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We analyze a spin precession of slow neutrons in the Einstein-Cartan gravity with torsion, chameleon
and magnetic field. For the derivation of the Heisenberg equation of motion of the neutron spin we use the
effective low-energy potential, derived by Ivanov and Wellenzohn [Phys. Rev. D 92, 125004 (2015)] for
slow neutrons, coupled to gravitational, chameleon, and torsion fields to order 1/m, where m is the neutron
mass. In addition to these low-energy interactions we switch on the interaction of slow neutrons with a
magnetic field. We show that to linear order approximation with respect to gravitational, chameleon, and
torsion fields the Dirac Hamilton operator for fermions (neutrons), moving in spacetimes created by
rotating coordinate systems, contains the anti-Hermitian operators of torsion-fermion (neutron) inter-
actions, caused by torsion scalar and tensor space-space-time and time-space-space degrees of freedom.
Such anti-Hermitian operators violate CP and T invariance. In the low-energy approximation the CP and T’
violating torsion-fermion (neutron) interactions appear only to order O(1/m). One may assume that in the
rotating Universe and galaxies the obtained anti-Hermitian torsion-fermion interactions might be an origin
of (i) violation of CP and T invariance in the Universe and (ii) of baryon asymmetry. We show that anti-
Hermitian torsion-fermion interactions of relativistic fermions, violating CP and T invariance, (i) cannot be
removed by nonunitary transformations of the Dirac fermion wave functions and (ii) are conformal
invariant. According to general requirements of conformal invariance of massive particle theories in
gravitational fields [see R. H. Dicke, Phys. Rev. 125, 2163 (1962) and A.]J. Silenko, Phys. Rev. D 91,
065012 (2015)], conformal invariance of anti-Hermitian torsion-fermion interactions is valid only if the

fermion mass is changed by a conformal factor.
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I. INTRODUCTION

Recently [1] we have derived to order O(1/m) the most
general effective low-energy potential for slow Dirac
fermions with mass m, coupled to gravitational, chameleon
and torsion fields in the Einstein-Cartan gravity. We have
reduced the obtained potential to order O(1) in the large
fermion mass expansion. We have shown that the torsion
pseudoscalar and tensor degrees of freedom can be, in
principle, measured in terrestrial laboratories through
minimal torsion-fermion couplings by using rotating devi-
ces. This is similar to the experiments by Atwood et al. [2]
and by Mashhoon [3]. These experiments used a rotating
two-crystal neutron interferometer and a neutron interfer-
ometer in a rotating reference frame, respectively. We have
assumed that the measurements of the transition frequen-
cies between quantum gravitational states of ultracold
neutrons in the qBounce experiments [4-9] as functions
of an angular velocity @ of a rotating mirror should provide
a new level of highly precise probes of the properties of the
Einstein-Cartan gravity, dark energy, and evolution of the
Universe. In turn, the measurements of the phase shift of
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the slow neutron wave function as a function of an angular
velocity @ by a rotating neutron interferometer [10] should
be of use for terrestrial probes of new gravitational,
chameleon, and torsion interactions, derived in [1].

In this paper we propose an analysis of a spin precession
of slow neutrons in the Einstein-Cartan gravity with
torsion, chameleon and magnetic fields. As has been
mentioned by Lehnert et al. [11], a spin precession of
slow neutrons is a very sensitive technique to search for
possible exotic neutron interactions. In the experiment [11]
for the measurement of an upper bound of the linear
superposition of constant torsion scalar and pseudoscalar
degrees of freedom ¢, caused by torsion-fermion inter-
actions by Kostelecky et al. [12], a neutron spin rotation in
the liquid *He was investigated. The upper bound
|¢] <9.1 x 10733 GeV, obtained by Lehnert et al. [11],
is by a factor 10° larger compared with the estimate
|¢| < 10727 GeV, obtained in [13] by using the estimates
in Table I by Kostelecky et al. [12]. A spin dynamics of
Dirac fermions with mass m in curved spacetimes has been
also investigated by Obukhov et al. in [14-16].

The paper is organized as follows. In Sec. II we calculate
the effective low-energy potential, derived in [1], to linear
order in gravitational, chameleon, and torsion fields in the
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spacetime with the Schwarzschild metric, taken in the weak
gravitational field approximation and modified by the
chameleon field and rotation with an angular velocity @.
We show that the linearized effective low-energy potential
contains the anti-Hermitian interactions, vanishing at zero
angular velocity. In Sec. III we give a detailed analysis of
the anti-Hermitian interactions. In Sec. IV we derive the
Heisenberg equation of motion for a neutron spin preces-
sion in terms of the angular velocity operators, caused by
(i) a magnetic field, (ii) gravitational and chameleon fields,
and (iii) a torsion field, defining Hermitian and anti-
Hermitian torsion-fermion interactions. In Sec. V we show
that the anti-Hermitian Hamilton operator and, correspond-
ingly, the anti-Hermitian effective low-energy potential of
torsion-fermion interactions, violating CP and T invari-
ance, (i) cannot be removed by nonunitary (non-Hermitian)
transformations [16—24] (see also [1]); (ii) are conformal
invariant [20,21]; and, referring to the experiments by
Atwood et al. [2] and by Mashhoon [3], (iii) can be in
principle observable. It should be emphasized that, accord-
ing to the general requirements of conformal invariance of
massive particle theories in gravitational fields under
conformal transformation g,, — OZgVW (see, for example,
Brans and Dicke [25], Dicke [26], and Silenko [21]), anti-
Hermitian torsion-fermion interactions are conformal
invariant only if the fermion mass m is changed by a
conformal factor O, ie., m — O~ 'ni. In Sec. VI we
summarize the obtained results and discuss some possible
consequences of the anti-Hermitian torsion-fermion inter-
actions. In the Appendix we give a detailed calculation of
the operator Gj, responsible for the anti-Hermitian part of
Dirac Hamilton operator, and of the effective low-energy
potential of slow fermions, coupled to gravitational, cha-
meleon, and torsion fields to linear order approximation in
curved spacetimes with rotation.

