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Using a quantum field theory approach, we consider particle scattering and vacuum instability in the so-
called L-constant electric field, which is a constant electric field confined between two capacitor plates
separated by a finite distance L. We obtain and analyze special sets of stationary solutions of the Dirac and
Klein-Gordon equations with the L-constant electric field. Then, we represent probabilities of particle
scattering and characteristics of the vacuum instability (related to pair creation) in terms of the introduced
solutions. From exact formulas, we derive asymptotic expressions for the differential mean numbers, for the
total mean number of created particles, and for the vacuum-to-vacuum transition probability. Using the
equivalence principle, we demonstrate that the distributions of particles created by the L-constant electric
field and the gravitational field of a black hole have a similar thermal structure.
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I. INTRODUCTION

The effect of particle creation by strong electromagnetic
and gravitational fields has a pure quantum nature.
Depending on the structure of such external backgrounds,
different approaches have been proposed for calculating the
effect. Initially, the effect of particle creation was consid-
ered for time-dependent external electric fields that are
switched on and off at the initial and final time instants,
respectively. We call such external fields the t-electric
potential steps. Scattering, particle creation from the
vacuum, and particle annihilation by the t-electric potential
steps has been considered in the framework of the relativ-
istic quantum mechanics, see Refs. [1–3]; a more complete
list of relevant publications can be found in Refs. [4,5]. At
present it is well understood that only an adequate quantum
field theory (QFT) with the corresponding external back-
ground may consistently describe this effect and possible
accompanying processes. In the framework of such a
theory, particle creation is related to a violation of the
vacuum stability with time. Backgrounds (external fields)
that may violate the vacuum stability have to be able to
produce nonzero work when interacting with the corre-
sponding particles. In quantum electrodynamics (QED),
these are electriclike electromagnetic fields. A general
formulation of QED with t-electric potential steps was
developed in Refs. [6]. However, there exist many physi-
cally interesting situations where external backgrounds are
not formally switched off at time infinity, as the

corresponding backgrounds are not formally t-electric
potential steps. As an example, we may point out time-
independent nonuniform electric fields that are concen-
trated in restricted space areas. The latter fields represent a
kind of spatial (or, as we call them, conditionally) x-electric
potential steps for charged particles. The x-electric poten-
tial steps can also create particles from the vacuum; the
Klein paradox is closely related to this process [7–9].
Approaches for treating quantum effects in the explicitly

time-dependent external fields are not directly applicable to
the x-electric potential steps. Some heuristic calculations of
particle creation by x-electric potential steps in the frame-
work of relativistic quantum mechanics, with qualitative
discussion from the point of view of QFT, were first
presented by Nikishov in Refs. [2,10]. In our recent article
[11], we presented a consistent formulation of QED with
x-electric potential steps quantizing the Dirac and the
Klein-Gordon (scalar) fields in the presence of such steps,
in terms of adequate in- and out-particles. We developed a
nonperturbative calculation technique for different quan-
tum processes such as scattering, reflection, and electron-
positron pair creation. As in the case of QED with t-electric
potential steps, this technique essentially uses special sets
of exact solutions of the Dirac equation with the corre-
sponding external field of x-electric potential steps.
The cases when such solutions can be found explicitly
(analytically) are called exactly solvable cases. In QED
with t-electric potential steps there exist a few exactly
solvable cases. The first (conditionally) is the so-called
T-constant electric field, which is a uniform electric field
that efficiently acts during a sufficiently large but finite time
T. Quantum processes including particle creation in the
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latter field were studied in detail in Refs. [12–16] and used
for a number of applications [17,18]. One can also point out
other exactly solvable cases, such as the Sauter-like electric
field [19] (see also Refs. [13,20]) and an exponentially
decreasing electric field [21]. In the recently constructed
QED with x-electric potential steps, an important exactly
solvable case of the Sauter field EðxÞ ¼ Ecosh−2ðx=LSÞ
was considered in detail in Ref. [11] as an illustration of the
general theory. In the present article we consider the second
exactly solvable case of x-electric potential steps, namely,
the so-called L-constant electric field. Such a step repre-
sents a constant electric field situated between two planes,
x ¼ xL ¼ const and x ¼ xR ¼ const, where xR − xL ¼ L is
uniform there and directed along the axis x, see Sec. II. In
fact, this is a uniform electric field confined between two
capacitor plates separated by a finite distance L. Some
heuristic calculations of the particle creation effect by such
a field in the framework of the relativistic quantum
mechanics were presented in Ref. [22]. The L-constant
electric field is an analog of the T-constant field. We stress
that the T-constant and L-constant electric fields describe
different physical situations in the general case. However,
in the limiting case, when both T → ∞ and L → ∞, they
represent the same uniform constant electric field, which is
obviously an idealization. Nevertheless, such a field allows
exact solutions and has been frequently used in various
calculations in QED, particularly in the pioneering work of
Schwinger [23] (see [24] for a review). These calculations
are relatively simple due to the translational symmetry of
the field; however, they always contain divergences related
to the infinite duration of the field action and to the infinite
volume of the consideration. In this respect, calculations in
the T-constant and L-constant electric fields can be
considered as a kind of different regularization in the case
of the constant uniform electric field.
The study of the vacuum instability in the presence of

potential steps—in particular, particle creation in the L-
constant electric field—is quite important for various
applications. For example, it is important in the study of
particle emission from black holes and quark and neutron
stars, due to a close relation between particle creation by
strong electrostatic potentials and the Unruh effect; see,
e.g., [4,25] for reviews. The corresponding limiting case of
a constant uniform electric field has many similarities with
the case of the de Sitter background; see, e.g., Refs. [26,27]
and references therein. Recent progress in laser physics
allows one to hope that particle creation effect will be
experimentally observed in the near future in laboratory
conditions (see Refs. [28] for a review). Methods of QFT
with strong potential steps are currently being developed in
condensed matter physics, and particle creation by external
fields has become an observable effect in physics of
graphene and similar nanostructures (say, in topological
insulators and Weyl semimetals); this area is currently
under intense development, see the reviews [29,30]. In

particular, the particle creation effect is crucial for under-
standing the conductivity of graphene, especially in the so-
called nonlinear regime. Electron-hole pair creation (which
is an analog of the electron-positron pair creation from the
vacuum) was recently observed in graphene by its indirect
influence on the graphene conductivity [31]. Possible
experimental configurations for testing the pair creation
by a linear step of finite length were proposed in [32]. The
inhomogeneity of the field becomes important in achieving
extreme field strengths.
In this article, using the general approach developed in

Ref. [11], we consider the particle scattering and the vacuum
instability on a quasilinear x-electric potential step corre-
sponding to an L-constant electric field. We use notation
from and the final formulas of the latter work. In Sec. II, we
obtain and analyze special sets of stationary solutions of the
Dirac and Klein-Gordon equations with the L-constant
electric field. In Sec. III, we represent probabilities of
particle scattering and characteristics of the vacuum insta-
bility (related to the pair creation) in terms of the introduced
solutions. From exact formulas, we derive asymptotic
expressions for differential mean numbers, the total mean
number of created particles, and the vacuum-to-vacuum
transition probability in the case of a small-gradient field. In
the first part of the discussion, Sec. IVA, we consider length
and time scales of small-gradient fields and show that
quantum effects in an L-constant field are quite represen-
tative for a large class of small-gradient electric fields. In the
second part of the discussion, Sec. IV B, we show that the
distribution of particles created by a strong electrostatic
inhomogeneous fields of a small gradient—in particular, by
the L-constant field—can be written in a general Hawking-
like thermal form, in which the Hawking temperature is
reproduced exactly. Section V contains our Conclusion. In
Appendix A, we describe briefly basic elements of QED
with x-electric potential steps. In Appendix B, we list some
useful properties of the Weber parabolic cylinder functions
(WPCFs). In what follows we use the system of units
where ℏ ¼ c ¼ 1.

II. IN- AND OUT-SOLUTIONS IN AN L-CONSTANT
ELECTRIC FIELD

A. Dirac equation

Let us consider QED with an x-electric potential step,
which is an L-constant electric field. The latter electro-
magnetic field consists of a pure electric field E (the
corresponding magnetic field B is zero) of the form1

EðXÞ ¼ EðxÞ ¼ ðExðxÞ; 0;…; 0Þ. The electric field EðxÞ
has the form

1We recall that our system is placed in the d ¼ Dþ 1
dimensional Minkowski spacetime parametrized by the
coordinates X ¼ ðXμ; μ ¼ 0; 1;…; DÞ ¼ ðt; rÞ, X0 ¼ t, r ¼
ðX1;…; XDÞ. It consists of a Dirac field ψðXÞ interacting with
an external electromagnetic field AμðXÞ in the form of a x-electric
potential step.
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EðxÞ¼E¼ const>0; x∈Sint¼ðxL;xRÞ;
EðxÞ¼0; x∈SL¼ð−∞;xL�; x∈SR¼½xR;∞Þ;

and we choose that xL ¼ −L=2 and xR ¼ L=2. The plot of
the field is shown in Fig. 1.
We assume that the basic Dirac particle is an electron

with the massm and the charge −e, e > 0, and the positron
is its antiparticle. The electric field under consideration
accelerates the electrons along the x axis in the negative
direction and the positrons along the x axis in the positive
direction.
Potentials of the corresponding electromagnetic field

AμðXÞ can be chosen as

AμðXÞ¼ðA0ðxÞ;Aj¼0;j¼1;2;…;DÞ; x¼X1; ð2:1Þ

[so that EðxÞ ¼ −A0
0ðxÞ� with a linearly growing potential

A0ðxÞ on an interval x ∈ Sint of the length L ¼ xR − xL,

which is constant out of this interval. The potential energy
of an electron in the electric field under consideration is
UðxÞ ¼ −eA0ðxÞ,

UðxÞ ¼
8<
:

