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We study pairs of coaxial vortex rings starting from the action for a classical bosonic string in a three-
form background. We complete earlier work on the phase diagram of classical orbits by explicitly
considering the case where the circulations of the two vortex rings are equal and opposite. We then go on to
study perturbations, focusing on cases where the relevant four-dimensional transfer matrix splits into two-
dimensional blocks. When the circulations of the rings have the same sign, instabilities are mostly limited
to wavelengths smaller than a dynamically generated length scale at which single-ring instabilities occur.
When the circulations have the opposite sign, larger wavelength instabilities can occur.
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I. INTRODUCTION

Vortices are important excitations in fluid systems in two
or more spatial dimensions. Diverse physical phenomena in
Nature admit a description in terms of quantized vortices in
superfluids (see, for example [1]). In three spatial dimen-
sions, which is our primary interest, vortices are extended
in one spatial direction, i.e., they are stringlike. Recent
work including [2–4], following lines similar to [5], has
developed the view that methods of classical string theory
can be usefully adapted to the study of vortex rings. Salient
features of this literature of particular relevance to the
current work are as follows:

(i) The background geometry is flat, but there is a
constant Neveu-Schwarz (NS) three-form field
strength H3 ¼ dB2 with all its legs in spatial
directions. This field strength is dual to a density
of the fluid or superfluid in which the vortices form.

(ii) Vortices are treated in the limit where their motion is
slow compared to the speed of sound. Formally, this
is achieved by taking a nonrelativistic limit of
classical string theory.

(iii) Vortex motion is noninertial. The Lagrangian, in the
limit of interest, is first-order in time derivatives, and
the time derivative terms come from the

R
B2

coupling of the string to the background NS field
strength. Inertial terms in the Lagrangian are pos-
sible, but precisely because they are quadratic in
time derivatives, their effects are suppressed at small
velocities relative to the time derivative terms
from

R
B2.

(iv) A Nambu-Goto term is present, but its coefficient
runs logarithmically due to divergences in the vortex
self-interactions through exchange of excitations of
B2. In the nonrelativistic limit, these exchanges

occur instantaneously and lead to a bilocal vortex-
vortex interaction. There is a dynamically generated
length scale, call it lnα , at which the coefficient of
the Nambu-Goto term vanishes, and this length scale
controls where much of the interesting dynamics
happens.

(v) It is assumed throughout that the metric is non-
dynamical, and that there is no dilaton, so that the
main dynamics of interest comes from the strings
and the NS two-form B2. Sound waves can be
included—see in particular [2,4]—but we will not
be concerned with their explicit effects in the current
work. It is explained for example in [3] how the
dynamics we study emerges from an approximate
treatment of a Gross-Pitaevskii superfluid.

The aim of the present work is to study motions of two
vortex rings. This subject has already been extensively
studied in the literature, beginning with the work of Dyson
[6] and Hicks [7], and recently reviewed in [8]. See also [9]
for recent investigations of the scattering and leapfrogging
of vortex ring pairs, also [10] for investigations of leap-
frogging vortex rings arising in the context of magnetiza-
tion fields in ferromagnetic materials, and [11,12] for
analysis of the Hamiltonian dynamics of vortex rings.
An exploration of leapfrogging vortices and their insta-
bilities along lines similar to the current work can be found
in [13]. Our methods provide an efficient route to a
complete picture of the motion of unperturbed circular
rings. Also we give an analysis of linear perturbations
around these motions which, though not complete, prob-
ably captures examples of most of the characteristic
phenomena in this surprisingly complicated system. We
do not go beyond linear perturbation theory, but we do find
assorted instabilities whose eventual fate would clearly be
interesting to discover.
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We will start with perfectly circular rings whose centers
move along the same axis: so-called coaxial vortex rings.
Coaxial vortex pairs are an integrable system, but they
already exhibit a significant variety of phenomena: leap-
frogging, pseudo-leapfrogging, chasing, nesting, attraction,
repulsion, and single passage. Section II is devoted to
reviewing explicit examples of these phenomena. The
dynamics of coaxial vortex pairs has been studied almost
exhaustively in [11]. In Sec. III, we will review the main
results and fill in a small gap involving vortices with equal
and opposite circulation.
In Sec. IV, we will study the stability of coaxial vortex

rings. Even a single circular vortex ring in isolation can
be unstable. We will refer to these single-ring instabilities
as Widnall instabilities due to the works [14–16] of
Widnall in collaboration with Sullivan, Bliss, and Tsai.
Pairs of vortex rings usually experience something similar
to Widnall instabilities, and in addition they usually have
further instabilities due to their influence on one another.
The analysis of these instabilities is somewhat compli-
cated because the background motion is itself nontrivial,
and a mix of analytic and numerical methods is neces-
sary. For example, when the background motion is
periodic, as for leapfrogging vortices, then the natural
framework to study the instabilities is Floquet theory, or
some slight generalization of it to include forcing terms.
We will present the general framework for treating
linearized perturbations of coaxial vortices, and then
we will identify some situations in which the transfer
matrix simplifies from its usual 4 × 4 form to a simpler
block-diagonal form with 2 × 2 blocks.
From our study of perturbations we find that while

instabilities do usually arise, when both rings have
circulations of the same sign, the instabilities tend always
to occur at wavelengths comparable to or smaller than the
ones involved in the Widnall instability—in other words,
comparable to or smaller than the dynamically generated
length scale lnα where the running tension of a given ring
vanishes. We work in an approximation where vortex
core size is ignored, but in many physical systems the
core size is comparable to lnα . Thus our work in fact
provides a check of stability for coaxial vortex pairs in a
wide range of circumstances, provided finite core size
naturally cuts off instabilities at very small wavelengths,
and does so in such a way as not to introduce new
instabilities near the cutoff. When the rings have circu-
lations of opposite sign, however, the behavior of the
perturbations can be quite different, and in this case there
can be instabilities at large wavelengths. Indeed, the
special case of colliding coaxial vortex rings with equal
and opposite circulation was recently studied in this
formalism [3], where it was checked that instabilities
similar to the ones studied by Lim and Nickels [17] occur
at wavelengths parametrically larger than the dynamical
length scale. We exhibit a large wavelength instability of

a rather different sort which occurs on top of a periodic
motion of a pair of vortex rings whose circulations have
opposite signs.

II. BASIC SETUP AND EXAMPLE BEHAVIORS

In this section we review the bilocal Lagrangian
description for mutiple vortices moving slowly relative
to one another and relative to the frame defined by the
background value of the NS three-form. We start by
considering a single string without the bilocal inter-
actions that lead to the most interesting physics, and
then we add in these interactions and explain how the
Nambu-Goto action becomes a counterterm. Finally, we
show several examples of the motion of circular coaxial
vortex rings.

A. Free string

Consider the standard Lagrangian

S ¼ −τ1
Z
Σ
d2σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det ðgμν∂αXμ∂βXνÞ

q

þ μ1

Z
Σ

1

2
Bμν∂αXμ∂βXνdσα∧dσβ ð2:1Þ

for a single string with tension τ1 and charge μ1 moving in
flat 3þ 1 dimensions in the presence of a three-form field
strength H3 ¼ dB2 with

B2 ¼
ρ0
2
ðX1dX2 − X2dX1Þ∧dX3; ð2:2Þ

where we set gμν ¼ diagf− 1
c2s
; 1; 1; 1g. (We use cs

instead of c because physically cs is the speed of
sound in the fluid that supports the vortices.) Taking
the nonrelativistic limit means sending cs → ∞ with
csτ1 held fixed. If we employ static gauge, σ0 ¼ t and
σ1 ¼ θ, then (2.1) becomes

S ¼ −csτ1
Z
Σ
dtdθj∂θ

~Xj þ μ1

Z
Σ
B2; ð2:3Þ

where ~Xðt; θÞ specifies the location of the worldsheet in
space at a given time t. Let the string be circular with
radius r, extended in the X1-X2 plane and centered on
the origin. Assume that the string moves in the X3

direction. In vector notation

~Xðt; θÞ ¼ ~Yr;zðθÞ≡
 r cos θ

r sin θ

z

!
; ð2:4Þ

where r and z are allowed to depend on t. Plugging
(2.4) into (2.3) leads immediately to
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S ¼ 2πρ0μ1

Z
dtL ð2:5Þ

where

L ¼ −ηr −
1

2
r2 _z ð2:6Þ

and we have defined the ratio

η ¼ csτ1
ρ0μ1

: ð2:7Þ

The equations of motion following from (2.6) are

_r ¼ 0; _z ¼ −
η

r
: ð2:8Þ

So we see that circular vortex rings propagate at fixed
size in a definite direction, related to their orientation,
with a speed that increases as they become smaller.

B. Including bilocal interactions

The modification of (2.3) which leads to most of the
interesting dynamics is to consider how the string pulls on
the NS two-form B2. We will state without proof, referring
the interested reader to the derivation in [3], that one may
use the following generalization of (2.3) to describe several
vortices, labeled by an index α, each with possibly a
different charge nαμ1, moving as before much slower than
the speed of sound:

S ¼
X
α

�
−csτnα;bare

Z
Σα

dtdθj∂θ
~Xαj þ μ1nα

Z
Σα

B2

�

−
λ

2

X
α;β

nαnβ

Z
reg

dtdθd~θ
∂θ

~Xα · ∂ ~θ
~Xβ

j~XαðθÞ − ~Xβð~θÞj
: ð2:9Þ

The last term in (2.9) is the bilocal interaction term. It
comes from integrating out the fluctuations of B2 caused by
the αth vortex and affecting the βth vortex (or vice versa).
The coupling constant λ is related to the normalization
of the action for H3, so it is for our purposes a free
parameter. The integral over θ and ~θ in the interaction term
diverges when θ ¼ ~θ, and we employ the standard regulator

j~XαðθÞ − ~Xβð~θÞj →
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ j~XαðθÞ − ~Xβð~θÞj2

q
ð2:10Þ

where a is a small length scale, essentially the core size of
the vortices. A logarithmic divergence as a → 0 can be
cured by adding in the Nambu term in (2.9) as a counter-
term, with τ1;bare ∼ loga. To see this, first note that

d
da

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ x2

p ¼ −
a

ða2 þ x2Þ3=2 ≈ −
2

a
δðxÞ; ð2:11Þ

where the approximate equality in (2.11) is valid when
a ≪ x. Differentiating (2.9) with respect to a and using

(2.11) (under the assumption that the variation of all the ~Xα

is slow on the scale of a), we see that

dS
da

¼ −
X
α

cs
dτnα;bare
da

Z
Σα

dtdθj∂θ
~Xαj

þ λ

a

X
α;β

nαnβ

Z
dtdθd~θ∂θ

~Xα

· ∂ ~θ
~Xβδðj~XαðθÞ − ~Xβð~θÞjÞ: ð2:12Þ

If we assume that ~XðθÞ − ~Xβð~θÞ ¼ 0 only when α ¼ β and

θ ¼ ~θ, then the summation over β and the integration over ~θ
in (2.12) can be done to obtain

dS
da

¼
X
α

�
−cs

dτnα;bare
da

þ n2α
λ

a

�Z
Σα

dtdθj∂θ
~Xαj: ð2:13Þ

We want dS=da ¼ 0 so that S as a whole is invariant under
the choice of cutoff a. Referring to (2.13), this implies

a
d
da

ðcsτnα;bareÞ ¼ n2αλ; ð2:14Þ

so we conclude

csτnα;bare ¼ n2αλ log
a
anα

ð2:15Þ

for some constants anα . Define the dynamical length scale
lnα , associated with a vortex with winding number nα to be

lnα ≡
anαe

8
¼ a

8
e1−csτnα ;bare=n

2
αλ: ð2:16Þ

The bare tension term can be split into a finite physical
tension term and a divergent term which includes the
logarithmic divergence of the last term in (2.9),

csτnα;bare ¼ n2αλ log
rα
lnα

þ n2αλ log
ae
8rα

; ð2:17Þ

where rα is the radius of the αth vortex. Thus the dynamical
length scale lnα corresponds to the length scale at which the
first (physical) term in (2.17) goes to zero. There is some
ambiguity to the splitting into physical and divergent
contributions, which must be fixed by choosing a renorm-
alization condition; more precisely, we will see that lnα is
defined such that the velocity of a single vortex vanishes at
this radius [3].
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The bare tension of a vortex ring with winding
number1 n2 can be related to that of a vortex with winding
number n1,

csτn2;bare ¼
�
n2
n1

�
2

csτn1;bare þ n22λ log
ln1

ln2

ð2:18Þ

upon using the form of the tension in (2.15) and the
definition of the dynamical length scale in (2.16). The ratio
of the dynamical length scales

χ ≡ ln2=ln1 ð2:19Þ

must be determined by a more fundamental theory at short
distances, and is to be understood as a free parameter in the
effective field theory treatment presented here.

C. Basic examples

A pair of circular coaxial vortex rings exhibits a variety
of motions, governed by the action in (2.9). A brief
description and a few select examples are presented
below for each of the possible motions, and the explicit

equations of motion will be presented in Sec. III B.
Throughout the rest of this paper, the radii of vortices
with winding numbers n1 and n2 will be r1 and r2,
respectively with Δr≡ r1 − r2. Correspondingly, the axial
coordinates of the vortices will be z1 and z2, respectively
with Δz≡ z1 − z2.
(1) Leapfrogging.—Periodic motion of the vortices,

where Δz and Δr oscillate periodically, assuming
both positive and negative values in such a way that
the vortices go around one another. See Fig. 1 for
some examples.2

(2) Pseudo-leapfrogging.—Periodic motion of the vor-
tices, where Δz and Δr oscillate periodically, but
only Δz runs over both positive and negative values.
Δr is either strictly positive or strictly negative. This
motion can be thought of as a periodic motion where
the vortices do not wind around one another, but
instead one vortex is “captured” inside the other. See
Fig. 2 for some examples.

(3) Nesting.—A special case of periodic motion, where
Δz ≈ 0 and simultaneously Δr ≈ constant over a
finite period of time every cycle. See Fig. 3 for some
examples.

