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In the Lorentzian AdS=CFT correspondence, CFTs are identified by asymptotic boundary surfaces and the
boundary conditions imposed on those surfaces. However, AdS can be foliated in various ways to give
different boundaries. We show that the CFTs obtained using certain distinct foliations are different. This
happens because the asymptotic region of a foliation overlaps with the deep interior region of another. In
particular, we focus on the CFTs defined on surfaces of large constant radius in global coordinates, Rindler-
AdS coordinates, and Poincaré coordinates for AdS3. We refer to these as global-CFT, Rindler-CFT and
Poincaré-CFT, respectively.We demonstrate that the correlators for theseCFTs are different and argue that the
bulk duals to these should agree up to very close to the respective horizons but then start differing. Since the
BTZ black hole is obtained as a quotient of AdS3, we discuss the implications of our results for bulk duals of
periodically identified Poincaré and Rindler-CFTs. Our results are consistent with some recent proposals
suggesting a modification of the semiclassical BTZ geometry close to the horizons.
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I. INTRODUCTION

In Lorentzian AdS=CFT, the definition of a dual CFT
involves the conformal boundary surface on which it is
supposed to “live” [1] and the boundary conditions on that
surface [2–5]. However, different foliations of AdS result in
different boundaries [6–8]. For example, one definition of a
boundary is on a surface of large radius in global coor-
dinates, another is on a surface of large radius in Poincaré
coordinates and yet another is on a surface of large radius
in Rindler-AdS coordinates. In this paper, we point out
an interesting subtlety of Lorentzian AdS/CFT. Fields
in Lorentzian AdS have both normalizable and non-
normalizable modes. Here we show that switching between
different foliations of spacetime results in a mixing between
these. In particular, for the metric, different foliations mix

the gð0Þab and gð2Þab pieces in the Fefferman-Graham expansion.
Since normalizable and non-normalizable modes corre-
spond to physical states and sources in the dual CFT, this
would presumably correspond to a mixing between these.
We regard the corresponding CFTs for these different
foliations as “different” (loosely speaking) in the above
sense. We refer to these CFTs as the global-CFT, the
Poincaré-CFT and the Rindler-CFT, respectively. For sim-
plicity, we discuss only AdS3 which is also easiest to

visualize, but many of the results are generalizable to higher
dimensions.
There is a quick way to see this. A CFT is defined on a

constant radial surface by performing a Fefferman-Graham
[9] expansion for some foliation, keeping the leading term
fixed and letting the subleading terms fluctuate [1]. It turns
out that every large global radius surface invariably
intersects surfaces of arbitrarily small Rindler-AdS radius
[7] (see Fig. 1). Thus, when defining the global-CFT one
invariably ends up imposing conditions on subleading
terms in the Fefferman-Graham expansion for the
Rindler-AdS foliation. Moreover, in some ranges of
parameters, the Fefferman-Graham expansion itself breaks
down due to a small Rindler-AdS radius. Conversely,
defining the Rindler-CFT one does not impose any con-
ditions on the global boundary outside a finite domain.
Similar arguments hold for the Poincaré-CFT.
Bulk horizons projected onto the global boundary give

the edges of the so-called causal diamonds. In Sec. II we
demonstrate the mismatch of Fefferman-Graham expan-
sions between various foliations at the edges of the causal
diamonds. The width of the mismatch region is controlled
by the UV cutoff. We also demonstrate how, in the vicinity
of the center of the causal diamonds, the various CFTs can
be viewed as conformally related. However, it should be
noted that due to the incompatibility of Fefferman-Graham
expansions at the edges of the causal diamond, the various
CFTs cannot be globally related by conformal transforma-
tions and are thus not truly equivalent.
In Sec. III we restrict the global CFT to be within the

causal diamond by focusing on causal developments of
subregions; we refer to these as Rindlerized-global-CFTs
and Poincarized-global-CFTs. Correlators within these can

*bdchowdh@asu.edu
†maulik.parikh@asu.edu

Published by the American Physical Society under the terms of
the Creative Commons Attribution 3.0 License. Further distri-
bution of this work must maintain attribution to the author(s) and
the published article’s title, journal citation, and DOI.

PHYSICAL REVIEW D 93, 046004 (2016)

2470-0010=2016=93(4)=046004(16) 046004-1 Published by the American Physical Society

http://dx.doi.org/10.1103/PhysRevD.93.046004
http://dx.doi.org/10.1103/PhysRevD.93.046004
http://dx.doi.org/10.1103/PhysRevD.93.046004
http://dx.doi.org/10.1103/PhysRevD.93.046004
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


be analytically continued to the entire global boundary
cylinder. We demonstrate how the correlators of
Poincarized-global-CFTs (Rindlerized-global-CFTs) are
approximately the same as those of Poincaré-CFTs
(Rindler-CFTs) deep inside the causal diamonds but differ
at the edges. We regard this as evidence that, generically,
the correlators of Poincaré-CFT (Rindler-CFT) cannot be
analytically continued to outside the causal diamonds.
In Sec. III C we expound on how the CFTs are different,

in the above sense. We argue that seen as part of the global-
CFTs, there is an interaction between the Hilbert spaces
associated with the Rindlerized-global-CFTs whereas the
Hilbert spaces associated with the Rindler-CFTs are not
interacting. Thus, it may be possible to view the Rindler-
CFTs as a deformation of the global-CFTs which breaks the
concerned interaction. Similar ideas apply for the Poincaré-
CFTs. We hope to come back to this issue in the future.
In Sec. IV we investigate the implications for the bulk

physics. Since the correlators of these CFTs are different,
the bulk duals to these CFTs should be different also. As
the CFTs differ at the edges of the causal diamonds, and
since the causal diamonds are projections of bulk horizons
onto the global boundary, we conjecture that the bulk dual
of Rindler-CFTs and Poincaré-CFTs should resemble
semiclassical global AdS until very close to the respective
horizons and then start differing. The width of the transition
region is governed by the UV cutoff.
This result is particularly interesting in the context of

AdS3, where it becomes relevant to black holes. The BTZ
black hole [10] can be viewed as a quotient of AdS3 space
[11]. The massless and massive ones come from foliating in
Poincaré and Rindler-AdS coordinates, respectively, and
periodically identifying along a spatial isometry. The
massless BTZ black hole has a singular horizon because
of vanishing size so the region behind the horizon is not
accessible in supergravity. However, for the massive BTZ
black hole the identification produces orbifold singularities
(interpreted as the eternal black hole singularity) behind the
horizons (interpreted as the eternal black hole event
horizons) but is innocuous on the horizons themselves.
Thus, one may be inclined to think that dynamics involving
horizon crossing in global AdS3 might carry over trivially
to BTZ. One may further be inclined to think that such
dynamics and, more generally, the interior of the BTZ may
be captured by quotients of global-CFTs [12–15].
However, the discrete symmetries relevant for orbifold-

ing to obtain the BTZ black holes are isometries of constant
Poincaré and Rindler-AdS radial surfaces and not of
surfaces of constant global radius. Thus a natural question
is as follows: What are the bulk duals to periodically
identified Poincaré-CFTs (PIPCs) and periodically identi-
fied Rindler-CFTs (PIRCs)? The dynamics of the quo-
tiented bulk duals to global-CFTs (i.e. the BTZ black holes)
cannot be trivially assumed to give the dynamics of the bulk
duals to PIPCs and PIRCs. After periodic identification the

edges of the causal diamonds correspond to large times, so
our results indicate that the correlators of PIPCs and PIRCs
differ from the naive ones found from the BTZ geometries
at late times [13]. Furthermore, our conjecture implies that
bulk duals to these CFTs will resemble the massless and
massive BTZ, respectively, until very close to the horizon
and then start differing.
In Sec. IV B we focus on the massless BTZ black hole.