UL ¼ eExL; x ∈ SL
eEx; x ∈ Sint
UR ¼ eExR; x ∈ SR

: ð2:2Þ

The magnitude of the x-electric step under consideration is

U ¼ UR −UL ¼ eEL > 0: ð2:3Þ

In d dimensions, the Dirac field ψðXÞ is a column with
2½d=2� components (in what follows, we call it just a spinor),
and γμ are 2½d=2� × 2½d=2� gamma matrices; see, e.g.,
Ref. [33],

½γμ; γν�þ ¼ 2ημν; ημν ¼ diagð1;−1;…;−1|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
d

Þ;

μ; ν ¼ 0; 1;…; D:

The classical Dirac field ψðXÞ satisfies the Dirac
equation with the L-constant electric field,

i∂0ψðXÞ ¼ ĤψðXÞ; Ĥ ¼ γ0ð−iγj∂j þmÞ þ UðxÞ;
ð2:4Þ

where Ĥ is the one-particle Dirac Hamiltonian.
Let us consider stationary solutions of the Dirac equa-

tion (2.4) having the following form:

ψnðXÞ ¼ exp ð−ip0tþ ip⊥r⊥ÞψnðxÞ; X ¼ ðt; x; r⊥Þ; n ¼ ðp0;p⊥; σÞ;
ψnðxÞ ¼ fγ0½p0 −UðxÞ� − γ1p̂x − γ⊥p⊥ þmgϕnðxÞ;

r⊥ ¼ ðX2;…; XDÞ; p⊥ ¼ ðp2;…; pDÞ; γ⊥ ¼ ðγ2;…; γDÞ; p̂x ¼ −i∂x; ð2:5Þ

where ψnðxÞ and ϕnðxÞ are spinors that depend on x
alone. In fact, these are stationary states with the energy
p0 and with definite momenta p⊥ in the directions
perpendicular to the axis x. Substituting (2.5) into Dirac
equation (2.4) (i.e., partially squaring the Dirac equation),
we obtain a second-order differential equation for the
spinor ϕnðxÞ,

fp̂2
x − iγ0γ1U0ðxÞ − ½p0 − UðxÞ�2 þ p2⊥ þm2gϕnðxÞ ¼ 0:

ð2:6Þ

We separate spinning variables by the substitution

ϕnðxÞ ¼ ϕðχÞ
n ðxÞ ¼ φnðxÞvχ;σ; ð2:7Þ

where vχ;σ with χ ¼ �1 and σ ¼ ðσ1; σ2;…; σ½d=2�−1Þ,
σs ¼ �1, is a set of constant orthonormalized spinors
satisfying the following equations:

γ0γ1vχ;σ ¼ χvχ;σ; v†χ;σvχ0;σ0 ¼ δχ;χ0δσ;σ0 : ð2:8Þ
The quantum numbers χ and σs describe a spin polari-
zation and provide a convenient parametrization of the
solutions. Since in (1þ 1) and (2þ 1) dimensions
(d ¼ 2, 3) there are no spin degrees of freedom, the
quantum numbers σ are absent. Then, scalar functions
φnðxÞ have to obey the second-order differential equation

fp̂2
x − iχU0ðxÞ − ½p0 −UðxÞ�2 þ p2⊥ þm2gφnðxÞ ¼ 0:

ð2:9Þ

FIG. 1. L-constant electric field.
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In d dimensions, for any given set p0;p⊥, there exists
only JðdÞ ¼ 2½d=2�−1 different spin states. The projection
operator, which is situated inside the brackets f� � �g in
Eq. (2.5), does not commute with the matrix γ0γ1 and,

consequently, transforms ϕðχÞ
n ðxÞ with a given χ to a linear

superposition of functions ϕðþ1Þ
n ðxÞ and ϕð−1Þ

n0 ðxÞ with
indices n and n0 corresponding to the same p0;p⊥. In d ≥
4 dimensions this projection operator also does not com-
mute with the matrix Ξ ¼ iγ⊥p⊥=jp⊥j. Assuming that
σ1 ¼ �1 is an eigenvalue of Ξ, one can see that solutions
(2.5), which differ only by values of χ and σ1, are linearly

dependent. Let us denote by ψ ðχÞ
n� ðxÞ solutions of the Dirac

equation with quantum numbers n� ¼ ðp0;p⊥; σ�Þ,
σ� ¼ ð�1; σ2;…; σ½d=2�−1Þ. Then, for example, using
existing relations between solutions (2.5) for x ∈ SL, one
can easily verify that

½π0ðLÞ − pL�ψ ðþ1Þ
n� ðxÞ ¼ ð�ijp⊥j þmÞψ ð−1Þ

n∓ ðxÞ: ð2:10Þ

The case of (1þ 1) dimensions follows from Eq. (2.10) at
jp⊥j ¼ 0 and n� ¼ n∓ ¼ p0, assumingm ≠ 0. Note that in

the case of (2þ 1) dimensions, there are two nonequivalent
representations for the γ matrices,

γ0 ¼ σ3; γ1 ¼ iσ2; γ2 ¼ −iσ1s; s ¼ �1;

which correspond to different fermion species. In this case,
following the same logic, one can see that

½π0ðLÞ − pL�ψ ðþ1Þ
n ðxÞ ¼ ðisp2 þmÞψ ð−1Þ

n ðxÞ;
n ¼ ðp0; p2Þ:

That is why it is sufficient to work only with solutions
corresponding to one of the values of χ. In what follows, we
fix the quantum number χ in a certain way.

B. In- and out-solutions

In what follows, we use solutions of the Dirac equation
denoted as ζψnðXÞ and ζψnðXÞ, ζ ¼ �, with special left
and right asymptotics at x ∈ SL and x ∈ SR. Such solutions
have the form (2.5) with the functions φnðxÞ denoted as

ζφn
ðxÞ or ζφnðxÞ, respectively. The latter functions satisfy

Eq. (2.9) and the following asymptotic conditions:

ζφn
ðxÞ ¼ ζN exp ½ipLðx − xLÞ�; x ∈ SL;

ζφnðxÞ ¼ ζN exp ½ipRðx − xRÞ�; x ∈ SR;

pL ¼ ζ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½π0ðLÞ�2 − π2⊥

q
; pR ¼ ζ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½π0ðRÞ�2 − π2⊥

q
; ζ ¼ �;

π0ðL=RÞ ¼ p0 −UL=R; π⊥ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2⊥ þm2

q
: ð2:11Þ

Thus, the solutions ζψn
ðXÞ and ζψnðXÞ asymptotically

describe particles with given real momenta pL=R along the x
axis. The factors ζN and ζN are normalization constants
with respect to conditions (A1) given in Appendix A,

ζN¼ζCY;
ζN ¼ ζCY; Y ¼ ðV⊥TÞ−1=2;

ζC ¼ ½2jpLjjπ0ðLÞ − χpLj�−1=2;
ζC ¼ ½2jpRjjπ0ðRÞ − χpRj�−1=2: ð2:12Þ
Since p0 is the total energy of a particle, we interpret

π0ðRÞ and π0ðLÞ as sum of its asymptotic kinetic and the
rest energies in the regions SR and SL, respectively. We call
the quantity π⊥ the transversal energy.
Nontrivial solutions ζψnðXÞ exist only for quantum

numbers n that obey the relation

½π0ðRÞ�2 > π2⊥⇔
�
π0ðRÞ > π⊥
π0ðRÞ < −π⊥

; ð2:13Þ

whereas nontrivial solutions ζψn
ðXÞ exist only for quantum

numbers n that obey the relation

½π0ðLÞ�2 > π2⊥⇔
�
π0ðLÞ > π⊥
π0ðLÞ < −π⊥

: ð2:14Þ

We distinguish two types of electric steps, noncritical
and critical, by their magnitudes as follows:

U ¼
�
U < Uc ¼ 2m; noncritical step

U > Uc; critical step
: ð2:15Þ

In the case of noncritical steps, the vacuum is stable; see
Ref. [11]. We are interested in the critical steps where there
is electron-positron pair production from the vacuum.
In the case of critical steps of any form, and in particular

in the step under consideration, there exist five ranges of
quantum numbers n,Ωk, k ¼ 1;…; 5, where the introduced
solutions have similar forms and physical processes with
particles have similar interpretations; see Ref. [11].

(i) In the rangeΩ1, where p0 ≥ UR þ π⊥, and the range
Ω5, where p0 ≤ UL − π⊥, the number of particles is
conserved. In the rangeΩ1 there exist only incoming
[þψnðXÞ or −ψnðXÞ] and outgoing [−ψnðXÞ or
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þψnðXÞ] electrons, whereas in the range Ω5, there
exist only incoming [−ψnðXÞ and þψnðXÞ] and
outgoing [þψnðXÞ and −ψnðXÞ] positrons. In these
ranges there exist only scattering and the reflection
of the particles. Particle creation is impossible in
these ranges.

(ii) In the range Ω2, where

UR − π⊥ < p0 < UR þ π⊥;
π0ðLÞ > π⊥ if 2π⊥ ≤ U;

UL þ π⊥ < p0 < UR þ π⊥ if 2π⊥ > U;

any solution has zero right asymptotic, which means
that we deal with standing waves of the form

ψnðXÞ ¼þψnðXÞeþiθn þ −ψnðXÞe−iθn : ð2:16Þ

Here, similar to the range Ω1, there exist only
electrons that are subjected to the total reflection.
In the range Ω4, where

UL − π⊥ < p0 < UL þ π⊥;
π0ðRÞ < −π⊥ if 2π⊥ ≤ U;

UL − π⊥ < p0 < UR − π⊥ if 2π⊥ > U;

any solution has zero left asymptotic, which means
that we deal with standing waves of the form

ψnðXÞ ¼ þψnðXÞeþiθn þ −ψnðXÞe−iθn : ð2:17Þ
Here, similar to Ω5, there exist only positrons that
are also subjected to the total reflection. The number
of particles in Ω2 and Ω4 is conserved.

