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We show that both the leading and subleading double soft theorems of the nonlinear sigma model follow
from a shift symmetry enforcing Adler’s zero condition in the presence of an unbroken global symmetry.
They do not depend on the underlying coset G=H and are universal infrared behaviors of Nambu-
Goldstone bosons. Although nonlinear sigma models contain an infinite number of interaction vertices, the
double soft limit is determined entirely by a single four-point interaction, together with the existence of
Adler’s zeros.
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I. INTRODUCTION

The study of soft massless particles has a long and rich
history [1–6]. The subject gained renewed interest follow-
ing Refs. [7,8], which stimulated many new analyses
[9–12]. More recently, Ref. [10] proposed new double soft
theorems for massless scalars in a variety of quantum field
theories, based on the study of scattering equations [13]. In
particular, for nonlinear sigma models (NLSM) with a
UðNÞ color structure,1 they presented the following double
soft theorems for a color-ordered partial amplitude,

Mð1; 2;…; n; nþ 1; nþ 2Þ ¼ ðSð0Þ þ Sð1ÞÞMð1; 2;…; nÞ
þOðτ2Þ; ð1Þ

where momenta of particles nþ 1 and nþ 2 are taken soft,
pμ
nþ1 ¼ τpμ and pμ

nþ2 ¼ τqμ, as τ → 0. The leading and
subleading soft factors are

Sð0Þ ¼ 1

2

�
pn · ðpnþ1 − pnþ2Þ þ pnþ1 · pnþ2

pn · ðpnþ1 þ pnþ2Þ þ pnþ1 · pnþ2

þ p1 · ðpnþ2 − pnþ1Þ þ pnþ2 · pnþ1

p1 · ðpnþ2 þ pnþ1Þ þ pnþ2 · pnþ1

�
; ð2Þ

Sð1Þ ¼ pnþ1;μpnþ2;ν

pn · ðpnþ1 þ pnþ2Þ þ pnþ1 · pnþ2

Jμνn

þ pnþ2;μpnþ1;ν

pn · ðpnþ2 þ pnþ1Þ þ pnþ2 · pnþ1

Jμν1 ; ð3Þ

where Jμνa is the total angular momentum operator acting on
the ath scalar particle

Jμνa ≡ pμ
a

∂
∂pa;ν

− pν
a

∂
∂pa;μ

: ð4Þ

The leading double soft factor Sð0Þ contains the famous
Adler’s zero [4] when either pμ → 0 or qμ → 0. Expanding
to the first order in τ, it also reproduces the double soft
limit proposed in Ref. [7],2 which was later studied
using BCFW-like recursion relations [14]. The subleading
double soft factor Sð1Þ was proven also with recursion
relations [12].
However, it is well known from the early work of soft

pion theorems [4–6] that emission of soft pions often is
uniquely determined by current algebra, i.e. commutators
of vector and axial currents. Therefore, they are dictated by
the Ward identities, which are statements of the symmetry
in the system. Indeed, many of the recent results concen-
trate on relating soft theorems to symmetries [8,11]. This is
the viewpoint we wish to pursue. In particular, we will see
that it is possible to derive the double soft theorems for the
full scattering amplitudes, i.e. the S-matrix elements,
without recourse to color-ordered partial amplitudes.
More specifically, we consider a set of scalars πa

transforming under an unbroken global symmetry group
H and impose a set of shift symmetries to forbid a scalar
mass term,

πa → πa þ ϵa þ � � � : ð5Þ

We will see that this condition, together with the require-
ment of preserving the global symmetry H for interaction
vertices, is sufficient to prove the double soft theorems in
Eq. (1), without recourse to BCFW-like recursion relations.
The proof is similar in spirit to the derivation of soft-gluon
and soft-graviton theorems using on-shell gauge invariance
at tree level [2,11].
This work is organized as follows. We first clarify the

relation between shift symmetry and Adler’s zeros in the
next section and establish the four-point interaction

1It is customary to call this “color”, even though it is really the
“flavor” structure for NLSM [14].

2Early studies on the double soft pion emission, using
techniques of current algebra, can be found in [5,6].
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satisfying both the Adler’s zero condition and the unbroken
global symmetry group H. Derivation of the double soft
theorems in NLSM for the full amplitude is presented in
Sec. III. We end with the Discussion section and also
comment on how to recover the double soft theorem for
color-ordered partial amplitudes in Eq. (1) from our results.