In the case of the D1-D5 system the near-horizon naive
geometry is the massless BTZ × S3 × T4 and the actual
geometries are the Lunin-Mathur geometries. The typical
ones resemble the massless BTZ black hole until very close
to the “would-be” horizon and then start differing. In
addition, the PIPC correlators dual to these geometries
show the late-time deviations from the naive ones. So in
hindsight, the ideas stated in the previous paragraph have
already been realized for this case.
In Sec. IV C we focus on the massive BTZ black hole.

The story for the massive BTZ black hole is not as well
settled as for the massless case. Recently Ref. [16] claimed
that the bulk is unstable to small fluctuations. Further,
problems related to the holographic relation between the
bulk and boundary proposed in [14] (see also [17]) have
been raised in [18–20]. In fact, Refs. [16,19,20] have made
conjectures which amount to claiming that the dual to
PIRCs have the regions behind the horizons removed and
end in capped (quantum) geometries beyond the would-be
horizons (see also [21,22]). Our results are consistent with
the proposals of [16,19,20] and raise further issues with the
proposal of [14].

II. DIFFERENT BOUNDARIES AND
DIFFERENT CFTS

A. Boundary CFT

To equate the dynamics in AdS to those in a CFT, one
needs the so-called dictionary between them. The first entry
in this dictionary is the definition of the “boundary” onwhich
the CFT is supposed to live (loosely speaking, since AdS and
CFT are dual descriptions). Asymptotically AdS spacetimes
admit a Fefferman-Graham expansion of their metrics:

ds2 →
dr2

r2
þ ðr2gð0Þab þ gð2Þab þOðr−2ÞÞdxadxb: ð1Þ

The boundary is understood to be at a fixed large value of r
that we refer to as rc. This location is related to the cutoff of
the dual theory, and aCFTis obtained by taking rc → ∞. The
coordinates xa span the field theory directions. Since the
metric blows up for large r, themetric onAdSdoes not define
a metric on the boundary but instead yields a conformal

structure. Thus, gð0Þab is the boundary metric up to
Weyl transformations [23]. The on-shell variation of the
gravity action, which includes the Einstein-Hilbert term,
the Gibbons-Hawking term, and a divergence-cancelling
counterterm [1],
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S ¼ 1

16πG

Z
ddþ1x

ffiffiffiffiffiffiffiffiffiffiffiffi
gðdþ1Þ

q
ðR − 2ΛÞ

þ 1

8πG

Z
∂M

ddx
ffiffiffiffiffiffiffi
gðdÞ

q
K þ 1

8πG
SctðgðdÞÞ; ð2Þ

gives

δS ¼ 1

2

Z
∂M

d2x
ffiffiffiffiffiffiffiffiffiffi
−gð0Þ

q
Tabδgð0Þab ; ð3Þ

where Tab is a symmetric tensor that is interpreted as the
expectation value of the stress tensor of the CFT [1]. The
variational principle is well posed if we impose Dirichlet

boundary conditions δgð0Þab ¼ 0.1

Imposing a boundary condition specifies the theory;
Dirichlet boundary conditions, in particular, amount to
“holding the boundary fixed” [4]. Here, gð2Þab is allowed to
fluctuate and captures information of the state. In fact for

flat boundaries, Tab ∼ gð2Þab , and this information is thus
encoded in the stress tensor.
Implicit in the choice of boundary conditions is the

choice of surface on which such conditions are being
imposed. Equation (1) does not allow such a choice
because the choice has already been made by foliating
spacetime in a particular way. We will discuss more about
this issue of choice of boundary surfaces below.

B. States in the boundary CFT

In the special case of AdS3 we have another way to
understand the boundary conditions. Brown and Henneaux
[24] have shown that diffeomorphisms with the asymptotic
(large r) form

xþ → xþ − ξþ −
1

2r2
∂2
−ξ

−; ð4Þ

x− → x− − ξ− −
1

2r2
∂2þξþ; ð5Þ

r → rþ r
2
ð∂þξþ þ ∂−ξ

−Þ; ð6Þ

where x� ¼ t� x, preserve the asymptotic boundary
conditions

gþ−¼−
r2

2
þOð1Þ; gþþ ¼Oð1Þ; g−− ¼Oð1Þ;

grr¼
1

r2
þOðr−4Þ; gþr¼Oðr−3Þ; g−r¼Oðr−3Þ:

ð7Þ

In the r → ∞ limit the transformations of x� induce
conformal transformations on the boundary CFT, and this

is reflected in changes in gð2Þ while at the same time
keeping δgð0Þ ¼ 0.
We see from (6) that conformal transformations inducing

diffeomorphisms change the location of the boundary
surface. So different foliations permitting asymptotic
Fefferman-Graham forms do not immediately imply that
the associated CFTs are genuinely different. In particular,
they are not different if they are related by a Brown-
Henneaux transformation as then there is a conformal
mapping between the two.2

C. Global vs Rindler boundary

1. Global and Rindler-AdS foliations
and their boundaries

One can write the global AdS3 line element as3

ds2 ¼ dρ2

ρ2 þ 1
− ðρ2 þ 1Þdτ2 þ ρ2dϕ2 ð8Þ

FIG. 1. The boundary of AdS for global foliation is shown in
gray. This is a surface of constant radius in global coordinates for
large values of the radius. The yellow surfaces are surfaces of
constant Rindler-AdS radius. It is easy to see that fixing boundary
conditions on the global boundary imposes conditions on small
Rindler-AdS radial surfaces also. Conversely, putting boundary
conditions on just large Rindler-AdS radial surfaces does not put
any boundary conditions on the global boundary outside a finite
domain. Thus, the global-CFT and the Rindler-CFT are different
and imply different dynamics for the bulk.

1Certain other boundary conditions are also allowed [3–5], but
for simplicity we only discuss Dirichlet boundary conditions.

2We thank Nemani Suryanarayana for discussions on this
point.

3For definiteness we discuss only three-dimensional AdS. The
results can be generalized to higher dimensions in a straightfor-
ward way for most of the paper. An exception is the discussion of
the BTZ black hole which can be viewed as a quotient of AdS3;
higher-dimensional eternal AdS black holes cannot be obtained
as quotients of AdS.
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where ρ ∈ ½0;∞Þ, τ ∈ ð−∞;∞Þ and ϕ ∼ ϕþ 2π.4 These
coordinates cover the entire manifold. It is often useful to
conformally compactify ρ and visualize AdS3 as a solid
cylinder (Fig. 1). Similarly, one can also write the metric for
the Rindler-AdS wedges in BTZ form:

ds2 ¼ drR2

rR2 − 1
− ðrR2 − 1ÞdtR2 þ rR2dxR2 ð9Þ

where rR ∈ ð1;∞Þ, tR ∈ ð−∞;∞Þ and xR ∈ ð−∞;∞Þ.
There is an acceleration horizon at rR ¼ 1 and
these coordinates cover the region outside the horizon
[6,25–28]. The rest of AdS3 may be viewed as a Kruskal-
like extension of these coordinates. The temperature
associated with the acceleration horizon can be read off
by Wick rotation, and demanding the absence of a conical
singularity, it turns out to be 1