(iii) The range Ω3, where UL þ π⊥ ≤ p0 ≤ UR − π⊥,
exists only for transversal momenta that satisfy the
inequality 2π⊥ ≤ U. Here the QFT description of
quantum processes is essential. Its brief description
is given in Appendix A. In this range, there exist
in- and out-electrons that can be situated only to
the left of the step, and in- and out-positrons that
can be situated only to the right of the step. In the
range Ω3, all the partial vacua are unstable, and
particle creation is possible. These pairs consist of
out-electrons and out-positrons that appear on the
left and on the right of the step and move there to
the left and to the right, respectively. At the same
time, the in-electrons that move to the step from
the left are subjected to the total reflection. After
being reflected, they move to the left of the step as
out-electrons. Similarly, the in-positrons that move
to the step from the right are subjected to the total
reflection. After being reflected, they move to the
right of the step as out-positrons.

It is assumed that each pair of solutions ζψn
ðXÞ

and ζψnðXÞ, with given quantum numbers n ∈
Ω1∪Ω3∪Ω5, is complete in the space of solutions with
the corresponding n. Because of Eq. (A1), given in
Appendix A, the mutual decompositions of such solu-
tions have the form

ηL
ζψnðXÞ ¼ þψnðXÞgðþjζÞ − −ψnðXÞgð−jζÞ;

ηRζψn
ðXÞ ¼ þψnðXÞgðþjζÞ − −ψnðXÞgð−jζÞ; ð2:18Þ

where the decomposition coefficients g are

ðζψn
; ζ

0
ψn0 Þx ¼ δn;n0gðζjζ

0 Þ;
gðζ0 jζÞ ¼ gðζjζ

0 Þ�; n ∈ Ω1∪Ω3∪Ω5: ð2:19Þ
These coefficients satisfy the following unitary relations:

jgð−jþÞj2 ¼ jgðþj−Þj2; jgðþjþÞj2 ¼ jgð−j−Þj2;
gðþj−Þ
gð−j−Þ

¼ gðþj−Þ
gðþjþÞ

;

jgðþj−Þj2 − jgðþjþÞj2 ¼ −ηLηR: ð2:20Þ

For x ∈ Sint, Eq. (2.9) can be written in the form�
d2

dξ2
þ ξ2 þ iχ − λ

�
φnðxÞ ¼ 0; ð2:21Þ

where

ξ ¼ eEx − p0ffiffiffiffiffiffi
eE

p ; λ ¼ π2⊥
eE

: ð2:22Þ

The general solution of Eq. (2.21) is completely determined by an appropriate pair of the linearly independent WPCFs:
either Dρ½ð1 − iÞξ� and D−1−ρ½ð1þ iÞξ�, or Dρ½−ð1 − iÞξ� and D−1−ρ½−ð1þ iÞξ�, where ρ ¼ −iλ=2 − ð1þ χÞ=2. Then,
taking into account Eq. (2.18), the functions −φnðxÞ and þφnðxÞ can be presented in the form
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−φnðxÞ ¼ Y

8><
>:

−C exp ½−ijpLjðx − xLÞ�; x ∈ SL

−Cfa1Dρ½−ð1 − iÞξ� þ a2D−1−ρ½−ð1þ iÞξ�g; x ∈ Sint

ηRfgðþj−ÞþC exp ½ijpRjðx − xRÞ� − gð−j−Þ−C exp ½−ijpRjðx − xRÞ�g; x ∈ SR

;

þφnðxÞ ¼ Y

8><
>:

ηLfgðþjþÞþC exp ½ijpLjðx − xLÞ� − gð−jþÞ−C exp ½−ijpLjðx − xLÞ�g; x ∈ SL
þCfa01Dρ½ð1 − iÞξ� þ a02D−1−ρ½ð1þ iÞξ�g; x ∈ Sint
þC exp ½ijpRjðx − xRÞ�; x ∈ SR

ð2:23Þ

on the whole axis x. The functions −φnðxÞ and þφnðxÞ and
their derivatives satisfy the following gluing conditions:

þ
−φnðxL=R − 0Þ ¼ þ−φnðxL=R þ 0Þ;
∂x

þ−φnðxL=R − 0Þ ¼ ∂x
þ−φnðxL=R þ 0Þ:

ð2:24Þ

Note that the following relations hold: jpLj= ffiffiffiffiffiffi
eE

p ¼ffiffiffiffiffiffiffiffiffiffiffiffi
ξ21 − λ

p
and jpRj= ffiffiffiffiffiffi

eE
p ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
ξ22 − λ

p
, where ξ1 ¼ ξjx¼xL ,

ξ2 ¼ ξjx¼xR .
A formal transition to the Klein-Gordon case can be done

by setting χ ¼ 0 and ηL ¼ ηR ¼ 1 in Eqs. (2.23). In this
case n ¼ ðp0;p⊥Þ, and normalization factors are

ζN¼ζCY;
ζN ¼ ζCY;

ζC ¼ j2pLj−1=2; ζC ¼ j2pRj−1=2:

Using Eq. (2.24) and the Wronskian determinant of
WPCFs, we find the coefficients aj and a0j,

aj ¼ −
ð−1Þjffiffiffi

2
p exp

�
iπ
2

�
ρþ 1

2

�� ffiffiffiffiffiffiffiffiffiffiffiffi
ξ21 − λ

q
fð−Þj ðξ1Þ;

a0j ¼ −
ð−1Þjffiffiffi

2
p exp

�
iπ
2

�
ρþ 1

2

�� ffiffiffiffiffiffiffiffiffiffiffiffi
ξ22 − λ

q
fðþÞ
j ðξ2Þ;

j ¼ 1; 2; ð2:25Þ

where

fð�Þ
1 ðξÞ ¼

�
1� iffiffiffiffiffiffiffiffiffiffiffiffi

ξ2 − λ
p d

dξ

�
D−ρ−1½�ð1þ iÞξ�;

fð�Þ
2 ðξÞ ¼

�
1� iffiffiffiffiffiffiffiffiffiffiffiffi

ξ2 − λ
p d

dξ

�
Dρ½�ð1 − iÞξ�: ð2:26Þ

They can be used to determine the coefficients gð�jþÞ and
gð�j−Þ. It should be noted that we need to know explicitly
only the coefficients gð−jþÞ and gðþj−Þ, which are

gðþj−Þ ¼ ηRAB exp ½ðρþ 1=2Þiπ=2�; gð−jþÞ ¼ ηLA0B0 exp ½ðρþ 1=2Þiπ=2�;

A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ22 − λ

p ffiffiffiffiffiffiffiffiffiffiffiffi
ξ21 − λ

p
jξ2 þ χ

ffiffiffiffiffiffiffiffiffiffiffiffi
ξ22 − λ

p
j

8jξ1 − χ
ffiffiffiffiffiffiffiffiffiffiffiffi
ξ21 − λ

p
j

s
; B ¼ fð−Þ1 ðξ1Þfð−Þ2 ðξ2Þ − fð−Þ2 ðξ1Þfð−Þ1 ðξ2Þ;

A0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ22 − λ

p ffiffiffiffiffiffiffiffiffiffiffiffi
ξ21 − λ

p
jξ1 − χ

ffiffiffiffiffiffiffiffiffiffiffiffi
ξ21 − λ

p
j

8jξ2 þ χ
ffiffiffiffiffiffiffiffiffiffiffiffi
ξ22 − λ

p
j

s
; B0 ¼ fðþÞ

1 ðξ1ÞfðþÞ
2 ðξ2Þ − fðþÞ

2 ðξ1ÞfðþÞ
1 ðξ2Þ: ð2:27Þ

One can see that coefficients (2.27) obey the relations

gðþj−Þjp0→−p0
¼ −ηLηRgð−jþÞ: ð2:28Þ

From these relations, one can conclude that jgð−jþÞj is an
even function of the energy p0 and transversal momenta
p⊥, and does not depend on a spin polarization.
In the Klein-Gordon case, the coefficients g are

gðþj−Þ ¼ exp ðλπ=4ÞAscBjχ¼0;

gð−jþÞ ¼ exp ðλπ=4ÞAscB0jχ¼0;

Asc ¼
�
1

8

ffiffiffiffiffiffiffiffiffiffiffiffi
ξ22 − λ

q ffiffiffiffiffiffiffiffiffiffiffiffi
ξ21 − λ

q �
1=2

; ð2:29Þ

where B and B0 are given by Eqs. (2.27). They satisfy the
unitary relations (2.20) in which we have to set
ηL ¼ ηR ¼ 1.
As follows from Eqs. (2.27) and (2.29), if either jpRj or

jpLj tends to zero, one of the following limits holds true:

jgð−jþÞj−2 ∼
ffiffiffiffiffiffiffiffiffiffiffiffi
ξ22 − λ

q
→ 0;

jgð−jþÞj−2 ∼
ffiffiffiffiffiffiffiffiffiffiffiffi
ξ21 − λ

q
→ 0; ∀ λ ≠ 0:

ð2:30Þ

These properties are essential for the justification of in- and
out-particle interpretation in the general construction [11].
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The modulus jgð−jþÞj in the form (2.27) and (2.29) was
obtained in the course of heuristic calculations in the
framework of the relativistic quantum mechanics
in Ref. [22].