II. SHIFT SYMMETRY AND ADLER’S ZEROS

We start with a set of scalars πa furnishing a linear
representation of an unbroken global symmetry group H,
whose group generators Tr satisfy the Lie algebra

½Tr; Ts� ¼ ifrstTt: ð6Þ

Under an infinitesimal action of H, the scalars transform as

πaðxÞ → πaðxÞ þ iαrðTrÞabπbðxÞ; ð7Þ

where ðTrÞab is the matrix entry of the generator Ti in the
particular representation under consideration. Similar to
Ref. [15], we adopt a basis where Tr is purely imaginary
and antisymmetric, so that all scalar fields are taken to be
real. This is equivalent to writing a complex scalar in terms
of its real and imaginary components.
We further assume there is a set of shift symmetries

acting on πa,

πa → πa þ ϵa þ � � � ; ð8Þ
where � � � contains higher-order terms we ignore for now.
Assuming the Lagrangian is invariant under the shift
symmetry,

L½π� → L½π� for πa → πa þ ϵa; ð9Þ
a scalar mass term is forbidden and πa’s are strictly
massless.
Without specifying any details of the theory, one can

derive the Ward identity corresponding to the shift sym-
metry in the path integral formalism [16], which gives

∂μhAa
μðxÞπa1ðx1Þ…πanðxnÞi

¼ i
X
r

hπa1ðx1Þ…πar−1ðxr−1Þδaarδð4Þ

× ðx − xrÞπarþ1ðxrþ1Þ…πanðxnÞi; ð10Þ

where the Noether current corresponding to the shift
symmetry is

Aa
μ ¼

δL
δ∂μπa

: ð11Þ

If we take n ¼ 1 in Eq. (10) and Fourier-transform with
respect to πa1ðx1Þ, the Lehmann-Symanzik-Zimmermann
(LSZ) reduction formula then implies

i
p2

h0j∂μAa
μðxÞjπa1ðp1Þi ¼ ifπδaa1e−ip1·x; ð12Þ

leading to the famous result

h0jAa
μðxÞjπa1ðpÞi ¼ ifπδaa1pμe−ip·x: ð13Þ

In other words, the Noether current Aa
μ has a nonvanishing

matrix element between vacuum and the one-particle state
and, therefore, can create a one-particle pole for πa in the
correlation functions. The dimensionful parameter fπ plays
the role of the pion decay constant in low-energy QCD. For
n ≥ 2, Eq. (10) and the LSZ reduction formula imply the
current conservation,

pμhfj ~Aa
μðpÞjii ¼ 0; ð14Þ

since the right-hand side of Eq. (10) contains only n − 1
scalar fields and has a vanishing residue when all n scalar
momenta are taken on-shell. As is familiar in low-energy
theorems for pions, Eq. (13) together with the current
conservation imply the single soft limit of the scattering
amplitudes of πa ’s vanishes [17]:

lim
pμ→0

hf þ πaðpÞjii ¼ 0; ð15Þ

which is the Adler’s zero condition.
The shift symmetry in Eq. (8) implies the effective

Lagrangian must be derivatively coupled, and at lowest
order it contains only the kinetic energy,

L ¼ 1

2
∂μπ

a∂μπa þ � � � ; ð16Þ

where terms neglected are higher-dimensional operators
containing derivative couplings. Beyond leading order,
Ref. [15] proposed extending πa → πa þ ϵa to second
order,

πa → πa þ ϵa −
1

3f2π
ðTrÞabðTrÞcdπbπcϵd; ð17Þ

where the form is dictated by the simple requirements of
(1) invariance under the linearly realized global symmetry
group H and (2) that it reduces to πai → πai þ ϵai when all
the other scalars πa; a ≠ ai are turned off and set to zero, so
as to fulfill the Adler’s zero condition for πai.3 The
Lagrangian invariant under the second-order shift sym-
metry in Eq. (17) is

L¼ 1

2
∂μπ

a∂μπa −
1

6f2π
ðTrÞabðTrÞcd∂μπ

aπbπc∂μπd: ð18Þ

3The numerical coefficient in the higher-order term in Eq. (17)
is arbitrary and can be absorbed into the normalization of fπ [15].
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In fact, the full effective Lagrangian for the NLSM, which
is usually constructed using the formalism of CCWZ
[18,19], can be reproduced to all orders in 1=fπ , without
specifying the underlying coset G=H, if the following
“closure condition” is satisfied [15]:

ðTiÞabðTiÞcd þ ðTiÞacðTiÞdb þ ðTiÞadðTiÞbc ¼ 0: ð19Þ

This can be viewed as a consistency condition imposed on
the low-energy effective theory constructed from the shift
symmetry in the infrared. When comparing with the CCWZ
formalism based on a particular coset G=H, the matrix
element ðTiÞab should be identified with the structure
constant of the broken group G in the ultraviolet,

ðTiÞab ¼ −ifiab ¼ TrðTi½Xb; Xa�Þ; ð20Þ

where Ti and Xa are generators of H and G=H,
respectively.4 Then the closure condition is nothing but
the Jacobi identity of the structure constants [15].
Equation (19) is satisfied quite commonly, e.g. the adjoint
representation of any Lie group and the fundamental
representation of SOðNÞ. It is, however, not fulfilled by
the fundamental representation of SUðNÞ. In this case, one
needs to enlarge SUðNÞ to SUðNÞ × Uð1Þ before the
closure condition is met.
At the order of 1=f2π , it is possible to work out the

form of the dimension-six operator via CCWZ to be
Trð½Xa; Xb�½Xc; Xd�Þ∂πaπbπc∂πd, thereby giving support
to the identification ðTiÞab ¼ −ifiab. However, the major
distinction is that the shift symmetry only requires infrared
data on the group generators of the unbroken group H,
while CCWZ requires specifying the ultraviolet data such
as the broken group G.
Although the full CCWZ Lagrangian for the nonlinear

sigma model can be obtained without knowledge of the
underlying coset G=H, for the purpose of deriving the
double soft theorems we only need the Lagrangian, up to
the order of 1=f2π, in Eq. (18).

III. A DERIVATION OF THE DOUBLE
SOFT THEOREMS

The double soft theorems considered in Ref. [10] are for
NLSM with a UðNÞ color structure and when the two soft
momenta are adjacent to each other in the color-ordered
partial amplitudes. We will avoid both assumptions by
working instead with the full amplitudes, i.e. the S-matrix
elements. If we define Ma1a2…anðp1; p2;…; pnÞ to be

the scattering amplitudes of n scalars, it is related to the
color-ordered partial amplitudes Mσðp1;…; pnÞ by

Ma1a2…anðp1; p2;…; pnÞ
¼

X
σ∈Sn=Zn

TrðTaσð1ÞTaσð2Þ…TaσðnÞ ÞMσðp1;…; pnÞ; ð21Þ

where the sum is over all permutations of the n indices
modulo cyclic permutations. We also follow the convention
that all momenta are incoming. Moreover,Mðp1;…; pnÞ≡
Mσðp1;…; pnÞ for σ ¼ the identity.
As was demonstrated in the previous section, shift

symmetry imposes Adler’s zeros on the amplitudes,

∀ i; lim
τ→0

Ma1a2…anðp1; p2;…; τpi;…;pnÞ ¼ 0; ð22Þ

while invariance under the linearly realized global sym-
metry H requires

∀ r;
Xn
i¼1

ðTrÞaibMa1…ai−1baiþ1…anðp1; p2;…; pnÞ ¼ 0:

ð23Þ

The above constraints can be understood by considering
Ma1…an as a rank-n tensor of the unbroken groupH. Using
Eq. (7), it transforms under the action of H as5

Ma1…an →Ma0
1
…a0n ¼

Xn
i¼1

ð1þ iαrðTrÞa0ibÞMa1…ai−1baiþ1…an

×ðp1;p2;…;pnÞ: ð24Þ

Then Eq. (23) immediately follows by requiring
Ma1…an ¼ Ma0

1
…a0n . Alternatively, it can be derived from

the Ward identity associated with the H invariance as well
as the LSZ reduction [14].
The last ingredient we need for the derivation is the

Feynman rule for the four-point vertex in the effective
Lagrangian in Eq. (18), written using the shorthand
notation sij ≡ ðpi þ pjÞ2,

iVa1a2a3a4ðp1; p2; p3; p4Þ

¼
X
σ∈cycl

1

6f2
ðTiÞa1aσð2Þ ðTiÞaσð3Þaσð4Þ

× ðs1σð4Þ − sσð2Þσð4Þ þ sσð2Þσð3Þ − s1σð3ÞÞ; ð25Þ

where we only sum over cyclic permutations of f2; 3; 4g.
Before considering the double soft limit, it is instructive

to consider the single soft limit leading to the Adler’s zero.4With a slight abuse of notation, ðTiÞab in the left-hand side of
Eq. (20) denotes the generator of H in the representation under
which the scalars πa transform, while Ti in the right-hand side
of the equation sits in the adjoint representation of the broken
group G.