(4) Chasing.—A special case of periodic motion, where
Δz takes up arbitrarily large values and Δr ≈
constant for most of the time during a cycle. See
Fig. 4 for some examples.

FIG. 1. Leapfrogging vortices. Initial conditions. Top: r1 ¼ 30ln1 , r2 ¼ 15ln1 , Δz ¼ 20ln1 , n1 ¼ 2, n2 ¼ 1, χ ¼ 1= log 2 ≈ 1.44.
Bottom: r1 ¼ 20ln1 , r2 ¼ 3ln1 , Δz ¼ 2ln1 , n1 ¼ 2, n2 ¼ −1, χ ¼ 1= log 2.

1It is easy to show that a configuration with jnαj > 1 has higher
energy than a configuration where the circulation is divided
among vortices of unit winding, and in [18–21] it was shown that
a vortex with multiple units of winding may be unstable due to
quantum mechanical effects at core sizes. This will not affect our
analysis at the level of the classical theory, however, and we will
continue to take the philosophy that the winding number is an
arbitrary parameter in our effective theory, and therefore we may
choose it to have any integer value.

2Since the ratio of the dynamical length scales for vortices with
unequal winding numbers is a free parameter in the effective field
theory, we have chosen an arbitrary value for χ in examples where
n2=n1 ≠ �1.
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(5) Attracting.—This aperiodic motion is only possible
when n2=n1 ¼ −1. It is characterized by
Δz → 8ln1=e, and Δr → 0 as r1, r2 → ∞ at late
times. See Fig. 5 for some examples.

(6) Repelling.—This aperiodic motion is characterized
by a Δz which does not change signs, and at late

times jΔzj → ∞ and r1, r2, Δr → constants, corre-
sponding to two isolated vortices. See Fig. 6 for
some examples.

(7) Single-passage.—This aperiodic motion is charac-
terized by Δz changing signs exactly once, and at
late times jΔzj → ∞ and r1, r2, Δr → constants,

FIG. 3. Nesting vortices. Initial conditions. Top: r1 ¼ 30ln1 , r2 ¼ 8.4046ln1 , Δz ¼ 0, n1 ¼ 2, n2 ¼ −1, χ ¼ 1= log 2 ≈ 1.44.
Bottom: r1 ¼ 5.3555ln1 , r2 ¼ 2ln1 , Δz ¼ 5ln1 , n1 ¼ 2, n2 ¼ 1, χ ¼ 1= log 2.

FIG. 2. Pseudo-leapfrogging vortices. Initial conditions. Top: r1 ¼ 2ln1 , r2 ¼ 4ln1 , Δz ¼ 2.5ln1 , n1 ¼ 2, n2 ¼ −1,
χ ¼ 1= log 2 ≈ 1.44. Bottom: r1 ¼ 12ln1 , r2 ¼ 2ln1 , Δz ¼ 2ln1 , n1 ¼ 1, n2 ¼ −1, χ ¼ 1.
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corresponding to two isolated vortices. This corre-
sponds to a pair of vortices with circulations of
insufficient strength, which is required to form a
bound state of leapfrogging vortices. See Fig. 7 for
some examples.

In the next section we describe these motions in terms of
trajectories in the phase space.

III. BACKGROUND LAGRANGIAN AND
EQUATIONS OF MOTION

A. Single vortex with winding n1
Introduce a scaled Lagrangian

S ¼ 2πρ0μ1

Z
dtLone vortex; ð3:1Þ

FIG. 4. Chasing vortices. Initial conditions. Top: r1 ¼ 35ln1 , r2 ¼ 11.41ln1 , Δz ¼ 150ln1 , n1 ¼ 2, n2 ¼ 1, χ ¼ 1= log 2. Bottom:
r1 ¼ 8ln1 , r2 ¼ 1.902ln1 , Δz ¼ 10ln1 , n1 ¼ 2, n2 ¼ −1, χ ¼ 1= log 2.

FIG. 5. Attracting vortices. Initial conditions. Top: r1 ¼ 30ln1 , r2 ¼ 40ln1 ,Δz ¼ 4ln1 , n1 ¼ 1, n2 ¼ −1, χ ¼ 1. Bottom: r1 ¼ 30ln1 ,
r2 ¼ 25ln1 , Δz ¼ 40ln1 , n1 ¼ 1, n2 ¼ −1, χ ¼ 1.
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and a rescaled tension and interaction strength

ηn1;bare ¼
csτn1;bare
ρ0μ1

~λ ¼ λ

ρ0μ1
: ð3:2Þ

Then the Lagrangian for a single vortex, on substituting
(2.4) in (2.9) is found to be

Lone vortex ¼ L0 þ n21 ~λr1Q0ðq1Þ ð3:3Þ

where

L0 ¼ −ηn1;barer1 −
n1
2
r21 _z1; ð3:4Þ

and the second term comes from the self-interaction of the
vortex, and was computed in Ref. [3] to be

FIG. 6. Repelling vortices. Initial conditions. Top: r1 ¼ 9ln1 , r2 ¼ 0.8ln1 , Δz ¼ 18ln1 , n1 ¼ 1, n2 ¼ 1, χ ¼ 1. Bottom: r1 ¼ 1.3ln1 ,
r2 ¼ 0.3ln1 , Δz ¼ 15ln1 , n1 ¼ 2, n2 ¼ 1, χ ¼ 1= log 2.

FIG. 7. Single passage of vortices. Initial conditions. Top: r1 ¼ 20ln1 , r2 ¼ 25ln1 , Δz ¼ 150ln1 , n1 ¼ 1, n2 ¼ 1, χ ¼ 1. Bottom:
r1 ¼ 45ln1 , r2 ¼ 15ln1 , Δz ¼ 100ln1 , n1 ¼ 2, n2 ¼ −1, χ ¼ 1= log 2.
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Q0ðq1Þ ¼ q1E

�
−

4

q21

�
−
�
q1 þ

2

q1

�
K

�
−

4

q21

�
ð3:5Þ

where q1 ≡ a=r1, and KðyÞ and EðyÞ are the complete
elliptic integrals of the first and second kind, respectively.3

The subscripts on r1, z1 and n1 label the vortex they
describe. The analysis for a single circular vortex proceeds
the same way as presented in Ref. [3], except in terms of a
rescaled time coordinate n1t. It follows from (2.16) that the
dynamical length scale in this case is given by

ln1 ¼
a
8
e1−ηn1 ;bare=ðn

2
1
~λÞ; ð3:6Þ

and the vortex core size is understood to be of the order of
the UV cutoff a.

B. Vortex pair with windings n1 and n2
The two-vortex action is described by

S ¼ 2πρ0μ1

Z
dtLtwo vortex: ð3:7Þ

The vortices are parametrized by (2.4) with the subscript on
ri, zi and ni labeling the vortex they describe. Substituting
the parametrization in (2.9) leads to

Ltwo vortex ¼
�
Lone vortex þ n1n2

~λ

2

ffiffiffiffiffiffiffiffiffi
r1r2

p
S0

�
þ ð1 ↔ 2Þ;

ð3:8Þ

where ð1 ↔ 2Þ stands for ðr1 ↔ r2; z1 ↔ z2; n1 ↔ n2Þ,
and

S0 ¼ 2Q0ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2p þ s2p

q
Þ; ð3:9Þ

where

qp ¼ affiffiffiffiffiffiffiffiffi
r1r2

p sp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΔrÞ2 þ ðΔzÞ2

r1r2

s
; ð3:10Þ

and we have used Δr ¼ r1 − r2, and Δz ¼ z1 − z2. Note
that the vortex with winding number n2 has a natural length
scale ln2 determined by (3.6) with ðn1 ↔ n2Þ.
Restricting to the small core limit ðq1; q2; qp → 0Þ,4 the

equations of motion for a pair of coaxial circular vortices in
terms of a rescaled time coordinate t → ~λn1t are

r1 _r1 ¼ −γ
2Δzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðΔrÞ2 þ ðΔzÞ2
p Q0

0ðspÞ

r2 _r2 ¼
2Δzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðΔrÞ2 þ ðΔzÞ2
p Q0

0ðspÞ; ð3:11Þ

and

r21 _z1 ¼ r1 log
ln1

r1
þ γ

ffiffiffiffiffiffiffiffiffi
r1r2

p
Q0ðspÞ

− γ
ðr22 − r21 þ ðΔzÞ2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðΔrÞ2 þ ðΔzÞ2
p Q0

0ðspÞ

r22 _z2 ¼ γr2 log
ln2

r2
þ ffiffiffiffiffiffiffiffiffi

r1r2
p

Q0ðspÞ

þ ðr22 − r21 − ðΔzÞ2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΔrÞ2 þ ðΔzÞ2

p Q0
0ðspÞ; ð3:12Þ

where Q0
0ðspÞ≡ dQ0ðspÞ=dsp, sp is defined in (3.10) and

γ ≡ n2=n1: ð3:13Þ

The conserved energy of the vortex system is

~ϵ ¼ −~λn21

�
r1 log

eln1

r1
þ γ2r2 log

eln2

r2

þ 2γ
ffiffiffiffiffiffiffiffiffi
r1r2

p
Q0ðspÞ

�
; ð3:14Þ

and the conserved momentum along the z direction is

~pz ¼ −
n1
2
ðr21 þ γr22Þ: ð3:15Þ

This system is integrable because the four dimensional
phase space, spanned by ðr1; r2; z1;ΔzÞ or equivalently by
ðz1;ΔzÞ and their conjugate momenta,5 is constrained by
two independent invariants, ð~ϵ; ~pzÞ.

1. Test limit: jγj ≪ 1

Consider the case where the two strings have very
different winding numbers, with jγj ≪ 1. In this case the
first ring will move according to the solution for a single
isolated ring. Neglecting subleading terms in γ, the first ring
obeys, in terms of a rescaled time coordinate ~λn1t

_r1 ¼ 0; _z1 ¼
1

r1
log

ln1

r1
: ð3:16Þ

For the second ring (referred to as the “test” ring from now
on), the background equations of motion (in terms of the
rescaled time) have to be solved numerically, although now

3The complete elliptic integrals of the first and second kind,
KðyÞ and EðyÞ respectively, are defined in terms of the parameter
y as

KðyÞ≡
Z

π=2

0

dαffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ysin2α

p ; EðyÞ≡
Z

π=2

0

dα
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ysin2α

q
:

4Here q1 ¼ a=r1, q2 ¼ a=r2.
5These are related to the radii r1 and r2.
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FIG. 8. Examples of phase diagrams. Each plot is evaluated at a fixed value of ~pz. Top row: γ > 0. Bottom left: γ < 0, ~pz < 0. Bottom
right: γ < 0, ~pz > 0. We have chosen χ ¼ 1 and the axes are in units of the dynamical length scale ln1 . Color key for typical examples:
Solid red: leapfrogging vortices. Dotted cyan: pseudo-leapfrogging vortices. Dashed black: single passage of vortices. Dot-dashed
yellow: repelling vortices. The solid white curves represent the separatrix curves. The thin black curves mark out some possible phase
space trajectories, corresponding to different values for the energy, denoted here as a contour gradient.
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there are only two remaining equations and two variables to
be solved for:

r2 _r2 ¼
2Δzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðΔrÞ2 þ ðΔzÞ2
p Q0

0ðspÞ

r22 _z2 ¼
ffiffiffiffiffiffiffiffiffi
r1r2

p
Q0ðspÞ þ

ðr22 − r21 − ðΔzÞ2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΔrÞ2 þ ðΔzÞ2

p Q0
0ðspÞ: ð3:17Þ

The reduction in the dimension of the system still leads to
background dynamics just as rich as for the full four
dimensional system (see the next subsection), but at the
same time it makes studying the perturbations about the
background more tractable, as we will see in Sec. IV.

C. Classification of the phase space

The classical phase space dynamics of a pair of vortex
rings has been previously exhaustively classified [11] for
all values of γ except for γ ¼ −1, and in the restricted case
when χ ¼ ln2=ln1 ¼ 1, i.e. in the restricted case when the
core sizes of vortices with different winding numbers are
assumed to be equal. Several distinct regimes of behavior
were found:

(1) γ > 0. In this regime there can be repulsion, single
passage of one ring through another, or leapfrogging
solutions. Refer to Fig. 8 for two examples of typical
phase diagrams in this case.

(2) γ ∈ ð−1; 0Þ, r21 þ γr22 > 0. In this regime there
can be single passage, leapfrogging, or pseudo-
leapfrogging, where the motion is periodic but the
rings do not wind around one another. Refer to Fig. 8
for an example of a typical phase diagram in this case.

(3) γ ∈ ð−1; 0Þ, r21 þ γr22 ≤ 0. Single passage and
pseudo-leapfrogging are the only possibilities. Refer
to Fig. 8 for an example of a typical phase diagram in
this case.

(4) γ ¼ −1. This regime was not investigated in
Ref. [11]. We present a phase space analysis of this
case in Appendix A. In addition to repulsion and
pseudo-leapfrogging, there are attractor solutions
where Δr → 0 as r1, r2 → ∞, and Δz → 8ln1=e.
Refer to Fig. 9 for an example of a typical phase
diagram in this case.

The test ring undergoes an equally diverse array of
motions as the pair of vortices for any value of γ, as
demonstrated in Fig. 10. Generalizing to a nonunit χ
[defined in (2.19)] for γ ≠ �1, the qualitative classification
presented above remains unaffected. However since the
energy of the vortex system given in (3.14) depends on χ,
the quantitative details of the structure of the phase space
such as the location of the fixed points and the locus of the
separatrix curves, or equivalently the bifurcation curves of
Ref. [11], would change with χ.
The case of γ ¼ −1, where the rings have equal and

opposite winding, is studied in more detail in Appendix A,
since this is the only case not analyzed in [11]. In particular
we give analytic expressions for the location of the saddle
point where the attracting and repelling trajectories meet,
and for the elliptic fixed point surrounded by pseudo-
leapfrogging trajectories.
Investigating the boundary between periodic and aperi-

odic solutions for general γ, we find limiting behavior that
is one of three types:

(i) Chasing limit.—In this regime the separation be-
tween the rings Δz and the duration of a period can
become arbitrarily large. An example of chasing
vortices for γ > 0 is shown in Fig. 11, where chasing
occurs as a limiting case of leapfrogging vortices.
Chasing is also possible for γ < 0. In the bottom left
panel of Fig. 8, a (partial) trajectory corresponding
to chasing vortices is shown in thin red.