III. SCATTERING AND CREATION OF
PARTICLES

A. Ranges of stable vacuum

We know that in the ranges Ωi, i ¼ 1, 2, 4, 5 the partial
vacua are stable. Let us start with discussion of formulas
obtained for these ranges. In the ranges Ω2 and Ω4, a
particle is subjected to the total reflection. In the adjacent
ranges, Ω1 and Ω5, a particle can be reflected and trans-
mitted. For example, in the range Ω1, total ~R and relative R
amplitudes of an electron reflection, and total ~T and relative
T amplitudes of an electron transmission, can be presented
as the following matrix elements:

Rþ;n ¼ ~Rþ;nc−1v ; ~Rþ;n ¼ h0;outj−anðoutÞþa†nðinÞj0; ini;
Tþ;n ¼ ~Tþ;nc−1v ; ~Tþ;n ¼ h0;outjþanðoutÞþa†nðinÞj0; ini;
R−;n ¼ ~R−;nc−1v ; ~R−;n ¼ h0;outjþanðoutÞ−a†nðinÞj0; ini;
T−;n ¼ ~T−;nc−1v ; ~T−;n ¼ h0;outj−anðoutÞ−a†nðinÞj0; ini;

ð3:1Þ

where state vectors in the corresponding Fock space and the
vacuum-to-vacuum transition amplitude cv are defined in
Appendix A. The relative reflection jRζ;nj2 and trans-
mission jTζ;nj2 probabilities satisfy the relation

jTζ;nj2 ¼ 1 − jRζ;nj2;
jRζ;nj2 ¼ ½1þ jgð−jþÞj−2�−1; ζ ¼ �:

ð3:2Þ

Similar expressions can be derived for positron amplitudes
in the range Ω5. In particular, relation (3.2) holds true
literally for the positrons in the range Ω5.
It is clear that jRζ;nj2 ≤ 1. This result may be interpreted

as QFT justification of the rules of time-independent
potential scattering theory in the ranges Ω1 and Ω5.
Amplitudes of Klein-Gordon particle reflection and trans-
mission in the ranges Ωi, i ¼ 1, 2, 4, 5 have the same form
as in the Dirac particle case with coefficients g given by the
corresponding inner product. Substituting the coefficients g
given by Eqs. (2.27) or (2.29) into relations (3.2), one can
find explicitly reflection and transmission probabilities in
the L-constant field.
The limits (2.30) imply the following properties of the

coefficients jgð−jþÞj:
(i) jgð−jþÞj−2 → 0 in the range Ω1 if n tends to the

boundary with the range Ω2 (jpRj → 0);
(ii) jgð−jþÞj−2 → 0 in the range Ω5 if n tends to the

boundary with the range Ω4 (jpLj → 0).

Thus, in the above cases the relative reflection proba-
bilities jRζ;nj2 tend to the unity; i.e., they are continuous
functions of the quantum numbers n on the boundaries. In
addition, it follows from Eqs. (2.27) and (2.29) that
jgð−jþÞj2 → 0 and, therefore, jRζ;nj2 → 0 as p0 → �∞,
as of course it must be.

B. Klein zone

The range Ω3, which is called the Klein zone, is of
special interest due to the vacuum instability. We recall, as
it follows from the general consideration [11], that if in the
range Ω3 there exists an in-particle, it will be subjected to
the total reflection. For example, it follows from Eq. (A16),
given in Appendix A, that the probability of reflection
of a particle with given quantum numbers n, under the
condition that all other partial vacua remain vacua, is
PðþjþÞn;nP−1

v pn
v ¼ 1. In the Dirac case, the presence of

an in-particle with a given n ∈ Ω3 disallows the pair
creation from the vacuum in this state due to the Pauli
principle. Of course, pairs of bosons can be created from
the vacuum in any already-occupied states.
The differential mean numbers of created pairs have the

form Ncr
n ¼ jgð−jþÞj−2; see Eq. (A14), where gð−jþÞ is

given by Eq. (2.27) for Dirac particles and by Eq. (2.29) for
Klein-Gordon particles. Note that dimensionless parame-
ters λ and ξ entering these expressions satisfy the condition

ffiffiffi
λ

p
≤ ξ2; ξ1 ≤ −

ffiffiffi
λ

p
; ð3:3Þ

which are, in fact, consequences of the definition of the
range Ω3.
From properties (2.30), one finds that Ncr

n → 0 if n tends
to the boundary with either the range Ω2 ð

ffiffiffiffiffiffiffiffiffiffiffiffi
ξ22 − λ

p
→ 0Þ or

the range Ω4 ð
ffiffiffiffiffiffiffiffiffiffiffiffi
ξ21 − λ

p
→ 0Þ; in the latter ranges, the

vacuum is stable.
One can see that absolute values of

ffiffiffiffiffiffiffiffiffiffiffiffi
ξ21 − λ

p
andffiffiffiffiffiffiffiffiffiffiffiffi

ξ22 − λ
p

are related as follows:

0 ≤ j
ffiffiffiffiffiffiffiffiffiffiffiffi
ξ22 − λ

q
−

ffiffiffiffiffiffiffiffiffiffiffiffi
ξ21 − λ

q
j ≤ ω;

ω ¼ ½
ffiffiffiffiffiffi
eE

p
Lð

ffiffiffiffiffiffi
eE

p
L − 2

ffiffiffi
λ

p
Þ�1=2:

ð3:4Þ

Then, for any p0 and p⊥ the numbers Ncr
n are negligible if

the range Ω3 is small enough,

Ncr
n ∼

ffiffiffiffiffiffiffiffiffiffiffiffi
ξ21 − λ

q ffiffiffiffiffiffiffiffiffiffiffiffi
ξ22 − λ

q
→ 0 if ω → 0: ð3:5Þ

The L-constant field is one of a regularization for a
constant uniform electric field, and it is suitable for imi-
tating a small-gradient field. That is reason why the L-
constant field with a sufficiently large length L,

ffiffiffiffiffiffi
eE

p
L ≫ max f1; m2=eEg; ð3:6Þ
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and ω ≫ 1 is of interest. In what follows, we suppose that
these conditions hold true and additionally assume that

ffiffiffi
λ

p
< K⊥; ð3:7Þ

where K⊥ is any given number satisfying the condi-
tion

ffiffiffiffiffiffi
eE

p
L=2 ≫ K2⊥ ≫ max f1; m2=eEg.

Let us analyze how the numbers Ncr
n depend on the

parameters ξ1;2 and λ. Here we assume that χ ¼ 1. Since
Ncr

n are even functions of p0, we can consider only the case
of p0 ≤ 0. In this case ξ2 ≥

ffiffiffiffiffiffi
eE

p
L=2 is large,

ξ2 ≫ max f1; λg, and the asymptotic expansions of the

WPCFs with respect to ξ2 are valid. As for the parameter ξ1,
the whole interval −

ffiffiffiffiffiffi
eE

p
L=2 ≤ ξ1 ≤ −

ffiffiffi
λ

p
can be divided

in two parts,

ðaÞ −
ffiffiffiffiffiffi
eE

p
L=2 ≤ ξ1 ≤ −K;

ðbÞ − K < ξ1 ≤ −
ffiffiffi
λ

p
; ð3:8Þ

where K is any given number satisfying the condi-
tion

ffiffiffiffiffiffi
eE

p
L=2 ≫ K ≫ K2⊥.

In the case (a), using asymptotic expansions of the
WPCFs given by Eq. (B3) in Appendix B, we obtain

Ncr
n ¼ e−πλ

�
1 − ð1 − e−πλÞ1=2

ffiffiffi
λ

p

2

�
sinϕ1

jξ1j3
þ sinϕ2

jξ2j3
�
þOðjξ1j−4Þ þOðjξ2j−4Þ

�
;

ϕ1;2 ¼ jξ1;2j2 − λ ln ð
ffiffiffi
2

p
jξ1;2jÞ þ argΓðiλ=2Þ − π=4: ð3:9Þ

Consequently, the quantity (3.9) is almost constant over the
wide range of energy p0 for any given λ satisfying
Eq. (3.7). One finds the same leading asymptotic term
for scalar particles,

Ncr
n ¼ e−πλ½1þOðjξ1j−2Þ þOðjξ2j−2Þ�: ð3:10Þ

It should be noted that asymptotic forms of Ncr
n for

fermions and bosons were calculated in Ref. [22] only at
p0 ¼ 0. Equations (3.9) and (3.10) contain these results as a
particular case if one restores the factor 2

ffiffiffi
2

p
omitted for

oscillating term in the case of fermions in Ref. [22]. Whenffiffiffiffiffiffi
eE

p
L → ∞, one obtains the well-known result for fer-

mions and bosons in a constant uniform electric field
[1,2,10],

Ncr
n → Nuni

n ¼ e−πλ; ð3:11Þ
setting K → ∞ in Eqs. (3.9) and (3.10), respectively.
In the range (b), using the only asymptotic expansions

with respect to ξ2 given by Eq. (B3) in Appendix B and the

exact form of fðþÞ
2 ðξ1Þ given by Eq. (2.26), we find

Ncr
n ¼ 4e−πλ=4½ð

ffiffiffiffiffiffiffiffiffiffiffiffi
ξ21 − λ

q
þ jξ1jÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
ξ21 − λ

q
þOðjξ2j−3Þ�

−1

× jfðþÞ
2 ðξ1Þj−2 ð3:12Þ

exactly with respect to ξ1. The dependence on λ < ξ21 ofN
cr
n

given by Eq. (3.12) vs the function e−πλ is found numeri-
cally for different ξ1 ¼ −1;−2;−3;−4 and presented in
Fig. 2. One can see that the asymptotic behavior of e−πλ,
which is typical for large jξ1j ≫ max f1; λg, appears ifffiffiffiffiffiffiffiffiffiffiffiffi
ξ21 − λ

p ≳ 1. We have Ncr
n → 0 as

ffiffiffiffiffiffiffiffiffiffiffiffi
ξ21 − λ

p
→ 0 in accor-

dance with the general property (2.30). In particular, it is
clear that the value K ¼ 2 is sufficiently large for the case

of small λ≲ 1. That is the reason why we have retained
explicitly oscillating terms in Eq. (3.9). We see that Ncr

n ≲
e−πλ in the range (b). The same conclusion can be made for
bosons.
Let us consider the total number Ncr of pairs created by

the L-constant field, which is defined by Eq. (A15) in
Appendix A. Calculating this number in the fermionic case,
one has to sum the corresponding differential mean
numbers Ncr

n over the spin projections and over the trans-
versal momenta p⊥ and energy p0. Since the Ncr

n do not
depend on the spin polarization parameters σs, the sum over
the spin projections produces only the factor JðdÞ ¼ 2½d2�−1.
The sum over the momenta and the energy can be easily
transformed into an integral in the following way:

Ncr ¼
X

p⊥;p0∈Ω3

X
σ

Ncr
n ¼ V⊥TJðdÞ

ð2πÞd−1
Z
Ω3

dp0dp⊥Ncr
n ;

ð3:13Þ

=-4

=-3

=-2

=-1

Nn
cr 5 10 15

10 25

10 20

10 15

10 10

10 5

FIG. 2. The dependence on λ of Ncr
n for different

ξ ¼ ξ1 ¼ −1;−2;−3;−4.
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where V⊥ is the spatial volume of the (d − 1)-dimensional
hypersurface orthogonal to the electric field direction and T
is the time duration of the electric field. The total number of
bosonic pairs created in all possible states follows from
Eq. (3.13) at JðdÞ ¼ 1. Taking into account that Ncr

n ≲ e−πλ

in the range (b), one obtains a rough estimation that the
contribution from the range (b) to the integral in the right-
hand side of Eq. (3.13) is relatively small,Z

jξ1j<K
Ncr

n dp0 ∼ e−πλ
ffiffiffiffiffiffi
eE

p
K:

Therefore, the main contribution to integral (3.13) is due to
an inner subrange D ⊂ Ω3, which is defined by Eq. (3.7),
and to the range (a) given by Eq. (3.8) for p0 ≤ 0. Taking
into account that Ncr

n is an even function of p0, we find the
complete subrange D as

D∶
ffiffiffi
λ

p
< K⊥; jp0j=

ffiffiffiffiffiffi
eE

p
<

ffiffiffiffiffiffi
eE

p
L=2 − K;ffiffiffiffiffiffi

eE
p

L=2 ≫ K ≫ K2⊥ ≫ max f1; m2=eEg: ð3:14Þ

In this subrange Ncr
n ≈ e−πλ for both fermions and bosons.