1. SCHRODINGER-PAULI EQUATION
FOR SLOW NEUTRONS IN EINSTEIN-CARTAN
GRAVITY WITH TORSION, CHAMELEON,
AND MAGNETIC FIELDS

The Schrodinger-Pauli equation for slow neutrons,
coupled to gravitational, chameleon, torsion, and magnetic
fields in the Einstein-Cartan gravity [1], is equal to

L0VU(t,7)
! ot

= Hpw ¥ (1.7). (1)

where U(z,7) is the wave function of slow neutrons and H
is the Foldy-Wouthuysen Hamilton operator given by

1 ) .
Hey = —3 A+ mUg —ji- B+ (1.7.5).  (2)

where m is the neutron mass, A is the Laplace operator,
Ug = g - is the gravitational potential of the Earth with
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the Newtonian gravitational acceleration g, and Bis a
magnetic field. The neutron magnetic dipole moment

n= ZK,,,uNS’ [27] is expressed in terms of the neutron
anomalous magnetic moment k, = —1.9130427(5),
measured in  nuclear magnetons uy =e/2m, =
3.1524512605(22) x 1078 eV T~! [28], which is defined
in terms of the electric charge e and mass m, of the proton,

and the neutron spin operator S = 16, where 6 are the 2 x 2
Pauli matrices [29]. Then, $o (7, 7, 3‘) = Dy (1, 7, 3‘) — U,
where @ (2,7, S) is the effective low-energy potential for
slow neutrons, coupled to gravitational, chameleon, and
torsion fields [see Eq. (A.15) of Ref. [1]]. We would like to
note that we have included the interaction of slow neutrons

with a magnetic field to linear order approximation of the
magnetic field. Since below we analyze the contributions of

the effective low-energy potential @ (1,7, 3‘) to linear
order approximation of gravitational, chameleon, and
torsion fields, we have neglected all interactions containing
the products of a magnetic field with gravitational, cha-
meleon, and torsion fields.

The calculation of the effective low-energy potential

D (2, 7, 3‘) we perform in the curved spacetime with the
line element [1] (see also [15])

d52 = VA(x)d? + 1, W (x) W (x) (dx — K (x)dr)
x (dx’ = K (x)dt), 3)

where}' = 1,2,3andj = 1,2, 3 are indices of the Minkowski
and curved spacetime, respectively, and iy is a spatial part of

the metric tensor in the Minkowski spacetime. The functions

V2(x) and Wj (x) are defined by an arbitrary gravitational
field. In comparison with Obukhov et al. [15] the functions

V2(x) and V~Vj(x) are modified by the chameleon field. In

turn, the functions K/ (x), caused by rotations, are not
modified by the chameleon field. The vierbein fields in terms
of which slow neutrons couple to gravitational, chameleon,
and torsion fields in the Einstein-Cartan gravity with the
metric tensor in Eq. (3) are equal to [1]

D)=V, ) =-WxK(),

D) =0,  lx)=W(n),

N 1 N

eg(x) = 7o) el(x) =0,

&) = If/’ ((xx)> L) = W), (@)

The vierbein fields in Eq. (4) have been calculated at the
assumption that the functions Wj(x) and Wj(x) obey the
orthogonality relations [1]
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W)W, = &}, (5)

which are fulfilled for the Schwarzschild metric in the weak gravitational field approximation [13]. In terms of the vierbein
fields Eq. (4) the effective low-energy potential ®.i (7,7, S) is given by

< ¢ ;0 L sk D§D1]§ J sk o2
2 Q) (A Y L — — 5Lk
Qo (1,7,S) =(A—1)m+B+2C’S, +iL 5‘xj+2mn ( 1 5j5k> EREN:
o ) D! k
_|_L jle_i L’? legi _/ 0 + 1 iclk? aDk 0
4mA 7 Ox) Ox* " 4m k 9xk oxl ' 2mA 775 ox oxk
1 s o (DN o o 1 o (G
- jelkls. Dk —_ Jy 2 o ]kG k /ka J
om'C 0t kaxk<A>a 2mal Ok T ! kak( >
1~ o (G, B L0 (K [
__jeikee. . pk_—_ [ L k k_—7 4 JkG.- DI —
o' S"Dkaxk(A) ma" KPigy k+ is'D {9 k( )+2mA’7 P
1 . 0G, 1 G, 1 1 1 B
DIk RS, DIk kGG + — iS'K Gy + — iSTKDL -
" amaA faxf+2mA i oxt T omal Tl oA M o
1 A 8K o 1 1 ~g : 8A 3 1 a7 i 8 8A
— iSIDI T 4 iSIKG 4+ ——K*———kDIDk .~ pikpl —
T oma o T A RO T A T aa? Koxkox  smA iox <A ax)
1 ;0 (Do 1 . oA 1 OA 1  OA DA
_ jka I D Tl JkG.pDk Z_ _ SkKDk jk J 6
mAle ‘ N')x <A 8x> amA? T Vi gak T 2mA? kox k+4 yEN k@x’@x (6)

A=),
B = 30— L (/e x)
+iE)Pe)() —1§<>W( S3),
€ = L) @53 (IE3) + 312 ()
+ 05 (X)L (x) = g50(x) & (1)) el
D! = —&)(x)2(x),
G = 5 2000) (T4 (x)8 (x) + g ()E3(x)
+ i55(x)25 (x) + @53 (X)L (X))
5 (A0Ef ) i (V) ).
K _ia)m(x)ég(x)é;(x)e?”,
Li = =& (x)) (x). (7)
Here g(x) = —det{g,,(x)}, where the metric tensor in the