(ii) Nesting limit.—In this regime Δz ¼ Δ_z ¼ 0. The
second derivative vanishes as well by the equations
of motion, but there are not enough free parameters
to make the third derivative vanish as well, so the
duration of the period remains finite. Refer to the top
left and right panels of Fig. 8: nesting happens
along the trajectory which as a limiting case of

FIG. 9. Example of a phase diagram when γ ¼ −1. Refer to
Fig. 8 for the color key. In particular, note that dot-dashed yellow
curves show examples of repulsion between vortices, each one
originating from the repeller point at Δr ¼ 0, Δz ¼ −8ln1=e.
The long-dashed pink curves show examples of trajectories
asymptotically approaching the attractor point at Δr ¼ 0,
Δz ¼ 8ln1=e.
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leapfrogging vortices, approaches the saddle point
on the left and the right, respectively.

(iii) Crushed limit.—One of the rings shrinks to zero size
at the moment where it passes through the other.
When ~pz < 0, r2 can shrink to zero if γ < 0, and
either r1 or r2 can shrink to zero when γ > 0. When
~pz > 0, r1 can vanish when γ < 0. The crushed limit

can be found e.g. at the right-hand boundary of the
plots in Figs. 8–10.

These limits can be found by solving the equations of
motion, which simplify for certain limiting values of γ. In
Appendix B we use these to find the set of initial conditions
in the parameters r1, r2, Δz which correspond to periodic
behavior for the special cases γ ¼ 1; 0;−1. These variables

FIG. 10. Examples of phase diagrams when γ ≈ 0. Top left: γ < 0. Top right: Closeup of figure on left. Bottom: γ > 0. Refer to Fig. 8
for the color key.
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are perhaps more intuitive than the Hamiltonian formalism
of [11]—unfortunately, this formalism does not make the
full phase diagram any simpler for general γ, and further-
more, without using the parameters ~ϵ, ~pz it is difficult to
specify a given trajectory uniquely.

IV. PERTURBATIONS

We will now study the perturbations of the two-ring
system and the stability of periodic background solutions,
following the analysis of a single ring in [3]. When γ > 0,
we will find that the system is usually stable when all
relevant length scales (vortex radii, separation, and wave-
length of the perturbations) are much larger than the
dynamical length scales ln1 , ln2 . But when γ < 0, as we
show in Sec. IV E, there can be large wavelength insta-
bilities on top of a periodic background motion. If it is
assumed that the effective field theory is only good for
wavelengths much larger than ln1 , ln2 , then this is the end
of the story. However, interesting structure in the pertur-
bation equations arises at length scales somewhat smaller
than ln1 and ln2 . In order to explore it, we assume that
effective field theory is in fact good at wavelengths much
greater than a physical core size a ≪ ln1 ;ln2 . We will find
that the time dependence of the background contributes
several novel effects to the story, such as “smearing” the
Widnall instability of a single ring over a larger range of
possible modes, and a new class of instability modes due to
parametric resonance with the background solution.
We parametrize small perturbations around the circular

vortex rings as follows:

~Xαðt; θÞ ¼

0
B@

rαðtÞ cos θ
rαðtÞ sin θ

zα

1
CAþ ϵ

X∞
m¼2

~Xm αðt; θÞ ð4:1Þ

where

~Xm αðt; θÞ ¼

0
B@

ðrmαðtÞ cosmθ þ smαðtÞ sinmθÞ cos θ
ðrmαðtÞ cosmθ þ smαðtÞ sinmθÞ sin θ

zmαðtÞ cosmθ þ ymαðtÞ sinmθ

1
CA;

ð4:2Þ

and the index α labels the vortex. At the linearized level, the
modesm are independent of one another, and perturbations
proportional to cosmθ and sinmθ decouple as well. Thus
we are justified in considering each modem separately, and
employing the following parametrization to describe each
vortex,

~Xαðt; θÞ ¼

0
B@

ðrαðtÞ þ ϵrmαðtÞ cosmθÞ cos θ
ðrαðtÞ þ ϵrmαðtÞ cosmθÞ sin θ

zα þ ϵzmα cosmθ

1
CA: ð4:3Þ

Expanded to quadratic order in the perturbations,
the scaled Lagrangian for a pair of vortices is then
given by

Ltwo vortex ¼ ½Ltwo vortex�Oðϵ0Þ þ ϵ2½Ltwo vortex�Oðϵ2Þ; ð4:4Þ

FIG. 11. Another example of a phase diagram when γ > 0, which exhibits chasing trajectories. Right: Closeup of figure on left. Refer
to Fig. 8 for the color key.
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where ½Ltwo vortex�Oðϵ0Þ is given by (3.8) and

½Ltwo vortex�Oðϵ2Þ ¼
�
½Lone vortex�Oðϵ2Þ þ n1n2

~λ

2
ðSrrr2m1 þ 2Srzrm1zm1 þ Szzz2m1Þ þ ð1 ↔ 2Þ

�

þ n1n2 ~λðSrr2rm1rm2 þ Srz2rm1zm2 þ Szr2zm1rm2 þ Szz2zm1zm2Þ; ð4:5Þ

where

½Lone vortex�Oðϵ2Þ ¼ −
1

4
n1 _z1r2m1 −

1

2
n1r1rm1 _zm1 þ

λ

2r1
n21

��
1

8
Rrr −

m2

2
log

r1
ln1

�
r2m1 þ

�
1

8
Rzz −

m2

2
log

r1
ln1

�
z2m1

�
: ð4:6Þ

The m-dependent constants Rrr, Rzz were given in Ref. [3] as

Rrr ¼ ð4m2 − 1Þ
�
Γ0½mþ 1

2
�

Γ½mþ 1
2
� −

Γ0½1�
Γ½1� þ 2 log 2

�
− 2ðm2 þ 2Þ;

Rzz ¼ ð4m2 − 3Þ
�
Γ0½mþ 1

2
�

Γ½mþ 1
2
� −

Γ0½1�
Γ½1� þ 2 log 2

�
− 2m2; ð4:7Þ

where Γ½m� is the Gamma function. The functions Srr, Srz, and Szz are independent ofm, and in the small core limit (a → 0)
they are given by

Srr ¼ −
1

L7

�
Δz2ðΔz2 þ r21 þ r22ÞðΔz2 þ ðr1 þ r2Þ2ÞK

�
−

4

s2p

�

−ðΔz6 þ 2Δz4r21 − 2ðr32 − r21r2Þ2 þ Δz2ðr41 þ 10r21r
2
2 − 3r42ÞÞE

�
−

4

s2p

��

Srz ¼
r1Δz
L7

�
ðΔz2 þ r21 − r22ÞðΔz2 þ ðr1 þ r2Þ2ÞK

�
−

4

s2p

�

− ðΔz4 þ r41 þ 2r21ðΔz2 þ 3r22Þ − 7r42 − 6Δz2r22ÞE
�
−

4

s2p

��

Szz ¼ −
1

L7

�
ðΔz2 þ ðr1 þ r2Þ2ÞðΔz2ðr21 þ r22Þ þ ðr21 − r22Þ2ÞK

�
−

4

s2p

�

−ðΔz4ðr21 þ r22Þ þ ðr21 − r22Þ2ðr21 þ r22Þ þ 2Δz2ðr41 − 6r21r
2
2 þ r42ÞÞE

�
−

4

s2p

��
; ð4:8Þ

where L7 ≡ ðΔz2 þ Δr2Þ3=2ðΔz2 þ ðr1 þ r2Þ2Þ2, and sp is defined in (3.10). The corresponding functions needed in
Eq. (4.5), Sr2r2, Sr2z2 and Sz2z2 can be obtained from (4.8) simply by switching the indices ð1 ↔ 2Þ. The remaining
functions, Srr2, Srz2 and Szz2, are m dependent. For any specific value of m, they can be evaluated by performing the
following integrals:

Srr2 ¼
1

ðr1r2Þ3=2
Z

1

−1

du
v

�
n5=2

ðq2p þ s2p þ 4u2Þ5=2 þ
n3=2

ðq2p þ s2p þ 4u2Þ3=2 þ
n1=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2p þ s2p þ 4u2
q �

Szr2 ¼ −
r1Δz

ðr1r2Þ3=2
Z

1

−1

du
v

�
−
3ððu2 − v2Þ þ r2=r1Þðu2 − v2ÞT2mðvÞ

ðq2p þ s2p þ 4u2Þ5=2

þ ðu2 − v2ÞT2mðvÞ þ 2mu2vU2m−1ðvÞ
ðq2p þ s2p þ 4u2Þ3=2

�

Srz2 ¼ Szr2ðr1 ↔ r2; z1 ↔ z2Þ

Szz2 ¼
1

ðr1r2Þ3=2
Z

1

−1

du
v

�
−
3Δz2ðu2 − v2ÞT2mðvÞ
ðq2p þ s2p þ 4u2Þ5=2 þ r1r2ðu2 − v2ÞT2mðvÞ

ðq2p þ s2p þ 4u2Þ3=2 −
m2r1r2T2mðvÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2p þ s2p þ 4u2

q �
; ð4:9Þ
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where qp and sp are defined in (3.10), TnðvÞ and UnðvÞ are
Chebyshev polynomials of the first and second kind,
respectively,

v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − u2

p
; ð4:10Þ

and

n5=2 ¼ 3ðu2 − v2Þðr1ðu2 − v2Þ þ r2Þ
× ðr1 þ r2ðu2 − v2ÞÞT2mðvÞ;

n3=2 ¼ ðv2 − u2Þðr21 þ 3r1r2ðu2 − v2Þ þ r22ÞT2mðvÞ
− 2mu2vð4r1r2u2 þ Δr2ÞU2m−1ðvÞ;

n1=2 ¼ ð1þm2Þðu2 − v2Þr1r2T2mðvÞ
þ 4mu2vr1r2U2m−1ðvÞ: ð4:11Þ

In the small core limit qp → 0, the integrals Sij2 in (4.9) can
be written as

Sij2ðr1; r2;ΔzÞ ¼ SEij2ðm; r1; r2;ΔzÞE
�
−

4

s2p

�

þ SKij2ðm; r1; r2;ΔzÞK
�
−

4

s2p

�
; ð4:12Þ

where SEij2ðm; r1; r2;ΔzÞ and SKij2ðm; r1; r2;ΔzÞ are
rational functions of r1, r2 and Δz with integer
coefficients which depend on m. Although we do
not have general closed-form expressions for them
for all m,6 upon evaluating the integrals at individual
values of m, we find that with all other variables held
fixed, the Sij2 functions fall off exponentially fast at
sufficiently large m.7

The special case of a head-on collision between
mirror vortices, i.e. vortices of equal radii r1 ¼ r2
with γ ¼ −1 and “mirrored” perturbation amplitudes
rm1 ¼ rm2 and zm1 ¼ −zm2, was studied in Ref. [3].
Using trigonometric identities, it is straightforward to
check that in this special case the integrals in (4.9)
and the expressions in (4.8) combine nontrivially to
reproduce the integrals in Eq. (36) of Ref. [3], as
expected.8

The equations of motion have the general form

_zm1 ¼ −
_z1
r1
rm1 þ

2

r21

�
1

8
Rrr −

m2

2
log

r1
ln1

�
rm1

þ 2γ

r1
½Srrrm1 þ Srzzm1 þ Srr2rm2 þ Srz2zm2�;

_rm1 ¼ −
_r1
r1
rm1 −

2

r21

�
1

8
Rzz −

m2

2
log

r1
ln1

�
zm1

−
2γ

r1
½Szzzm1 þ Srzrm1 þ Szz2zm2 þ Szr2rm2�;

_zm2 ¼ −
_z2
r2
rm2 þ

2γ

r22

�
1

8
Rrr −

m2

2
log

r2
ln2

�
rm2

þ 2

r2
½Sr2r2rm2 þ Sr2z2zm2 þ Srr2rm1 þ Szr2zm1�;

_rm2 ¼ −
_r2
r2
rm2 −

2γ

r22

�
1

8
Rzz −

m2

2
log

r2
ln2

�
zm2

−
2

r2
½Sz2z2zm2 þ Sr2z2rm2 þ Szz2zm1 þ Srz2rm1�;

ð4:13Þ

where γ ¼ n2=n1, we have absorbed a factor of ~λn1 into the
definition of time, and _zi, _ri are given by (3.11) and (3.12).
This is a system of four coupled linear differential equa-
tions in four unknowns, with time-dependent coefficients.
Schematically, it has the form

d
dt

0
BBB@

zm1

rm1

zm2

rm2

1
CCCA ¼ MðtÞ

0
BBB@

zm1

rm1

zm2

rm2

1
CCCA; ð4:14Þ

and in general we must solve for the evolution numerically.
We are often interested in studying the stability of periodic
background solutions, which can be done using techniques
of Floquet theory. The quantity of interest is the transfer
matrix T and its eigenvalues, where T is defined by

0
BBB@

zm1ðtpÞ
rm1ðtpÞ
zm2ðtpÞ
rm2ðtpÞ

1
CCCA ¼ T

0
BBB@

zm1ð0Þ
rm1ð0Þ
zm2ð0Þ
rm2ð0Þ

1
CCCA; ð4:15Þ

where tp refers to the duration of a period of the back-
ground solution. The stability of the perturbations will be
determined by the absolute values of the eigenvalues of the
transfer matrix—if any are greater than one, the system will
be unstable outside a measure zero subset of initial
conditions, while if they are not, the system remains stable.

6In Appendix C we present explicit expressions for these
functions in a discrete sum representation for all m.

7Fixing the other variables to generic values, the Sij2 functions
may start exhibiting an exponential fall off starting with m as
small as m ¼ 10.