2π.
5

One can perform a large ρ expansion to write (8) in the
Fefferman-Graham form [9] and define a CFT on the
cylindrical boundary S1 × R at ρ ¼ ρc → ∞. One can
also perform a large rR expansion to write (9) in the
Fefferman-Graham form and define two CFTs on
R1;1 × R1;1 at rR ¼ rRc → ∞.6 We refer to the former

CFT as the global-CFT and the latter CFT pair as the
Rindler-CFTs.
It has been claimed that these two CFTs are equivalent

(see [2,30], for example). We will argue that this is not
the case.
Let us begin by writing down the expressions relating

global to Rindler-AdS coordinates:

ρ2 ¼ ðrR2 − 1Þ cosh 2xR þ cosh 2tR
2

þ sinh2xR; ð10Þ

cotϕ ¼ −
rRffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rR2 − 1
p sinh xR

cosh tR
; ð11Þ

tan τ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rR2 − 1

p
rR

sinh tR
cosh xR

; ð12Þ

and the inverse relations

rR2 − 1 ¼ −ðρ2 þ 1Þsin2τ þ ρ2sin2ϕ; ð13Þ

tanh xR ¼ −
ρffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ2 þ 1
p cosϕ

cos τ
; ð14Þ

tanh tR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ 1

p
ρ

sin τ
sinϕ

: ð15Þ

From (13) it is clear that for any given ρc, one gets
rR ¼ 1 (the Rindler-AdS horizon) for suitable values of
ϕ and τ. Said differently, the bulk acceleration horizon

FIG. 2. (a) The global cutoff surface ρ ¼ ρc is shown in red, and the Rindler cutoff surface rR ¼ rRc is shown in blue. (b) When we
take ρc to infinity, all the rR surfaces bunch up along the edges of the “causal diamond.” Two of them are shown in the figure.

4All throughout this paper we set the AdS radius to unity.
5There are ways to foliate AdS to give an inner horizon as well

[15,29] that corresponds to a rotating BTZ string. For simplicity
we will not discuss those.

6Care must be taken to redefine the radial coordinates to put
the metric in the Fefferman-Graham form to read off the values of
gð0Þab and gð2Þab .

BORUN D. CHOWDHURY and MAULIK K. PARIKH PHYSICAL REVIEW D 93, 046004 (2016)

046004-4



intersects the cylinder of any radius ρc, and imposing
boundary conditions on the cylinder to define the
global-CFT will always impose conditions on the metric
for small rR when xR; tR are large enough. This behavior
persists when ρc → ∞. This is shown in Fig. 2(b). If,
on the other hand, one wants to define the Rindler-CFT,
then one needs to take large rRc and permit arbitrarily large
xR and tR. Then one takes rRc → ∞. This is clearly not
consistent with the above procedure. This justifies our
claim that the Rindler-CFT pair is different from the
global-CFT.

2. Global-CFT vs Rindler-CFT

One may still wonder if the two CFTs are approximately
the same in any sense. After all, when ρc and rRc are
comparable, then one would expect the CFTs defined
on the two surfaces to be related by conformal transforma-
tions. To analyze this, let us consider the global-CFT to see
when it can be related to the Rindler-CFT by conformal
transformations. In what follows wewant ρ to be large sowe
take ρ ∼Oðϵ−1Þ with ϵ ≪ 1. In this limit (13)–(15) become

rR2 ¼ ρ2ðsin2ϕ − sin2τÞ þ cos2τ; ð16Þ

tanh xR ¼ −
�
1 −

1

2ρ2

�
cosϕ
cos τ

; ð17Þ

tanh tR ¼
�
1þ 1

2ρ2

�
sin τ
sinϕ

: ð18Þ

Equation (16) shows us that we have two distinct
possibilities. One is when ðsin2 ϕ − sin2 τÞ ∼Oð1Þ so
thatwe have rR ∼ ρ ∼Oðϵ−1Þ and the other iswhen ðsin2ϕ−
sin2 τÞ∼Oðϵ2Þ so that we have rR ∼Oð1Þ ≪ ρ.We consider
these two possibilities in detail.
Large rR: For this limit we consider ðsin2 ϕ − sin2 τÞ∼
Oð1Þ. We define ϕ̂ ¼ ϕ − π=2 and further consider the limit
ϕ̂; τ ≪ 1. In this limit it is easy to see that we get

rR ¼ ρ

�
1 −

1

2
ðτ2 þ ϕ̂2Þ

�
; ð19Þ

tR − xR ¼ ðτ − ϕ̂Þ þ ðτ − ϕ̂Þ3
6

þ ðτ þ ϕ̂Þ
2ρ2

; ð20Þ

tR þ xR ¼ ðτ þ ϕ̂Þ þ ðτ þ ϕ̂Þ3
6

þ ðτ − ϕ̂Þ
2ρ2

: ð21Þ

Viewed as a diffeomorphism ρ → rR; τ → tR;ϕ → xR,
the above is realized as a Brown-Henneaux diffeo-
morphism (4)–(6) with ξ� ¼ − 1

6
ðτ � ϕÞ3. Note, one

can take the limits rR → ∞ and ρ → ∞ together, and
this means that the Fefferman-Graham expansions in

the two radial coordinates are consistent. Writing the
metric in the Fefferman-Graham form (1)7 and using
Brown-Henneaux diffeomorphisms, we get

drR2

rR2
þ rR2ð−dtR2 þ dxR2Þ þ

1

2
ðdtR2 þ dxR2Þ

¼ dρ2

ρ2
þ ρ2ð−dτ2 þ dϕ2Þ − 1

2
ðdτ2 þ dϕ2Þ ð22Þ

which shows that the negative Casimir energy vacuum
state of the global-CFTappears to be an excited state of
the Rindler-CFT.

Small rR: For this limit we consider ðsin2ϕ − sin2τÞ≲
Oðϵ2Þ. This region is shown on the boundary cylinder in
Fig. 3. To show that the Rindler-CFT and global-CFT are
not conformally related, it suffices to show this in any one
part of this region. We consider ϕ ∼OðϵÞ and τ ∼Oðϵ2Þ.
The relations (13)–(15) become

rR2 ¼ ρ2ϕ2 þ 1 ∼Oð1Þ; ð23Þ

FIG. 3. We open up the global boundary cylinder for better
visualization. The colored regions are the causal diamonds and
are the interior of the curve the bulk Rindler-AdS horizons trace
on the boundary cylinder. The global boundary cylinder is taken
to be large with ρ ∼Oðϵ−1Þ and ϵ ≪ 1. The region where the
Rindler-AdS radial coordinate rR ∼Oð1Þ is shown in blue. This
is the region where the Fefferman-Graham expansions in ρ and rR
are not consistent and the Rindler-CFT cannot be approximated
by the global-CFT.