Jordan frame g, (x) is related to the metric tensor in the
Einstein frame g,,(x) by §,,(x) = f(x)g,(x) [30,31],
where the conformal factor f(x) = ef#®¥)/Mn is defined
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|
in terms of the chameleon field ¢(x), the chameleon-matter
coupling constant f, and the reduced Planck mass Mp =
1//87Gy = 2.435 x 10”7 eV with the Newtonian gravi-
tational constant Gy [28]. The spin connection @, 5(x) is

defined by [1,13]
@,05(%) = (0,20 (x) = T, ()25 (x)) 25 (x). (8)

where o = 0,1,2,3 and @ = 0, 1, 2, 3 are the indices in the
four-dimensional curved and Minkowski spacetime, re-
spectively. The affine connection I',,, (x) is determined by

T () = {%} + K% (2). ©)
where {"‘ .} are the Christoffel symbols [32]
W 09 O
_ all H v o_ H
t ’“’} 2 <8 voooxt o Oxt (10)
and K%, (x) = =1(7T%,(x) = T,°,(x) = 7,%,(x)) is the

contorsion tensor, expressed in terms of the torsion field
T%,(x) = §7°(x)T 4,,(x) [13]. For the analysis of the
effective potential Eq. (6) we assume a motion of Dirac
fermions with mass m in the curved spacetime with the
Schwarzschild metric, taken in the weak gravitational field
approximation and modified by the contributions of the
chameleon field and rotation. The line element of such a
spacetime is given by [1]
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d5? = (142U, )d* +2(1 =2U_)K - didt — (1 = 2U_)d7>,

(11)

where we have neglected the contribution of the terms of

order K* that is well justified in terrestrial laboratories [33]
and kept the contributions of the chameleon field to linear
order. The potentials U are equal to [13]

U, = UEiMimgb( 9. (12)

To linear order contributions of the gravitational and
chameleon field, the vierbein fields Eq. (4) read

PHYSICAL REVIEW D 93, 045031 (2016)

B =140, @) =-01-U)K (),

D) =0, ) =(1-U)s,

Ax) =1-U,,  &x)=+(1-U)K(x),

&(x) =0, é§(x) =(1+ U_)es}j. (13)

In the spacetime with metric Eq. (11) and the vierbein fields
Eq. (13), the operators A, B, C’, D;,, G;, K, and L,

calculated to linear approximation in gravitational, chame-
leon, and torsion fields, are equal to

1 -
B = —EidivK,
P 1 ST BEPee 1 5»
Ccl = —Z(I‘OtK)f +§€f~7k(7'j,}() + Tf(()} + 70}1}) +Z€f1kK}T()0k +4€ JkT}.]}aK”
1 -5 1.5 1 PR RPN 1 545 .
= ——(rotK)”ﬂ + —B"ﬂ + EICKf —l—Zef]kK}-./\/l()();( + Zef/k/\/l};(al(“,
D§ -(1+U, +U_ )
1 0 1 P P
Gy = =55 U+ U +5(Toj0 + T230) K"+ 5 KTz
10 2 1 P
= =550 Vs T U 36K 45 (Myjs + M) K
1 1
Kz—gefkf']— —|—8€ KTOI??
1 1 i
:——’C+12K B+ € KM()kfv
L/ = —K/, (14)
where B = fjk(T}-f(()‘i‘Tf(()}-‘FT@}f(); K= €ka71k,y, Es(x) = 7T 555(),
aﬂy (MOOk’ M@}-g, M%-() and ./\/l}-,;;,); andE —Ta b . 1 ans
are torsion axial-vector, pseudoscalar, tensor, and scalar B*(x) 56 K T;,ﬁ,;(x). (16)

degrees of freedom, respectively [1,13]. For the calculation
of the operators in Eq. (14) we have used the following
irreducible representation of the torsion field 7, [12] (see
also [1,13]):

1

g(’?&ﬁg ( )

+ M;;ﬁ,;(x).

N55Ea(%)) + 3 : €3,2a&3&(x)

(15)

T&ﬁﬁ(x) =

The torsion field 7 ;,,(x), antisymmetric with respect to
indices i and 7, possesses 24 independent components,
where the 4-vector &;(x) and axial 4-vector B%(x) fields
with four independent degrees of freedom each are

defined by

The residual 16 degrees of freedom are absorbed by the
tensor M, 5, which obeys the constraints 7°# M ,; =
¥R My ,p =0. Then, €;,54 and €*#% are the Levi-
Civita tensors such as €5755 = —e0123 — 1 [29]. For the
derivation of the axial-vector field B% in terms of the torsion

field 75;5(x) we have used the relation **#%¢, ., =

—66;; [29]. Now we rewrite the effective low-energy
potential Eq. (6) omitting the terms, which contributions

are smaller compared to the terms of the linear order
approximation
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Dur(1.7.8) = (A= 1)m + B +2C’S, + iL/ —

__/DiDF 2
0 +infk< / k—5§5g> 0
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ox/ A Ox/ Ox*
k . D’ k
T, nkafaD" 0 i iipr 2 + O, 1 i, DlaD" 0
4mA”" T Ox) Oxk koxk ox!~ 2mA 775 o oxk
/
1 3 0 1 ;0
jka Dk JY =7 4" jkG Dk - jk . _J
T o' ( )axf+2mA’7 o T Pige A
1 P s 8 0 1 0 (K 1 - <
—— e kf N - SkKDk - Ska - _ jkG DJ_
o' o A>+ ok T om kak(A>+2 AT Y oy
1 8G 1 | 0 1 0K
—pitpI ici*?s, D! iSTKD! — + ——iSIDI _—
oA Dl T oA e D) g IS KD] g+ g iSDI
e e Dk Dt
— 1 n*D! lfa_Ai_LnjkD{i _ka_A _ngjkfs Dﬁi _ka_A . (17)
4mA? koxkox!  8mA" Tiox/ \ A 0x*) 4mA “7T0x \ A oxk
|
Plugging the operators Eq. (14) into Eq. (17) we arrive at B/, = - YR I 2 2 7
the following effective low-energy potential, et (1.7.8) = 6m (K-B)S-V 1 mS V(K- B)
’ (e K M;)S -V
By (1, 7.5) :cpgf) 1,7, §)+<I>§f)(t,?, 3‘)+<I>$f>(t,?, S) i o o e
@, - —8—S-V(€JMK.;M@,;3) (21)
+ Oir (1,7,5), (18) "
and
where we have denoted !
oW (7.8 =——&K -V ~5-V (&:K)
0, =3 1 5 0
(I)E;ff)(l, 7,S)=m(U.—Ug)—iK-V—i=divk _%(ij() +MOM)KK%
Sk -5 s & . i
12 2 1 3 —E%((M%}G‘FMO}%)KK)
- - - An A R J
—ES-(KxM)+§S}e-/ka,;%K“, (19)