8Up to a factor of 2r, due to the different normalization of the
Sij functions in the Lagrangian (4.5).
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A sample of numerical results are plotted in
Fig. 12, for a particular choice of initial conditions
for r1, r2 and Δz, and different values of the
parameters: the mode m and the ratio of winding

numbers γ ¼ n2=n1. A few general features to note
are the following:
(1) For γ > 0, the perturbations of the system tend to be

stable at low m, when the wavelengths of the

FIG. 12. Left: the radii corresponding to the Widnall instabilities are in cyan (with the unstable modem in yellow boxes), the radius of
ring 1 varies within the dashed black circles, and the radius of ring 2 varies within the dotted red circles. Right: the maximum eigenvalue
of the transfer matrix. Initial conditions are r1 ¼ 12ln1 , r2 ¼ 13ln1 , Δz ¼ 4ln1 , χ ¼ 1. Top: γ ¼ 0.5. Middle: γ ¼ 0.05. Bottom:
γ ¼ 0.01. The blue vertical line marks the estimate for the most unstable mode mBiggest as obtained from (4.37).
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perturbations are larger than the dynamically gen-
erated length scales ln1 , ln2 , which would corre-
spond to the Widnall instability of a single ring [3].
For γ ≪ 1, however, the length scales ln1 , ln2 may
be quite different, parametrized by the ratio χ ¼
ln2=ln1 (which is a free parameter in the effective
field theory description presented here).

(2) In the limit of large m the system tends to be stable.
We will explain below why this is so, except for the
possibility of narrow parametric resonances.

(3) Notice that unlike the case of a single ring, a given
set of initial conditions may allow more than one
value of m to be unstable—we say that the Widnall
instability windows of the single ring have been
“smeared out.”

(4) In fact, for 0 ≤ γ ≪ 1, there is a wide range of values
of m such that the second ring becomes unstable,
which we observe to begin at or around the value of
m corresponding to the Widnall instability, although
stability is restored for very large values of m. The
range of the instability window and the most
unstable mode mBiggest grow as γ becomes small.

We will find a quasi-analytic estimate for the mode
corresponding to the fastest growing instability, as a
function of γ and χ.

(5) The behavior for γ < 0 and jγj ≪ 1 is very different,
with the instability bulge replaced by a few dis-
connected bands, and with instability on large scales.
We will say more about this case, and give an
illustrative example, in Sec. IV E.

We can understand these behaviors in more detail by
studying certain limits where the 4 × 4matrixMðtÞ reduces
into 2 × 2 blocks. In particular, four instances where this
occurs are in the limits of large m, in the limit of small γ, at
an elliptic fixed point for γ < 0, and in the limit where the
separation between the rings is much smaller than the
radius. We will discuss each of these limits in some detail.
To facilitate the discussion of these limits, we can

decompose MðtÞ into 2 × 2 blocks as

MðtÞ ¼
�

I II

III IV

�
: ð4:16Þ

The blocks are given by

I ¼ 2γ

r1

�
Srz Srr
−Szz −Srz

�
þ

0
B@ 0 2

r2
1

�
1
8
Rrr − m2

2
log r1

ln1

�
− _z1

r1

−2
r2
1

�
1
8
Rzz − m2

2
log r1

ln1

�
− _r1

r1

1
CA;

II ¼ 2γ

r1

�
Srz2 Srr2
−Szz2 −Szr2

�
; III ¼ 2

r2

�
Szr2 Srr2
−Szz2 −Srz2

�
;

IV ¼ 2

r2

�
Sr2z2 Sr2r2
−Sz2z2 −Sr2z2

�
þ

0
B@ 0 2γ

r2
2

�
1
8
Rrr − m2

2
log r2

ln2

�
− _z2

r2

−2γ
r2
2

�
1
8
Rzz − m2

2
log r2

ln2

�
− _r2

r2

1
CA; ð4:17Þ

where _zi, _ri are given by (3.11)–(3.12). Using standard
results of Floquet theory, the determinant of the transfer
matrix can be calculated analytically:

detT ¼ exp

�Z
tp

0

trMðtÞdt
�

¼
�

r1ð0Þr2ð0Þ
r1ðtpÞr2ðtpÞ

�
¼ 1;

ð4:18Þ
and therefore the transfer matrix is always unitary.

A. Large m limit

In the large m limit, numerical results such as in Fig. 12
indicate that the system is stable. This can be understood by
first evaluating the integrals for each individual m in (4.9)
and noticing that the m-dependent terms in blocks II, III
fall off exponentially at large m. So the transfer matrix
decomposes into 2 × 2 blocks. For jγjm2 logm ≫ 1, the
dominant terms are

I ¼ m2

r21

�
log

4mln1

r1
þ γE −

1

2

��
0 1

−1 0

�

IV ¼ γm2

r22

�
log

4mln2

r2
þ γE −

1

2

��
0 1

−1 0

�
: ð4:19Þ

(Here γ is a parameter, while γE ¼ 0.577… is the Euler-
Mascheroni constant.) The two rings decouple and the
terms agree with the analysis of [3], albeit with different
(nonconstant) evolution of the background functions r1, r2.
If the radius of a given ring is such that the Widnall

instability occurs at a large value of m, there may now be
multiple neighboring values of m that are unstable as well,
since the radius of each loop may scan over multiple
instability bands during its evolution. The smearing of the
Widnall window is also observed in situations where the
instability should correspond to a smaller value ofm; in this
case though, while the origin of the effect may be similar,
the analytics are not as easy to understand.
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At any rate, at modes sufficiently larger than the ones
corresponding to the Widnall instability, (4.19) guarantees
that the rings will be stable. Exceptions may occur when
one of the subleading time-dependent terms is in parametric
resonance with the free oscillation. Although these reso-
nances will be very rare in parameter space, it is worth
emphasizing that this is a possibility, and that this repre-
sents a novel class of instability sourced by the time
dependence. We will return to this point in Sec. V.

B. m ≫ 1 but γm2 logm ∼ 1

In the regime where γ ≪ 1, it is possible to have m large
but still γm2 logm ∼ 1. In Fig. 12 we see that when γ > 0
this corresponds to the formation of an instability bulge
extending over many values of m. The case γ < 0 is
qualitatively different and will be discussed separately.
As we have just argued above, this bulge must end when
γm2 logm ≫ 1. For the values of m in this “not-so-large”
limit I, II, and III are as described in Sec. IVA, but

IV ¼ 2

r2

�
Sr2z2 Sr2r2
−Sz2z2 −Sr2z2

�
þ

0
B@ 0 2γ

r2
2

�
1
8
Rrr − m2

2
log r2

ln2

�
− _z2

r2

−2γ
r2
2

�
1
8
Rzz − m2

2
log r2

ln2

�
− _r2

r2

1
CA: ð4:20Þ

Ring 1 evolves independently with its perturbations gov-
erned by I, and is stable away from its Widnall bands of
instability, while ring 2 will be stable or unstable depending
on the 2 × 2 transfer matrix T2 constructed from IV. Just as
for the full transfer matrix, it is easy to show that the
product of the eigenvalues of T2 is 1.
To estimate how unstable a mode in the bulge can be, it is

useful to consider the eigenvalues of the matrix MðtÞ at a
given instant in time. It is consistent to take r1, r2,Δr,Δz to
be of the same parametric size r, or to take r1 ∼ r2 ∼ r, Δr,
Δz ∼ Δ ≪ r.9 Two of the eigenvalues of MðtÞ come from
diagonalizing I and correspond to the perturbations of ring
1; these are constant in time and are complex conjugates
with absolute value ðm2 logmÞ=r2. The eigenvalues λ3, λ4
determining the fate of the second ring are fixed by the trace
and determinant of block IV. Parametrically, these are of
size

λ3 þ λ4 ∼max

	
1

r2
;
1

Δ2



; λ3λ4 ∼max

	
1

r4
;
1

Δ4



:

ð4:21Þ

The absolute magnitude of the eigenvalues of T2 must
therefore obey

jλmaxj ≤ exp

�Z
tp

0

jλ3;4ðtÞjdt
�

ð4:22Þ

and since parametrically tp ∼minfΔ2; r2g, in the limit of
small γ, we find jλmaxj≲Oð1Þ even when the instability
bulge is at its largest. More precisely, jλmaxj is bounded by a

quantity which is parametrically independent of the param-
eters γ, m, though the bound may still be numerically large
due to the exponential. Indeed, numerical investigations
indicate that values of jλmaxj ∼ 200 can be expected at the
maximum of the bulge.
Note that the argument leading to the bound on jλmaxj

does not explicitly depend on the sign of γ; since it is an
inequality, however, it does not guarantee that the insta-
bility must occur. As we will see in Sec. IV E the instability
bulge appears for small but positive γ but is absent for small
and negative γ.

C. Small γ and general m

In the limit where γ ≪ 1 (but where m is not necessarily
large), the matrix MðtÞ takes on the general form

I¼

0
B@ 0 2

r2
1

�
1
8
Rrr−m2

2
log r1

ln1

�
− _z1

r1

−2
r2
1

�
1
8
Rzz−m2

2
log r1

ln1

�
− _r1

r1

1
CA;

II¼0; III¼ 2

r2

�
Szr2 Srr2
−Szz2 −Srz2

�
;

IV¼ 2

r2

�
Sr2z2 Sr2r2
−Sz2z2 −Sr2z2

�

þ

0
B@ 0 2γ

r2
2

�
1
8
Rrr−m2

2
log r2

ln2

�
− _z2

r2

−2γ
r2
2

�
1
8
Rzz−m2

2
log r2

ln2

�
− _r2

r2

1
CA:

ð4:23Þ

In this case, just as in Sec. IV B, ring 1 evolves independ-
ently10 and r1 is constant.11 The perturbations obey

9The first case corresponds to an ordinary periodic solution,
and the second corresponds to the limit of small separation
between the rings. The chasing limit exhibits seemingly different
parametrics with Δz ≫ r1 ∼ r2 ∼ r, but the interaction between
the rings is negligible as long as the rings are far apart, so we do
not need to worry about this case here.

10This follows from the fact that II vanishes.
11This follows from taking the γ ≪ 1 limit in (3.11) and (3.12).
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_rm1 þ
zm1

4r21

�
Rzz − 4m2 log

r1
ln1

�
¼ 0;

_zm1 −
rm1

4r21

�
Rrr − 4ðm2 − 1Þ log r1

ln1

�
¼ 0; ð4:24Þ

and so they undergo simple harmonic motion with
frequency

ωm

¼ 1

4r21

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
Rzz − 4m2 log

r1
ln1

��
Rrr − 4ðm2 − 1Þ log r1

ln1

�s
:

ð4:25Þ

Remember that we have absorbed ~λn1 into the definition
of time in this section. For the second ring, the background
equations of motion have to be solved numerically, but
now there are only two remaining equations and two
variables to be solved for. The perturbation equations have
the form

_zm2 ¼ αðtÞrm2 þ βðtÞzm2 þ ΓðtÞ;
_rm2 ¼ aðtÞzm2 þ bðtÞrm2 þ cðtÞ; ð4:26Þ

where ΓðtÞ has been capitalized to avoid confusion with the
parameter γ, and the explicit expressions for the functions
are given by

α ¼ 2Sr2r2
r2

þ 2γ

r22

�
1

8
Rrr −

m2

2
log

r2
l2

�
−
_z2
r2
; β ¼ 2Sr2z2

r2
; Γ ¼ Srr2rm1 þ Szr2zm1

r2=2
;

a ¼ −
2Sz2z2
r2

−
2γ

r22

�
1

8
Rzz −

m2

2
log

r2
l2

�
; b ¼ −

2Sr2z2
r2

−
_r2
r2
; c ¼ −

Szz2zm1 þ Srz2rm1

r2=2
: ð4:27Þ

These equations (4.26) can be written in terms of a pair of second-order ordinary uncoupled differential equations:

̈zm2 þ
�
−
_α

α
− β − b

�
_zm2 þ

�
_αβ

α
− _β þ bβ − aα

�
zm2 ¼ cαþ α

�
d
dt

− b

��
Γ
α

�
;

̈rm2 þ
�
−
_a
a
− b − β

�
_rm2 þ

�
_ab
a

− _bþ bβ − aα

�
rm2 ¼ Γaþ a

�
d
dt

− β

��
c
a

�
: ð4:28Þ

These can also be expressed in terms of a sourced Hill equation. For zm2, making the redefinition

zm2ðtÞ ¼ ψðtÞe
R

t1
2
ð _ααþβþbÞdt0 ð4:29Þ

we have

�
d2

dt2
þ
�
_αβ

α
− _β þ bβ − aαþ 1

2

d
dt

�
_α

α
þ β þ b

�
−
1

4

�
_α

α
þ β þ b

�
2
��

ψ

¼ ðe−
R

t1
2
ð _ααþβþbÞdt0 Þ

�
cαþ α

�
d
dt

− b

��
Γ
α

��
≡ sðtÞ: ð4:30Þ

The corresponding equation for rm2 has the roles of
fa; b; cg and fα; β;Γg reversed. The solution is
therefore

ψðtÞ ¼ ψ0ðtÞ þ
Z

t
dt0sðt0ÞGðt; t0Þ ð4:31Þ

where ψ0 is the homogeneous solution to the Hill equation,
Gðt; t0Þ is the Green’s function, and sðt0Þ is the term
sourcing the Hill equation. In practice this will still need
to be solved numerically, but it is simpler than solving the
full system.

Before going on to estimate the most unstable mode
in the next subsection, we note that in most cases when
γ is small (either positive or negative), taking the 2 × 2
matrix III to be vanishingly small at sufficiently large m
is a reasonable approximation. This matrix comprises m-
dependent Sij2 functions found by doing the integrals in
(4.9). As noted previously, they fall off exponentially
with m at large m. As an example, in Fig. 13 we show a
comparison between the approximate values for the
highest eigenvalue of the transfer matrix, jλmaxj as a
function of mode m computed by completely neglecting
the Sij2 functions for all m and thus solving a 2 × 2
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transfer matrix, and the exact jλmaxj computed from the
full 4 × 4 transfer matrix found by solving the exact
system. We find that for γ ¼ 0.05, there is a strong
agreement with the exact solution for m≳ 10. Numerics
show this approximation works at negative γ as well,
and gets better at even smaller jγj. In the Hill equation
above, this translates to neglecting the source term
for m≳ 10.

