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Radiation reaction remains one of the most fascinating open questions in electrodynamics. The
development of multi-petawatt laser facilities capable of reaching extreme intensities has lent this topic a
new urgency, and it is now more important than ever to properly understand it. Two models of radiation
reaction, due to Landau and Lifshitz and due to Sokolov, have gained prominence, but there has been little
work exploring the relation between the two. We show that in the Sokolov theory, electromagnetic fields
induce a Lorentz transformation between momentum and velocity, which eliminates some of the
counterintuitive results of Landau-Lifshitz. In particular, the Lorentz boost in a constant electric field
causes the particle to lose electrostatic potential energy more rapidly than it otherwise would, explaining the
longstanding mystery of how an electron can radiate while experiencing no radiation reaction force. These
ideas are illustrated in examples of relevance to astrophysics and laser-particle interactions, where radiation
reaction effects are particularly prominent.
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I. INTRODUCTION

Radiation reaction (RR)—how a charged particle inter-
acts with the radiation it emits—is among the oldest and
most controversial open questions in physics. In the century
since its first formulation by Lorentz and Abraham [1,2],
there have been many theoretical investigations, but so far
laboratory-based electromagnetic fields have not been
sufficiently intense to produce an appreciable RR effect.
A number of astrophysical scenarios do exist for which RR
is important [3–5], but the impossibility of controlling the
conditions of these events means a clear signature of RR
has yet to be detected. A new generation of laser facilities,
such as the Extreme Light Infrastructure (ELI), are antici-
pated to produce field intensities on the order of
1023 W=cm2, where RR will not just be significant but
will dominate the electron dynamics [6]. A full under-
standing of RR is vital to the success of these next-
generation laser facilities [7].
The first fully relativistic treatment of RR was given by

Dirac [8] on the basis of energy-momentum conservation.
This led to a third-order differential equation, known as
the Lorentz-Abraham-Dirac (LAD) equation, for the
worldline of a radiating point charge. This equation has
subsequently been rederived from a number of quite
distinct physical principles [9–13]. Unfortunately, it suf-
fers from some well-known anomalies, which render it
unphysical; see Ref. [14] for a recent discussion. A
number of alternatives have been proposed [15–20],
among which two have received particular prominence

in the literature: that of Landau and Lifshitz (LL) [15] and
that of Sokolov [20].
Landau and Lifshitz derived their equation by assuming

that the RR force in LAD is a small correction to the
Lorentz force of the applied fields. This allows the
elimination of the third-derivative terms, leading to the
second-order equation

ẍa ¼ e
m
ðFa

b þ τ _xc∂cFa
bÞ_xb þ τ

e2

m2
Δa

bFb
cFc

d _xd: ð1Þ

Here, e is the charge and m the mass of the particle, τ ¼
e2=6πm≃ 6.2 × 10−24 s is the characteristic radiation
time, Fa

b are components of the electromagnetic field,
and Δa

b ¼ δab − _xa _xb is the _x-orthogonal projection.
Indices are raised and lowered with the metric tensor
ηab ¼ diagð1;−1;−1;−1Þ, the Einstein summation con-
vention is used throughout, and c ¼ ϵ0 ¼ 1.
The RR force in (1) does not share the defects of LAD. In

the decades since its introduction it has become the dominant
description of radiation reaction, and has been applied to
electron dynamics [21–28], ion acceleration [29–31], and
high-energy synchrotron radiation [32]. However, its prov-
enance as an approximation to an unphysical equation calls
into question its validity. Furthermore, it does not conserve
energy in both rapidly varying [33] and constant [34] fields.
We show here that these anomalies can be removed by a
simple and physically motivated redefinition of momentum.
An alternative description of RR using such a redefini-

tion has recently been introduced by Sokolov [20]. This is
derived according to principles arising from quantum
electrodynamics (QED), and has the unusual feature that
the momentum p is not parallel to the velocity _x. It is
convenient to introduce the normalized momentum
u ¼ m−1p, in terms of which Sokolov’s equations are
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�
δab þ τ
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�
ub; ð2Þ