5On the right-hand side of Eq. (24) there are implicitly n − 1
identity matrices acting on the group space, which turn the ai
indices into a0i indices.
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The single soft amplitude receives contributions from
(1) the pole diagram where the soft leg is attached to
one of the external hard legs and (2) the gut diagram where
the soft leg is attached to an internal line [17]. When the
soft momentum is taken to zero, pμ ¼ τpμ and τ → 0, the
pole diagram could potentially develop a soft singularity,
because the propagator immediately following the soft leg
can now go on-shell as τ → 0,

1

ðkþ τpÞ2 −m2
¼ 1

2k · pτ
¼ O

�
1

τ

�
: ð26Þ

In theories with a shift symmetry, the massless scalar must
be derivatively coupled, which means each coupling carries
a positive power of momentum and could potentially cancel
the soft singularity, thereby yielding a finite contribution.
For Nambu-Goldstone bosons, however, no cubic cou-
plings exist.6 Then the Adler’s zero condition implies the
gut diagrams must vanish in the limit τ → 0.
For the double soft limit, the pole diagram now consists

of diagrams where both soft legs are attached to the same
external hard leg, which is shown in Fig. 1. This is the only
class of diagrams where a pole in the propagator could
potentially develop, while everything else belongs to the
gut diagram which has no soft singularity. Thus, the
scattering amplitude of nþ 2 scalars can be written as

Ma1a2…anþ2ðp1; p2;…; pnþ2Þ
¼ Na1a2…anþ2ðp1; p2;…; pnþ2Þ

þ
Xn
i¼1

~Maianþ1anþ2bðpi; pnþ1; pnþ2; qiÞ

×
1

q2i
~Ma1…ai−1baiþ1…anðp1;…;−qi;…pnÞ; ð27Þ

where Na1a2…anþ2 represents the contribution from the gut
diagrams while the pole diagram factorizes into the product
of two semi-on-shell amplitudes, ~M, defined as scattering

amplitudes with one of the momenta taken off-shell.
Momentum conservation implies qi ¼ −ðpi þ pnþ1 þ
pnþ2Þ and its associated propagator in the pole diagram
becomes on-shell when pnþ1 and pnþ2 become soft
simultaneously. The four-point semi-on-shell amplitude
can be obtained from the Feynman rule in Eq. (25), after
using the notation Tabcd ¼ ðTrÞabðTrÞcd,

~Maianþ1anþ2bðpi; pnþ1; pnþ2; qiÞ

¼ 1

3f2π
½Taianþ1anþ2bðsðnþ1Þðnþ2Þ − siðnþ2ÞÞ

þTaianþ2banþ1ðsðnþ1Þi − sðnþ1Þðnþ2ÞÞ
þ Taibanþ1anþ2ðsðnþ2Þi − sðnþ1ÞiÞ�; ð28Þ

We are interested in the limit pμ
nþ1 → τpμ

nþ1 and pμ
nþ2 →

τpμ
nþ2 become soft as τ → 0.
Before looking at the double soft limit, however, we need

to consider the single soft limit first to ensure the amplitude
respects Adler’s zero condition in Eq. (22), as required by
shift symmetry. By taking pμ

nþ1 → 0 and setting the
resulting amplitude to zero, we obtain

Na1a2…anþ2ðp1;…; pn; 0; pnþ2Þ

¼ 1

3f2π

Xn
i¼1

ðTaianþ1anþ2b − Taibanþ1anþ2Þ

× ~Ma1…ai−1baiþ1…anðp1;…; pi þ pnþ2;…pnÞ: ð29Þ

If we further take pnþ2 → 0 in the above,

Na1a2…anþ2ðp1;…; pn; 0; 0Þ

¼ 1

3f2π

Xn
i¼1

ðTaianþ1anþ2b − Taibanþ1anþ2Þ

×Ma1…ai−1baiþ1…anðp1;…; pi;…pnÞ

¼ 1

3f2π

Xn
i¼1

Taianþ1anþ2bMa1…ai−1baiþ1…an

× ðp1;…; pi;…pnÞ; ð30Þ

where the semi-on-shell n-point amplitude ~Ma1…an now
becomes the on-shell amplitude Ma1…an , since all external
momenta are now on-shell as both pnþ1 and pnþ2 are taken
to zero. Notice that the term containing Taibanþ1anþ2 ¼
ðTrÞaibðTrÞanþ1anþ2

vanishes due to the constraints in
Eq. (23), which arise from the unbroken global symmetry
H. Similarly, letting pμ

nþ2 → 0 gives the relation

FIG. 1. An example of the pole diagram in double soft limit,
where both soft legs are attached to the same external hard leg.