with (/\/l) 1 = =M The effective low-energy potential
Eq. (19) agrees well with the result, obtained in [1]. Then,

the potential @é?f)(t, 7, 3‘), taking the form

5 2 1 = - 1
B (1.7,8) = —5- VWU +2U.) -V = (U, +2U_)A

1
- 8—A(U ++2U0)
—%S (V(U,+2U_)x V)
—IC
i 2m + 4m
reproduces the results, obtained in [13]. The potentials
@i?f)(t, 7, 3) and ‘I’gf)(t, 7 3) are equal to

2 - -
+ %iS -1ot(EK)

0
Sz 55 (Mo

A kg
2m

+M01a) )

a/O

(22)

and define new torsion-fermion (neutron) low-energy
interactions. On the whole the effective low-energy poten-
tial Eq. (18) possesses the following properties. First of all,
we would like to accentuate that to linear approximation in
gravitational, chameleon, and torsion fields there are no
new chameleon-fermion interactions in comparison with
those calculated in [13]. To order 1/m the potential

3, =3 . . oo .
CDifz(t, r,S) describes new torsion-fermion interactions of
torsion axial-vector B and tensor M, degrees of free-

dom. Then, the effective low-energy potential @Sg (t,7, 3‘),
containing new torsion interactions with slow fermions to
order 1/m, is anti-Hermitian. It violates invariance under
time reversal transformation (or 7-invariance) and under
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charge-parity transformation (or CP-invariance). In Sec. III
we discuss in detail such a property of the effective low-

energy potential CDS;? (1.7, 5).

I1I. SPACETIME METRIC AND
ANTI-HERMITICITY OF THE EFFECTIVE
LOW-ENERGY POTENTIAL & (¢7.5)

First of all we would like to note that the metric Eq. (11)
is not invariant under time reversal transformation t — —t¢.
As a result, one can expect a possible violation of T-
invariance [34]. Since a violation of time reversal invari-
ance is yielded by the effective low-energy potential

@i}‘f) (1,7, S ), below we analyze step by step the appearance
of such a potential.

The operator @iff)(t 7.S) one may obtain from the
following terms of the effective low-energy potential

Eq. (17):
2 1 0 1 9 (G-
6. (1.7, S) = ——nkG-Dk — + —pikpk _—_ —J
eff( r ) YmA 77k 9rk +4 k ek (A
1 0 (G
__lejkbﬂS?DEW(Aj)
0 1 . .0G:
ikG.pl = Tk ZFk
+2 AT O 05 T ama i ox/
1 0G;
+— zf"fS D=k (23)

2mA Jax"

In the linear approximation for interacting gravitational,
chameleon, and torsion fields the potential Eq. (23) reduces
to the form

5O (1,7, 8) = ——ni*Gy — — —pik—J
eff( r ) m’] ]a i 2m axk
1 A2 (9G~
1 Lignes, 9% (24)

where we have replaced A — 1, D} — —&}, and D; - —6;:

[see Eq. (14)]. Setting K/ =0 we get (see the Appendix)

10
GA;——EaT(U++U ). (25)

The contribution of the operator Gj, given by Eq. (25), is

important for the derivation of the gravitational-chameleon
part of the effective low-energy potential @ﬁfﬁ(r, 7S),
which is Hermitian. This confirms the correctness of the

terms proportional to G; and G, in the effective low-energy

potential @ (2,7, 3’)

In the curved spacetime with torsion and metric Eq. (11)
the operator G; acquires a certain contribution of the
torsion field (see the Appendix)

PHYSICAL REVIEW D 93, 045031 (2016)

1 8 2

1

Another confirmation of the correctness of the calculation
of the contribution of torsion field to the operator G; is a

cancellation of the part independent of K. Indeed, a direct

calculation of the torsion K/-independent part in the
operator G; gives (see the Appendix)

. 1 __. T
Giley = ETG&“ + ’%6 + ’C;-%’?“

TOO,+ Tfkr/f’ur ICJOO+ chfknfk—o
(27)

In the right-hand side (r.h.s.) of Eq. (27) the first and second
terms are canceled by the third and fourth ones, respec-
tively. This agrees well with results obtained by Kostelecky

[35] (see also [13]). In turn, the contribution of the K/-
dependent part (see the Appendix)

G torsmn —

1 .
iloveh =5 Koz + 520K — —K;’Coz;zﬂ”

1
== (To;0 + Tf]o)Kf +

ZKTIAc(A)

NI\JI—~NI>—‘

26K +5 (MK;O+M0 KT #0,  (28)

which is fully correlated with the K}—independent part
through the affine connection (see the Appendix), does not
vanish. Hence, taking the operator G5, given by Eq. (26),

we obtain the effective low-energy potential @i?f)(t, 7 3’),

which is anti-Hermitian only due to the contribution of
torsion and contains both torsion-nonspin-matter and
torsion-spin-matter interactions. Thus, we have proved that
the appearance of the anti-Hermitian potential CIDSf) (t,7, S )
is not a mistake of the calculation but an objective reality,
caused by the presence of the torsion scalar £ and tensor
M55 and M5, degrees of freedom in rotating coordinate

systems.