_ua ¼ e
m
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bub þ τ
e2

m2
Ua

bFb
cFc

dud: ð3Þ

Here, the tensor Ua
b ¼ δab − uaub projects out the compo-

nents parallel to u, not _x (such a distinction is not required
for LL). As such, (3) preserves the normalization of
momentum u2 ¼ 1, equivalent to the Einstein relation
E2 ¼ m2c4 þ p2c2. Though not yet as widespread as
LL, the Sokolov model has attracted attention in recent
years, with application to ion acceleration [35,36] and the
generation of high-energy synchrotron radiation [37–41].
Despite the emergence of two distinct theories, there has
been surprisingly little discussion of the relation between
LL and Sokolov.
It is worth noting that classical physics is expected to

emerge as the appropriate limit of an underlying quantum
theory. Given the success of QED, some authors have
explored whether its classical limit can shed light on the
question of the correct theory of radiation reaction [42–45].
In Ref. [46], the QED predictions for an electron interacting
with a plane electromagnetic wave have been compared with
those of a range of classical theories, including LL and
Sokolov. While agreement is found with the former, the
latter is found to disagree with the QED result for momen-
tum, but to agree on velocity, and hence on trajectory.
However, there are subtleties involved in extracting the
kinetic particle momentum from the total momentum oper-
ator, and it is possible that the lesson from this discrepancy is
not that the Sokolov theory must be rejected, but rather that
the definition of electron momentum in QED should be
reconsidered.
The paper is organized as follows: Section II presents the

relation between the particle momentum and its velocity for
both the LL model and the Sokolov model. Section III
considers the total energy of an electron experiencing a
purely electrostatic field, where it is found that Sokolov,
unlike LL, predicts behavior consistent with an intuitive
physical understanding. Section IV treats two examples of
simple but physically relevant field-particle configurations
modeling an electron in the magnetic field of a neutron star
and in an intense laser pulse. The results of both models are
compared and discussed.

II. MOMENTUM AND VELOCITY

The LL and Sokolov theories agree to a very high
precision in their predictions for the trajectory of an
electron. Indeed, substituting (3) into the derivative of
(2) yields precisely (1) with corrections of order Oðτ2Þ. It
follows that the distinction between the theories is less one
of the motion of particles, and more one of the evolution of
their momenta.

As a particle moves through spacetime, it traces out a
worldline, and its velocity _x is the tangent vector to this
worldline. The direction of this vector is intrinsic to the
worldline, while its normalization, j_xj ¼

ffiffiffiffiffi
_x2

p
, depends

on the choice of parametrization. It is common to use
proper time, defined by the condition j_xj ¼ 1, though it is
important to recognize that this is a choice. Momentum,
on the other hand, describes the flow of energy through
spacetime. For a noninteracting particle, its energy must
flow along the worldline, but this case is of little interest.
When the particle is allowed to interact, it can exchange
energy and momentum with its environment, and a choice
must then be made as to how to divide the energy-
momentum between particle and environment. To an
extent, this partition is arbitrary, and its “correctness”
should be judged by how the resultant change in the
particle’s momentum matches our expectations for par-
ticle-like behavior.
The primary difference between LL and Sokolov derives

from this partition of electromagnetic momentum. The
particle’s Coulomb field contains an infinite self-energy,
which in both theories is absorbed into a mass renormaliza-
tion. But since the energy-momentum is quadratic in the
fields, there is an additional contribution when the Coulomb
field is superposed on a background field. Unlike LL,
Sokolov interprets this also as contributing to the particle’s
momentum, which is therefore not parallel to the particle’s
velocity.
While it might appear unusual to have momentum and

