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We consider a D1-brane as a natural probe of the group manifold with mixed three-form fluxes. We
determine the Lax connection for a given theory. Then we switch to the canonical analysis and calculate the
Poisson brackets between spatial components of Lax connections, and we argue for the integrability of a

given theory.
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I. INTRODUCTION AND SUMMARY

The integrability in the AdS/CFT correspondence is
fundamental for calculations beyond the perturbative
theory. A famous example is the duality between N =
4 super-Yang-Mills theory in four dimensions and type-
IIB theory on AdSs x S° with the Ramond-Ramond (RR)
flux, where the exact string spectrum and the spectrum of
anomalous dimensions in the super-Yang-Mills theory
can be described by Bethe-ansatz equations.1 The inte-
grability on the string theory side of the correspondence
is based on the existence of the Lax connection that
implies the existence of an infinite number of conserved
charges [5]. However, this is only a necessary condition
since the integrability of the theory also requires that
these conserved charges are in involution, as was stressed
in Ref. [6].

It is well known that integrability can be applied for
group manifolds with nontrivial RR and Neveu-Schwarz
Neveu-Schwarz (NSNS) fluxes. Such a famous example
is string theory on an AdS; background with nontrivial
RR and NSNS fluxes. It turns out that in the case of pure
NSNS flux the string theory can be quantized using
world-sheet conformal field theory techniques [7—12]. On
the other hand, the RR AdS; backgrounds have a more
complicated CFT description [13], while these back-
grounds are integrable as well [14,15].

On the other hand, the case of a mixed RR-NSNS AdS;
background is much more challenging either from the CFT
perspective or from the integrability point of view. One
possibility is to consider small derivations from the pure
NSNS point using the conformal perturbative theory [16].
Another possibility was suggested in Ref. [17], where the
starting point was a pure RR background with a new WZ
term that represents the coupling to the NSNS flux. This
beautiful construction leads to rapid progress in under-
standing of role integrability in the theory with mixed
fluxes; for related works, see [18-23].
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It is well known that the AdS; backgrounds with
different fluxes are related by U-duality transformations.
For example, type IIB S-duality relates AdS; x 3 x T*
backgrounds supported by different three-form fluxes: the
pure RR flux background arises as the near-horizon limit of
a D1-D5-brane system, while a background supported by
mixed three-form flux involves the near-horizon limit of
NS5-branes and fundamental strings in addition to the D1-
and D5-branes. At the same time, the fundamental string
transforms under S-duality to the bound state of a D1-brane
and fundamental string. Then one can ask the question
whether a D1-brane could be considered as another probe
in string theory that naturally incorporates the coupling
between NSNS and RR fields. In fact, the low-energy
description of the D1-brane is given by Dirac-Born-Infeld
action together with a Chern-Simons term with explicit
coupling to RR and NSNS two-forms. We demonstrated in
our previous paper [24] that a Dl-brane on the group
manifold with nontrivial NSNS flux is integrable. In this
paper, we extend the given analysis to the most general
background including a dilaton, Ramond-Ramond zero-
form C©), and Ramond-Ramond two-form C? together
with the three-forms F = dC®) and H = dB that can be
expressed using the structure constants of the group that
defines the group manifold on which the D1-brane prop-
agates. We find that this DI-brane is integrable on the
condition that the dilaton and Ramond-Ramond zero-form
are constants. Then we perform a canonical analysis of the
given theory and calculate the Poisson brackets between
spatial components of Lax connections. We show that this
Poisson bracket has the form that ensures that the con-
served charges are in involutions up to the well-known
problems with terms containing a derivative of delta
functions that need special regularizations [25-27]. Then
we consider a concrete example, which is a D1-brane on an
AdS; x $3 background with mixed RR-NS flux. We first
show that the equation of motion for this D1-brane can be
expressed as the equation of conservation of a specific
current which is, however, nonlinear due to the specific
form of D-brane action. Then, introducing an auxiliary
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metric and corresponding constraint, we can rewrite this
current to the manifestly linear form.> Then fixing the
gauge and for certain backgrounds, we can find currents
whose conservation law is special and that is an analogue of
the holomorphic and antiholomorphic currents in the Wess-
Zumino-Witten (WZW) model [28]. Explicitly, we find that
this occurs in the case of a D1-brane in the near-horizon
limit of a D1-D5-brane background with zero electric flux.
Surprisingly, we also find that the same situation occurs in
the case of the background with nonzero RR and NSNS
fluxes that arises from a D1-D5-brane background through
specific SL(2, Z) transformation. This is a very interesting
result that suggests the possibility that for these values of
fluxes the D1-brane theory can be treated with the help of
powerful techniques of the two-dimensional conformal
field theory.