IV. HEISENBERG’S EQUATION FOR SPIN
OPERATOR OF SLOW NEUTRONS
IN EINSTEIN-CARTAN GRAVITY
WITH TORSION, CHAMELEON,
AND MAGNETIC FIELDS

A time evolution of the neutron spin operator S is
described by Heisenberg’s equation of motion [36]
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ds s -
i[H, S]. 2
o= g TS (29)

Since the spin operator S does not depend explicitly on
time, the partial derivative in Eq. (29) is equal to zero. This
yields

<= i[H5) (30)

Since the operator of the kinetic energy of slow neutrons
commutes with a neutron spin, we arrive at the equation

as?
dt

-

= ethQ S, +i[du(1,7,5), 89, (31)
where Qmi) :—Kn,uNBB with Bi) = (_E)B (or ém = —K,,,uNE)
is the standard angular velocity of the neutron spin
precession in the magnetic field B [27]. For the calculation

PHYSICAL REVIEW D 93, 045031 (2016)

of the term ¢*P?Q S, = (Q, x S)2,
(—ém)l; and S, = (—3‘)@,
relation [S?, $7]
mutator [Pq(2, 7, S), S%] can be written in the following
standard form:

where Q ;=
we have used the commutation

= iebtS,. The contribution of the com-

i[Pee(1, 7, 5), %) = €102 8, = (@ x 5)7, (32)

where Q is the angular velocity operator of the neutron spin
precession, determined by

- -

Q= ér + Qgr—ch + ét + Ezl_w (33)

where the indices r, gr-ch, t and h mean “rotation,”
“gravitation-chameleon,” “torsion,” and “anti-Hermitian,”
respectively. The angular velocity operators in the r.h.s. of
Eq. (33) are equal to

ob — L pi2 9 p
2 axk
b _ L0 9
ar-ch 2m€ ! @(U++ U—)@?
s 1 1 1 542 1 545 5 i 0 i 0
Qh:_,Bb_,]CKh - h']kK am bkt s K - — — - —
(=B g KK R e K Masi — 5 MK = K kT dmo,
i -0 i 0 ,- = 0 i 0 s
— (KB —t———(K-B) +— (¢ K-My; ) — + —— (KM 15).
+ 6m( )8xl; + 12m Ox;, ( ) +4m (e JMOM) 8xl; + 8m Ox;, (e /MOM)
. 2 . ::. 0 1 8
For the coordinate system, rotating with an angular velocity @, where Kl = —¢lk? wpx; = —(@ x 17)«7, we get
Qf’:—wi’
. 3 o S 1 B = S
Qb =—i—(V Vo +i—"— (Vg x V)P
gr-ch lzm( UEX ) +12mMP1< ¢X ) )
R O VO I - 1
A = =3B+ 2 (@x 7K)" =5 (& (@ Mygp) — o (FMg) + 56" My p5e/ Py,
i a0 i 0 i 0 i 0 ,. . =
-— - B - B
2m  Ox; 4mOx; 6m( (7 x >)8x13 12m8xl;(w (r>xB))
i s 5 2 0 0 ; 5 4
+ - (0% — 0" )Mgy;) o, S—ma—xb((wkxf—w”pxk)/\/iow),
b 2.5 - = L ke O 352
QB:—3—mL(V€6X(a)Xr)+256w) + o, e ﬁ((M}l}()""M )e Twyxg). (35)

The experimental analysis of the spin-rotation couplings, calculated above, can be, for example, carried out by a neutron

interferometer [37-49] with rotating interferometers [2,3,49].
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V. PROPERTIES OF THE DIRAC HAMILTON
OPERATOR IN CURVED SPACETIMES

The anti-Hermitian interactions appear also in the
Hamilton operator of a relativistic Dirac fermion with
mass m. Indeed, as has been shown in [1] the Hamilton
operator of a relativistic Dirac ferrmon is equal to

H =H,+ 6H, where Ho—ym zyy V is the
Hamilton operator of a free Dirac fermion with mass m
and 6H’ is the interaction Hamilton operator equal to [1]

0
SH = (A-1)’m + B+ C’S, +(D’—|—5J)zy yfa ;

.0 . s 0
059 a0 5 . 0
+ F3iy°y T + Gyir'y + Ky’ + LVi o (36)
For the operators A, B, lod , Dj}', G}-, K, and L , given by
Eq. (14), the Hamilton operator can be represented in the
form S6H' = 6H] + 6H1’—1, where 6Hj and 5H;3 are the

Hermitian and anti-Hermitian parts of the Hamilton oper-
ator Eq. (36), respectively, equal to

SH, = U, y'm — (U, +U_)iy% -V -

y 1
— —idivK —iK -V +-X

4;

and

. 2 jd A 2> N %
5H/h - _lggOK 7’7 (ijo + Mo,?)KZYOYJ- (38)
One may assume that in the rotating Universe and galaxies
[50] (see also [51]) the torsion-fermion interaction Eq. (38)
might be an origin of (i) violation of CP and T invariance in
the Universe and (ii) of baryon asymmetry [28].

A. Standard nonunitary transformation
of Dirac fermion wave functions and
anti-Hermitian torsion-fermion
interactions

It is well known that the Hamilton operator of the Dirac
fermions with mass m, moving in the curved spacetime
with a metric g,,, is not Hermitian. In order to get a
Hermitian Hamilton operator one has to perform the
standard nonunitary transformation of the wave function
of the Dirac fermions y — (,/=ged)'/ 2y

determinant of the metric tensor g,,(x) and eo(x) is a
vierbein field [14-21,24] (see also [1,13,22,23]). As has

been shown in [1], the Hamilton operator H' = y()m — iyo? .