7As explained in footnote 6 this involves a redefinition of the
radial coordinates for both foliations, but to avoid clutter we use
the same labels.
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e2xR ¼ 1

4

�
1

ρ2
þ ϕ2

�
∼Oðϵ2Þ; ð24Þ

tR ¼ τ

ϕ

�
1þ 1

2ρ2
þ 1

6
ϕ2

�
∼OðϵÞ: ð25Þ

Similarly, the relations (10)–(12) become

ρ ¼ e−xR

2
rR ∼Oðϵ−1Þ; ð26Þ

ϕ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rR2 − 1

p
rR

exR ∼OðϵÞ; ð27Þ

τ ¼ 2t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rR2 − 1

p
rR

exR ∼Oðϵ2Þ: ð28Þ

This does not have an interpretation as a small diffeo-
morphism and hence cannot be interpreted as a Brown-
Henneaux diffeomorphism. In addition, the coordinate
rR is now Oð1Þ so it cannot be used as an expansion
parameter for Brown-Henneaux diffeomorphisms or
Fefferman-Graham expansions. Thus, now one cannot
simultaneously take the limits ρ → ∞ and rR → ∞.

In summary, the two CFTs are approximated by each other
when rR scales as ρ, and this is in the vicinity of the center of
the causal diamond. On the other hand, the two CFTs are
distinctwhen ρ is large but rR is small, and this happens in the
vicinity of the edges of the causal diamond. The width of the
region inwhich rR goes fromOðρÞ toOð1Þ is proportional to
the UV cutoff scale of the CFT.

D. Global vs Poincaré boundary

1. Global and Poincaré coordinates and boundaries

The story is analogous for the global vs Poincaré
foliations. The metric in the Poincaré coordinates is

ds2 ¼ drP2

rP2
þ rP2ð−dtP2 þ dxP2Þ ð29Þ

where rP ∈ ð0;∞Þ and tP; xP ∈ ð−∞;∞Þ. There is a
Cauchy (“Poincaré”) horizon at rP ¼ 0. The relations
between the global and Poincaré coordinates are

ρ ¼ 1

2
rP

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½rP−2 þ ð−1þ xP2 − tP2Þ�2 þ 4xP2

q
;

tan τ ¼ 2tP
rP−2 þ ð1þ xP2 − tP2Þ

; ð30Þ

tanϕ ¼ −
2xP

rP−2 þ ð−1þ xP2 − tP2Þ
; ð31Þ

and the inverse relations are

rP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ρ2

q
cos τ þ ρ cosϕ; ð32Þ

tPrP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ρ2

q
sin τ; ð33Þ

xPrP ¼ ρ sinϕ: ð34Þ

FIG. 4. (a) Global cutoff surface ρ ¼ ρc is shown in red and Poincaré cutoff surface rP ¼ rPc is shown in blue. (b) When we take ρc to
infinity, all the rP surfaces bunch up along the edges of the causal diamond. Two of them are shown in the figure.
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The global-CFT is defined on the ρc → ∞ surface, and
the Poincaré-CFT is defined on the rPc → ∞ surface. In
Fig. 4(a) we plot two such surfaces without taking the
cutoff to infinity. In Fig. 4(b) we conformally compactify
the global cylinder and see that surfaces of different
constant rP bunch up at the edges of the causal diamond.
As in the Rindler-AdS case, imposing boundary conditions
on the global boundary imposes conditions on small rP
surfaces also. This justifies our claim that Poincaré-CFT
and global-CFT are different.

2. Global-CFT vs Poincaré-CFT

As before we would expect the global and the Poincaré-
CFTs to be approximately the same when ρc and rPc are
comparable since then one would expect the CFTs defined
on the two surfaces to be related by conformal trans-
formations. To analyze this we will consider the global-
CFT and try to see if and when it can be related to the
Poincaré-CFT by conformal transformations. We want
ρ large so we take ρ ∼Oðϵ−1Þ with ϵ ≪ 1. In this limit
(32)–(34) become

rP ¼ ρðcos τ þ cosϕÞ þ cos τ; ð35Þ

tP ¼ sin τ
cos τ þ cosϕ

�
1þ cosϕ

2ρ2ðcos τ þ cosϕÞ
�
; ð36Þ

xP ¼ sinϕ
cos τ þ cosϕ

�
1 −

cos τ
2ρ2ðcos τ þ cosϕÞ

�
: ð37Þ

Equation (35) shows us that we have two distinct possibil-
ities. The first is when ðcosϕþ cos τÞ ∼Oð1Þ so that we
have rP ∼ ρ ∼Oðϵ−1Þ, and the other is when ðcosϕþ
cos τÞ ∼OðϵÞ so that we have rR ∼Oð1Þ ≪ ρ. We consider
these two possibilities in detail.
Large rP: For this limit we consider ðcosϕþ cos τÞ∼
Oð1Þ. We further consider the limit ϕ; τ ≪ 1. We get

rP ¼ 2ρ

�
1 −

1

4
ðτ2 þ ϕ2Þ

�
; ð38Þ

tP − xP ¼ 1

2
ðτ − ϕÞ þ ðτ − ϕÞ3

24
þ ðτ þ ϕÞ

8ρ2
; ð39Þ

tP þ xP ¼ 1

2
ðτ þ ϕÞ þ ðτ þ ϕÞ3

24
þ ðτ − ϕÞ

8ρ2
: ð40Þ

Viewed as a diffeomorphism ρ → 1
2
rP; τ →

1
2
tP;

ϕ → 1
2
xP, the above is realized as a Brown-Henneaux

diffeomorphism (4)–(6) with ξ� ¼ − 1
12
ðτ � ϕÞ3. One

can take the limits rP → ∞ and ρ → ∞ together, and
this means that the Fefferman-Graham expansions in
the two radial coordinates are consistent. Writing the

metric in the Fefferman-Graham form (1)8 and using
Brown-Henneaux diffeomorphisms, we get

drP2

rP2
þ rP2ð−dtP2 þ dxP2Þ

¼ dρ2

ρ2
þ ρ2ð−dτ2 þ dϕ2Þ − 1

2
ðdτ2 þ dϕ2Þ ð41Þ

which shows that the negative Casimir energy vacuum
state of the global-CFT appears to be the vacuum state
of the Poincaré-CFT with zero energy.

Small rP: For this limit we consider ðcosϕþ cos τÞ≲OðϵÞ.
This region is shown on the boundary cylinder in Fig. 5. To
show that the Poincaré-CFT and global-CFT are not
conformally related it suffices to show this in any one
part of this region. We define ~ϕ≡ π − ϕ and consider ~ϕ ∼
Oð ffiffiffi

ϵ
p Þ and τ ∼OðϵÞ. The relations (32)–(34) become

FIG. 5. We open up the boundary cylinder for better visuali-
zation. The colored region is the causal diamond and is the
interior of the curve the bulk Poincaré horizon traces on the global
boundary cylinder. The boundary cylinder is taken to be large
with ρ ∼Oðϵ−1Þ and ϵ ≪ 1. The region where the Poincaré
radial coordinate rP ∼Oð1Þ is shown in blue. This is the region
where the Fefferman-Graham expansions in ρ and rP are not
consistent and the Poincaré-CFT cannot be approximated by the
global-CFT.

8As explained in footnote 6 this involves a redefinition of the
global radial coordinate, but to avoid clutter we use the same
label.
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rP ¼ 1

2
ρ ~ϕ2 þ 1 ∼Oð1Þ; ð42Þ

tP ¼
2τ
~ϕ2

∼Oð1Þ; ð43Þ

xP ¼ 2

~ϕ
∼Oðϵ−1=2Þ: ð44Þ

Similarly, the relations (30) and (31) become

ρ ¼ rPxP2 ∼Oðϵ−1Þ; ð45Þ

τ ¼ 2tP
xP2

∼OðϵÞ; ð46Þ

~ϕ ¼ 2

xP
∼Oðϵ1=2Þ: ð47Þ

This does not have an interpretation as a small
diffeomorphism and hence cannot be interpreted as
a Brown-Henneaux diffeomorphism. Additionally, the
coordinate rP is now Oð1Þ so it cannot be used as an
expansion parameter for Brown-Henneaux diffeomor-
phisms or Fefferman-Graham expansions. Also, now
one cannot simultaneously take the limits ρ → ∞
and rP → ∞.