D. The most and first unstable modes

In the limit of small γ and large m but γm2 logm ∼ 1,
as was discussed in Sec. IV B the transfer matrix reduces
to 2 × 2 blocks. For γ > 0, as we argued, this is the
regime in which the instability bulge extends over many
values for m. This reduction to a two dimensional system
allows us to study the instability bulge in more detail. In
this section we will assume γ > 0 so that the bulge exists,
and we will discuss what happens when γ < 0 in the next
subsection.
Numerics show that sweeping across a range of

values for m, an instability bulge develops, rises,
reaches a maximum and then falls (see for example
Figs. 12–14). We have previously argued that the bulge
ends when γm2 logm ≫ 1. More precisely, the bulge
ends when the m-dependent terms in the equations of
motion (4.13) dominate the m-independent terms. In
much the same way, the growth of the bulge at low m
corresponds to the case when the m-dependent terms in

the equations of motion begin to compete with the m-
independent terms.
We observe that the onset of the bulge tends to occur

when m is on or around the number of the Widnall band
corresponding to r1 or r2: for example, in Figs. 12 and
15 the bulge rises almost immediately (at or around
m ¼ 2); however, the onset of the bulge can be pushed
to higher values of m if the radii of the vortex rings
sweep across Widnall bands of higher modes (see
Fig. 14). This appears to hold for all the numerical
examples we have checked; however, it is easy to
understand analytically only in limiting cases. If the
radii are so large that the mode number mWidnall
corresponding to the Widnall instability is much greater
than 1 (in the sense of Sec. IVA) the analysis of that
subsection makes it clear why the instability appears
only around the Widnall value.
In the regime of interest considered here wherem is large

but γ is small, the 4 × 4 matrix decomposes into 2 × 2
blocks, as described in Sec. IV B. The equations of motion
for the perturbations of ring 2, governed by the 2 × 2matrix
IV given in (4.20) have the form

r2
2
_zm2 ¼ Sr2z2zm2 þ ðFz þ GzðmÞÞrm2;

r2
2
_rm2 ¼ −

�
Sr2z2 þ

_r2
2

�
rm2 þ ðFr þ GrðmÞÞzm2; ð4:32Þ

where

FIG. 13. The maximum eigenvalue and the most unstable mode of the transfer matrix: approximate (cyan), and exact. Note that exact
solutions are not shown for the entire range of m. To better guide the eye while comparing, the instabilities have been interpolated to
noninteger values of mode m using polynomials of degree 3. Initial conditions: r1 ¼ 12ln1 , r2 ¼ 13ln1 , Δz ¼ 4ln1 , γ ¼ 0.05. Top left
(black): χ ¼ 1. Top right (red): χ ¼ log 20 ≈ 3. Bottom left (green): χ ¼ log 50 ≈ 6.21. Bottom right (purple): χ ¼ 10. The blue vertical
line marks the estimate for the most unstable mode mBiggest as obtained from (4.37).
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Fz ¼ Sr2r2 −
_z2
2
; GzðmÞ ¼ γ

r2

�
1

8
Rrr −

m2

2
log

r2
ln2

�

Fr ¼ −Sz2z2; GrðmÞ ¼ −γ
r2

�
1

8
Rzz −

m2

2
log

r2
ln2

�
:

ð4:33Þ

The terms GzðmÞ, GrðmÞ vanish for m ≈mWidnall and also
form ¼ 0. But form ¼ 0we know that the system is on the
edge of stability: in this case we are expanding perturba-
tively around the wrong background solution, with a
different period and amplitude, so the perturbations grow
linearly and the eigenvalues of the transfer matrix are all
identically 1. At nonzero m, the GrðmÞ and GzðmÞ terms
get turned back on when m ≠ mWidnall but have different
signs above and belowmWidnall, and so are expected to push
in opposite directions—namely towards stability for m

below this value, and instability above. Working with
(4.32) numerically, changing the sign of the m-dependent
terms by hand does indeed alter the behavior of the system
from instability to stability and vice versa. For modes with
m > mWidnall the 2 × 2 block approximation is sufficient for
this argument. For low modes, however, we need to
consider the full 4 × 4 system to see this explicitly, and
we do. Further above mWidnall, the instability bulge con-
tinues to rise as the m-dependent terms become more
important.
It is natural to expect that the bulge peaks when the

contributions from m-dependent and m-independent
terms become (more or less) equal. This expectation can
be made more precise as follows. At the peak of the bulge,
we expect

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hGaðmÞ2i

q
≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðFaÞ2i

q
a ¼ z; r ð4:34Þ

FIG. 14. An example where the rings oscillate across higher Widnall bands. Left: the radii corresponding to the Widnall instabilities
are in cyan (with the unstable modem in yellow boxes), the radius of ring 1 varies within the dashed black circles, and the radius of ring
2 varies within the dotted red circles. Right: the maximum eigenvalue of the transfer matrix. Initial conditions are r1 ¼ 39ln1 ,
r2 ¼ 33ln1 , Δz ¼ 10ln1 , χ ¼ 1. Top: γ ¼ 0.5. Bottom: γ ¼ 0.001. The blue vertical line marks the estimate for the most unstable mode
mBiggest as obtained from (4.37).
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where h� � �i stands for time average over one time period of
the background solution. When m ≫ 1, the m-dependent
functions in (4.34) simplify to

GzðmÞ ¼ −GyðmÞ ¼ γm2

2r2

�
log

4mln2

r2
þ γE −

1

2

�
þOðlogmÞ: ð4:35Þ

We further have Fz ¼ Fr on the m-independent side, in the
limit of small γ—making use of the z2 equation of motion
(3.12), and the definitions of Q0 and the Sij functions in
equations (3.5) and (4.8) respectively, it is easy to confirm
the equality holds12 when γ ≪ 1.
To write down an estimate for the most unstable modem,

we proceed as follows. First, in the large m limit,
approximate the left-hand side of (4.34) by

γm2

2hr2i
�
log

4mln2

hr2i
þ γE −

1

2

�
¼ Frms; ð4:36Þ

where hr2i is the time average of r2ðtÞ over one time period
and Frms ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðFrÞ2i

p
≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðFzÞ2i

p
. Then, solving form we

obtain an estimate for the most unstable mode13

mBiggest ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4hr2iFrms

γW0ð64e2γE−1l2
n2Frms=ðγhr2iÞÞ

s
; ð4:37Þ

where W0ðyÞ is the principal branch of the real valued
Lambert-W function. The Lambert-W function WðyÞ sat-
isfies y ¼ WðyÞeWðyÞ, takes values between −1 and ∞ for
y > −1=e, and is positive valued for positive y. The
principal branch of WðyÞ corresponds to WðyÞ ≥ −1.
This semianalytic estimate establishes the functional
dependence of the most unstable mode on γ, in turn
explaining why the most unstable modes occur at larger
and larger values of m at smaller and smaller γ. Moreover,

the shifting of the most unstable mode to the left as χ is
increased, as shown in Fig. 15, can be understood from the
dependence of mBiggest on ln2 ¼ χln1 .
In practice, mBiggest can be computed numerically in a

straightforward way, once the time dependences of the
background solution are known. These in turn can be
computed numerically by solving the integrable system
defined by the equations of motion (3.11) and (3.12). We
find close agreement between the numerics and the
estimate (4.37), to within 10%. In fact, quite surprisingly,
though there is a priori no reason for this to be so, the
estimate works well at finite γ as well, to about 15%
accuracy. We show some typical examples in Figs. 12–14,
where blue vertical lines mark the estimates for mBiggest

found using (4.37) at various values for γ and χ.
We find that the reduced wavelength of the most unstable

mode is at most an order one multiple of the dynamical
length scale. If λ is the wavelength of the unstable mode
mBiggest, then

λ

2π
≈

hri
mBiggest

; ð4:38Þ

where hri≡ hr2i ≈ hr1i is the time average of the radii of
the rings over one time period. Substituting for mBiggest

using (4.37), and taking hri ¼ Rln1 and Frms ¼ κ=hri, we
obtain

λ

2π
≤ 4eγE−1=2χln1 ≈ 4.321ln2 ð4:39Þ

where the bound is saturated as γR2=κ → ∞. The bound
coincides exactly with the reduced wavelength of unstable
modes of a single ring [3] with winding number n2 ¼ γn1.

FIG. 15. The variation of the maximum eigenvalue and the
most unstable mode of the transfer matrix with χ. Interpolated to
noninteger modes as in Fig. 13. Initial conditions are r1 ¼ 12ln1 ,
r2 ¼ 13ln1 , Δz ¼ 4ln1 , γ ¼ 0.05. Dotted (black): χ ¼ 1. Dashed
(red): χ ¼ log 20 ≈ 3. Solid (green): χ ¼ log 50 ≈ 6.21. Dot-
dashed (purple): χ ¼ 10.

12The zi equations of motion in (3.12) can be rewritten in terms
of the Sij functions as

_z1 ¼
1

r1
log

ln1

r1
þ 2γðSrr þ SzzÞ

_z2 ¼
γ

r2
log

ln2

r2
þ 2ðSr2r2 þ Sz2z2Þ:

Thus when γ ≪ 1, Fz ≈ Fr.13When r1, r2,Δz are taken to be of the same parametric size r,
Frms ∼ 1=r, and (4.37) reduces to

mBiggest ∼
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

γW0ð64e2γE−1l2
n2=ðγr2ÞÞ

q :

Then, in the γ → 0 limit, γm2
Biggest logmBiggest → 2, which is

consistent with the regime of interest in this subsection.
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This explains why in the numerics (see for example Fig. 14)
the most unstable modes for a pair of vortex rings with
γ > 0 occur only at values higher than the corresponding
Widnall unstable mode for a single ring with the corre-
sponding time averaged radius.

E. γ < 0

Even for γ ≈ 0, the case of γ < 0 is qualitatively very

different from γ > 0. An example is depicted in Fig. 16.

The main points to note are as follows:

FIG. 16. Initial conditions: r1 ¼ 39l0, r2 ¼ 33l0, Δz ¼ 10l0. Top: γ ¼ 0.001. Middle: γ ¼ −0.001. Bottom: Contour plots for top
(left panel) and middle (right panel). The red contour marks the trajectory in the background phase space whose instability is being
investigated.
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(1) The modes should still be stable for sufficiently
large m, due to the analysis of Sec. IVA, which is
valid independently of the sign of γ. This is borne
out by the numerics for very large values of m
when jγjm2 logm ≫ 1.

(2) The instability bulge analyzed in Secs. IV B and IV
D is no longer present—most modes in this range are
stable except for a few instability bands, and these
have jλmaxj of order one, rather than in the hundreds.
Although the bounds on potential instabilities de-
rived in Sec. IV B do not a priori depend on the sign
of γ and are therefore still valid, since they are
inequalities, they do not preclude the possibility that
the instability does not even occur, in which case the
estimate in Sec. IV D does not apply. To understand
why the qualitative behavior can depend so sensi-
tively on the sign of γ, notice that the energy
landscape for the unperturbed vortices is very differ-
ent for positive and negative γ: in the example
depicted in Fig. 16, the periodic trajectory is almost
identical regardless of the sign of γ; however, for
positive γ it surrounds a local maximum of the
energy in phase space, and for γ < 0 it surrounds an
absolute minimum. Intuitively, this appears consis-
tent with the observation that the perturbations tend
to remain stable for many more values of m in the
latter case, and the instabilities that do exist are
weaker—we emphasize, however, that since this
argument is based only on the energetics of the
background, it is not a proof.

(3) For small negative values of γ, at small length scales
the instabilities tend to assemble into disconnected
bands, and the small magnitudes of the eigenvalues
suggest that they are on the edge of instability. Both
these points indicate that these instabilities are
caused by resonant effects with the time-dependent
background. See Fig. 16 for an example where for
γ < 0 there can be instability bands at intermediate
m, whereas for γ > 0 parametric resonances can lead
to stability for certain values of m within the
instability bulge.

(4) Finally, we note that unlike what happened for
positive γ, for negative γ we see that for small m
and length scales larger than ln1 , ln2 , the perturba-
tions tend to be unstable. The discussion in Sec. IV
D can be applied here in mirror image: in the limit
where mWidnall is large, the system decomposes into
2 × 2 blocks, and since the signs of them-dependent
terms are reversed (since they are proportional to γ),
the system will be unstable at small m and mostly
stable at large m. The same caveat mentioned earlier
applies here as well, though, and to really see that
them-dependent terms push the system to instability
at small m one needs to keep the off-diagonal
interactions, i.e., consider the full 4 × 4 system.

Furthermore, as we discussed above, time-
dependent effects can alter the fate of some of the
modes at short scales, leading to narrow instability
or stability bands in spite of the overall pattern. In
principle, this may occur at large scales as well,
though we have not observed this directly in any of
our numerical examples—there are fewer modes on
this side of mWidnall, and any resonances that exist
will be very narrow.

F. Elliptic fixed point

When γ < 0, there exists an elliptic fixed point (EFP) for
values of the rescaled momentum (3.15) satisfying an
appropriate bound (refer to Appendix A for a detailed
analysis in the special case of γ ¼ −1). The EFP occurs at
Δz ¼ 0,Δr ¼ ð1 − δEFPÞr1 where 0 < δEFP < 1. The back-
ground dynamics are very simple, with Δ_z ¼ Δ_r ¼ _r1 ¼ 0,
and _z1 ¼ constant. At the level of the background solution,
this represents a pair of nested vortices moving together
with a constant axial velocity.
The calculation presented in Appendix A 3 for comput-

ing δEFP when γ ¼ −1 can easily be generalized to any
negative γ. The perturbative expression for δEFP in (A12)
generalizes to

δEFP ≈ γ
W0ð2π−logðr1=ln1 Þγr1=ðln1 χÞ

Þ
2π − logðr1=ln1Þ

; ð4:40Þ

where χ ¼ ln2=ln1 andW0ðyÞ is the principal branch of the
real valued Lambert-W function. As was the case when
γ ¼ −1, the existence of a real solution for δEFP restricts the
radius r1 to14

r1 ≥ −
χ

γ
eW0

�
−
γ

χ
e2π−1

�
ln1 : ð4:41Þ

Additionally, to ensure δEFP < 1, Eq. (4.40) implies we
must have

r1 > e
2π
1−γχ

γ
1−γln1 : ð4:42Þ

The second condition is weaker than the first if the
dynamical length scale χ satisfies

χ < e2π−1þγ; ð4:43Þ

and stronger when the sign of the inequality is reversed.
The m-independent Sij functions given in (4.8) simplify

to15

14This in turn translates to a bound on the rescaled momentum
~pz, but we do not write it down explicitly here.