Let us outline our results. We show that a D1-brane can
be considered as a natural probe of backgrounds with
mixed flux. We mean that the given idea is very attractive
and should be elaborated further. For example, it would be
nice to explicitly determine a world-sheet S matrix for a
given theory in the AdS; background with mixed flux. It
would also be nice to analyze classical solutions on the
world volume of a given theory corresponding to possible
magnon solutions and compare them with the string
solutions. We hope to return to these problems in the
future. It would also be interesting to try to extend the given
analysis to the supersymmetric D1-brane theory. A further
question that deserves detailed treatment is the question of
the conformal field theory description of a D1-brane with
electric flux on AdS; x S® with specific values of fluxes.
We hope to return to all these problems in the future.

This paper is organized as follows. In Sec. II, we
introduce a D1-brane on the group manifold background
with nontrivial NSNS and two RR forms. We analyze under
which conditions the world-sheet theory is integrable.
Then, in Sec. III, we perform a Hamiltonian analysis of
the given theory and calculate the Poisson brackets between
spatial components of the Lax connection. Finally, in
Sec. IV, we consider a D1-brane on various AdS; x §3
backgrounds with three-form fluxes.
|

GMNaﬁxNgﬁ" det g
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I1. D1-BRANE ON GROUP MANIFOLD

In this section, we introduce DI1-brane action that
governs the dynamics of the D1-brane on a general back-
ground. Recall that the given action is the sum of Dirac-
Born-Infeld and Chern-Simons terms and has the form

S = _TD] /deO'e_q)\/ —detA

+Tp / drdo((b,, + 2nd F,,)CO + c,,),

A(lﬁ = GMNaaxMa/ij + 2ﬂa’.7:,,ﬁ + BMNaaXMaﬁXN,
faﬁ - 8(1Aﬂ - aﬁAa, (1)

where X M,N =0,1,...,D are embedding coordinates
of a D1-brane in the background that is specified by the
metric Gyn(X) and NSNS two-form By = —Byy

together with Ramond-Ramond two-form CE&,B\, =- 53) .

We further consider a background with nontrivial dilaton ¢
and RR zero-form C©. Furthermore, ¢* = (z,0) are
world-sheet coordinates of the D1-brane, and b,,, c,, are
pullbacks of By;y and Cyy to the world volume of the
D1-brane. Explicitly,

Cop = C,(Vzlf\,@,xM 0,xN.
(2)

Finally, Tp, = ﬁ is D1-brane tension, and A,, a = 7, 6 is
a two-dimensional gauge field that propagates on the world
sheet of the D1-brane.

It is useful to rewrite the action (1) into the form

baﬂ = BMNaaXMaﬁXN = _bﬂav

S =T, / drdoe~"\/— det g — (200 F,, + b, )
+Tp, / drdo((by, + 27d F ;) CO) + ¢,,), (3)

where YGap = GMNaaxMaﬂxN’ detg = 921966 — (gm)z'
From (3), we obtain the equations of motion for x¥:

Oy [®@le® \/— detg— (2nd F,; + b.y)* — 0, {

N (2rd F.5+ b,y)
\/—detg— (2zd F., + b,,)?
+ |: BMNafo(zﬂa/f‘m + bro‘)
“lV/—detg— 2zd F,, + b,,)

\/—detg— (22d F., + b.,)?

:| 8MGKL8(1XK8/}XL9/}” detg
2y/—detg— 2zd F,, + b,,)?

aMBKL(‘?,xKC’)(,xL - 8, |:

Byn0,xN (2nd F ., + b.,) ]
\/—detg— 22d F,, + b,,)?