As before, we see that the two CFTs are approximated by
each other when rP scales as ρ, which is in the vicinity of
the center of the Poincaré causal diamond. On the other
hand, the two CFTs are distinct when ρ is large but rP is
small, and this happens in the vicinity of the edges of the
Poincaré causal diamond. The width of the region in which

rP goes from OðρÞ to Oð1Þ is controlled by the UV cutoff
scale of the CFT.

III. CORRELATION FUNCTIONS IN
GLOBAL-CFT, RINDLER-CFT,

AND POINCARÉ-CFT

A. Differences between global-CFT and Rindler-CFT

Consider the coordinate transformations

tanh xR0 ¼ −
cosϕ
cos τ

; ð48Þ

tanh tR0 ¼
sin τ
sinϕ

: ð49Þ

This is a change of coordinates from the plane to a causal
diamond that is the development of ϕ ∈ ð0; πÞ in the
cylinder. In Fig. 6(a) we plot the causal diamond (and
also its antipodal version).
The two-point function of a primary operator O of

weight Δ, Δ on the cylinder is fixed by conformal
invariance:

hOðτ;ϕÞOð0; 0Þi ∼
�

1

sinðτ−ϕ
2
Þ

1

sinðτþϕ
2
Þ

�
2Δ
; ð50Þ

and under the conformal transformation (48) and (49), it
becomes

hOðtR0;xR0ÞOð0;0Þi∼
�

1

sinhðtR 0−xR 0
2

Þ
1

sinhðtR 0þxR 0
2

Þ

�
2Δ
: ð51Þ

More general correlation functions inside the causal dia-
monds can be obtained from the ones on the cylinder, and

FIG. 6. We open up the boundary cylinder for better visualization. In (a) one formally divides the global-CFT into two halves and
follows their causal development inside the causal diamonds. This is analogous to “Rindlerizing the global-CFT.” This is not the same as
the Rindler-CFT (b). While the two theories are approximately equal deep inside the diamonds, they start differing at the edges. The
global-CFT is defined everywhere, but the Rindler-CFT is defined only inside the diamonds. Correlation functions of the latter do not
give those of the former under analytic continuation.
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conversely the correlation functions inside a causal dia-
mond give the correlation functions on the rest of the
cylinder by analytic continuation.
The coordinate transformations (48) and (49) are analo-

gous to the coordinate transformation to go from
Minkowski spacetime to Rindler spacetime [31] and so,
even though the CFT in the diamond is the same as the
global-CFT, we refer to it as Rindlerized-global-CFTas it is
restricted to the causal diamond.
The new coordinates tR0; xR0 on the global boundary

cylinder can be related to the Rindler-AdS coordinates
tR; xR in the large ρ limit using (17) and (18):

tanh xR ¼ tanh xR0
�
1 −

1

2ρ2

�
; ð52Þ

tanh tR ¼ tanh tR0
�
1þ 1

2ρ2

�
: ð53Þ

We can use these to understand what the correlators of
the global-CFT imply for the correlators of the Rindler-
CFT. In the center of the causal diamonds e−xR ; e−tR ≫
OðϵÞ and we have tR0 ≈ tR; xR0 ≈ xR. The correlators of the
Rindler-CFT can be approximated by

hOðtR; xRÞOð0; 0Þi ≈
�

1

sinhðtR−xR
2

Þ
1

sinhðtRþxR
2

Þ
�

2Δ
: ð54Þ

However, when e−xR ; e−tR ∼OðϵÞ we get

e−2tR
0 ¼ e−2tR þ 1

4ρ2
; ð55Þ

e−2xR
0 ¼ e−2xR −

1

4ρ2
; ð56Þ

and if we are considering the global-CFT, then for e−xR
0
;

e−tR
0 ∼OðϵÞ the correlators will continue to be given by

(51) but in the same limit e−xR ; e−tR ∼OðϵÞ, and the
Rindler-CFT correlators will now deviate from the
form (54).9

Let us try to understand what this means. If we were to
consider the Rindler-CFT in a thermal state, then the
correlators would be given by (54) for all values of
tR; xR since the two-point function in this case is fixed
by conformal invariance. In other words, if we were to
regulate the Rindler-CFT by putting some boundary con-
ditions at xRmin ¼ −~x and xRmax ¼ ~x, then the correlators
would be different for different boundary conditions but

would all approach (54) in the limit ~x → ∞ irrespective of
the boundary conditions.
However, what we see above is that if we consider the

global-CFT with a UV cutoff, then the Rindler-CFT
correlators differ from (54) at the edges of the causal
diamond. In the limit that the cutoff is pushed to infinity, the
deviation from (54) happens at larger and larger values of
tR; xR but is always present.
Conversely, if we consider the Rindler-CFT then the

correlators of the Rindlerized-global-CFT will differ from
(51) at the edges of the causal diamond, and this immedi-
ately implies that the global-CFT correlators will not be the
vacuum correlator (50). In fact, since the Rindler-CFT is
not even defined outside the causal diamond, it seems likely
that analytic continuation of correlators outside the causal
diamonds will not work. This is shown in Fig. 6(b).

B. Differences between global-CFT and Poincaré-CFT

The analysis is similar to that in Sec. III A so we will be
brief. Consider the coordinate transformations

tP0 ¼
sin τ

cos τ þ cosϕ
; ð57Þ

xP0 ¼
sinϕ

cos τ þ cosϕ
: ð58Þ

This is a change of coordinates from the plane to a causal
diamond, which is the development of ϕ ∈ ð0; 2πÞ in the
global cylinder. We open up the cylinder and plot this
causal diamond in Fig. 7(a).
Lucher and Mac [32] showed that correlation functions

within this causal diamond can be analytically continued to
the whole cylinder. This is because they are the same CFT
related by coordinate transformations and so have the same
dynamics. We refer to the CFT restricted inside this causal
diamond as the Poincarized-global-CFT. The two-point
correlator of a primary operator of weight Δ, Δ inside the
causal diamond is

hOðtP0; xP0ÞOð0; 0Þi ≈
�

1

tP02 − xP02

�
2Δ
: ð59Þ

The coordinates tP0; xP0 on the global boundary cylinder
can be related to Poincaré coordinates tP; xP in the large ρ
limit using (36) and (37):

tP ¼ tP0
�
1þ 1þ tP02 − xP02

4ρ2

�
; ð60Þ

xP ¼ xP0
�
1 −

1 − tP02 þ xP02

4ρ2

�
: ð61Þ

We can use these to understand what the correlators of the
global-CFT imply for the correlators of the Poincaré-CFT.
When tP; xP ∼Oð1Þ we have tP0 ≈ tP; xP0 ≈ xP. This is the