15From now on, to avoid clutter we shall call δEFP simply δ.
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Srr ¼ δ2Sr2r2 ¼
2δ2Eð− 4δ

ð−1þδÞ2Þ
ð−1þ δÞð1þ δÞ2

1

r1
;

Srz ¼ Sr2z2 ¼ 0;

Szz ¼ Sz2z2 ¼
−ð1þ δ2ÞEð− 4δ

ð−1þδÞ2Þ þ ð1þ δÞ2Kð− 4δ
ð−1þδÞ2Þ

ð−1þ δÞð1þ δÞ2
1

r1
: ð4:44Þ

The m-dependent Sij2 functions given by the integrals (4.9) can be computed for general m. They are given by

Srr2 ¼
2
ffiffiffi
π

p
Γðmþ 3

2
Þ2F1ð32 ; mþ 3

2
;mþ 1; δ2Þ

Γðmþ 1Þ
δmþ1

r1
;

Srz2 ¼ Szr2 ¼ 0;

Szz2 ¼
ffiffiffi
π

p ðδ2 þ 1ÞΓðmþ 1
2
Þ2F1ð32 ; mþ 1

2
;mþ 1; δ2Þ

ðδ2 − 1ÞΓðmþ 1Þ
δm

r1

−
ffiffiffi
π

p ðδ2ðm − 1Þm −mðmþ 1Þ þ 1ÞΓðmþ 1
2
Þ2F1ð12 ; mþ 1

2
;mþ 1; δ2Þ

ðδ2 − 1ÞΓðmþ 1Þ
δm

r1
; ð4:45Þ

where 2F1ða; b; c; zÞ is the hypergeometric function and
0 < δ < 1.
Note that (4.44) and (4.45) and _r1 ¼ _r2 ¼ 0 imply that

all the diagonal entries of the 2 × 2 matrix blocks I, II, III,
and IV written in (4.17) vanish, and the nonvanishing
entries are time independent. The perturbations form an
integrable system, governed by the following evolution
equation [written in a different basis than in (4.14)]

d
dt

0
BBB@

zm1

zm2

rm1

rm2

1
CCCA ¼

�
0 A

B 0

�0BBB@
zm1

zm2

rm1

rm2

1
CCCA: ð4:46Þ

Here the 2 × 2 time-independent matrices A and B can be
read off of (4.13) and (4.44)–(4.45), but their explicit form
is not very illuminating to write down. The eigenvalues of
the evolution matrix in (4.46) are given by

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
ðtrAB�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðtrABÞ2 − 4 detA detB

q
Þ

r
: ð4:47Þ

The system is stable and undergoes harmonic oscillations if
the eigenvalues are purely imaginary, which restricts the
matrices A and B to

trAB < 0 and 0 < detA detB ≤
1

4
ðtrABÞ2: ð4:48Þ

When δ ≪ 1, the Sij and Sij2 functions in (4.44) and (4.45)
provide only subleading corrections to the eigenvalues
(4.47). The leading contribution to the eigenvalues just
gives theWidnall frequencies for isolated rings with radii r1
and r2,

� iγi
4r2i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
4ðm2 − 1Þ log ri

lni

− Rrr

��
4m2 log

ri
lni

− Rzz

�s
;

γi ¼
	
1; i ¼ 1

γ i ¼ 2
; ð4:49Þ

with no sum over the index i. Instabilities arise when the
radii fall in a window which makes the eigenvalues above
real, corresponding to Widnall instability bands [3].
Turning on δ modifies the boundaries of the Widnall
bands, but these effects are small at small δ. Numerical
exploration reveals the (modified) Widnall instabilities,
which occur when detA detB < 0 are the only instabilities
which arise at the EFP.

V. PAIR OF VORTEX LINES

In the limit r1, r2 → ∞, the system becomes effectively a
pair of straight lines circling one another, and the distance
between the vortex lines,

Δ2 ≡ ðΔrÞ2 þ ðΔzÞ2 ð5:1Þ

is constant by symmetry. It is convenient to use x, y, z
coordinates instead, where z is now treated as a parameter
running along the length of a vortex line:

~Xðt; zÞ ¼

0
B@

xðtÞ
yðtÞ
z

1
CA; ð5:2Þ

and the rescaled Lagrangian S ¼ ρ0μ1
R
dtLtwo lines is given

by
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Ltwo lines ¼
�
Lone line þ

~λ

2
n1n2L̂Ŝ0

�
þ ð1 ↔ 2Þ: ð5:3Þ

Here L̂ is the total length of the string. The terms in the
Lagrangian can be evaluated either by inserting (5.2)
directly into the Lagrangian (2.9), or by taking the
appropriate limit of the expressions in (3.8). The terms
on the right-hand side in (5.3) are

Lone line ¼
L̂n1
2

ðx1 _y1 − y1 _x1Þ − n21 ~λ L̂ log
eL̂
8ln1

;

Ŝ0 ¼ 2 log

�
Δ
L̂

�
; ð5:4Þ

where the dynamical length scales are given by

lni ¼
a
8
e1−ηni;bare=ðn

2
i
~λÞ; i ¼ 1; 2: ð5:5Þ

The vortex line limit of a circular ring corresponds to
L̂ ≫ lni , Δ. Deriving the equations of motion for the
background, a single line will not move, but a pair of lines
revolves according to

_y1 þ n2
2~λðx1 − x2Þ

Δ2
¼ 0;

−_x1 þ n2
2~λðy1 − y2Þ

Δ2
¼ 0 ð1 ↔ 2Þ ð5:6Þ

where Δ2 ¼ ðx1 − x2Þ2 þ ðy1 − y2Þ2 is constant by con-
servation of energy. The quantities ðn1x1 þ n2x2Þ, ðn1y1 þ
n2y2Þ are constant in time, while for n1 þ n2 ≠ 0, ðx1 − x2Þ
and ðy1 − y2Þ undergo simple harmonic motion with
frequency

Ω ¼ 2~λðn1 þ n2Þ
Δ2

: ð5:7Þ

The case where n1 þ n2 ¼ 0 does not correspond to
periodic motion and will be treated separately.
We can study perturbations about the background

solution just discussed by parametrizing them as follows:

~Xαðt; zÞ ¼

0
B@

xαðtÞ þ ϵδxαðtÞ cosðkzÞ
yαðtÞ þ ϵδyαðtÞ cosðkzÞ

z

1
CA; α ¼ 1; 2:

ð5:8Þ

Here k is the wavenumber of the perturbation, taken to be
≥ 0 without loss of generality, and cosine and sine
perturbations decouple as for the ring. Then to Oðϵ2Þ the
rescaled Lagrangian S ¼ ρ0μ1

R
dtLtwo lines is given by

Ltwo lines ¼ ½Ltwo lines�Oðϵ0Þ þ ϵ2½Ltwo lines�Oðϵ2Þ; ð5:9Þ

where ½Ltwo lines�Oðϵ0Þ was written down earlier in (5.3), and

½Ltwo lines�Oðϵ2Þ ¼
�
½Lone line�Oðϵ2Þ þ

~λ

2
n1n2L̂ðSxxδx21

þ 2Sxyδx1δy1 þ Syyδy21Þ þ ð1 ↔ 2Þ
�

þ ~λn1n2L̂ðSxx2δx1δx2 þ Sxy2δx1δy2

þ Syx2δx2δy1 þ Syy2δy1δy2Þ: ð5:10Þ

Here L̂ is the total length of the string, and k is the
wavenumber of the perturbation. The terms in the
Lagrangian can be evaluated either by inserting (5.8)
directly into the Lagrangian, or by taking the appropriate
limit of the expressions in (4.4). The perturbative terms at
Oðϵ2Þ are given by

½Lone line�Oðϵ2Þ ¼
L̂n1
4

�
δx1δ_y1 − δ_x1δy1 þ n1 ~λk2

�
log 4kln1

þ γE þ 1

2

�
ðδx21 þ δy21Þ

�
ð5:11Þ

and

Sxx ¼
2

Δ2

�
1

2
−
ðx1 − x2Þ2

Δ2

�

Sxy ¼ −
2

Δ4
ðx1 − x2Þðy1 − y2Þ

Syy ¼
2

Δ2

�
1

2
−
ðy1 − y2Þ2

Δ2

�

Sxx2 ¼
1

Δ2
ð−k2Δ2K0ðkΔÞ − kΔK1ðkΔÞ

þ k2ðx1 − x2Þ2K2ðkΔÞÞ

¼ −
k2

Δ2
ðy1 − y2Þ2K0ðkΔÞ

þ k
Δ

�
1 −

2ðy1 − y2Þ2
Δ2

�
K1ðkΔÞ

Sxy2 ¼ Syx2 ¼
k2

Δ2
ðx1 − x2Þðy1 − y2ÞK2ðkΔÞ

Syy2 ¼
1

Δ2
ð−k2Δ2K0ðkΔÞ − kΔK1ðkΔÞ

þ k2ðy1 − y2Þ2K2ðkΔÞÞ

¼ −
k2

Δ2
ðx1 − x2Þ2K0ðkΔÞ

þ k
Δ

�
1 −

2ðx1 − x2Þ2
Δ2

�
K1ðkΔÞ; ð5:12Þ
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where KnðzÞ are the modified Bessel functions of the
second kind. Note that the final result is symmetric under
the exchange of the two lines, as it should be.
It is straightforward to find the equations of motion. In

the rest of the subsection we will take n1 ¼ n2 for
simplicity, since for this case the system can be decom-
posed into 2 × 2 blocks. Taking the sums and differences of
the equations of motion for each line, we have� ∂

∂τ − A sin 2τ

�
δx12 ¼ ðA cos 2τ − BÞδy12;� ∂

∂τ þ A sin 2τ

�
δy12 ¼ ðA cos 2τ þ BÞδx12 ð5:13Þ

where τ ¼ Ωt ¼ 4~λn1t=Δ2, and

A ¼ 1

2
� k2Δ2

4
K2ðkΔÞ;

B ¼ −
k2Δ2

4

�
log 4kln1 þ γE þ 1

2
� K0ðkΔÞ

�
ð5:14Þ

for the differences (sums) δx12 ¼ δx1∓δx2, δy12 ¼ δy1∓
δy2. Here the background solution which solves (5.6) has
been taken to be ðx1 − x2Þ ¼ Δ cos τ and ðy1 − y2Þ ¼
−Δ sin τ.
In the limit kΔ ≪ 1, Ω ¼ 4~λn1=Δ2 is the only scale in

the problem, and we have

∂
∂τ ðδx1 þ δx2Þ ¼

∂
∂τ ðδy1 þ δy2Þ ¼ OðkΔÞ2;� ∂

∂τ − sin 2τ

�
ðδx1 − δx2Þ ¼ cos 2τðδy1 − δy2Þ;� ∂

∂τ þ sin 2τ

�
ðδy1 − δy2Þ ¼ cos 2τðδx1 − δx2Þ: ð5:15Þ

The solution can be found analytically, and it is

ðδx1 − δx2Þ ¼ α sin τ þ βð2τ sin τ þ cos τÞ;
ðδy1 − δy2Þ ¼ α cos τ þ βð2τ cos τ − sin τÞ; ð5:16Þ

which is marginally unstable and grows linearly in time
under generic initial conditions. This can also be seen from
the the transfer matrix directly in the basis δy1 − δy2,
δx1 − δx2:�

δx12ð2πÞ
δy12ð2πÞ

�
¼
�

1 0

4π 1

��
δx12ð0Þ
δy12ð0Þ

�
; ð5:17Þ

which has a double eigenvalue at 1. This limit is known as
the twining instability: regions of varying separation will
wind around one another at different rates, and eventually
the phase difference may be of order one even though the
gradient terms in the equations of motion are still small. To

confirm this quantitatively, consider sending Δ → Δþ δΔ
while keeping the rings straight. In this case the orbital
angular frequency becomes Ωþ δΩ ¼ Ωð1 − 2δΔ

Δ Þ, and so
then measuring the deviation from the background solution,

δðy1 − y2Þ ¼ δΔð2τ cos τ − sin τÞ;
δðx1 − x2Þ ¼ δΔð2τ sin τ þ cos τÞ

ð5:18Þ

consistent with (5.16).
When kΔ is large, the leading order behavior is the same

for δx1 � δx2 and for δy1 � δy2, and obeys

δðx; yÞ00 þ
�
k4Δ4

16

�
log 4kln1 þ γE þ 1

2

�
2
�
δðx; yÞ ¼ 0

ð5:19Þ

up to OððkΔÞ0Þ corrections. These are the familiar Kelvin
waves [2], and the equations of motion for each string
decouple in this limit. They are in general stable; however,
this is not the whole story, since the system may develop a
narrow parametric resonance between the free oscillations
and the forcing term. Let us see how this works in some
more detail.