2:| + aMC(())(bT{; ‘l‘ 2710/.7:m) + C<0)3MbKL8,xKaﬁxL

= 0,[CO by DpxK] = 0,[CO byyy0:xK] + 0y C) 3K Dpxt = 0, [Clgc0,xK) = 0,[CLey0:xK] = 0, (4)

*This is a similar situation as in the case of the equivalence between Nambu-Goto and Polyakov action for a bosonic string.
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while the equations of motion for A,, A, take the form

9 [e_cp (27d F o5 + byp)

i \/—detg— 22d Fo, + b, )?
9 {e_q) (27d F .5+ b.y,)
L /=detg— 2ad F,, + bs,)?

+ C(O)] =0,

+ c<0J] =0. (5

The last two equations imply the existence of a constant
electric flux

e *2rnd F oy + by,)
\/—detg— (2zd F,, + b,,)?

+CO) = 11,

(6)

With the help of this constant, we can express 2z’ F ., +
b,, as

(Il - C0),/~detyg

22 F 5 + b,y = ,
\/e—2<I> 4 (H _ C(O))Z

so that the equations of motion (4) simplify considerably:

- ou [y 1= CO] =g
+ 0 [GMNalixNgﬂ "\/——dgti& \/ e 4 (M- C(()))Z]

1
- EaMGKL(‘)axK(‘)ﬂxL /= detg\/e‘z‘b + (I = Cc()2
+ HHMKNa.[XKang + FMKNGTXK&,XN = 0, (8)

where
Hynk = OBk + OnBky + OxBun.
2 2 2
Funk = 8MC§VI)( + 3NC§<1{4 + Ok ik 9)
Now we are going to be more specific about the back-
ground. When we consider group manifold G, we presume
that the metric G,y can be expressed as
Guy = Ev*EN®K g, (10)
where for the group element g € G we have
J= g_ldg = EMATAdxM, (11)
where T4 is the basis of Lie algebra G of the group G. Note
that K,z = Tr(T4Tp). Furthermore, from the definition
(11), we obtain

dJ +JAJ =0 (12)

that implies an important relation

IT = const.

PHYSICAL REVIEW D 93, 046003 (2016)
OmEN® — ONEy™ + fA3cEMPENC =0, (13)

where

[TB7 TC] = TAfABC- (14)

In the case of the fluxes Fgju, Hgry, We presume the
following relations between them and the structure con-
stants f,pc of the Lie algebra G:

HMNKEMAENBEKC = KkfaBcs

FMNKEMAENBEKC = ofspcs (15)

where x and o are constants. The first formula is a well-
known relation that defines the Wess-Zumino term when
we describe the motion of string on a group space with B
flux.® In the case of Ramond-Ramond flux, we introduce
this relation in order to preserve symmetry between NS-NS
and RR fluxes. At this place we will not discuss the
problem of whether background fields define a consistent
string theory background, and, hence, we can consider
and w as free parameters. On the other hand, it is important
to stress that when we discuss a D1-brane on AdS; x S°
with mixed fluxes these coefficients x and @ have concrete
values in order to define a consistent string theory back-
ground. We will discuss this case in more detail in Sec. IV.
With the help of (15), we can write

EM cH g 0. x5 0px" = if cap?JE,

EM o F g 0:x50px" = oof capd? 5. (16)
Note that EY , is inverse to E,,® defined as

EMAEMB = 5§,

EM E\A = 8. (17)

Now with the help of (13) and (16), we can rewrite the
equations of motion (8) to the form that contains the current
J4 = Ey0,xM:

—EMc0y [\/ e?® + (I - c<0>)2} /—detg
+ Kcp0y [Jggﬂa\/m\/e—m 4+ (= C(o))z}

+ Tk f capl2JE 4+ of capJ2JE = 0. (18)

Now we are ready to analyze the integrability of the given
theory. Let us consider the following current:

3See, for example, [29] for a nice discussion and calculations
of the Poisson brackets of various currents.
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L} =AJ} + By/=g \/ e 4 (M- )22,

LA = AJA = By=gg/e?* + (- COPIA, (19)

where A and B are coefficients that will be determined by
the requirement that the current L3 is flat. First of all, we
calculate

o.L3 —0,L24
= —AJBIS fApc + B(lk + o) fApcJBIE

— KABEM 9, [\/e—m (= C(O))z] /= detg,

(20)

where we used the equations of motion (18) together with
the condition (13). As the next step, we calculate

fApcLBLS = (A% — B*[e72® + (I = CO)2)) fApcJBJS.