Then, one can find the total number of created particles
with given transversal momentum and spin polarization but
with all possible energies,

Np⊥;σ ¼
T
2π

Z
Ω3

dp0Ncr
n ¼ Δe−πλ;

Δ ¼
ffiffiffiffiffiffi
eE

p
T

2π
½

ffiffiffiffiffiffi
eE

p
LþOðKÞ�:

ð3:15Þ

The factor Δ can be interpreted as a number of quantum
states with a given energy in which the particles can be
created. If

ffiffiffiffiffiffi
eE

p
L is big enough, the dependence on K and

K⊥ can be ignored; that is, the form of Ncr
n is unchanged in

the inner subrange D. Thus, the definition of the subrange
D (3.14) can be also treated as the stabilization condition
for Ncr

n .
Substituting Eq. (3.15) into integral (3.13), performing

the integration over p⊥, and neglecting the exponentially
small contribution from the range

ffiffiffi
λ

p
→ K⊥, we finally

obtain

Ncr ¼ V⊥Tncr; ncr ¼ rcr
�
LþOðKÞffiffiffiffiffiffi

eE
p

�
;

rcr ¼ JðdÞðeEÞd=2
ð2πÞd−1 exp

�
−π

m2

eE

	
:

ð3:16Þ

Here ncr presents the total number density of pairs created
per unit time and unit surface orthogonal to the electric field
direction on an interval of the length L. The density rcr ¼
ncr=L is known in the theory of constant uniform electric
field as the pair-production rate (see the d-dimensional case

in Ref. [13]). Note that unlike the model of pair creation by
the T-constant field [13], whereNcr is a function of the time
duration of the field, Eq. (3.16) represents Ncr as a function
of the field length L. The T-constant and L-constant fields
are physically distinct; only in the asymptotic case, when
T → ∞ and L → ∞, can one consider these fields as
regularizations of a constant uniform electric field given
by two distinct gauge conditions on the electromagnetic
potentials AμðXÞ.
Using expressions for the vacuum-to-vacuum transition

probability Pv [Eq. (A16) for fermions and a similar form
in Ref. [11] for bosons], we find

Pv ¼ exp ð−μNcrÞ;

μ ¼
X∞
j¼0

ð−1Þð1−κÞj=2
ðjþ 1Þd=2 exp

�
−jπ

m2

eE

�
;

ð3:17Þ

where κ ¼ þ1 for fermions and κ ¼ −1 for bosons. In the
asymptotic case when T → ∞ and L → ∞, the vacuum-to-
vacuum transition probability (3.17) coincides with the
result obtained for the T-constant field [13] and represents
the d-dimensional analog of the well-known Schwinger
formula [23].

IV. DISCUSSION

A. Length and time scales of small-gradient fields

It should be noted that the subrange D ⊂ Ω3, where a
stabilization condition for Ncr

n holds, is derived for an
arbitrary external field E satisfying the uniform inequality
(3.6). We stress that the dimensionless parameter

ffiffiffiffiffiffi
eE

p
L

plays an important role in inequality (3.6). Studying the
particle creation in the L-constant field, one can see that the
stabilization of Ncr

n (3.11) for the energies jp0j ≪ eEL=2
comes at sufficiently large L,2

L ≫ Δl0; Δl0 ¼ Δlst max f1; λg;
Δlst ¼ ðℏc=eEÞ1=2:

ð4:1Þ

The characteristic length Δl0 can be called the stabilization
length for a given λ. We note that in the latter equation there
appears a uniform length scale Δlst. In addition, we can
define another specific uniform length scale Δlmst ,

Δlmst ¼ Δlst max f1; c3m2=ℏeEg; ð4:2Þ
which appears under the stabilization condition. The length
scale Δlmst plays the role of the characteristic length to form
the distribution (3.11) for all λ from the subrange D. The
latter distribution is typical for a uniform (L → ∞) electric
field. Note that the exponential form (3.11) plays the role of
a cutoff factor over p⊥ such that only contributions from

2We have restored ℏ and c here for convenience of the reader.
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relatively small transversal momenta, p2⊥=eE≲
max f1; m2=eEg, are essential. The length Δlmst can be
called the uniform stabilization length. Note that the
characteristic value m2=eE can be represented as the ratio
of two characteristic lengths, c3m2=ℏeE ¼ ðΔlst=ΛCÞ2,
where ΛC ¼ ℏ=mc is the Compton wavelength. We
are primarily interested in strong electric fields,
ðΔlst=ΛCÞ2 ≲ 1. In this case, inequality (3.6) is simplified
to the form L=Δlst ≫ 1, in which the Compton wavelength
is absent. We see that the scale Δlst plays the role of the
uniform stabilization length for a strong electric field. This
means that such a strong field has a macroscopic length for
the problem under consideration, and that Δlst is the
characteristic length that differentiates between fields that
have microscopical or macroscopic inhomogeneity; i.e., it
plays the role that the Compton wavelength plays in the
case of a weak field.
We assume that our constant external electric field exists

during a macroscopically large time period T, which means
that T is sufficiently large compared to the time scale
Δtmst ¼ Δlmst=c, Δtmst ≪ T. On the other hand, the pair
creation is a transient process and the applicability of
the constant field approximation is limited by the smallness
of the backreaction. For example, in d ¼ 3þ 1 and
L=Δlst ≫ 1, depletion of an electric field due to the
backreaction implies a restriction

1 ≪ ðcT=ΔlstÞ2 ≪
π2

Jα
exp

�
π
c3m2

ℏeE

�
ð4:3Þ

on time T for a given electric field strength. Here α is the
fine structure constant and J is the number of the spin
degrees of freedom (J ¼ 1 for scalar particles, J ¼ 2 for
spin-1=2 particles, and J ¼ 3 for vector particles), see [15].
Thus, there is a window in the parameter range of E and T
where the approximation of the constant external field is
consistent. For QCD with a constant SUð3Þ chromoelectric
field Ea (a ¼ 1;…; 8), during the period when the pro-
duced partons can be treated as weakly coupled (due to the
property of asymptotic freedom in QCD), and at low
temperatures θ ≪ q

ffiffiffiffiffiffi
C1

p
T, the consistency restriction for

the dimensionless parameter q
ffiffiffiffiffiffi
C1

p
T2 has the form

1 ≪ q
ffiffiffiffiffiffi
C1

p
T2 ≪ π2=3q2; ð4:4Þ

where q is the coupling constant and C1 ¼ EaEa is a
Casimir invariant for SUð3Þ.
In order to estimate the boundary effects of quasiuniform

electric fields, one can study another example of a small-
gradient field. We take as our example the Sauter field [9],

EðxÞ ¼ Ecosh−2ðx=LSÞ; LS > 0; ð4:5Þ

which can be considered as another regularization for the
constant uniform electric field when eEL2

S ≫ 1. It can be

shown (see, e.g., Ref. [11]) that in the wide range of
energies where jp0j ≪ eELS and

LS ≫ Δlf ; Δlf ¼ Δlst max f1;
ffiffiffi
λ

p
g;

the numbers Ncr
n do not, in fact, depend on the parameter

LS; they have the form (3.11), which coincides with the
differential number of created particles in a uniform electric
field [2,10]. For large LS the Sauter field varies slowly and
nearly coincides with the uniform field on the distance
jxj < LS. Then, Δlf is a characteristic length of the
stabilization for a given λ in this field. For any given
λ > 1 the stabilization length of the Sauter field, Δlf , is less
than the stabilization length of the L-constant field, Δl0. In
the case of a strong field when there exists λ < 1, both
stabilization lengths have the same value, Δlst. We con-
clude that the stabilization process for λ > 1 depends on the
boundary effects. In addition, one can see that a smooth
asymptotic decrease of the Sauter field at jxj≳ LS affects
the quantum system less than a sharp disappearance of the
L-constant field at jxj ¼ L=2. Thus, a stabilization length
for a given λ > 1 is not a universal characteristic; it depends
on the field form. Since the Sauter field for λ > 1 is nearly
uniform on the interval ∼Δlf and is strong enough for the
stabilization there, one can interpret this interval as a
universal length of pair formation, which does not depend
on the field behavior in sufficiently remote regions. One
can extrapolate this interpretation of Δlf for any field. A
semiclassical consideration is in agreement with this
interpretation. Thus, the uniform electric field produces a
work eEΔlf ¼ π⊥ acting on a charge e on the distance Δlf ,
such that a virtual electron-positron pair obtains the energy
2π⊥; this is the sum of the kinetic and the rest energy, and
can be materialized.
One may ask the question: For which maximal potential

difference some of total effects of particle creation are the
same by the Sauter field and by the L-constant field? The
potential differences are 2eELS and eEL, respectively, for
these fields. For example, by comparing the number of
states with the given energy in which particles can be
created, one sees that at any finite λ the effect of the Sauter
field at large LS [11] is equivalent to the effect of the L-
constant field at the large L, given by Eq. (3.15), with the
identification LS ¼ ffiffiffi