9To be precise, since we are considering the CFTwith a cutoff,
there will be corrections of the formOððtR0 � xR0Þ=ρÞ to (51) and
similar corrections to (54). These corrections are of a similar
nature as the UV cutoff for both the CFTs are related. However,
for the deviations of the Rindler-CFT correlators for large values
of xR; tR from (54), we see that the UV cutoff of the global-CFT
induces an IR cutoff for the Rindler-CFT.
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center of the causal diamond, and the correlators of the
Poincaré-CFT in this limit have the same expression as
those of the Poincarized-global-CFT:

hOðtP; xPÞOð0; 0Þi ≈
�

1

tP2 − xP2

�
2Δ
: ð62Þ

However, when tP; xP ∼Oðϵ−1Þ the two start differing. If
we are considering the global-CFT then for tP0; xP0 ∼
Oðϵ−1Þ the correlators will continue to be given by (59).
But in the same limit tP; xP ∼Oðϵ−1Þ, and the Poincaré-
CFT correlators will now deviate from the form (62).
If we were in the vacuum state of the Poincaré-CFT, the

correlators would be given by (62) for all values of tP; xP
since this is determined by conformal invariance. In other
words, if we put boundary conditions at xPmin ¼ −~x and
xPmax ¼ ~x the correlators would be sensitive to these
boundary conditions, but in the limit ~x → ∞ they would
go to (62). We see precisely this kind of deviation for the
Poincaré-CFT correlators when considering the global-
CFT. Conversely, if we consider the Poincaré-CFT then
the correlator of Poincarized-global-CFT will differ from
(59) at the edges of the causal diamond, and this implies the
global-CFT correlators will be different from (50). Since
the Poincaré-CFT is not even defined outside the causal
diamond, it seems likely that analytic continuation of
correlators outside the causal diamond will not work.
This is shown in Fig. 7(b).

C. Relating the CFTs

We have argued that the various CFTs are different. An
interesting question is whether it may be possible to view
the Rindler-CFTs and the Poincaré-CFTs as deformations
of the global-CFT. It seems the answer is yes.

From Sec. III Awe see that the Rindlerized-global-CFTs
and Rindler-CFTs are both defined on two copies of R1;1.
The former is in a particular entangled state (thermofield
double state) by construction [31], and we can consider the
latter in the same state. The two then appear to be the same
but there is a subtle difference. In the case of the
Rindlerized-global-CFT the Hilbert spaces associated with
the two are the same as the ones associated with the
intervals ð0; πÞ and ðπ; 2πÞ in global coordinates. These two
Hilbert spaces are interacting (see Sec. II of [19]) across the
points ϕ ¼ 0 and ϕ ¼ π. This suggests that one may
(roughly) think of the global-CFT as the pair of Rindler-
CFTs with an interaction between them across their
respective boundaries. Similarly, one may (roughly) think
of the global-CFT as the Poincaré -CFTwith an interaction
across its two ends. We hope to make this rough picture
more precise in the future.

IV. IMPLICATIONS FOR BULK PHYSICS

A. Conjecture for the bulk dual of Rindler-CFT
and Poincaré-CFT

We have established that correlation functions of
Rindler-CFT, Poincaré-CFT, and global-CFT are different.
Next we would like to understand the implications of this
for the bulk physics. In general, local bulk physics is quite
difficult to examine using the boundary field theory.
However, global causal structures suggest some interesting
new physics.
One might have expected that global AdS is dual to all

these CFTs, but since their correlators are different, the bulk
duals must be different too. Since the correlators are
approximately equal until very close to the edges of the
causal diamonds and since the causal diamonds are

FIG. 7. We open up the boundary cylinder for better visualization. In (a) we show the causal development of the interval ð0; 2πÞ.
Correlation functions inside can be analytically continued to the full cylinder [32]. This is not the same as the Poincaré-CFT (b). While
the two theories are approximately equal deep inside the diamond, they start differing at the edges. The global-CFT is defined
everywhere but the Poincaré-CFT is defined only inside the diamond. Correlation functions of the latter do not give those of the former
under analytic continuation.
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the projections of the event horizons, we conjecture that the
bulk duals to the Rindler-CFT and the Poincaré-CFT will
have a semiclassical description that matches that of the
global-CFT until very close to the respective horizons and
then start differing. The exact differences will depend on
the boundary conditions on the Rindler-CFT and Poincaré-
CFT; we discuss two specific cases below.

B. Implications for the massless BTZ black hole

The massless BTZ black hole can be viewed as a quotient
of AdS3 [33] that amounts to foliating in Poincaré
coordinates and periodically identifying xP ∼ xP þ 2π.
The question we want to ask is, what is the bulk dual
when we periodically identify the xP coordinate for the
Poincaré-CFT? We refer to this as the periodically iden-
tified PIPC.
Let us begin by reviewing how the naive two-point

functions of the PIPCs are obtained. Consider Euclidean
AdS3 (see Appendix B for details). The boundary has the
topology S2. According to [23], in Poincaré coordinates the
boundary is at rP ¼ ∞ (which has a topology R2) with a
point at rP ¼ 0 added. The boundary to the bulk propagator
is given by

KEuclidean
P ðrP; xP; tE;P; rPB; xPB ¼ 0; tPB ¼ 0Þ

∼

8<
:

rP−Δ when rPB ¼ 0�
rP

1þrP2½xP2þtP2�

�
Δ

when rPB ¼ ∞;
ð63Þ

where terms with superscripts denote boundary coordinates
and Δ is interpreted as the conformal weight of the
associated CFToperator. Naively, one obtains the boundary
two-point function for the orbifolded geometry by sum-
ming over images of the Wick-rotated rPB ¼ ∞ case of
(63) and then using standard techniques to obtain

hOðtP; xPÞOð0; 0ÞiPIPC
∼

X∞
k¼−∞

1

ðxP þ tP þ 2πkÞ2ΔðxP − tP þ 2πkÞ2Δ : ð64Þ

However, there is a problem with this procedure, and that
is why we have crossed out the subscript on the correlator
above. In Appendix B we explain that even in the Euclidean
case the asymptotic limits of different foliations are not
consistent. In particular, on a global S2 of constant radius,
large values of xP correspond to small values of rPB. In the
limit in which the global radius is taken to infinity, the
transition region shrinks to zero in size and is captured by
the “point at rP ¼ 0.” For our purposes this implies that the
rPB ¼ ∞ case of (63) is only correct for xP; tP values
smaller than the UV cutoff scale. In the Wick-rotated case
this means it is valid only inside the Poincaré causal
diamond away from the edges [see Fig. 7(b)]. Thus, the

method of images can only be used as an approximation
deep inside the causal diamond. Since the Poincaré-CFT
and the global-CFT differ at the edges of the causal
diamond and since under periodic identification the edges
correspond to late times, the correct two-point function of
PIPC would be approximated by (64) for early times but
differ at late times. Consequently, according to our con-
jecture the bulk dual should resemble the massless BTZ
until very close to the horizon but then should start
differing. The length scale over which the transition takes
place is governed by the UV cutoff.
Remarkably, we realize in hindsight that in the case of

the D1-D5 system which flows in the IR to an N ¼ ð4; 4Þ
CFT, all this has been explicitly shown to be the case.
Naively, the metric and dilaton of the D1-D5 system (with
appropriate RR fluxes) are

ds2naive ¼
1ffiffiffiffiffiffiffiffiffi
g1g5

p ð−dtP2 þ dxP2Þ

þ ffiffiffiffiffiffiffiffiffi
g1g5

p X4
i¼1

dx2i þ
ffiffiffiffiffi
g1
g5

r X4
i¼1

dz2i

e2ϕ ¼ g1
g5

; g1 ¼ 1þQ1

r2
; g5 ¼ 1þQ5

r2
; ð65Þ

where the charge radii are related to quantized charges by
Q1;5 ¼ gl2sn1;5. The near-horizon limit of this geometry is
massless BTZ × T4 × S3. So when the direction xP is
compactified the D1-D5 CFT plays the role of the PIPC.
However, the actual microstates of the D1-D5 system are

not described by the massless BTZ. Instead they corre-
spond to the Lunin-Mathur 2-charge fuzzball geometries
[34–38]:

ds2string ¼
1ffiffiffiffiffiffiffiffiffi
~g1 ~g5

p ð−ðdtP − AidxiÞ2 þ ðdxP þ BidxiÞ2Þ

þ
ffiffiffiffiffiffiffiffiffi
~g1 ~g5

p X4
i¼1

dx2i þ
ffiffiffiffiffi
~g1
~g5

s X4
i¼1

dz2i ;

e2ϕ ¼ ~g1
~g5
; ~g5ð~xÞ ¼ 1þQ5

L

Z
L

0

dv

j~x − ~FðvÞj2
;