A. Hill’s equation and parametric resonances

The equations of motion (5.13) can be recast in the form
of a second-order Hill equation, with a forcing term of
period τ ¼ 2π:

ψ 00
δx þ

�
3ðB2 − A2Þ

ðA cos 2τ − BÞ2 þ
2ðBðBþ 2Þ − A2Þ
ðA cos 2τ − BÞ

þ ðBþ 1Þ2 − A2

�
ψδx ¼ 0;

ψ 00
δy þ

�
3ðB2 − A2Þ

ðA cos 2τ þ BÞ2 −
2ðBðBþ 2Þ − A2Þ
ðA cos 2τ þ BÞ

þ ðBþ 1Þ2 − A2

�
ψδy ¼ 0: ð5:20Þ

Here,

ψδx¼
δx1−δx2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Acos2τ−B

p ; ψδy¼
δy1−δy2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Acos2τþB

p : ð5:21Þ

The stability of this class of equations has been extensively
studied in the literature (see e.g. [22,23]). When kΔ ≫ 1
Hill’s equation reduces to the Mathieu equations:

ψ 00
δx;δy þ

�
k4Δ4

16

�
log 4kln1 þ γE þ 1

2

�
2

−
1

4
∓ cos 2τ

�
ψδx;δy ¼ 0 ð5:22Þ
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up to Oð1=ðkΔÞ2Þ corrections. The time-dependent terms
can lead to parametric resonances when the free oscillation
(which is due to the constant part of the forcing term, and
which is a function of k) is an integer multiple of the
background frequency Ω (which has been rescaled to 1).
Considering the behavior of the system as a function of k in
the regime where kΔ ≫ 1 and the angular frequency of the
free oscillation is large, the resonances will be exponen-
tially narrow. Subleading corrections in higher powers of
1=kΔ will modify the location and width of the resonances,
but only perturbatively.
Can we find values of l0,Δ such that the system is stable

for all values of k?We have just shown that the answer is no
in the limit where the radius r of the vortex ring goes to
infinity—in this case a generic perturbation will include
contributions from the entire continuum of values of k are
allowed, some of which will lie within the narrow reso-
nances. At finite radius, however, but still preserving
Δ ≪ r < ∞, the spectrum is discrete,

kΔ ¼ mΔ
r

m ¼ 2; 3;…; ð5:23Þ

and we have only countably many points to worry about. In
fact, we have only finitely many (m≲ r=a) points to worry
about before the effective field theory we have been using
breaks down. Two regions deserve special attention. For
kΔ≲ 1 we are close to the twining instability, and we need
to check the stability of the first finitely many points (say
m≲ 10r=Δ or so) numerically. For ln1 ≪ Δ, numerical
studies indicate that the first instability bands are already
exponentially narrow. The region where kΔ ≫ 1 and
logð4kln1=2Þ þ γE þ 1=2 ≈ 0 (corresponding to kln1≈
0.08)16 is more troubling, since here the Mathieu equa-
tion (5.22) is unstable. However, if r is not too large, the
spacing of the spectrum (5.23) is so large that there is no
value ofm that gets close enough to the value where the free
oscillation should vanish. This occurs for

d
dk

�
k2Δ2

4

�
logð4kln1Þ þ γE þ 1

2

������
k∼0.08=ln1

×
1

r
≫ 1 →

Δ2

rln1

≫ 1: ð5:24Þ

If this parameter is much less than one, on the other hand,
the spacing of the discrete spectrum is too small, and so
there are values of m such that the free oscillation vanishes
and the driving term makes the system unstable. This
particular instability occurs at a length scale which is the
same parametric size (kln1 ∼ 1) as the Widnall instability.

Here, however, we emphasize that it is the time-dependent
driving terms, and not the circular shape of the ring, that is
responsible for the instability.

B. Crow’s instability

We return to the case of vortex lines with n1 þ n2 ¼ 0,
corresponding to a pair of counter-rotating vortices with
equal circulation. We take the initial positions to be (0,0),
ðΔ; 0Þ in the xy plane, respectively. This configuration and
its perturbations were first studied in Ref. [24], and they are
easy to address in our formalism as well. The background
equations of motion are given by

_y1 −
2~λn1ðx1 − x2Þ

Δ2
¼ 0; −_x1 −

2~λn1ðy1 − y2Þ
Δ2

¼ 0

ð5:25Þ

and similarly for ð1 ↔ 2Þ. The combinations x1 − x2, y1 −
y2 are constant under time evolution, while for this
particular choice of initial conditions we have

ð_x1 þ _x2Þ ¼ 0; ð_y1 þ _y2Þ ¼ −
4~λn1
Δ

: ð5:26Þ

Note that we can think of this solution as a limiting case of
the elliptic fixed point discussed in Sec. IV F, with γ ¼ −1,
δEFP ≈ 1.17 The perturbations obey

1

~λn1

d
dt

0
BBB@

δx1
δx2
δy1
δy2

1
CCCA

¼

0
BBB@
0
BBB@

0 0 −2Syy −2Syy2
0 0 2Syy2 2Syy

2Sxx 2Sxx2 0 0

−2Sxx2 −2Sxx 0 0

1
CCCA

þk2
�
log 4kln1 þ γE þ 1

2

�0BBB@
0 0 1 0

0 0 0 −1
−1 0 0 0

0 1 0 0

1
CCCA
1
CCCA

×

0
BBB@

δx1
δx2
δy1
δy2

1
CCCA; ð5:27Þ

16Note that we must assume that ln1 ≫ a in order for the
effective field theory to be valid. See Ref. [3] for a longer
discussion of this point.

17The analysis of perturbations around the elliptic fixed point
for γ < 0 therefore interpolates between two classic problems in
the stability of vortices—Widnall’s instability for δEFP ≈ 0, and
Crow’s instability for γ ¼ −1 and r1 → ∞ with ð1 − δEFPÞr1 held
fixed.
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where the interaction terms are given by

Sxx ¼ −Syy ¼ −
1

Δ2
;

Sxx2 ¼
1

Δ2
ðkΔK1ðkΔÞÞ;

Syy2 ¼
1

Δ2
ð−k2Δ2K0ðkΔÞ − kΔK1ðkΔÞÞ: ð5:28Þ

Equation (5.27) can in principle be derived as a limiting
case of (4.46), and will therefore have the same 2 × 2 block
structure. Writing the matrix in (5.27) in block form,

M ¼
�
0 A

B 0

�
; ð5:29Þ

where now

A ¼
�−2Syy −2Syy2

2Syy2 2Syy

�

þ k2
�
log 4kln1 þ γE þ 1

2

��
1 0

0 −1

�
;

B ¼
�

2Sxx 2Sxx2
−2Sxx2 −2Sxx

�

þ k2
�
log 4kln1 þ γE þ 1

2

��−1 0

0 1

�
; ð5:30Þ

and the eigenvalues of M are given by

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
ðtrAB�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðtrABÞ2 − 4 detA detB

q
Þ

r
: ð5:31Þ

As in the case of the general elliptic fixed point in Sec. IV F,
writing the explicit expressions for the eigenvalues is

straightforward but not particularly illuminating. Note that
the eigenvalues come in pairs whose members differ by a
relative minus sign, so there are only two quantities to
calculate. It is also straightforward to show, using the
properties of A and B, that the argument of the inner radical
is equal to ðA11B12 − A12B11Þ2, and since this is always
positive, each pair of eigenvalues is either purely real
(corresponding to an instability) or purely imaginary
(corresponding to stability). The location of the unstable
region corresponding to each pair, and the magnitude of the
(positive) real eigenvalue is shown in Fig. 17. To compare
this to the original analysis [24], we need to start with a
particular choice of value for ln1=Δ, (either calculated or
observed experimentally in a wind tunnel) and it is simple
to use the general expression for the eigenvalue to find the
maximally unstable value of k.

VI. DISCUSSION

In this paper we have studied the behavior of a pair of
coaxial vortex rings. At the level of the background
evolution we have generalized the phase diagram to include
the possibility of vortices having different core sizes when
the ratio of their winding numbers is not�1, by introducing
a parameter χ ¼ ln2=ln1 ≠ 1. We have also filled in a gap
in the phase diagram analysis of Ref. [11], by including the
case of vortices with opposite circulation, i.e., γ ¼ −1.
At the level of perturbations, we have analyzed the

stability of linearized perturbations around periodic, axially
symmetric background solutions. The system simplifies
dramatically in certain limits where the coupled four
dimensional evolution reduces to two independent two
dimensional ones, and the 4 × 4 transfer matrix decom-
poses into 2 × 2 blocks. Similar to what was found for the
stability of a single ring [3], for a ratio of circulations γ > 0
the pair of vortex rings are in general found to be stable
when all length scales are larger than the dynamical scales

FIG. 17. The positive real eigenvalues of the matrix in (5.27), plotted as a function of kΔ and kln1 .
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ln1 , ln2 ; below this scale, the Widnall instability of a single
ring is widened into an instability band for a vortex pair,
which may include many modes for the test ring in the limit
of small γ. More precisely, when γ > 0 the most unstable
mode is estimated by (4.37). The reduced wavelength of
this mode was found to satisfy

λ

2π
≤ 4eγE−1=2χln1 ≈ 4.321ln2 : ð6:1Þ

The upper limit corresponds to the reduced wavelength of
unstable modes of a single ring [3] with winding number
n2 ¼ γn1. Thus the largest instabilities for a pair of vortex
rings with γ > 0 arise only at wavelengths comparable to or
shorter than the dynamical length scale, and in particular
at wavelengths shorter than the corresponding unstable
wavelengths for isolated rings.
In addition, unlike the single ring, the paired vortex rings

exhibit a novel class of instability sourced by the time
dependence of the background. We have analyzed this issue
in detail for narrow parametric resonances when the rings
are close together.
We have presented a qualitative picture of the instabil-

ities when γ < 0. The cases of positive and negative γ are
very different, primarily because of the different phase
space structure. In particular we found that whereas for
γ > 0 modes with m below the corresponding Widnall
unstable mode for a single ring are prohibited from
becoming unstable, when γ < 0 such modes do become
unstable, signaling instabilities at wavelengths larger than
the dynamical length scale.
It seems worth investigating the effects of the back-

ground phase space on the stability of perturbations in more
detail, especially near the separatrices in the phase space
such as near trajectories corresponding to chasing or
nesting vortices. Although we have not analyzed these
in detail, preliminary studies of nesting vortices indicate
that the behavior is moderated at lowm in the nesting limit,
becoming less unstable for positive γ and less stable for
negative γ. Additionally, it would be interesting to inves-
tigate in more detail periodic motion near the limiting case
of γ ¼ −1 where it was found [3] that the most unstable
mode had a wavelength much larger than the dynamical
length scale.
Another exercise which may be of interest is to study the

stability of the rings beyond the linearized level: the
twining instability is an example of a motion which is
perturbatively unstable and yet remains bounded, and it
would be interesting to understand whether this may be true
for other instabilities as well. We also cannot discount the
possibility that the evolution at linearized level may
become very large, so that a small but finite initial
perturbation becomes nonlinear during its evolution.
An effective action starting from the Gross-Pitaevskii

action (but without including the Nambu-Goto term) was

recently used to study instabilities to vortex-sound inter-
actions of a pair of point vortices in a two dimensional
superfluid [25]. This work also briefly discusses the
so-called “dynamical instability” of vortices with large
winding number to decay into vortices of unit circulation,
investigated in [18–21]; this arises due to quantum
mechanical effects at core sizes, and it would be interesting
to generalize our formalism to include such effects. At the
classical level, it would also be of interest to use effective
field theory techniques, such as developed in Ref. [4], to
study long-range interactions of bound states of vortex
rings, either with one another or with external sound waves.
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APPENDIX A: FIXED POINTS IN γ ¼ −1
PHASE SPACE

In order to analyze the phase space when γ ¼ −1, we
focus on finding its fixed points in this section. To do so,
first rewrite the equations of motion (3.11) and (3.12) as

dvi
dt

¼ fiðvjÞ; ðA1Þ

where vi ¼ ðΔz;ΔrÞ and f is a 2 × 1 vector which is a
nonlinear function of Δz and Δr.18 We can classify all the
fixed points of the system by evaluating eigenvalues of the
Jacobian matrix, defined as Jij ≡ ∂fi=∂vj, at each
fixed point.
Without loss of generality, take n2 < 0. We will focus on

the case r2ðt ¼ 0Þ ≤ r1ðt ¼ 0Þ. Then ~pz ≤ 0. Thus the
relation (3.15) and the positivity of the radii imply
0 ≤ Δr < r1. The case of r2ðt ¼ 0Þ > r1ðt ¼ 0Þ will just
be the mirror of the analysis presented below. In particular,

18Working with coordinates ðr1;Δr; z1;ΔzÞ, the constant of
motion (3.15) gives an algebraic relation between r1 and Δr. The
constant of motion (3.14) in turn yields an (implicit) algebraic
relation between Δr and Δz. Were the relation between Δr and
Δz invertible, one would need only solve a single first order
nonlinear ODE to determine the dynamics of the background
solution. Since that is not the case, instead of directly making use
of the constant of motion (3.14), we rewrite the problem as two
coupled first order ODEs, as written in (A1).
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the phase space diagram will be the mirror image of Fig. 18,
reflected about Δr ¼ 0. Note that at γ ¼ �1,
ln1 ¼ ln2 ≡ l0.

1. Attractor/repeller at fΔz ¼ �8l0=e;Δr ¼ 0g
In this subsection we identify the attractor (repeller)

fixed points of the γ ¼ −1 phase diagram, marked in
Fig. 18 with a green (red) dot.
The equations of motion (3.11) imply Δ_r ¼

ΔrΔzgðΔz;ΔrÞ where g is a nonsingular function in the
entire domain of ðΔz;ΔrÞ except for the point (0,0). Thus
Δ_r ¼ 0 at Δr ¼ 0 and Δz ≠ 0. Additionally assuming
r1 ≫ l0 at the fixed point described by Δz≡ βzl0=e
and Δr ¼ 0, the equations of motion (3.12) yield

Δ_z ¼ ð16e2r21 − 3β2zl2
0Þ

16e2r31
log

�
64

β2z

�

þ 1

8r31

β2zl2
0

e2

�
3 log

�
l0

r1

�
þ 1

�
þO

��
l0

r1

�
5
�
:

ðA2Þ

Thus the leading order contribution to Δ_z vanishes when
β2z ¼ 64, and the subleading contribution becomes vanish-
ingly small, provided r1=l0 → ∞ as Δz → �8l0=e and
Δr → 0. This proviso can indeed be (numerically) verified

using (3.14). Thus we conclude fΔz ¼ �8l0=e;Δr ¼ 0g
are fixed points of the equations of motion.19

The eigenvalues of the Jacobian matrix evaluated at the
two fixed points are given by

λJ ¼
	
∓ e
2l0r1

;∓ e
4l0r1



at

	
Δz¼�8l0

e
;Δr¼ 0



;

ðA4Þ

where r1=l0 [which depends on ~pz and Δr through (3.15)]
tends to infinity, and we have imposed momentum con-
versation when evaluating the Jacobian matrix. Thus Δz ¼
8l0=e (Δz ¼ −8l0=e) is an attractor (repeller) fixed point
as both the eigenvalues of the Jacobian evaluated at this
point are real and negative (positive).