λ
p

L. Performing the integration over
p⊥, one can compare the results for the total number of
created particles Ncr for both cases and can see the
equivalence of these total numbers with the identification
LS ¼ L=δ, where

δ ¼ ffiffiffi
π

p
Ψ

�
1

2
;−

d − 2

2
; π

m2

eE

�

and Ψða; b; xÞ is the confluent hypergeometric function
[34]. If the field is weak (i.e., m2=eE ≫ 1), using the
asymptotic expression for the Ψ function, one obtains that
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δ ≈
ffiffiffiffiffiffi
eE

p
=m. This can be treated as the above identification,

LS ¼ ffiffiffi
λ

p
L at p⊥ → 0, and means that only small p⊥ → 0

are essential. In the case of a very strong field (i.e.,
m2=eE ≪ 1), one obtains from the Ref. [34] that the
leading term for δ does not depend on the parameter
m2=eE,

δ ≈
ffiffiffi
π

p
Γðd=2Þ=Γðd=2þ 1=2Þ: ð4:6Þ

For example, δ ≈ π=2 if d ¼ 3 and δ ≈ 4=3 if d ¼ 4.
Another total quantity is the vacuum-to-vacuum tran-

sition probability Pv. The probability Pv obtained for the
Sauter field reads [11]

Pv ¼ exp ð−μSNcrÞ;

μS ¼
X∞
j¼0

ð−1Þð1−κÞj=2ϵjþ1

ðjþ 1Þd=2 exp

�
−jπ

m2

eE

�
;

ϵj ¼ δ−1
ffiffiffi
π

p
Ψ

�
1

2
;−

d − 2

2
; jπ

m2

eE

�
: ð4:7Þ

Comparing the probability (4.7) and (3.17), obtained for the
L-constant field, one can establish a relation between
parameters LS and L. If the field is weak (m2=eE ≫ 1),
then ϵj ≈ j−1=2 and μS ≈ μ ≈ 1, and the identification LS ¼
L=δ ≈ Lm=

ffiffiffiffiffiffi
eE

p
is the same as the one extracted from the

comparison of total numbers Ncr. In the case of a strong
field, all the terms with different ϵj contribute significantly
to the sum in Eq. (4.7) if jπm2=eE ∼ 1, and the expression
for Pv in (4.7) differs essentially from the one in (3.17).
However, for the very strong field if jπm2=eE ≪ 1, the
leading contribution of ϵj has a quite simple form, ϵj ≈ 1. In
this case

μS ≈ μ ≈
X∞
j¼0

ð−1Þð1−κÞj=2
ðjþ 1Þd=2 ;

and the identification LS ¼ L=δ is the same as the one
extracted from the comparison of the total numbers Ncr,
where δ is given by Eq. (4.6).
It should be noted that total contributions to vacuum

mean values, e.g., to the mean electric current and the mean
energy-momentum tensor, are usually of interest in small-
gradient fields. These quantum effects are proportional to
corresponding sums of differential numbers of created
particles, e.g., to the number of particles with given
transversal momentum and to the total number of created
particles. Consequently, it is useful to derive a relation
between these total numbers and parameters LS and L.
Such a relation derived from the vacuum-to-vacuum
transition probability Pv is interesting for semiclassical
approaches based on Schwinger’s technique [23]. For the
weak field, m2=eE ≫ 1, the identification LS ≈ Lm=

ffiffiffiffiffiffi
eE

p

follows from the comparison of Ncr and Pv in L-constant
and Sauter fields.
The above consideration allows us to conclude that for

both Sauter and L-constant fields, the differential and total
effects of pair creation in sufficiently large regions (where
the fields are nearly uniform) and for finite energies of
particles are not signicantly affected by the field behavior
far away from the region. Extrapolating these results, one
may believe that in any quasiuniform electric field ≈E on
the region L ≫ Δlmst , that electric field that vanishes out the
region, particle-creation effects must not depend on the
details of the switching off. Therefore, calculations in an L-
constant field are quite representative for a large class of
small-gradient electric fields.
It is well known that at certain conditions (the so-called

charge neutrality point), electronic excitations in a gra-
phene monolayer behave as relativistic Dirac massless
fermions in 2þ 1 dimensions, with the Fermi velocity
vF ≃ 106 m=s playing the role of the speed of light in
relativistic particle dynamics; see details in recent reviews
[29,30]. Then, in the range of applicability of the Dirac
model to the graphene physics, any electric field is strong.
There appears a length scale specific to graphene (and to
similar nanostructures with the Dirac fermions),

Δlgst ¼ ðℏvF=eEÞ1=2; ð4:8Þ

which plays the role of the stabilization length. The
generation of a mass gap in the graphene band structure
is an important fundamental and practical problem under
current research; see, e.g., the recent report [35] on the
fabrication of a large band gap, 0.5 eV, in epitaxially grown
graphene samples. In the presence of the mass gap
Δε ¼ mv2F, the stabilization condition has general form
(3.6) that involves a length scale Δlgmst ¼
Δlgst max f1; ðΔεÞ2=ℏvFeEg. In this case the strong field
condition reads ðΔεÞ2=vFℏeE ≪ 1. It is shown in [36,37]
that the time scale Δtgst ¼ Δlgst=vF appears, for the tight-
binding model, as the time scale when the perturbation
theory with respect to electric field breaks down (Δtgst ≫ tγ ,
where the microscopic time scale is tγ ¼ ℏ=γ ≃ 0.24 fs,
with γ ¼ 2.7 eV being the hopping energy), and the dc
response changes from the linear-in-E duration-indepen-
dent regime to a nonlinear-in-E and duration-dependent
regime. The length between two electrodes L is less than
the length of a graphene flake Lg, L < Lg. In the exper-
imental situation described in Ref. [31], a constant voltage
between two electrodes connected to the graphene was
applied, and current-voltage characteristics (I − V) are
measured within exposition time Tex ∼ 1 s, which is a
very large time scale compared with the ballistic flight time
Tbal ¼ Lg=vF (the time that the electron spends to cross the
length Lg). The time dimension T is macroscopically large,
Δtgst ≪ T, and less than the time Tex. The external constant
electric field can be considered as a good approximation of
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the effective mean field as long as the field produced by the
induced current of created particles is negligible compared
to the applied field. This gives the consistency restriction
T ≪ Δtbr ¼ Δtgstπ=4α [16], where α is the fine structure
constant. Thus, there is a window in the parameter range of
E and T where the model with constant external field is
consistent,

Δtgst ≪ T ≪ Δtbr: ð4:9Þ
For example, let us assume that T ¼ Tbal. In typical

experiments, Lg ∼ 1 μm, so that Tbal ∼ 10−12 s. Then, we
obtain from Eq. (4.9) the following restrictions on the
external electric field:

7 × 102 V=m ≪ E ≪ 8 × 106 V=m:

Since the voltage is V ¼ EL, and assuming that L ≈ Lg,
one finds the inequalities

7 × 10−4 V ≪ V ≪ 8 V:

These voltages are in the range typically used in experi-
ments with graphene. In this electric field, we find that the
range of length scale Δlgst satisfies the inequalities

0.01 μm ≪ Δlgst ≪ 1 μm:

This shows that QED with an L-constant field is a good
model to describe the quantum effects in graphene placed
in a constant external electric field.

B. Connection between the vacuum instability in
external electromagnetic and gravitational fields

To gain insight into universal features of particle creation
from the vacuum, it is useful to compare effects caused by
external fields of a different nature. The situation with a
uniform electric field confined between two capacitor plates
has many similarities with both the chromoelectric flux tube
and the de Sitter case; see, e.g., Refs. [5,17,26,27] for
reviews. The idea that particle creation by an electric field
has similarities with the particle emission from black holes
calculated by Hawking [38] was tested for the first time by
Frolov and Gitman in Refs. [39]. Since the Hawking
radiation was considered to be a component of created
particles (particles out of the horizon), the authors of the
latter works derived for their comparison a reduced density
matrix of electrons created by a quasiconstant electric field.
Using the equivalence principle, they obtained an almost
Hawking distribution (up to a factor of 2 away from the
Hawking temperature). Then, taking vacuum polarization
effects into account, we showed that the distribution of
electrons created by a slowly varying uniform electric field
—in particular, by the T-constant field—can be written in a
general Hawking-like thermal form, in which the Hawking
temperature is reproduced exactly [13]. One can establish a

similar connection for the case of strong electrostatic
inhomogeneous fields with a small gradient. To do this,
we will use the model of the L-constant field.
Note that the T-constant and L-constant electric fields

produce the same quantum effects (coinciding with ones
caused by a constant uniform electric field) in the limiting
case, T → ∞ and L → ∞, if these limits exist (see
discussions of the applicability of the model of a constant
uniform electric field in Refs. [14–16]). However, the T-
constant and L-constant fields describe different physical
situations in the general case. This is the reason why we
cannot follow the method used in Ref. [13] to study the
consequences of the equivalence principle.
The phenomenon of particle emission from black holes

was first considered by Hawking [38], who calculated the
mean numbers Nn of particles created by static gravita-
tional field of a black hole in a specific thermal environ-
ment,