6For massless scalars with shift symmetry, the cubic coupling
must contain derivative. However, all kinematic invariants formed
by three lightlike momenta vanish.
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Na1a2…anþ2ðp1;…; pn; pnþ1; 0Þ

¼ −
1

3f2π

Xn
i¼1

ðTaianþ2banþ1 − Taibanþ1anþ2Þ

× ~Ma1…ai−1baiþ1…anðp1;…; pi þ pnþ1;…pnÞ: ð31Þ

Again letting pnþ2 → 0, we recover Eq. (30) after using
constraints from invariance under the H group as well as
the closure condition in Eq. (19).
Next we will take both pnþ1 and pnþ2 soft simulta-

neously. To compare with the proposed double soft
theorems in Ref. [10], we will keep the propagator in
1=q2i in tact without expanding in τ,

1

q2i
¼ 1

ðpi þ τpnþ1 þ τpnþ2Þ2

→
1

τðsiðnþ1Þ þ siðnþ2ÞÞ þ τ2sðnþ1Þðnþ2Þ
: ð32Þ

On the other hand, we will only keep terms up to OðτÞ in
the semi-on-shell amplitudes.
The contribution from the gut diagram gives, after

expanding in power series in τ,

Na1…anþ2ðp1;…; pnþ1; pnþ2Þ ¼ Na1…anþ2ðp1;…; pn; 0; 0Þ

þ τpμ
nþ1

∂
∂p̄μ

nþ1

����
p̄μ
nþ1

¼0

Na1…anþ2ðp1;…; pn; p̄nþ1; 0Þ

þ τpμ
nþ2

∂
∂p̄μ

nþ2

����
p̄μ
nþ2

¼0

Na1…anþ2ðp1;…; pn; 0; p̄nþ2Þ:

ð33Þ

After plugging in the conditions on Na1…anþ2 in Eqs. (29)
and (31), which are obtained from requiring Adler’s zeros
in the amplitudes, we arrive at

Na1…anþ2ðp1;…;pnþ1;pnþ2Þ

¼ 1

3f2π

Xn
i¼1

Taianþ1anþ2bMa1…b…an

þτ
1

3f2π

Xn
i¼1

ðTaianþ1anþ2b−Taibanþ1anþ2Þpμ
nþ2

∂
∂pμ

i
Ma1…b…an

−τ
1

3f2π

Xn
i¼1

ðTaianþ2banþ1 −Taibanþ1anþ2Þpμ
nþ1

∂
∂pμ

i
Ma1…b…an ;

ð34Þ

where again the semi-on-shell amplitudes ~M have been
replaced by the n-point on-shell amplitudes Ma1…b…an≡
Ma1…b…anðp1;…; pi;…; pnÞ, as all external momenta
become on-shell after the expansion in τ.

Similarly the n-point semi-on-shell amplitude in the
contribution from the pole diagram in Eq. (27) can be
expanded up to OðτÞ,
~Ma1…b…anðp1;…; pi þ pnþ1 þ pnþ2;…pnÞ

¼ Ma1…b…an þ ðpnþ1 þ pnþ2Þμ
∂

∂pμ
i
Ma1…b…an ; ð35Þ

while the four-point semi-on-shell amplitude can be
expanded in τ explicitly using Eq. (28).
Putting everything together, we obtain the following

double soft theorems:

Ma1…anþ2ðp1;…; pnþ2Þ
¼ ðSð0Þ þ Sð1Þ

sym þ Sð1Þ
asymÞMa1…b…anðp1; p2;…; pnÞ;