, where ¢ is a
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v + 6Hj + 5H/h has been already obtained by means of the
standard nonunitary transformation y — (y/— geo)l/ 2y,
where g is a determinant of the Jordan-frame metric tensor
G, (x) and &) (x) is a vierbein field in the Jordan frame [see
Eq. (13) of Ref. [1]]. The appearance of the anti-Hermitian
term SH; in the Hamilton operator H' = Pom—iy07 -V +
oH; + 5H;-l is fully related to the spacetime metric Eq. (11)
as a functional of the vector K, caused by rotations, or more
generally to the spacetime metric Eq. (3) [see also Eq. (20)
of Ref. [1]], proposed by Obukhov et al. [14-16].

B. Nonunitary transformations of Dirac fermion
wave functions and removal of anti-Hermitian
torsion-fermion interactions

Now we would like to show that the anti-Hermitian (non-
Hermitian) Hamilton operator 6H;, given by Eq. (38),
cannot be removed by a nonunitary (non-Hermitian) trans-
formation of the Dirac fermion (neutron) wave function.
After the standard nonunitary transformation of the Dirac
fermion wave function y — (v/=gé3)'/?y’ [see Eq. (13) of
Ref. [1]] we arrive at the following Dirac fermion action,

Sy = /dtd3xy/’+(t, 7) (zg - H’) v (t,7)

_ / didxyt (1, 7) (i% — H, — oH 5H;-1> W (. 7),
(39)

where Hy = y()m — iy(’? - V. In order to analyze a possibil-
ity to remove the term SH; we make a nonunitary
(non-Hermitian) transformation

y'(1.7) = Gy (1. 7). (40)

where { =1+0 =1 +i1}-,;O}y’A‘ and O/ is a Hermitian
nondifferential operator, i.e., Qi’T — Q-7. The operator { is a
nonunitary (non-Hermitian) operator (' =1+ Q' =
1 —1;;07y* # . Then, for the derivation of the Dirac
Hamilton operator H’, we use the following relations
¢16H), = oH, and of ¢'SH. = SH. and 6H}¢ = SHj, and
SHL{ = SHL. Plugging Eq. (40) into Eq. (39) we transcribe
the action S, into the form

(.0 -
Sy = /dtd3xl//"T(t, 7) <iE—H”)y/”(z‘, r),

where the Hamilton operator H” is equal to

He.0 - %2, (@)

H" = H, + 6H, + 6H + o
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Plugging Q = #;;0’y* into Eq. (42) and calculating the
commutator [Hy, Q] we get

a0
H”=H0+5H{1+5H;—1+2m1’]]~]}QJ}/07k—i]/0 8%
A A a A%t A aQ" aQ'\ A
_2if007 Ly itk by, Ok TR 4
L U R e il P (43)

It is obvious that for the Hermitian operator Q} ,1.e., Q}'T =
Q’ corresponding to a non-Hermitian transformation with
the operator { # . the term 2mu;;Q/y%y* cannot cancel
the contribution of the anti-Hermitian operator SH;-I. The

use of the anti-Hermitian operator Q/ — iQ} , correspond-
ing to a Hermitian (unitary) transformation with an operator
(=14+iQ=1+ in}.,;O}yk such as ¢ = ¢, allows us to
shift the Hamilton operator SH-, which is the odd operator
according to the Foldy-Wouthuysen classification [52], to
the region of interactions of order O(1/m). In detail such a
unitary transformation or the Foldy-Wouthuysen trans-
formation for the derivation of the effective low-energy
potential Eq. (17) has been performed in [1]. The linearized
version of this effective low-energy potential is given
by Eq. (18).

C. Non-Hermiticity of Dirac Hamilton operator,
n-representation and anti-Hermitian
torsion-fermion interactions

An alternative transition from a non-Hermitian Hamilton
operator of the Dirac massive fermions, moving in the
curved spacetime with an arbitrary metric tensor g, (x), to a
Hermitian form can be performed by using the #-repre-
sentation of the Dirac fermion wave functions [24]. In the
n-representation the Dirac Hamilton operator becomes
Hermitian without the standard nonunitary transformation
of the Dirac fermion wave function y — (v/=geé?) /2y and
the dynamics of the Dirac fermions is described by the
pseudo-Hermitian quantum mechanics [24] (see also
[53-55]). Since in our analysis of the torsion-fermion
interactions within the Einstein-Cartan gravity with the
chameleon field we use the standard nonunitary trans-
formation of the Dirac fermion wave function
W — (\/—_gég)l/ 2y, the dynamics of the Dirac fermions,
and the contributions of the anti-Hermitian torsion-fermion
interactions, violating CP and T invariance, to the observ-
ables can be described within the formalism of the standard
relativistic and nonrelativistic quantum mechanics [56,57].

D. Conformal invariance of anti-Hermitian
torsion-fermion interactions

As has been shown by Silenko [20], the Dirac and Foldy-
Wouthuysen Hamilton operators for massless fermions in

PHYSICAL REVIEW D 93, 045031 (2016)

the curved spacetimes with arbitrary metric g,,, are invariant
under conformal transformation g,, — 0? g 1f the wave
function of massless fermions is subjected to the nonunitary
transformation ' — O3/?y. In [21] the results, obtained in
[20], have been extended to massive fermions coupled to
the gravitational field and torsion in the Einstein and
Einstein-Cartan gravity, respectively, with the requirement
that the fermion mass transforms under the conformal
transformation §,, - O%g,, as follows: m — O~'ni. This
agrees well with the dimensional analysis of general
relativity, carried out by Dicke [26] for the reduction of
the Brans-Dicke gravitational theory [25] to the Einstein
gravity, coupled to an effective scalar field. According to
Silenko [21], the vector K’/ and the contorsion tensor

Koo = =3 T o = Ty = T

opy 2 apy pow

conformal transformation g,, — 02g;w, ie., K/ - K =

vau) are not changed by the

K/ and fCaW - IC(lﬂy. Since the Hamilton operator 6H;, is
expressed in terms of the components of the contorsion

tensor Ky, and the vector K,

torsion ;,,0 j
Al

SH. = G;

J

(Kjor + K;20)K"ir’y =3 Koo tir’y!