Nn ¼
�
exp

�
2π

ω

gðHÞ

�
þ κ

	
−1
: ð4:10Þ

Here ω is the energy of a created particle, which we
suppose to be dependent on quantum numbers n,
gðHÞ ¼ GM=r2g, where rg is the gravitational radius of
mass M, so that gðHÞ is free-falling acceleration at this
radius. This spectrum was interpreted as a Planck distri-
bution with the temperature θðHÞ ¼ gðHÞð2πkBÞ−1 (kB is the
Boltzmann constant). As before, κ ¼ þ1 for fermions and
κ ¼ −1 for bosons. It is also known [40] that an observer
moving with a constant acceleration gðRÞ (with respect to its
proper time) will register some particles (called Rindler
particles) in the Minkowski vacuum. The mean numbers of
Rindler bosons have the same Planck form as (4.10) (with
κ ¼ −1), where one has to replace gðHÞ by gðRÞ, so that the
corresponding temperature is θðRÞ ¼ gðRÞð2πkBÞ−1. One
can find many other examples when particle creation in
external gravitation fields (and due to a nontrivial topology)
can be described by means of an effective temperature; see
Refs. [41–44] for reviews.
The distribution (3.11) obtained for the L-constant field

does not have a thermal form at first blush. Nevertheless, in
the framework of a semiclassical consideration, and using
some results of the present paper, one can find a close
connection to a thermal-like form. As established, both
electrons and positrons with given transversal momentum
p⊥ and zero longitudinal momentum are created in a
subregion of the region Sint with the kinetic and rest energy
π⊥ per particle. At the same time, the created electrons and
positrons are accelerated by the electric field along the x
axis to the left and to the right, respectively. Note that in the
subrange D ⊂ Ω3, where a stabilization condition for Ncr

n
holds, the widthΔlf of the pair formation subregion is small
compared to the distance L. Finally, the particles appear on
the left and the right of the step already having
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ultrarelativistic velocities and longitudinal momenta jpLj
and jpRj, respectively, given by Eq. (2.11). Using classical
equations of motion in a constant uniform electric field
dP=dt ¼ eE, one finds final accelerations for both kinds of
particles as

gðL=RÞ ¼ eE=jπ0ðL=RÞj ≈ 2=L; ð4:11Þ

respectively.
We can improve the classical consideration by taking

into account properties of the physical vacuum in the L-
constant field. Within the general construction [11], it is
assumed that electrons and positrons in one of correspond-
ing asymptotic regions, SL and SR, occupy quasistationary
states; i.e., they are described by wave packets that
maintain their form on a sufficiently large distance in
one of the corresponding asymptotic regions. Such wave
packets are superpositions of the corresponding plane
waves from some subrange of energies p0 ⊂ D. In the
semiclassical approximation, we assume that the energy of
a particle p̄0 is an average value of these energies, p0 ⊂ D.
Then, the total energy of a pair created with a given p̄0, p⊥
is a sum π̄0ðLÞ þ jπ̄0ðRÞj, where π̄0ðL=RÞ ¼ p̄0 −UL=R;
i.e., this energy is equal to the total field work
π̄0ðLÞ þ jπ̄0ðRÞj ¼ U. We note that this field work was
partially used for the pair creation and partially for their
further acceleration, such that before leaving the region Sint
they have gained the following average longitudinal
momenta:

jp̄L=Rj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½π̄0ðL=RÞ�2 − π2⊥

q
:

At the same time, the corresponding part of energy was lost
for the field restricted in the region Sint. Let us estimate this
energy considering wave packets þψxFðXÞ and þψxF

ðXÞ,
which consist of partial waves of an out-electron þψnðXÞ
and an out-positron þψnðXÞ, and which have focal planes
x ¼ xF somewhere in SL and SR, respectively. One can
construct such wave packets using a procedure described in
Appendix D of Ref. [11]. The energy flux of the field ψxF
through a surface x ¼ xout is defined as

FðxÞ ¼
Z
x¼xout

ψ†
xFðXÞp̂xψxFðXÞdr⊥:

Then, through any plane x ¼ xoutR ∈ SR a positron carries
away the energy jp̄Rj for the time T, whereas through any
plane x ¼ xoutL ∈ SL an electron carries away the energy
jp̄Lj for the time T. Thus, the field work spent for a pair
acceleration is jp̄Lj þ jp̄Rj. Consequently, the work spent
for the creation of a pair in a given state is

2ω ¼ U − jp̄Lj − jp̄Rj ≈ λg; g ¼ ½gðLÞ þ gðRÞ�=2;
ð4:12Þ

where ω is the work spent for the creation of a particle from
a pair, λ is given by Eq. (2.22), and gðL=RÞ are given
by Eq. (4.11).
Then the distribution (3.11) can be rewritten in the

following form:

Nuni
n ¼ exp

�
−2π

ω

g

	
: ð4:13Þ

The energy of a particle in the Hawking formula (4.10) can
be treated as the work, ω, that a gravitational field has spent
for the creation of a particle. Then, Eq. (4.13) is, in fact, the
Boltzmann distribution with the temperature θ ¼
gð2πkBÞ−1 having literally the Hawking form. Thus, once
again we see that the distributions of particles created by
electromagnetic and gravitational fields have similar ther-
mal structures.
It is a direct consequence of the equivalence principle

that the effective temperature θ of distribution (4.13) has
literally the Hawking form. Regarding the distinction
between the Planck and the Boltzmann distributions, we
believe that the Planck distribution for the Hawking case
necessarily arises due to the appearance of an event horizon
(there is a boundary of the domain of the Hamiltonian); that
is, it is due to the condition for which the space domains of
particle and antiparticle vacua are not the same. In contrast
to this, in an electric field, we deal with both the particle
vacuum and the antiparticle vacuum defined over the entire
space, see Ref. [11]; that is why these space domains
coincide.

V. CONCLUSION

In this Conclusion we would like to try to characterize
the place of the present article among the numerous works
devoted to the effect of pair creation from a vacuum by an
external electromagnetic field. First, we recall that in the
area under discussion the possibility of obtaining any
nonperturbative result is, as a rule, based on the existence
of special exact solutions of the Dirac equation with
external electromagnetic fields that are able to create pairs
from the vacuum. However, it is well known that there exist
few such field configurations and corresponding exact
solutions. We believe that, among these, the T-constant
and the L-constant electric fields with sufficiently large
parameters T and L have a priority, because studying the
effect in such relatively simple field configurations allows
one to understand typical physical characteristics of the
effect in wide classes of external fields. The study of a pair
creation effect in the T-constant electric fields already has a
long story, which we cited in the Introduction. Here almost
all local and global characteristics of the effect were
calculated in detail using the well-developed formulation
of QED with t-electric potential steps. A similar study for
L-constant electric fields did not exist until the present, as a
formulation of QEDwith x-electric potential steps, which is
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sufficient for this problem, was developed by us a short
time ago in Ref. [11]. Our present article, then, contains for
the first time a consistent QED treatment of the pair
creation effect in the L-constant electric field, a treatment
that is free from misunderstandings of a naive one-particle
consideration. Moreover, the presented sets of stationary
solutions, as well as their interpretation, probabilities,
vacuum mean values, and analysis of length and time
scales, constitute a possible basis for future research in
strong-field QFT of small-gradient fields.
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APPENDIX A: BASIC ELEMENTS OF QED WITH
x-ELECTRIC CRITICAL POTENTIAL STEPS

In this appendix, we briefly present some basic con-
structions of QED with an L-constant electric field that
follow from the general formulation of QED with x-electric
potential step [11] and the results of Sect. II.
Solutions of the Dirac equation, ζψn

ðXÞ and ζψnðXÞ, can
be subjected to the following orthonormality conditions on
the x ¼ const hyperplane:

ðζψn
; ζ0ψn0

Þ
x
¼ ζηLδζ;ζ0δn;n0 ; ηL ¼ sgnπ0ðLÞ;

ðζψn; ζ
0
ψn0 Þx ¼ ζηRδζ;ζ0δn;n0 ; ηR ¼ sgnπ0ðRÞ;

ðψ ;ψ 0Þx ¼
Z

ψ†ðXÞγ0γ1ψ 0ðXÞdtdr⊥: ðA1Þ

We consider our theory in a large spacetime box that has a
spatial volume V⊥ ¼ Q

D
j¼2Kj and the time dimension T,

where all Kj and T are macroscopically large. The
integration over the transverse coordinates is fulfilled from
−Kj=2 to þKj=2, and over the time t from −T=2 to þT=2.
The limits Kj → ∞ and T → ∞ are assumed in final
expressions.
The time-independent inner product for any pair of

solutions of the Dirac equation, ψnðXÞ and ψ 0
n0 ðXÞ, is

defined on the t ¼ const hyperplane as follows:

ðψn;ψ 0
n0 Þ ¼

Z
V⊥

dr⊥
Z

KðRÞ

−KðLÞ
ψ†
nðXÞψ 0

n0 ðXÞdx; ðA2Þ

where the improper integral over x in the right-hand side of
Eq. (A2) is reduced to its special principal value to provide a
certain additional property important for us, and the limits
KðL=RÞ → ∞ are assumed in final expressions. The following
orthonormality relations are on the t ¼ const hyperplane:

ðζψn; ζψn0 Þ ¼ ðζψn; ζψn0 Þ ¼ δn;n0Mn; n ∈ Ω1∪Ω3∪Ω5;

ðψn;ψn0 Þ ¼ δn;n0Mn; n ∈ Ω2∪Ω4;

Mn ¼ 2
KðRÞ

T





 π0ðRÞpR





jgðþjþÞj2; n ∈ Ω1∪Ω5;

Mn ¼ 2
KðRÞ

T





 π0ðRÞpR





jgðþj−Þj2; n ∈ Ω3;

Mn ¼ 2
KðLÞ

T





 π0ðLÞpL





; n ∈ Ω2; Mn ¼ 2
KðRÞ

T





 π0ðRÞpR





; n ∈ Ω4: ðA3Þ

All the wave functions having different quantum numbers n are orthogonal, and

ðζψn
; −ζψnÞ ¼ 0; n ∈ Ω1∪Ω5; ζψn

and −ζψn independent;

ðζψn
; ζψnÞ ¼ 0; n ∈ Ω3; ζψn

and ζψn independent: ðA4Þ

We denote the corresponding quantum numbers by nk, so that nk ∈ Ωk. Then we identify

in solutions∶þψn1
; −ψn1 ; −ψn5 ;