ð36Þ

where

Sð0Þ ¼
Xn
i¼1

1

2f2
ðTrÞaibðTrÞanþ1anþ2

×
pi · ðpnþ2 − pnþ1Þ

pi · ðpnþ1 þ pnþ2Þ þ pnþ1 · pnþ2

; ð37Þ

Sð1Þ
asym ¼

Xn
i¼1

1

2f2
ðTrÞaibðTrÞanþ1anþ2

×
2pν

nþ1p
μ
nþ2

pi · ðpnþ1 þ pnþ2Þ þ pnþ1 · pnþ2

Jμνi ; ð38Þ

Sð1Þ
sym ¼

Xn
i¼1

1

2f2
½ðTrÞaianþ1

ðTrÞanþ2b þ ðTrÞaianþ2
ðTrÞanþ1b�

×
pnþ1 · pnþ2

pi · ðpnþ1 þ pnþ2Þ þ pnþ1 · pnþ2

: ð39Þ

The angular momentum operator Jμνi for the ith particle is
defined in Eq. (4).

IV. DISCUSSIONS

Having derived the leading and subleading double soft
theorems in NLSM, we conclude with several comments
and discussions:

(i) The soft theorems for the NLSM are written entirely
using infrared data: ðTiÞab is the generator of the
unbroken global symmetry group in the IR, without
reference to the broken group in the UV. This
reflects the fact that Nambu-Goldstone bosons
interpolate the different degenerate vacua and their
interactions encode the structure of the vacua.

(ii) We have only used the explicit form of the four-point
interaction, together with the existence of Adler’s
zeros, to derive the soft theorems. This observation
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is fairly general and should apply to other types of
theories, including gluons and gravitons. In these
cases, the cubic interaction will also enter when each
soft leg is connected to a different external hard leg
via three-point interactions.

(iii) We can uplift the soft theorems to the formalism of
CCWZ by using the identification in Eq. (20). Then
the leading soft factor Sð0Þ agrees with the well-
known double soft-pion theorem [5–7], which is
determined by the commutator of the two soft
indices ½Xanþ1 ; Xanþ2 �. While the leading-order soft
factor Sð0Þ is antisymmetric in anþ1 and anþ2, the
next-to-leading soft factor contains both an anti-

symmetric component Sð1Þ
asym and a symmetric com-

ponent Sð1Þ
sym.

(iv) We derived the soft theorems for the full amplitudes,
which include cases when the two soft legs are
adjacent to each other, or when there is a hard leg
sandwiched by the two soft legs. This can be seen by
applying Eq. (20) to express the group-theoretic
factor in the soft factors in color-ordered form,

ðTrÞabðTrÞcd ¼ Trð½Xa; Xb�½Xc; Xd�Þ ð40Þ

¼ TrðXaXbXcXdÞ − TrðXaXbXdXcÞ
þ TrðXbXaXdXcÞ − TrðXaXaXdXcÞ; ð41Þ

from which we see terms that are antisymmetric in
anþ1, and anþ2 arises from diagrams where the two
soft legs are adjacent to each other. The leading soft
factor Sð0Þ receives contributions only from this
class of diagrams. Diagrams where there is a hard
leg sandwiched between the soft legs are next-to-
leading order in the soft expansion and only

contribute to Sð1Þ
sym. There is no contribution at this

order in τ from other types of configurations,
consistent with the finding of Ref. [12] using
recursion relations.

(v) Using the color decomposition in Eq. (40), we can
also recover the result for color-ordered partial
amplitudes in Eq. (1). More specifically, the
partial amplitude Mð1;…; nþ 2Þ receives contribu-
tions from diagrams similar to Fig. 1, where the
ðnþ 1Þth and ðnþ 2Þth legs are attached only to
either the first hard leg in the color-order of
fbðnþ 1Þðnþ 2Þ1g, or the nth hard leg in the color
order of fbnðnþ 1Þðnþ 2Þg. Here the index b
represents the “color” of the off-shell leg carrying
the momentum qi ¼ −ðpnþ1 þ pnþ2 þ piÞ. Singling
out these two contributions in Eqs. (37)–(39) repro-
duces Eq. (1) exactly.

Last but not least, it seems plausible that the same
approach of zooming in on four-point (and three-point)
couplings would allow one to derive the other double soft
theorems proposed in Ref. [10]. One obvious question is
then the connection to other approaches for deriving the
soft theorems, which involve either the recursion relation or
the scattering equations. It would be interesting to clarify
this connection in the future. In addition, it would also be
interesting to extend the present analysis to cases including
spontaneously broken spacetime symmetry.
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