velocity aligned along different directions, this occurs in
several other contexts. For example, spinning particles in
gravitational [47] and electromagnetic fields [48] acquire a
contribution to their momenta which is not parallel to
velocity, while the canonical momentum of a charged
particle generally does not even have a uniquely defined
direction. Indeed, in some of the more “natural” derivations
of LAD [9,49,50], the troublesome Schott term (the deriva-
tive of acceleration) arises from taking the momentum to be
p ¼ mð_x − τẍÞ, which agrees with (2) up to terms of order
Oðτ2Þ. In a recent derivation [51] of the classical radiation
reaction by the integration of electromagnetic momentum, it
was shown that the Schott term arises from the bound field
momentum, in agreement with the calculation of Dirac [8].
Unlike the emitted field momentum, this bound momentum
cannot escape to infinity, so it is reasonable to treat it as part
of the particle’s momentum. This approach is consistent with
the theory of Sokolov, where it corresponds to the second
term in the rhs of Eq. (2).
In theories for which p ¼ m_x, the Einstein relation

p2 ¼ m2 is a direct consequence of parametrizing the
worldline by proper time. In the Sokolov theory, rather
than being equivalent, these relations are incompatible.
Contraction of (3) with u indicates that its norm is
preserved, and we can consistently set u2 ¼ 1. Squaring
(2) then yields
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_x2 ¼ 1 −
�
2

3
αχ

�
2

; ð4Þ

where α≃ 1=137 is the fine structure constant and χ ¼
eℏ
m2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fa

bFb
cuauc

p
is the electric field in the zero (spatial)

momentum frame in units of the Sauter-Schwinger field
[52,53].
The result (4) indicates that the worldline parameter is

not strictly proper time. Rather, it is the time measured in
the Lorentz frame in which the particle instantaneously has
vanishing spatial momentum. However, the difference
between this and true proper time is appreciable only when
χ ≳ 50, in which case quantum effects should be suffi-
ciently important to invalidate the notion of a classical
worldline. We therefore take (4) to imply _x2 ≃ 1, dropping
terms of order Oðτ2Þ, and interpret the time parameter as
effective proper time.
To understand the relation between momentum and

velocity in Sokolov’s model, it is convenient to introduce
the matrix

Λa
b ¼ δab þ τ

e
m
Fa

b; ð5Þ
in terms of which (2) is _xa ¼ Λa

bub. The product ΛΛT

yields

Λa
bΛc

b ¼ δac − τ2
e2

m2
Fa

bFb
c: ð6Þ

If the rhs of (6) were δac , Λ would be an element of the
group SO(3,1), implying that the emission of radiation
induces a Lorentz transformation between velocity _x and
normalized momentum u. While this does not hold exactly,
even for the ultrastrong magnetic fields B ≈ 1010 T sur-
rounding some neutron stars, its violation is ∼10−4, while
for lasers of intensity I ≈ 1022 W=cm2, the strongest fields
currently produced in the laboratory, it is ∼10−12. We thus
interpret Λ as an effective Lorentz transformation between
velocity and momentum. We will therefore work consis-
tently to order OðτÞ in the remainder of the paper.

The electromagnetic tensor F has electric fields for its
spatiotemporal components and magnetic fields for its
purely spatial components. It therefore follows from (2)
that an electric field relates the particle’s velocity to its
momentum via a Lorentz boost, while a magnetic field
does so via a spatial rotation. In particular, an electron with
vanishing spatial momentum is unmoving in a pure
magnetic field, while an electric field will imbue it with
a nonzero velocity. This is illustrated in Fig. 1.

III. ENERGY CONSIDERATIONS

So far, we have been considering only the kinetic
4-momentum. However, in a purely electrostatic field,

Fab ¼ ∂aφηb − ∂bφηa with ηa∂aφ ¼ 0; ð7Þ
it is of interest also to consider the total energy E ¼
mðη · uÞ þ eφ, where η is the 4-velocity of the laboratory
frame, which picks out the time-component of the canoni-
cal 4-momentum muþ eA in that frame while annihilating
the spatial components. For the electrostatic field (7), we
choose the 4-potential A ¼ φη.
In the absence of radiation reaction (the limit τ → 0),

the particle’s total energy is conserved, _E ¼ mðη · _uÞþ
e_x · ∂φ ¼ 0. (In more general field configurations this is
not the case, hence the restriction in the present section to
electrostatic fields.) Intuitively, since radiation carries away
energy, RR should cause the total energy of the particle to
decrease, _E < 0. The radiation emitted is greatest when the
particle’s acceleration is orthogonal to its 3-velocity, so we
expect − _E to be maximized when u · ∂φ ≈ 0. And since the
radiation emitted is proportional to e2, we do not expect _E
to depend on the sign of the charge. Let us see if these
properties are respected by the theoretical models.
Substituting (7) into (1) and contracting with η yields for