þψn5 ; −ψn3 ;
−ψn3 ;

out solutions∶ −ψn1 ;
þψn1 ; þψn5

; −ψn5 ; þψn3
; þψn3 : ðA5Þ

We decompose the Heisenberg operator Ψ̂ðXÞ in two sets of solutions fζψn
ðXÞg and fζψnðXÞg of the Dirac

equation (2.4) complete on the t ¼ const hyperplane. Operator-valued coefficients in such decompositions do not depend
on coordinates. Our division of the quantum numbers n in five ranges implies the representation for Ψ̂ðXÞ as a sum of five
operators Ψ̂iðXÞ, i ¼ 1, 2, 3, 4, 5,
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Ψ̂ðXÞ ¼
X5
i¼1

Ψ̂iðXÞ: ðA6Þ

For each of three operators Ψ̂iðXÞ, i ¼ 1, 3, 5, there exist two possible decompositions according to the existence of two
different complete sets of solutions with the same quantum numbers n in the ranges Ω1, Ω3, and Ω5,

Ψ̂1ðXÞ ¼
X
n1

M−1=2
n1 ½þan1ðinÞþψn1

ðXÞ þ −an1ðinÞ−ψn1ðXÞ�

¼
X
n1

M−1=2
n1 ½þan1ðoutÞþψn1ðXÞ þ −an1ðoutÞ−ψn1ðXÞ�;

Ψ̂3ðXÞ ¼
X
n3

M−1=2
n3 ½−an3ðinÞ−ψn3ðXÞ þ −b†n3ðinÞ−ψn3ðXÞ�

¼
X
n3

M−1=2
n3 ½þan3ðoutÞþψn3ðXÞ þ þb†n3ðoutÞþψn3

ðXÞ�;

Ψ̂5ðXÞ ¼
X
n5

M−1=2
n5 ½þb†n5ðinÞþψn5ðXÞ þ −b†n5ðinÞ−ψn5ðXÞ�

¼
X
n5

M−1=2
n5 ½þb†n5ðoutÞþψn5

ðXÞ þ −b†n5ðoutÞ−ψn5ðXÞ�: ðA7Þ

There may exist only one complete set of solutions with
the same quantum numbers n2 and n4. Therefore, we have
only one possible decomposition for each of the two
operators Ψ̂iðXÞ, i ¼ 2, 4,

Ψ̂2ðXÞ ¼
X
n2

M−1=2
n2 an2ψn2ðXÞ;

Ψ̂4ðXÞ ¼
X
n4

M−1=2
n4 b†n4ψn4ðXÞ:

ðA8Þ

We interpret all a and b as annihilation and all a† and b†

as creation operators. All a and a† are interpreted as
describing electrons and all b and b† as describing
positrons. All the operators labeled by the argument in
are interpreted as in-operators, whereas all the operators
labeled by the argument out as out-operators. This iden-
tification is confirmed by a detailed mathematical and
physical analysis of solutions of the Dirac equation, with
subsequent QFT analysis of correctness of such an iden-
tification, in Ref. [11].
Taking into account the orthogonality and orthonorm-

alization relations, we find that the standard anticommu-
tation relations for the Heisenberg operator (A6) yield the
standard anticommutation rules for the introduced creation
and annihilation in- or out-operators. Note that commuta-
tion relations between sets of in- and out-operators follow
from the linear canonical transformation that relates in- and
out-operators.
We define two vacuum vectors j0; ini and j0; outi, one of

which is the zero-vector for all in-annihilation operators
and the other is zero-vector for all out-annihilation

operators. Besides, both vacua are zero-vectors for the
annihilation operators an2 and bn4 . Thus, we have

þan1ðinÞj0; ini ¼ −an1ðinÞj0; ini ¼ 0;

−bn5ðinÞj0; ini ¼ þbn5ðinÞj0; ini ¼ 0;
−an3ðinÞj0; ini ¼ −bn3ðinÞj0; ini ¼ 0;

an2 j0; ini ¼ bn4 j0; ini ¼ 0; ðA9Þ

and

−an1ðoutÞj0; outi ¼ þan1ðoutÞj0; outi ¼ 0;

þbn5ðoutÞj0; outi ¼ −bn5ðoutÞj0; outi ¼ 0;

þbn3ðoutÞj0; outi ¼ þan3ðoutj0; outi ¼ 0;

an2 j0; outi ¼ bn4 j0; outi ¼ 0: ðA10Þ

One can verify that the introduced vacua have minimum
(zero by definition) kinetic energy and zero electric charge,
and all the excitations above the vacuum have positive
energies. Then, we postulate that the state space of the
system under consideration is the Fock space constructed,
say, with the help of the vacuum j0; ini and the corre-
sponding creation operators. This Fock space is unitarily
equivalent to the other Fock space constructed with the help
of the vacuum j0; outi and the corresponding creation
operators if the total number of particles created by the
external field is finite.
Because any annihilation operators with quantum num-

bers ni corresponding to different i anticommute between
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themselves, we can represent the introduced vacua as tensor
products of the corresponding vacua in the five ranges,

j0; ini ¼
Y5
i¼1

⊗j0; iniðiÞ; j0; outi ¼
Y5
i¼1

⊗j0; outiðiÞ;

ðA11Þ
where the partial vacua j0; iniðiÞ and j0; outiðiÞ obey
relations (A9) and (A10) for any ni and ζ.
It follows from relations (A9) and (A10) that the partial

vacua are stable in Ωi, i ¼ 1, 2, 4, 5,

j0; iniðiÞ ¼ j0; outiðiÞ; i ¼ 1; 2; 4; 5: ðA12Þ

Then, the total vacuum-to-vacuum transition amplitude cv
is due to the partial vacuum-to-vacuum transition amplitude
formed in Ω3,

cv ¼ h0; outj0; ini ¼ ð3Þh0; outj0; inið3Þ: ðA13Þ

The differential mean numbers of electrons and positrons
from electron-positron pairs created are equal,

Na
nðoutÞ ¼ h0; injþa†nðoutÞþanðoutÞj0; ini ¼ jgð−jþÞj−2;

Nb
nðoutÞ ¼ h0; injþb†nðoutÞþbnðoutÞj0; ini ¼ jgðþj−Þj−2;

Ncr
n ¼ Nb

nðoutÞ ¼ Na
nðoutÞ; n ∈ Ω3; ðA14Þ

and they present the number of pairs created, Ncr
n . The total number of pairs created from the vacuum is the sum over the

range Ω3 of the differential mean numbers Ncr
n ,

N ¼
X
n∈Ω3

Ncr
n ¼

X
n∈Ω3

jgð−jþÞj−2: ðA15Þ

Considering the range Ω3, we see that the probabilities of a particle reflection, a pair creation, and the probability for a
vacuum to remain a vacuum can be expressed via differential mean numbers of created pairs Ncr

n ,

PðþjþÞn0;n ¼ jh0; outjþan0 ðoutÞ−a†nðinÞj0; inij2 ¼ δn;n0
1

1 − Ncr
n
Pv;

Pðþ − j0Þn0;n ¼ jh0; outjþan0 ðoutÞþbnðoutÞj0; inij2 ¼ δn;n0
Ncr

n

1 − Ncr
n
Pv;

Pv ¼ jcvj2 ¼
Y
n

pn
v; pn

v ¼ ð1 − Ncr
n Þ: ðA16Þ

The probabilities for a positron scattering Pð−j−Þn;n0 and a
pair annihilation Pð0j −þÞn;n0 coincide with the expres-
sions PðþjþÞ and Pðþ − j0Þ, respectively.

APPENDIX B: ASYMPTOTIC EXPANSIONS
OF WPCFS

Here we list some properties of the WPCFs used in the
present work.3

Asymptotic expansions of WPCFs that correspond to
large absolute values of the argument jξj have the following

form:

Dν½ð1� iÞξ� ¼ e∓iξ2=2ð
ffiffiffi
2

p
e�iπ=4ξÞν

�
1∓i

νð1 − νÞ
4ξ2

þ…

�
if ξ ≥ K; ðB1Þ

where K ≫ max f1; jνjg. If ξ < 0, we have that

Dν½ð1 − iÞξ� ¼ eiπνDν½ð1 − iÞjξj� þ i

ffiffiffiffiffiffi
2π

p

Γð−νÞ e
iπν=2D−ν−1½ð1þ iÞjξj�;

D−ν−1½ð1þ iÞξ� ¼ eiπðνþ1ÞD−ν−1½ð1þ iÞjξj� − i

ffiffiffiffiffiffi
2π

p

Γðνþ 1Þ e
iπðνþ1Þ=2Dν½ð1 − iÞjξj�; ðB2Þ

3Note that a more detailed description of the properties of the WPCFs can be found, e.g., in Ref. [34].
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where ΓðzÞ is the Euler gamma function.
Let χ ¼ 1 and ν ¼ −1 − ρ ¼ iλ=2. Then, using Eqs. (B1) and (B2), we obtain the following expansions of the

coefficients fðþÞ
k ðξlÞ, given by Eqs. (2.26):

fðþÞ
1 ðξÞ ≈ e−iξ

2=2ð
ffiffiffi
2

p
eiπ=4ξÞν2

�
1 − i

νð1 − νÞ
4ξ2

þOðξ−4Þ
�
;

fðþÞ
2 ðξÞ ≈ eiξ

2=2ð
ffiffiffi
2

p
e−iπ=4ξÞ−ν−1

�
−

i
ξ2

þOðξ−4Þ
�

if ξ ≥ K;

fðþÞ
1 ðξÞ ≈ −ieiξ2=2ð

ffiffiffi
2

p
e−iπ=4jξjÞ−ν−1e−iπν=2

ffiffiffiffiffiffi
2π

p

Γð−νÞ ½2þOðξ−2Þ�;

fðþÞ
2 ðξÞ ≈ −eiξ2=2ð

ffiffiffi
2

p
e−iπ=4jξjÞ−ν−1e−iπν

�
2 − i

�
3

2
νþ ν2

�
ξ−2 þOðξ−4Þ

�

þ e−iξ
2=2ð

ffiffiffi
2

p
eiπ=4jξjÞνe−iπν=2

ffiffiffiffiffiffi
2π

p

2ΓðνÞξ4 if ξ < 0; jξj ≥ K: ðB3Þ
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