(21)
Collecting these two results together, we obtain
arLg\ - aO'L? + fgCLng
= (—A + B(Tlk + o) + A?
— B¢ + (11— CO)2)) fApcJ BIS
— KABEM 0, [\/ e?® 4+ (I - c(0>)2] \/—detg.
(22)

Let us now discuss the result derived above. The expression
on the third line is proportional to the currents, while the
expression on the fourth line contains derivatives of the
background fields C(*) and ®. Then clearly the expressions
on the second and third lines have to vanish separately in
order for L4 to be flat. The expression on the third line

vanishes when we require that \/ e 2® 4+ (M- C9)? is

constant. This can be ensured for nonzero electric flux I1

when ® and C©) are constant. Then we have to demand that
the expression on the second line in (22) vanishes. If we

consider the ansatz B = —AA, we find the solutions in the
form
A ! (1 + (Tk + @)A)
= K+ o)),
1= A% (e + (IT- C)2)
A
B = (1 4+ (Ilk + w)A),

1A 4 (M- CO))
(23)

where A is a spectral parameter. Finally, we should mention
that this is an on-shell condition. On the other hand, if we

PHYSICAL REVIEW D 93, 046003 (2016)

calculate the Poisson bracket between these currents, we
have to express A and B given in (23) using an off-shell

form of the combinations e2® 4 (IT—C®)? and TI
Explicitly, from (7), we obtain

e ?®detg
- detg+ 22d F ., + b,,)*’
B e *2nd F 5+ by,)
B \/—detg— (2zd F, + b,,)?

o2 + (H _ C(0)>2

cO),

(24)

Inserting (23) and (24) into (19), we find an off-shell
formulation of the flat current. In the next section, we
express the spatial components of the flat current using
canonical variables and calculate a Poisson bracket
between them.

Let us summarize the results derived in this section. We
studied the dynamics of a D1-brane on the group manifold
with nontrivial NSNS and RR two-form fluxes and together
with a dilaton and RR zero-form. We argued that it is
possible to define the Lax connection for this theory, and
we showed that this Lax connection is flat on the condition
that the dilaton and RR zero-form are constant. The
existence of the Lax connection is a necessary condition
of integrability. The additional condition is that correspond-
ing conserved charges are in involution, which can be seen
from the form of the Poisson bracket between spatial
components of the Lax connection. The calculation of this
Poisson bracket will be performed in the next section.

I1I. POISSON BRACKETS OF THE
LAX CONNECTION

In this section, we calculate the Poisson brackets
between spatial components of the Lax connection. To
do this, we have to develop the Hamiltonian formalism
for D1-brane action in a general background. We start
with the action (3) and find the corresponding conjugate
momenta

oL T e ®
p = =
M0 TP S detg — (2ad Foy + byy)?
X (Gyn0,xN g det g
+ (27T(X/F,m + b‘m)BMNaaxN>
+ Tpi (COBynO,xY + Cz(vzz?v@ng),
7 = oL — e® (Zﬂa/Fm + br(i) C<O),
60.A; \/—detg— (2ad'F,, + b,,)>
oL
T — ~ 0, 25
T T 504, (25)
and hence
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n° N
II,, = ————BynO0
M=Pm (2][0[,) MNOsX
2
- TD] (C(O)BMNaGXN =+ Cg,,gvang)

e—<I>

=T
Pl \/—detg— (2zd'F,, + b,,)

> GunO0,xN g% detg.
(26)

Using these relations, it is easy to see that the bare
Hamiltonian is equal to

Hy = /da(pMafo +7°0,A, — L) = /dozr"@,,A,,
(27)
while we have three primary constraints:

=0, H, = pp0 M =0,

1
He = 7Ty GMNILy + Tpy (¢7* + (27 = C)?) g, ~ 0.

(28)

Including these primary constraints to the definition of the
Hamiltonian, we obtain an extended Hamiltonian in the
form