the rate of change of total energy according to LL

_E ¼ −τeðu · ∂Þ2φ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
ðaÞ

þ τ
e2

m

�
ðu · ∂φÞ2|fflfflfflfflffl{zfflfflfflfflffl}

ðbÞ

þ fðη · uÞ2 − 1g∂φ2|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
ðcÞ

�
η · u: ð8Þ

Two differences occur in Sokolov’s theory: the term
involving the derivative of the fields is not present in (3),
eliminating ðaÞ, and the field-dependent term in (2)
contributes to _φ, canceling with the −∂φ2 contribution
to ðcÞ. Hence, the rate of change of energy according to
Sokolov becomes

_E ¼ τ
e2

m

�
ðu · ∂φÞ2|fflfflfflfflffl{zfflfflfflfflffl}

ðbÞ

þ ðη · uÞ2∂φ2|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
ðc0Þ

�
η · u: ð9Þ

Consider each term in turn:

FIG. 1. Schematic showing how the electromagnetic tensor
components change the relation between the particle’s momen-
tum and its velocity.
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(a) This term appears in LL only and can contribute either
positively or negatively, depending on the direction of
the particle’s momentum relative to both the electric
field and its derivative. Moreover, it is linear in e, so if
it is positive for an electron it will be negative for a
positron, and vice versa.

(b) This term has the same form in both LL and Sokolov,
and leads to an increase in the particle’s energy. It is
maximized when the particle’s momentum is directed
along the polarization of the field, and vanishes when
it is perpendicular.

(c) This term appears in LL and in a slightly modified
form in Sokolov. Since ∂φ is spacelike, this term leads
to a decrease in the particle’s energy, and it is
insensitive to the direction of the particle’s motion.
In LL, this term is always large enough to compensate
for the gain of energy from ðbÞ, but not necessarily
more than that. In Sokolov it is enhanced, so that
_E < 0, provided only that ∂φ ≠ 0.

The rate of change of energy according to Sokolov is
fully in keeping with our expectations: it is always
negative, it is highest when the particle’s momentum is
perpendicular to the field, and it does not depend on the
sign of the particle’s charge. None of these properties is
shared by the LL analogue. However, under the conditions
to maximize RR (u · ∂φ ¼ 0, η · u ≫ 1), the two predic-
tions for _E converge. Concerns over the interpretation of
LL are therefore very much ones of principle rather than
practical difficulties.
The benefits of the Sokolov model are clearly demon-

strated in the longstanding problem of the hyperbolic
motion of an electron accelerating in a constant electric
field, φ ¼ −E0z. The LAD equation for this case gives zero
RR force, _ua ¼ e

mF
a
bub, and this result is inherited by both

LL and Sokolov. This has caused significant confusion,
leading some researchers to argue that a charge with
constant proper acceleration should not radiate [54,55].
While it has now been established that this is not the case,
explanations of how this is compatible with energy con-
servation have not been compelling [34], relying on the
electron’s behavior as it enters and leaves the constant field,
rather than providing a local energy balance.
According to the LL result (8), _E ¼ 0, while (9) gives

_E ¼ −τ e2
m E2

0η · u for Sokolov, consistent with the loss of
energy to radiation. Although there is no radiation reaction
force, per se, the effective Lorentz boost means the electron
moves through the potential more rapidly than it would if it
did not radiate, and thus converts potential energy into
radiation. This situation was considered in Ref. [20], but
there lacked the detail of the Lorentz boost which provides
the physical mechanism for the energy exchange.

IV. EXAMPLES

In this section, we consider the motion of an electron in
two cases which are simple enough to solve, yet capture the

key physics in situations in which radiation reaction is most
important.