N[ =

(M50 + Mos 2 KPP0, (44)

N =

2 jud H— .
= —igé"()K-yOy—i-z

it is invariant under the conformal transformation
G = 0%gp, ie., SHL — SHE, where G+[!oion given by

J 0([(./')
[see Eq. (28)]

1 o i,
(Kso7 + K5 20)K” =S Ko pin” ", (45)

G- torsion _

Howi) — 2

is conformal invariant G; ‘8231‘(‘]"; - G} ‘O"ESI'(‘;‘; Under the
conformal transformation g,, — OZgﬂy the vierbein fields
transform as follows: ¢ — O¢% and &4 — O~'¢}. Since
the fermion mass transforms as m — O~ i, the operators
mA = —még and Dj = —égé:g: [see Eq. (7)] are invariant
under the conformal transformation, i.e., mA — mA and
Di - Dj In order to show that the effective low-energy

potential @i?g(t, 7,S) is conformal invariant we transcribe

the effective low-energy potential 5@ (1, 7, g‘), given by
Eq. (23), into the form
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. 5 )
t 7 — k t k
SV (1.7.8) = 5w G lomen Dl - 5

2mA
;0 1 .
/k . |torsion
D <4mA “j o<1<f‘>>

0 1
ke k torsion
~ i/, <2mA %) oum)

+

1
jk torsion J
2ma Ciloi) ] g
1 0
ikpi
Tama™ Piow

G |t0r§10n

K7)

G ‘tOl‘SlOl)‘l (46)

0
ioxi

+ iel* s, D!

2mA

Because of the conformal invariance of mA — mA,

D! — D!, G;|omion the  effective low-
j 7 Howh ~ Yilow)

energy potential Eq. (46) is conformal invariant, i.e.,
~torsion

s®9sion (1 7. ) — 50 " (1,7, S). This proves the con-
formal invariance of the effective low-energy potential
@i?g (t.7.5).ie., @gg (1.7, 8) > @gg (1.7, 5). Thus, we have
shown that after the nonunitary transformation of the Dirac
fermion wave function y — (\/—_g]ég)l/ 2y’ in the Jordan
frame with the metric tensor g, (x) the non-Hermitian (anti-
Hermitian) torsion-fermion interactions, violating 7' and
CP invariance, are conformal invariant. This agrees well
with the results obtained by Silenko in Ref. [21].

E. The argument on behalf of observability
of anti-Hermitian torsion-fermion interactions

Now we would like to discuss a possible observability of
the anti-Hermitian torsion-fermion interactions, violating
CP and T invariance. For the coordinate system, rotating

with an angular velocity @, the vector K is equal to K =

—(@ x F) [14,15,33]. The effective low-energy potential
Eq. (18) is equal to

- L= N oo o -
(beff(t’ r, S) = @gff) (tv r, S>|k=—(5)>(r) + (bf(:ff?(t’ r, S)|i( ((:)Xr)
3 5 2
+ q)fzft) (t’ r, S>|i(:_(,;,xr>
4 5 =
+ B (1.7, k- (@axr) (47)
Here the effective low-energy potential @ilfg (2,7, 3‘) | Re (o)
1s
1 > 2 - S =
q)iff?(t’ r?‘s)‘k:_(agx;) :m(U+—UE> L—w-S
1- = 1 -
ES B—I—glCS- (@ xF)
e - L
ES (M x (0 xT7))
1 ) ,
— 5 jejkakfaeahcwbxw (48)
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where (M), = =Moo [1]. In Eq. (48) the first term m (U, —
Ug) describes the chameleon-matter interaction [58,59],
whereas the terms —@ - L. and —@ - S, where L = —7 x iV
is the orbital momentum operator of slow fermions (neu-
trons), agree well with the results, obtained by Hehl and Ni

[33]. The interactions —@ - L and —@ - S were investigated
and observed in the experiments by Werner et al. [60], by
Atwood et al. [2] and by Mashhoon [3]. Since the effective
low-energy potentials @i’gg(t, 7, S)\ Re—(axy) fOr n=2,3.4
are calculated from the general effective low- -energy potential

Eq. (6) as well as the potential @i;f)(t, 78| K (a7 the

observability of the interactions —a - (L + S) supports in
principle an observability of the torsion-fermion interactions
in the effective low—energy potential Eq. (48), the Hermitian

interactions (I)iif)(t, 7, S)|K (@7 and <I>( )(t, 7.5)

and, correspondingly, the anti-Hermitian
4, -
(I)iff) (1.7.5)

| K=—(wxF)
interaction

lie_a ) respectively.

VI. CONCLUSION

We have derived the operator of the angular velocity of
the neutron spin precession in the Einstein-Cartan gravity
with torsion and chameleon fields. For the calculation of
such an operator we have used the most general effective
low-energy potential for slow Dirac fermions, coupled to
gravitational, chameleon, and torsion fields to order 1/m,
where m is the fermion mass [1]. In order to adapt such an
effective low-energy potential to the experimental analysis
of the contributions of fermion-gravitational, fermion-
chameleon, and fermion-torsion interactions we have
linearized it with respect to gravitational, chameleon,
and torsion fields. Such a linearization we have carried
out in the curved spacetime with the Schwarzschild metric,
taken in the approximation of the weak gravitational field
and modified by a rotation with an angular velocity @ and
the chameleon field. We have shown that in the curved
spacetime with such a modified metric torsion scalar,
pseudoscalar, axial-vector, and tensor degrees of freedom
couple to slow neutrons through minimal torsion-fermion
couplings [1]. The obtained linearized effective low-energy
potential Eq. (18) is the generalization of the effective low-
energy potential, derived in [13].