H = / do(AH, + 2, Hy = ADor” + v,17),  (29)

where 4., 4,, and v, are Lagrange multipliers corresponding
to the primary constraints ‘H, =0, H,~0, and z* =0,
respectively. Now we have to check the stability of all

|

1 1
[Ty (0). Ty ()} = 5. (" + COVHyun0,x¥o(e = ) + 5

and finally

{EMAHM(G)’ ENBHN(UI)}

1 1
= —EMDfDABHMé(G - (7,) + EMA <2ﬂa/ (77:5 + C(O>)HMNK06.XK + B

With the help of these results, we obtain

(LAA, 0), LE(T, ')} = — —— F(A)F(D)(T + A)KAB9,6(0 — o) — TLKAB [rﬁ (A.o)+ A

TDl

TDl D1

PHYSICAL REVIEW D 93, 046003 (2016)

constraints. The requirement of the preservation of the
primary constraint 7° ~ 0 implies the secondary constraint

G=09,7°~0. (30)

In the case of the constraints H, and H,, we can easily
show in the same way as in Ref. [24] that the constraints H,
and H, are first-class constraints and hence they are
preserved during the time evolution.

Now we are ready to proceed to the calculations of the
Poisson brackets between spatial components of the flat
current L7 for different spectral parameters A and I':

{L3(A o). L3(T. o)} (31)

Recall that these are currents that define the monodromy
matrix and hence corresponding conserved charges. Using
(24) and (25), we find that the spatial component of the
current L4 expressed using canonical variables has the form

IA _ 1+ A7k + w)
7 1=A¥ e+ (27 = CO)?)

A
X (EMAa,,xM — T—DIEMBKABHM> . (32)

In order to calculate (31), we need the following Poisson
brackets:

{x"(0).y(0")} = 66(c = ),
{En"(0).Ty(0")} = OnEy"6(c = o).
{EY(0).TIy(0")} = ONEY 46(0 = ). (33)

and also

1
7[(1, FMNKa,,xKé(o - 0’) + ﬁgBMN(S(G - 6’), (34)

1
2ral

FMNKGGXK +

ﬂ:a/ gBMN> ENB(S(O'_ G/).

(35)

df
dn®

g

(T, g)} Gs(o — o)

D1 T

Ly (A Lr- TLAFW +CON w]> KAC £B o EE ), 0,xM 8 (0 — o)

b PSR 2 p KPEEM Ty 5(0 — o), (36)
D1
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where we introduced the function f(A, o),

14+ A(z°(0)k + @)

PHYSICAL REVIEW D 93, 046003 (2016)

o) = 1= A%(e™® 4 (2°(c) = C)?)’ (37)
and used the fact that
9of (M. 0) = %6‘0#’ = %Q. (38)
Now we demand that the expression proportional to the § function is equal to
—K*PfPpe(XLE(A) = YLG(T)) = —K*P fPpe(Xf(A) = Y () Ep 0,x"
7 KV Poc(AF(N)A = B (T)D)EY K EPTL, (39)

where X and Y are unknown functions. Comparing (36) with (39), we derive the following equations for X and Y:

TDI D1

These equations have the following solutions:

if(A)f(r) (A +I - TLAF((#’ + COk 4 w)) = Xf(A) = Yf(I),

% FINFT) = XF(AA - VAT, (40)

B A% f(A) ”

TT—ATp [1-T((z° + CO)x + w)],

T fI) .

_F_AT—m[l—A((ﬂ + COk + )] (41)

that are a generalization of the solutions found in Ref. [24] to the case of nontrivial Ramond-Ramond flux. In summary, we

obtain the final result

(LAA, 0), LE(T, &)} = — —— F(A)F(T)(T + A)KAB, (0 — o) — —— KAB (r i) (F)) G5(0 — ')

Tpy
1
Tp(I'=A)

D1 dr°® dr°®

KAP P pe(T2f(D)[1 = A((2” + CO)x + @)L (A)

— N f(N[1 =T((z° + CO)k + @)]LS(T))8(0 — o). (42)

We see that the expression proportional to G ~ 0 vanishes
on the constraint surface. We also see that there is still a
term proportional to the derivative of the delta function that
needs an appropriate regularization. Then the terms propor-
tional to the delta functions are a natural generalization of
the Poisson brackets of a flat connection of the principal
chiral model with the Wess-Zumino term to the background
with a RR background two-form. Note also that the form of
the expression proportional to the delta functions implies
that corresponding conservative charges are in involution,
which is the condition for the integrability of the given
theory [6].