2. Saddle point at fΔz ¼ 0;Δr ¼ ð8 − δsÞl0g
We now proceed to locate the lone saddle point in the

γ ¼ −1 phase diagram, marked in Fig. 18 with a brown dot.
Similar to the analysis in Sec. A 1, we haveΔ_r ¼ 0when

Δz ¼ 0 and Δr ≠ 0. Differentiating the relation (3.15), we
obtain

_r1 ¼
�
1 −

r1
Δr

�
Δ_r: ðA5Þ

Thus for Δr ≠ 0, Δ_r ¼ 0 implies _r1 ¼ 0.
In the simplifying limit r1 ≫ l0, the equations of motion

(3.12) at Δz ¼ 0 and Δr≡ βsl0 yield

Δ_z ¼ 1

r1
log

64

β2s
þ βsl0

2r21
log

64

β2s
þ…: ðA6Þ

Thus the leading and subleading contributions to Δ_z vanish
when β2s ¼ 64. Since Δr ≥ 0, βs ¼ 8 to leading order.
Away from the r1 ≫ l0 limit, βs gets corrected to
βs ≡ 8 − δs, where the first correction to δs ¼ 0 is given by

FIG. 18. Fixed points of the phase diagram when γ ¼ −1.
Green dot: attractor point (see Sec. A 1). Red dot: repeller point
(see Sec. A 1). Brown dot: Saddle point (see Sec. A 2). Magenta
dot: Elliptic fixed point (see Sec. A 3). Refer to Figs. 8 and 9 for
the color key for the special contours shown.

19This evolution of the background solution for a head-on
collision between coaxial vortices of opposite circulations is well
known [6,26], and the late time stability of linearized perturba-
tions in this case was studied in Ref. [3], in the special limit when
~pz ¼ 0. Starting with initial conditions that lie in the basin of
attraction, the radii of the vortices at late times is given by a large
multiple of the length scale l0, and tends to infinity linearly with
time. As the radii grow large, sp given by (3.10) tends to zero.
The expression for conserved energy (3.14) in this late time limit
indeed gives

Δz !late times 8l0

e
exp

�
~ϵ

2~λn21r1

�
≈
8l0

e
≡ Δzmin; ðA3Þ

where the sign of the energy fixes whether Δz → Δzmin from
above or below.

GUBSER, HORN, and PARIKH PHYSICAL REVIEW D 93, 046001 (2016)

046001-30



δs ≈
32ð3 logðr1=l0Þ − 5Þ

ðr1=loÞ2 þ 4ðr1=loÞ þ 24 logðr1=l0Þ − 20
: ðA7Þ

At even smaller r1, subleading contributions to δs become important. An excellent estimate for δs which works for any
αr ≡ r1=l0 ≥ 8 is

δs ≈
2ðαr − 8Þðαr − 4Þððαr − 8ÞαrKð− 1

16
ðαr − 8ÞαrÞ þ 16 logðαrÞ − 2αr logððαr − 8ÞαrÞÞ

αrððαr − 4Þððαr − 8ÞKð− 1
16
ðαr − 8ÞαrÞ − 4 logðαr − 8Þ þ 4Þ − 4ðαr − 8ÞEð− 1

16
ðαr − 8ÞαrÞÞ

: ðA8Þ

There are no real solutions for δs for αr < 8. In fact,
numerics show no fixed point exists for αr ≲ 11. In terms of
the conserved momentum, this corresponds to ~pz≳
−55n1l2

0.
The eigenvalues of the Jacobian matrix evaluated at the

fixed point are of the form � ffiffiffiffiffi
bc

p
where b and c are the

off-diagonal elements of the matrix, since the diagonal
elements are zero. Thus as long as the product of the off-
diagonal elements is positive, the traceless matrix has a
positive and a negative eigenvalue, signaling an unstable
saddle point.
In the limit r1 ≫ l0, the eigenvalues are

λJ ¼ � 1

4l0r1
: ðA9Þ

Away from the r1 ≫ l0 limit, the product of the off-
diagonal elements is still (numerically) found to be positive
for r1 ≳ 11l0. Thus for ~pz ≲ −56n1l2

0, there exists a saddle
point at fΔz ¼ 0;Δr ¼ ð8 − δsÞl0g where δs is given by
(A8). The brown dot in Fig. 18 was plotted on the phase
space by employing (A8). Vortices at this fixed point are in
an unstable nested configuration.20

3. EFP at fΔz ¼ 0;Δr ¼ ð1 − δEFPÞr1g
Finally, in this subsection we identify the elliptic fixed

point (EFP) of the γ ¼ −1 phase diagram, marked in
Fig. 18 as a magenta dot.
The equations of motion (3.11) imply Δ_r ¼ _r1 ¼ 0 for

Δz ¼ 0 and Δr ≠ 0. Define Δr≡ ð1 − δEFPÞr1 for small
δEFP > 0, and then

Δ_z ¼ 1

r1

�
−

1

δe
log

�
r1δEFP
l0

�
þ
�
2π − log

r1
l0

�

þ πδ2EFP
2

�
þOðδ4EFPÞ: ðA11Þ

Thus for δEFP ≪ 1, Δ_z vanishes when

δEFP ≈
W0ðlogðr1=l0Þ−2πr1=l0

Þ
logðr1=l0Þ − 2π

; ðA12Þ

where W0ðyÞ is the principal branch of the real valued
Lambert-W function, which takes values between −1 and
∞ for y ≥ −1=e and is positive valued for positive y. This
means the fixed point exists only if

r1 > eW0ðe2π−1Þl0 ≈ 11l0: ðA13Þ

The estimate (A12) agrees with numerics with great
accuracy for radii away from the bound given in (A13).
However, going ahead and making use of (A12) when the
bound is saturated, we deduce a bound on the rescaled
momentum. We find,

~pz ≲ ~pz;EFP ¼ −
e2n1l2

0

2
ð−1þW0ðe2π−1Þ2Þ ≈ −53n1l2

0:

ðA14Þ
Numerically the bound was found to be near −55n1l2

0,
which is not very far from the analytic estimate.
The Jacobian matrix evaluated at the fixed point is

traceless. Its eigenvalues are given by

λJ ≈� i
ffiffiffiffiffiffi
3π

pffiffiffiffiffiffiffiffiffi
δEFP

p
r21

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − log

r1δEFP
l0

s
; ðA15Þ

where δEFP is given by (A12). Note that in the domain
(A13) in which δEFP is defined, 0 < δEFP < el0=r1, thus
the eigenvalues (A15) are purely imaginary. We conclude
fΔz ¼ 0;Δr ¼ ð1 − δEFPÞr1g is an EFP. The magenta dot
in Fig. 18 was plotted by making use of (A12). Orbits in
phase space about the EFP correspond to pseudo-
leapfrogging vortices [11].

20Note that at this saddle point, at large (negative) momentum
~pz ≪ −n1l2

0, the dispersion relation given by

~ϵ ¼ −
~λn1 ~pz

4l0

−
32~λl3

0n
3
1

~pz

�
2þ log

�
64l4

0n
2
1

~p2
z

��
þ � � � ðA10Þ

is linear to Oð1= ~pzÞ.
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APPENDIX B: INITIAL CONDITIONS AND
PERIODIC BEHAVIOR FOR γ ¼ 1, 0, −1

We present the set of initial conditions corresponding to
periodic behavior for the special cases γ ¼ 1, 0 and −1. The
boundaries between different phases correspond to one of
the limiting behaviors (chasing, nested, crushed), which are
determined by the equations of motion. These must in
general be solved numerically; for certain limiting values of
γ, however, the system can be solved analytically.
We will express the initial conditions in terms of the

quantities

r ¼ r1; x ¼ r2=r1 ðB1Þ

evaluated at the point when Δz ¼ 0. While this notation is
more intuitive than that used in Ref. [11], which discusses
the region of periodic behavior in terms of the bifurcation
complex of the Hamiltonian system, the disadvantage is
that more than one set of initial conditions may correspond
to the same trajectory.
(1) For γ ¼ 1, we may also assume that χ ¼ 1, so that

ln1 ¼ ln2 ¼ l0 are equal, and the region corre-
sponding to periodic behavior is given in Fig. 19.
The upper boundary corresponds to the chasing
limit, and is determined by

log
r

el0

≈
ðx logðxÞ − 2

ffiffiffi
x

p
Q0ð1−xffiffixp Þ −

ffiffiffiffiffiffiffiffi
1þx2
2

q
logð1þx2

2
ÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2þ 2x2
p

− x − 1
:

ðB2Þ

The lower boundary is given by the nested limit, and
corresponds to

log
r
l0

¼
�

x
x − 1

�	� ffiffiffi
x

p
−

1

x3=2

�
Q0

�
1 − xffiffiffi

x
p

�

þ ð1þ xÞð1þ x2Þ
x2

Q0
0

�
1 − xffiffiffi

x
p

�

þ 1

x
log x



: ðB3Þ

Without loss of generality, for γ ¼ 1 we need only
consider the region x < 1. No periodic solutions
exist for values of x≲ 0.097. As x → 1, however, all
values of r lead to periodic (leapfrogging) behavior.

(2) For γ ¼ 0, we must consider all values x ≠ 1. The
region corresponding to periodic solutions is shown
in Fig. 20. For x < 1, the upper boundary in
parameter space is given by the nested limit, which
for γ ¼ 0 becomes

log
r
ln1

¼ −

ffiffiffi
x

p
Q0ð1−xffiffixp Þ þ ð1þ xÞQ0

0ð1−xffiffixp Þ
x2

: ðB4Þ

When x is small, the maximum value of logð r
ln1

Þ is
given by 2π, and as x → 1−, log ð r

l0
Þ
max

→ ∞. For
x > 1, the upper boundary is given by the crushed
limit, and obeys

log
r
ln1

¼ −
4

x3=2
Q0

�
x − 1ffiffiffi

x
p

�
: ðB5Þ

This approaches zero as x → ∞. For all values of x,
the lower boundary of the allowed parameter space
corresponds to the nesting limit, though not at the

x

10

5

0

5

10

log
r

e ln1

0.2 0.4 0.6 0.8 1.0

FIG. 19. The allowed region for the initial conditions x,
logð r

eln1
Þ. Periodic solutions exist within the shaded blue region.

The upper boundary represents the chasing limit, and the lower
boundary represents the nested limit.

x

5

5

10

15

20

25

log
r

e ln1

1 2 3 4

FIG. 20. The allowed region for the initial conditions x,
logð r

ln1
Þ, for γ ¼ 0. The blue region corresponds to periodic

solutions, while the upper left boundary and both the lower
boundaries are in the nested limit, and the upper right is in the
crushed limit.
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initial conditions, and so this boundary must be
found numerically.

(3) For γ ¼ −1, once again we may set χ ¼ 1, and once
again it suffices to consider only the region where
x ≤ 1. The limits must be found numerically and the
phase diagram is depicted in Fig. 21. Note that for
x≳ 0.42, no periodic solutions are possible. The

region where x → 0 corresponds to the elliptic fixed
point discussed in Sec. A 3.

APPENDIX C: Sij2 FUNCTIONS

The m-dependent Sij2 functions defined by the integrals
in (4.9) can be written down explicitly as series expansions
in hypergeometric functions, as follows (for r2 ≤ r1):

Szz2 ¼ −
X∞
n¼0

�ðmþ 2nÞΓðnþ 1
2
ÞΓðmþ nþ 1

2
Þ

Γðnþ 1ÞΓðmþ nþ 1Þ
1

r1

�
r2
r1

�
mþ2n

×

�
m2F1

�
nþ 1

2
;mþ nþ 1

2
;
1

2
;−

Δz2

r21

�

þ ð2nþ 1Þ2F1

�
nþ 3

2
;mþ nþ 1

2
;
1

2
;−

Δz2

r21

���

Srr2 ¼
X∞
n¼0

4Γðnþ 3
2
ÞΓðmþ nþ 3

2
Þ

Γðnþ 1ÞΓðmþ nþ 1Þ 2F1

×

�
nþ 3

2
;mþ nþ 3

2
;
1

2
;−

Δz2

r21

�
1

r1

�
r2
r1

�
mþ2nþ1

;

ðC1Þ

where ΓðmÞ is the Gamma function. For r2 > r1, switch
r1 ↔ r2 in the expressions above. The Szr2 function is
given by (for r2 ≤ r1)

Szr2 ¼
X∞
n¼0

�
41−nð2nþ 1ÞΓð2nÞΓðmþ nþ 3

2
Þ

π−1=2ΓðnÞΓðnþ 1ÞΓðmþ nþ 1Þ
Δz
r21

�
r2
r1

�
mþ2nþ1

×

�
m2F1

�
nþ 3

2
; mþ nþ 3

2
;
3

2
;−

Δz2

r21

�
þ ð2nþ 3Þ2F1

�
nþ 5

2
; mþ nþ 3

2
;
3

2
;−

Δz2

r21

���
; ðC2Þ

while for r2 > r1,

Szr2 ¼ −
X∞
n¼0

4ðmþ 2nÞΓðnþ 3
2
ÞΓðmþ nþ 3

2
Þ

Γðnþ 1ÞΓðmþ nþ 1Þ 2F1

�
nþ 3

2
; mþ nþ 3

2
;
3

2
;−

Δz2

r22

�
Δz
r22

�
r1
r2

�
mþ2n

ðC3Þ

and the Srz2 function is given by Szr2ðr1 ↔ r2; z1 ↔ z2Þ.
For most values of r1, r2 and Δz, summing over a small range of n in the expressions above already yields excellent

estimates, i.e., the series converge fairly quickly.
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