A. Constant magnetic field

The strongest known magnetic fields are found around
magnetars, and can exceed 1010 T. In such fields, motion
across the field lines is strongly suppressed, so to a good
approximation the field can be taken as constant along an
electron’s orbit,

Fa
b ¼ Bðϵaλb − λaϵbÞ: ð10Þ

B is the constant strength of the magnetic field, directed
along the vector κ, which together with η, ϵ and λ forms an
orthonormal frame (η2 ¼ −ϵ2 ¼ −λ2 ¼ −κ2 ¼ 1, with all
other scalar products vanishing).
The LL equation has been studied in the field (10),

yielding simple expressions for the momentum [19].
Defining the contractions ul ¼ ðεþ iu∥Þ ¼ ðη − iκÞ · u
and u⊥ ¼ uϵ þ iuλ ¼ −ðϵþ iλÞ · u, simple requirements
of Lorentz invariance lead to

ul ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ju⊥j2

q ul0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε20 − u2∥0

q ; ð11Þ

where the subscript “0” denotes the value at time s ¼ 0. LL
gives the transverse momentum as

u⊥ ¼ eiðωcsþθÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ae2τω

2
cs − 1

p ; ð12Þ

where ωc ¼ eB=m is the cyclotron frequency, A ¼ 1þ
ju⊥0j−2, and θ is the angle between the initial transverse
momentum and the ϵ direction.
Since the field is constant, the derivative terms in (1) do

not contribute, so the solutions (11) and (12) are equally
valid in the Sokolov theory. Defining the analogous
contractions _xl ¼ γ þ i_x∥ ¼ ðη − iκÞ · _x, _x⊥ ¼ _xϵ þ i_xλ ¼
−ðϵþ iλÞ · _x, it follows from (2)

_xl ¼ ul; _x⊥ ¼ ð1þ iτωcÞu⊥ ≃ eiτωcu⊥: ð13Þ

As anticipated, velocity is related to momentum by a rotation
around the direction of the magnetic field. Because the field
is homogeneous, this discrepancy between the directions of
momentum and velocity does not affect the rate at which the
particle spirals inwards. Essentially, as the particle rotates in
the magnetic field, its transverse momentum simply lags
slightly behind its velocity.

B. Electromagnetic plane wave

The strongest fields available in the laboratory are those
produced by high-power lasers. By tightly focusing short
laser pulses, present laser facilities can produce intensities

CAPDESSUS, NOBLE, MCKENNA, and JAROSZYNSKI PHYSICAL REVIEW D 93, 045034 (2016)

045034-4



∼1022 W=cm2, and it is anticipated that forthcoming
facilities could exceed 1023 W=cm2.
To simplify the analysis, we ignore the focusing and treat

the laser pulse as a plane wave. However, by allowing an
arbitrary longitudinal profile we can model the short
duration. We therefore take the field as

e
m
Fa

b ¼ aϵðϕÞðϵakb − kaϵbÞ þ aλðϕÞðλakb − kaλbÞ; ð14Þ

where aϵ (aλ) is a dimensionless measure of the electric
field strength in the ϵ (λ) direction and k ¼ ωðηþ κÞ is the
null wave 4-vector, with ω the frequency of the pulse,
and ϕ ¼ k · x.
The Landau-Lifshitz equation in the field (14) has been

studied extensively [56–60]. However, a number of con-
ceptual and technical differences arise in the Sokolov
theory.
Assume aϵ ¼ a and aλ ¼ 0, so the electric and magnetic

fields are oriented in the ϵ and λ directions, respectively
(this can always be achieved at a given ϕ by rotating ϵ and
λ). Then (2) yields

γ ¼ εþ τωauϵ;

_xϵ ¼ uϵ þ τωaε − τωau∥;

_x∥ ¼ u∥ þ τωauϵ;

_xλ ¼ uλ: ð15Þ

Again, the magnetic field induces a rotation between
momentum and velocity, while the electric field causes
an effective Lorentz boost, with the plane wave assumption
(14) ensuring these are of equal magnitude τωa. These
results hold regardless of the polarization in the ϵ − λ plane.
Since the field components aϵ and aλ depend on the

coordinate ϕ, the Sokolov equation (3) for momentum
differs through the field derivative terms from LL, so
solutions to the latter cannot be imported from the literature
as they were for the constant magnetic field. Nevertheless,
we can follow the approach in Ref. [56], changing the
independent variable from proper time s to phase ϕ. This is
possible since the field drops out of the phase derivative:

_ϕ ¼ k · _x ¼ ωðγ − _x∥Þ ¼ ωðε − u∥Þ: ð16Þ

Substituting (14) into (3) and contracting with k then yields

_ϕ ¼ ΩðϕÞ ¼ Ω0

1þ τΩ0

R ϕ
ϕ0
½a2ϵðϕ0Þ þ a2λðϕ0Þ�dϕ0 ; ð17Þ

where ΩðϕÞ is the instantaneous frequency as measured by
the particle (i.e., Ω=ω is the Doppler factor). Note that (17)
is valid for LL as well as Sokolov, and moreover _Ω < 0, so
the frequency observed by the particle decreases as it
traverses the pulse.

Using (17) and defining the reduced momentum
~u ¼ u=Ω, we can now rewrite (2) and (3) as derivatives
with respect to ϕ:

dxa

dϕ
¼ Λa

b ~ub;
d ~ua

dϕ
¼ Ω−1Λa

b
e
m
Fb

c ~uc: ð18Þ

Not only does RR Lorentz transform the velocity relative to
the reduced momentum, but the same Lorentz transforma-
tion relates the effective total force to the Lorentz force.
While the former is a universal effect, the latter is a
consequence of the specific field configuration (14).
Since (18) is linear in ~u, its solution is simply obtained

by exponentiating the integral of the matrix multiplying it
on the rhs. Moreover, since k is null, the exponentiation
terminates at second order, allowing us to write the solution
in the compact form

~ua ¼
�
δab þ ðIakb − kaIbÞ þ

1

2

�
1

Ω2
−

1

Ω2
0

− I2
�
kakb

�
~ub0;

ð19Þ

where we have introduced the vector

IaðϕÞ ¼
Z

ϕ

ϕ0

aϵðϕ0Þϵa þ aλðϕ0Þλa
Ωðϕ0Þ dϕ0: ð20Þ

The solution (19) differs from that found for LL [56] only
by the terms in Ia arising from the field derivatives. From
(19) and (17) we readily obtain the particle’s momentum,
ua ¼ Ω ~ua, and position, xa ¼ xa0 þ

R
Λa

b ~ubdϕ.

V. DISCUSSION AND CONCLUSION

In conclusion, recent rapid advances in laser technology
have promoted the longstanding issue of radiation reaction
from an intellectual curiosity to a problem that urgently
needs clarification. Of the manymodels proposed to describe
radiation reaction, those of Landau and Lifshitz and of
Sokolov have attained particular prominence. While the
predictions they make for the motion of a radiating charge
are consistent with each other, they differ on the evolution of
its energy-momentum. This suggests the distinction is not a
question of one theory being right and the other wrong, but
rather how to interpret the different momenta of the two
theories.
In the Sokolov theory, normalized momentum is related

to velocity by a Lorentz transformation, with electric fields
generating boosts and magnetic fields inducing spatial
rotations. With this notion of momentum, a particle in
an electrostatic field necessarily loses energy as a conse-
quence of radiation emission, which is not the case for the
Landau-Lifshitz momentum, which is directed along the
velocity.
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It is worth noting that, in addition to a more satisfactory
interpretation of momentum, the Sokolov theory has a
distinct numerical advantage, as there is no need to calculate
derivatives of the electromagnetic field. In Ref. [61], a
number of classical radiation reaction theories were
considered, with Sokolov among the most computationally
efficient, with less than half the overhead required for
Landau-Lifshitz.
As a final remark, we note that there is currently

considerable activity in the recoil of a massive body to
the emission of gravitational radiation [62], stimulated
by the prospect of detecting gravitational waves. While
the focus of the present paper has been purely on
electromagnetic radiation reaction, there has been

substantial cross-fertilization of ideas across the two fields
[63]. The perspective offered here may therefore also be of
relevance to gravitational radiation reaction.
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