[

IV. EXPLICIT EXAMPLE: D1-BRANE ON AdS; x $°
WITH THREE-FORM FLUXES

In this section, we will analyze a D1-brane on AdS; x S°
with three-form fluxes. Before we proceed to the analysis of
this specific background, we still consider an arbitrary group
manifold with nontrivial fluxes but with a constant dilaton and
RR zero-form. Then note that, with the help of the flat
condition, we can rewrite the equation of motion into the form

D JA% =0, (43)

where we introduced the current
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JAa— T, [\/6—2% +(CO - H)Z\/__gga/)’_]?

+ (T + w)eaﬁJﬂ , (44)

where € = —” = 1. We see that the current J4% is
conserved. On the other hand, we see that the current J# is
nonlinear and there is nothing more to say about it. We can
make the given system more tractable when we introduce an
auxiliary metric y,; that obeys the equation

1
T(Iﬂ = Ey(lﬁy’wgyy - ga/} = 0. (45)

jA-‘r — %(jA‘L’ 4 jAa)

2
" | A N
JA— :E(JAT_JAO')

2

T
St [\/ e™2% + (CO -T2\ /=y(yJa — yoJ4) + (k + w) (J4 + J;‘)] :

PHYSICAL REVIEW D 93, 046003 (2016)

Itis easy to see that this equation has a solution y .5 = g,4. If
we further introduce light-cone coordinates

—_—
—_—

ot ==(r+0), o=

=3 (t=0).  (46)

2
we can rewrite Eq. (43) into the form
DI +0_JA =0,

where

T
= 2L\ 4 (CO =R GTE + 0) + (k4 ) (72 = 2],

(48)

As the next step, we fix the auxiliary metric to have the form y,; = 1,4.7,, = diag(—1, 1), keeping in mind that currents
still have to obey Eq. (45). In this gauge, ]i simplify considerably, and we obtain

. 1., T
=S =2 [Jﬁ,‘(\/e‘zq’“ +(CO — ) + (TIk +a))> - Jé(\/e—mo +(CO — 1) + (Tk + w))}

2
N I T
=S =D [Jf(\/ 2% 1 (€O — 1) — (ITk + a)))
+ JA (\/6‘2‘1’0 + (CO —1I)2 — (Ik + w))] . (49)
. . L B 1 .
where we introduced the lllght—cone metflAc with 7 == §a+ J_=—¢'9,.997'0_g+¢g'0_0,997g
Ny ==2,""=nyt=-1 so that J' =ytJL=
174, A =74 = =174, We see that for =g'0_[0,997']g =0, (52)
so that there is a second current J, = 9. gg~" that obeys
the equation
Ik +w = \/ e 2% 4+ (9 —11)2 (50) 1

9_J.=0. (53)

Equations (51) and (53) strongly resemble the conserva-
tions of currents in the WZW model.

The previous analysis is valid for any group manifold with
NSNS and RR fluxes and for a constant dilaton and RR zero-
form. Now we would like to see whether the condition (50) can
be realized in a consistent string background. As the first case,
we consider an AdS; x $* x M background with a pure RR
flux where M is four torus T of four-volume V, = (27)*va’?

the current jﬂ‘r vanishes identically and Eq. (47) gives

a+jé - 0,

JA = 2TD1\/e—2‘1’o +(CO —M)2(J2 —J4).  (51)

Note that we can write J_ = JAT, = 2¢7'0_g. Then from
(51) we obtain

in the metric ds3, thatimplies that each x' is identified with the
period 2zv'/*a’'/?. The background has the form [30]
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ds® = ryrs(dsdys, +dsd) + n ds2,, where dss. and dsg; are line elements defined with the
s group elements from SL(2,R) and SU(2), respectively,

P 2r3 (6 + *ee3) that define the currents Ji. Furthermore, ds3, is a Ricci-

g 653/ flat metric on M with volume V;; and where Q; and Qs

1r 4n2ad are the D1- and D5-brane charge, respectively. Finally, € is

e ® = ;r—s rs = /905, r = N V90, a volume element of AdS;, and *g¢ is a volume element
1 M

of S, where %4 is the Hodge dual in six dimensions.
(54)  Using (54), we obtain

o T 23 / i
JA =~ Dglr5 llé( 1+H29r;1+1>_1¢< 1+H2%+1>
5 5
n Toir? 2 i
ZREILEY 7Y YD I  cEAA R 1+H292—2rl—1 . (55)
g s ’s

We see that j‘i vanishes identically in the case when IT = 0, while J4 is equal to

_9
_717

9’

J (JA-Jb, 9.0 =o0. (56)
This is the expected result, since in this case we have a D1-brane in the near-horizon limit of a D1-D5-brane system which is
S-dual to the configuration of a probe fundamental string in the near-horizon limit of the background NS-branes and
fundamental strings. These models are known as WZW models [28] and can be analyzed using powerful conformal field
techniques.