~g1ð~xÞ ¼ 1þQ5

L

Z
L

0

j _~FðvÞj2dv
j~x − ~FðvÞj2

;

Aið~xÞ ¼ −
Q5

L

Z
L

0

_FiðvÞdv
j~x − ~FðvÞj2

; dB ¼ −⋆4dA; ð66Þ

where ⋆4 is taken with respect to the flat metric for the
noncompact xi space and v ¼ xP − tP. The solutions are

governed by the profile function ~FðvÞ. The length of
integration is given by L ¼ 2πQ5 and one further has
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Q1 ¼
Q5

L

Z
L

0

dvð _FðvÞÞ2: ð67Þ

For these solutions we see that if j~FðvÞj < b, then at large
distances, r ≫ b, we recover the naive metric (65). Near

r⪅b metrics for different profile functions ~FðvÞ differ from
each other.
The two-point functions in CFT states dual to these

geometries have been worked out in the weak coupling
limit [39]. For a subset of these states (conical-defect
geometries [40,41]) we reproduce the result

hOðtP; xPÞOð0; 0Þiconical�defect

∼
Xn−1
k¼0

1

ð2n sin xPþtPþ2πk
2n Þ2ð2n sin xP−tPþ2πk

2n Þ2 ð68Þ

where n is the order of the conical defect. In general,
Ref. [39] found from studying the correlators that

“For large central charge (which leads to a good semi-
classical limit), and sufficiently small time separation, a
typical Ramond ground state of vanishing R-charge has
the M ¼ 0 BTZ black hole as its effective description.”

This is consistent with our claim that the true Poincaré-
CFT correlators agree with the global-CFT correlators deep
inside the causal diamond which, after periodic identifi-
cation, corresponds precisely to sufficiently small time
separation). Reference [39] further states that

“At large time separation this effective description breaks
down. The CFT correlators we compute take over, and
give a response whose details depend on the microstate.”

This, in particular, implies that none of the CFT
correlators match the naive one (64) at large time separa-
tion. This is consistent with our claim that the correlators of
the global-CFT and those of Poincaré-CFT disagree at the
edges of the causal diamond (which after periodic identi-
fication just means large time separation).
Thus, in the case of massless BTZ embedded in type IIB

supergravity compactified on S1 × T4 and S1 × K3, it is
already known that the correct bulk dual to PIPC is not
obtained from a simple orbifolding of AdS3. Instead the
correct bulk duals of PIPC resemble the massless BTZ until
very close to the horizon, and then quantum gravity effects
modify the bulk and cut off the geometry outside the
would-be horizons. This is shown in Fig. 8.

C. Implications for the massive BTZ black hole

The massive BTZ black hole can be viewed as a quotient
of AdS3 [11] that amounts to foliating in Rindler-AdS
coordinates and periodically identifying xR ∼ xR þ 2π. As
before, the question we want to ask is, what is the bulk dual

when we periodically identify the xR coordinate for the
Rindler-CFTs? We refer to these as the PIRCs.
The Carter-Penrose diagram of the massive BTZ is

shown in Fig. 9(a). There are two regions outside the
horizons which are asymptotically AdS. These regions
have shared future (past) regions behind event horizons
which end (begin) in a spacelike singularity. When viewed
as an orbifold of global AdS3, the event horizons are the
Rindler-AdS acceleration horizons and the singularities are
orbifolding singularities.
In [14], Maldacena proposed that the massive BTZ black

hole is dual to two decoupled CFTs which can be thought
as living on the two boundaries (see Fig. 9) with topologies
R × S1 and are in a particular entangled state called the
thermofield double state (for details see [14]). In particular,
the two CFTs are also supposed to capture the dynamics
behind the horizons. This is a remarkable proposal:
Imagine two excitations which we call boundary-Alice
and boundary-Bob on either CFT. Since the CFTs are
decoupled, these excitations have vanishing amplitude to
interact. Yet their dual versions, bulk-Bob and bulk-Alice,
have a nonzero amplitude to interact in the shared future
region. While this may perhaps be possible if we consider a

FIG. 9. The massive BTZ has two asymptotically AdS regions.
These regions share the future and past regions behind the event
horizons.

FIG. 8. (a) The geometry of the D1-D5 black hole has an outer
flat space connected by a neck to the massless BTZ black hole.
(b) The geometry of a generic state has outer flat space connected
by a neck to a throat which ends in a smooth cap without horizons
and singularities.
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Z2 identification [42], with excitations also respecting the
same identification, it seems hard to understand for the
usual eternal BTZ black hole. Conceptual puzzles related to
this issue have been raised in [18–20] and other puzzles
with this picture have been raised in [16].
Nevertheless, one of the reasons to trust this picture has

been that orbifolding in the bulk is innocuous at the
horizons, even though its effects are felt inside at the
orbifolding singularity. Thus, one hopes that the smooth-
ness of horizons would be maintained. Further, it has been
thought that the dual CFT to this orbifolded bulk can be
described as quotients of the global-CFT [12–15]. One may
then hope that the correlators from within the fundamental
domain may be continued to the entire cylinder, and this
could, in principle, be a dual description to dynamics
behind the horizons.10

In these kinds of discussions it is either implicitly or
explicitly assumed that the boundary CFT for studying
Rindler-AdS and that for studying global AdS are the same
(see Sec. II.4 of [43] and Sec. II.2 of [15] for instance). In
this paper we have explicitly shown that this is not the case.
Since the Rindler-AdS radial coordinate rR becomes the
radial coordinate of massive BTZ under orbifolding and the
CFT dual to the BTZ is supposed to live on a surface of
constant large radius, the CFT associated with the massive
BTZ would be the Rindler-CFT instead of the global-CFT.
This difference is particularly relevant for the calculation

of the CFT two-point function for the PIRCs. The naive
two-point function for the periodically identified Rindler-
CFT is obtained in the following way. Reference [13] takes
the Wick-rotated version of the rPB ¼ ∞ case of (63) and
uses the large rR limit of the coordinate transformation
between Poincaré and Rindler-AdS coordinates:

tP � xP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rR2 − 1

p
rR

etR�xR → etR�xR ; ð69Þ

rP ¼ rRe−xR ð70Þ

to get the bulk-boundary propagator in Rindler-AdS
coordinates:

KRindler−AdSðrR; xR; tR; rRB ¼ ∞; xRB ¼ 0; tRB ¼ 0Þ

¼
�

rR−2e−2xR

½rR−2 þ ð1 − e−xR−tRÞð1 − e−xRþtRÞ�2
�Δ=2

: ð71Þ

To obtain the boundary two-point function from the
orbifolded geometry, Ref. [13] sums over the images of
(71) and then using standard techniques [23] obtains

hOðxR; tRÞOð0; 0ÞiPIRC
∼

X∞
n¼−∞

�
1

sinhðtR−xR−2nπ
2

Þ
1

sinhðtRþxRþ2nπ
2

Þ

�
2Δ
: ð72Þ

Again, there is a problem with this procedure because we
have crossed out the subscripts on (71) and (72). Not only is
the Wick-rotated version of the rPB ¼ ∞ case of (63)
already an approximation for xP; tP deep inside the
Poincaré causal diamond (as explained in the previous
section), but moreover, Ref. [13] further takes a large rR
limit which means we are restricting ourselves to xR; tR
deep inside the Rindler-AdS causal diamonds. One cannot
then use the method of images on such an approximated
propagator (71). Thus, the two-point function (72) is at best
an approximation to the correct propagator for the PIRC for
early times. This is good because the correlators (72) show
a large time decay which is inconsistent with unitary CFTs
[14,22,44].
The correct two-point function of PIRC should resemble

(72) until very close to the edge of the causal diamonds.
After periodic identification, the edges correspond to late
times. So consequently the two should agree at early times
but not at late times. Consequently, according to our
conjecture the bulk dual should resemble the massive
BTZ until very close to the horizon and then start differing.
The length scale over which the transition takes place is
governed by the UV cutoff.
Our results support the conjecture forwarded by one of

us in [19] (see also [16,20]), which states that the true bulk
dual to the PIRCs is the one shown in Fig. 10 where the
bulk dual resembles the massive BTZ outside the horizons,
but there are no shared future and past regions. The
spacetime caps off in “fuzzballs.”11; This picture resolves
the problems raised in [16,18–20].12

FIG. 10. According to the proposals in [16,19,20] the bulkdual to
two decoupled CFTs on S1 × R that are in the thermofield double
state (which is equivalent to our PIRCs) are quantum geometries
which resemble the massive BTZ at large distances but get capped
outside the would-be horizons. Thus, there are no shared future or
past regions. Our results are consistent with these proposals.

10We thank Masaki Shigemori for discussions on this point.

11For a review on fuzzballs see [45–50].
12For an alternate proposal for modifying the bulk see [22].
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APPENDIX A: GLOBAL BOUNDARY VS.
SPHERICAL RINDLER BOUNDARY

In this appendix we study one more foliation of global
AdS which involves acceleration horizons in the bulk
reaching out to the boundary—the spherical Rindler-AdS
metric.13 The metric is

ds2¼ drSR2

rSR2−1
þðrSR2−1Þð−dt2SRþcosh2tSRdϕ2Þ; ðA1Þ

where rSR ∈ ð1;∞Þ, tSR ∈ ð−∞;∞Þ and ϕ ∼ ϕþ 2π. The
relation between the spherical Rindler-AdS and global
coordinates is

ρ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rSR2 − 1

q
cosh tSR; ðA2Þ

cot τ ¼ rSRffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rSR2 − 1

p 1

sinh tSR
; ðA3Þ

and the ϕ coordinate is the same. The inverse relations are

rSR ¼ cosh ρ cos τ; ðA4Þ

sinh tSR ¼ cosh ρ sin τffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosh2 ρ cos2 τ − 1

p : ðA5Þ

We see the same theme as before. We can define the global-
CFT by fixing boundary conditions on ρc. However, for
large enough tSR, we get a rSR ¼ 1 surface (and all other
small rSR surfaces) intersecting the global cylinder (see
Fig. 11). Imposing boundary conditions on the large ρc
surface puts conditions on small rSR surfaces also. Different
boundary conditions suggest that bulk physics would also
be different close to the horizon scale. It is possible that the

FIG. 11. (a) The global cutoff surface ρ ¼ ρc is shown in red, and the spherical Rindler-AdS cutoff surface rSR ¼ rSRc is shown in blue.
(b)Whenwe take ρc to infinity, all the rSR surfaces bunchup along the top and bottom edges of the “causal strip”whichmay be thought of as
the union of causal diamonds for all the Rindler-AdS observers [51]. Two such constant rSR surfaces are shown in the figure.

13Generalizations of this foliation were recently studied in
[51], and similar considerations apply to those foliations also.

BORUN D. CHOWDHURY and MAULIK K. PARIKH PHYSICAL REVIEW D 93, 046004 (2016)

046004-14



de Sitter CFT dual to spherical Rindler-AdS may be
viewable as a deformation of the global-CFT. We hope
to come back to this issue in the future.

APPENDIX B: EUCLIDEAN VERSION

Euclidean AdSdþ1 is a ball with the boundary having the
topology of Sd. Specializing to AdS3 we can write the
metric in coordinates which enjoy the symmetries of
Euclidean AdS:

ds2 ¼ d~ρ2

~ρ2 þ 1
þ ~ρ2ðd~θ2 þ sin2 ~θd ~ϕ2Þ: ðB1Þ

We can also use Poincaré coordinates (29) with Poincaré
time Wick rotated:

ds2 ¼ drP2

rP2
þ rP2ðdtP;E2 þ dxP2Þ: ðB2Þ

One can also foliate AdS3 by Wick rotating the global time
for global coordinates or the Rindler-AdS time for Rindler-
AdS coordinates. However, for our purpose the above two
suffice.
The relations between these coordinates are

ffiffiffiffiffiffiffiffiffiffiffiffiffi
~ρ2 þ 1

q
¼ 1

2rP
ð1þ rP2ð1þ xP2 þ tP;E2ÞÞ; ðB3Þ

tan ~ϕ ¼ t
x
; ðB4Þ

cos ~θ ¼
1
2rP

ð1 − rP2ð1 − xP2 − tP;E2ÞÞ
~ρ

; ðB5Þ

and the inverse relations are

rP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
~ρ2 þ 1

q
− ~ρ cos ~θ; ðB6Þ

xPrP ¼ ~ρ sin ~θ cos ~ϕ; ðB7Þ

tP;ErP ¼ ~ρ sin ~θ sin ~ϕ: ðB8Þ

The large ~ρ limits of (B6)–(B8) are

rP ¼ 2sin2ð~θ=2Þ~ρ; ðB9Þ

xP ¼ cotðθ=2Þ cos ~ϕ
�
1 −

1

4sin2ð~θ=2Þ~ρ2
�
; ðB10Þ

tP;E ¼ cotðθ=2Þ sin ~ϕ

�
1 −

1

4sin2ð~θ=2Þ~ρ2
�
: ðB11Þ

If we take a large sphere at ~ρ ∼Oðϵ−1Þ with ϵ ≪ 1 then we
have two cases. One has ~θ ∼Oð1Þ for which rP ∼ ~ρ, and the
other has ~θ ∼Oðϵ1=2Þ for which rP ∼Oð1Þ. In the latter
regime xP2 þ tP;E2 ∼Oðϵ−1Þ. In the limit that the UV cutoff
is taken to infinity one can think of the boundary of
Euclidean AdS3 being at rP ¼ ∞ with “a point added at
zero” [23]. However, as in the Lorentzian case, for any
large but finite ~ρ, surfaces of arbitrarily small rP intersect
the surface of constant ~ρ.
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