out-
side the expected confidence level by 6σ. This suggests
that experimental errors may be too large, and the question
is whether errors can be reduced without destroying
the Gaussian nature of the fluctuations. Moreover, let us
recall that the statistical approach based on χ2 fits deals
with testing the validity of a given functional form for
the true form factor, while despite the much extended
popularity there is no field-theoretical support for a dipole
form factor.
In order to understand those results we have performed a

conventional χ2 fit with two axial masses as minimization
parameters. For this fit we include only the experimental
errors in the denominator of Eq. (40). As in Ref. [8], we
normalize the data by a factor λ ¼ 0.96 and subtract a
constant Q value Qb ¼ 17 MeV from the energies of the
particle-hole excitations (note that while this modification
by hand of the RFG energies improves the fit, the gauge
invariance of the model is broken). We find the minimum at
ma1 ¼ ma10 ¼ 1293 with χ2=ν ¼ 0.31. We have tested the
normality of residuals, and we find that they very likely
correspond to aGaussian distribution. This indicates that the
experimental errors should probably be rescaled by a factor
less than 1=2, i.e., the fit would be acceptable if the errors
were twice as small as those stated in the experiment. This
observation concerns all previous determinations of the
dipolar axial mass from these neutrino data, based on fits
trying to minimize the discrepancies with the experiment.
Note that we are not disputing the existence of certain well-
known important nuclear effects. The total uncertainty on
the theoretical neutrino-nucleus cross section can be due to
uncertainties on both the nuclear effects and on the axial
form factor. Herewe focus on the size of the axial form factor
uncertainties since they are obviously not small.
In Fig. 7 we plot the χ2=ν values as a function of the two

axial masses, showing that they are highly correlated.
While the dipole form factor (two equal axial masses) is

contained in the confidence region around the minimum, it
is not the only allowed solution as two different axial
masses also provide acceptable fits.
In order to study the sensibility of the results against

general variations of the form factor, we also show in Fig. 7
the χ2=ν contour plots for the errors in the axial form factor
δGAðQ2Þ when the Q2 values are binned with ΔQ2 ¼
0.1 GeV2 in the rangeQ2 ≤ 2 GeV2. The χ2 for each value
of δGA in a Q2 bin has been computed by adding the
specified value of δGA to the form factor at the Q2 values
of the corresponding bin only. This shows that the value
of χ2 can be lowered further for more general variations of
the axial form factor. To explore this issue deeper
we have performed simultaneous variations of δGAðQ2Þ
in 20Q2 bins. A newminimumwas found giving χ2 ¼ 23.8
and χ2=ν ¼ 0.17. As seen in Fig. 7—and verified by
our minimization—the data seems to favor a larger
form factor around Q2¼0.4GeV2 and a smaller one
around 1.2 − 2 GeV2.
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FIG. 7. Top panel: χ2 contour plot for the fitted axial masses.
Bottom panel: χ2 contour plots for the errors in the axial form
factor δGAðQ2Þ when the Q2 values are binned with ΔQ2 ¼
0.1 GeV2 in the range 0.1 GeV2 ≤ Q2 ≤ 2 GeV2.
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Note that, while our analysis here is focused on the
quasielastic neutrino-nucleus scattering, similar meson-
dominance ideas for the nucleon and Δ resonance have
been discussed in previous work by Dominguez and
collaborators [54,55] suggesting a possible extension to
N − Δ transition form factors.

VI. CONCLUSIONS AND OUTLOOK

Most of the previous analyses of the axial form factor
assuming a dipolar form and fitting MiniBooNE neutrino-
nucleus scattering data provide unprecedented accurate but
incompatible determinations of the dipolar axial mass,
regardless of the assumed nuclear model. This suggests
that while the proposed dipolar parametrization minimizes
the mean squared distance between theory and data, it does
not account properly for the experimental data fluctuations,
introducing a systematic bias and invalidating the conven-
tional least-squares fitting strategy assumptions. Besides,
the large spread of the many experimental data for the
axial form factor is not sharpened by the currently available
lattice QCD calculations or QCD sum rules estimates,
where a direct determination of the axial-current matrix
element has been undertaken. As a consequence, the
validation of known nuclear effects in neutrino-nucleus
scattering is hampered by the many contradicting deter-
minations of the axial form factor already in the quasielastic
region.
Here we have taken a different perspective by admitting

from the beginning the existence of an uncertainty band in
the axial form factor. We assumed a theoretically based
axial form factor with an a priori uncertainty estimate,
regardless of the neutrino data we intend to describe.
Namely, we used the minimal AVMD compatible with
pQCD, an ansatz motivated by quite general large-Nc
features and which requires just the a1 and a10 mesons
to be saturated. As it has been done in previous determi-
nations of other hadronic and generalized form factors, we
have taken as an educated guess the half-width rule for the
axial-vector isovector masses. The produced spread is fairly

consistent with the current experimental and lattice spread
of values.
Most remarkably, the errors in the axial form factor

determined by the axial-vector dominance and using the
half-width rule, while quite generous, do not generally
produce larger uncertainties in the neutrino-nucleus scat-
tering than the experimental differential cross sections
reported by the MiniBooNE Collaboration. We have also
provided evidence that the region of the axial form factor
having the most impact in the MiniBooNE data is in the
range 0.2≲Q2 ≲ 0.6 GeV2, whereas fluctuations outside
this regime tend to be marginal. We stress that these
features cannot be captured by the conventional dipole
parametrization.
Of course the minimal hadronic ansatz could be

improved by adding other poles from the PDG axial-
mesons compilation. In the case of three poles, unlike
the present case additional unknown information such as,
e.g., the coupling of the third meson to the nucleon is
needed. One could expect that future neutrino data might be
accurate enough to pin down this extra parameter.
Our analysis has been carried out using the RFG model

which for the quasielastic region does not seem to miss
effects which are larger than the present uncertainty in the
axial form factor using the AVMD ansatz supplemented
with the half-width rule. The role of additional nuclear
effects improving the present model will be presented in
further work. The role played at higher energies by the
equivalent AVMD form factors and further nuclear mech-
anisms remains to be seen.
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