Let us now consider a D1-brane in this background. Recall that the type-IIB theory has nonperturbative SL(2, Z)
symmetry:

~ N +b
Gy = 40G,, =L 2
My = & MN ! ct+d
BMN == CC;%V —|— dBMN’ 61(‘2\] = ClCl(‘,zlgv + bBMNa (57)

where 7=C +ie=® and where ad—bc=1. Note that an S-duality transformation corresponds to the
following values of the parameters: a =0, b =1, ¢ = —1, and d =0. Then we find that the S-dual background
has the form

20 2
20 — r1:9_Q1

r2 v 05’
A 1
ds? = e %ds® = glfg(ds[idS3 + dsgy) + gdsyy = Qsd (dsiyg, + ds3) + gdsyy,
H =205d/ (€5 + *6€3). (58)

so that it is easy to see that the currents J4 have the form

2 2
jﬂ:—TDla/Q5 JI:: 97Q1+H2+H —J‘? LQ]+H2+H
vQs vQs

2
JA =Tpd Qs l]ﬁ}( gQQl+H2—H> +J;‘< g§‘+nz—n)

2
vs vs

El
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It is clear that J% does not vanish for finite values of the
parameters. On the other hand, we easily see that J%
vanishes identically when we consider the formal limit
g — 0. Physically, this is the situation when a D1-brane
becomes infinite heavy and decouples so that the probe
can be considered as the collection of Il fundamental
strings. In this case, the model corresponds to the T1Q5
level WZW model that can be studied by conventional
conformal field theory techniques. However, it is
important to stress that this is not possible in the case
of a finite value of the string coupling constant.
Finally, we consider a more general case when we
perform the SL(2,Z) duality transformation from the
near-horizon limit of a D1-D5-brane background. We begin
with the observation [7] that the near-horizon limit and S-
duality commute. Then for the general form of the SL(2, Z)

transformation (with C° = 0), we obtain (using 7* = —7)
o0 _ ace™® + bd % e?®
T e R L g2 T 2g 2% L 2
ds? = v/ cte™2® 4+ d%ds?, B=cC?), C? = ac®,
(60)

Let us start with the symmetric flux background that
corresponds to the following values of parameters a, b,
¢, and d:

d=1.  (61)

It turns out that in this case the current J% vanishes
identically in the case when IT = 0, while J* is equal to
54 _ @

A=A -08,  8JA=0. (62)
T

In fact, this remarkable result is valid whenever the

parameter b is equal to zero. Explicitly, when b = 0, we

find from the condition ad — bc = 1thata = d = 1, which

implies

(63)

PHYSICAL REVIEW D 93, 046003 (2016)

Then for IT = 0 and for the background given above, we
obtain that the currents (49) have the form

g = Tous ga gy
g
X (ﬂv c2e 2 4 1\/i+ 1)
rs c2e™® 1+ 1 ’
2
7= TDgl 54+ )

-2
T2 1y | -1 64
><<r5 ces cze™® 41 ) (64)

where the first square root vc?e™>® 41 follows from

the definition of dual line element (60) and the second
—2¢

one from the fact that e‘z‘i’—i—(C(O))2 = oS We
immediately see that the currents J4 have the same
form as in the case of the original near-horizon limit
of a DI-D5-brane background where J4 vanishes
identically.

Let us outline the results derived in this section. We
analyzed the conditions under which we can find hol-
omorphic or antiholomorphic currents for a DI-brane in
the background AdS; x S* with different combinations of
NSNS and RR fluxes. While the D1-brane is integrable
for any values of fluxes and world-volume electric flux, it
possesses two holomorphic and antiholomorphic currents
that allow a more powerful conformal field theory
analysis in the near-horizon limit of a DI-D5-brane
background on the condition that the electric flux is
zero. We also showed that this holds in the case of
AdS; x $3 with mixed fluxes that is related to the
original D1-D5-brane system by the SL(2,Z) duality
transformation.
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