An important peculiarity of the linearized effective low-
energy potential Eq. (18) is the appearance of the anti-
Hermitian part. Such a part of the effective low-energy
potential comes from the operator G; and proportional to

the vector K/ = —(& x 7)/, related to a rotation of a
coordinate system. A possible violation of Hermiticity of
a low-energy potential for slow fermions, coupled to
gravitational, chameleon, and torsion fields in terms of
the vierbein fields Eq. (4), caused by the metric Eq. (3),
might be expected because of a noninvariance of the metric
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tensor Eq. (3) and, correspondingly, Eq. (13) in a rotating
coordinate system with respect to time reversal trans-
formation, i.e., a noninvariance under the t — —¢ trans-
formation. We have found that the anti-Hermitian part

contains the terms proportional to the vector K/ and
dependent on the torsion scalar £ and space-space-time
MA 1o and time-space-space Mg ;s ; tensor degrees of free-
dom. For the confirmation of the correctness of such an
anti-Hermitian part we have pointed out that the contribu-
tion of the operator G; is important for the correct
derivation of the effective low-energy potential for slow
fermions (neutrons), coupled to gravitational and chame-
leon fields. Another argument on behalf of the correctness
of such an anti-Hermitian part is the cancellation of the
torsion vector components in the K;-independent part of
the operator G;. Such a cancellation agrees well with the
results obtained by Kostelecky [35] (see also [13]). In the
Appendix we have given a detailed calculation of the
operator G; to linear order in the gravitational, chameleon,
and torsmn field approximation.

It is obvious that an anti-Hermitian part <I>£ff)(t 7.S) of

the effective low-energy potential D (7, 7, S ) violates T (or
time reversal) invariance. Since the effective low-energy
potential (1,7, 3‘) is invariant under CPT transforma-
tion, the anti-Hermitian part (Iﬁf)(t, 7, 3’) violates also CP
invariance, i.e., invariance under charge-parity transforma-
tion. A violation of CP and T invariance in the spacetime
with the asymmetric Kerr metric, which is analogous to a
spacetime in the coordinate system rotating with an angular
velocity [14], has been discussed by Hadley [34]. We
would like also to mention that violation of parity and time
reversal invariance in the spin-rotation interactions has been
discussed by Papini [61] and Scolarici and Solombrino [62]
in the model with a modified Mashhoon’s potential of the
spin-rotation coupling [3].

Finally we would like to discuss the results obtained in
Sec. V. As has been shown in [16-23] the well-known
non-Hermiticity of the Dirac Hamilton operator for rela-
tivistic fermions, moving in the curved spacetime with an
arbitrary metric g, (x) or in an arbitrary gravitational field,
can be removed by a nonunitary transformation
w — (vV=5¢0)/2y’, where § is the determinant of the
metric tensor g,,(x) and & is the vierbein field. Such a
property of the Dirac Hamilton operator is also retained in
the curved spacetime with an arbitrary metric, torsion,
and chameleon field [1,13]. In Sec. V we have shown that
(1) the anti-Hermitian Hamilton operator of torsion-fermion
interactions 6H; in the Dirac Hamilton operator H' =

YOm — iy%-%—l—&H{] -+ SHL, obtained by means of the
nonunitary transformation of the Dirac fermion wave

functions y — (v/ —§Eg)1/ 2y, cannot be removed by any
additional nonunitary transformations and (ii) the existence
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of these anti-Hermitian torsion-fermion interactions is fully
caused by the properties of the curved spacetimes with
rotation, described by the metric Eq. (3).

We have also pointed out that our analysis of the Dirac
Hamilton operator and a derivation of the anti-Hermitian
torsion-fermion interactions are not related to the
analysis of the non-Hermiticity of the Dirac Hamilton
operator by means of the y-representation [24], requiring
pseudo-Hermitian quantum mechanics for the description
of a dynamics of Dirac fermions in curved spacetimes
[24,53,54].

Then, we have discussed conformal invariance of the
anti-Hermitian torsion-fermion interactions. As has been
shown by Silenko [20], quantum field theories of massless
particles, coupled to arbitrary gravitational fields or moving
in curved spacetimes with arbitrary metrics, are conformal
invariant under conformal transformation g,, — 02g“,w,
where O is a conformal factor. The requirement of
conformal invariance of quantum field theories of massive
particles in curved spacetimes with arbitrary metrics can be
fulfilled if and only if particle masses are changed by the
conformal factor as follows: m — O~ 'mi [21] (see also
[25,26]). We have shown that under the condition m —
O~ 'ni the relativistic anti-Hermitian Hamilton operator
0Hj, and the anti-Hermitian effective low-energy potential

@é‘f‘f)(z‘, 7.S) are conformal invariant.

We have discussed also an observability of the anti-
Hermitian torsion-fermion interactions. As a result, we may
argue that the anti-Hermitian torsion-fermion interactions
can be in principle observable. First, an observability of the
obtained anti-Hermitian torsion-fermion interactions is
supported by their derivation, carried out on the same
footing as the effective low-energy potentials <I>£ff)(t r, S)

and <I>£ff)(t, T, S), which have been derived earlier in
[1,13,22,33]. Second, an observability of the anti-
Hermitian torsion-fermion interactions Eq. (22) and
Eq. (38) is supported experimentally as follows. In the

effective low-energy potential @é;f) (1,7, S ) the interactions

5@5}2(@ FS)g—uny = —@-L—@-S, (49
derived also by Hehl and Ni [33], have been investigated
experimentally by Werner et al. [60], by Atwood et al. [2],
and by Mashhoon [3]. This makes reliable in principle an
observability of the anti-Hermitian torsion-fermion inter-
actions, described by the relativistic anti-Hermitian
Hamilton operator Eq. (38) and the anti-Hermitian effective
low-energy potential Eq. (22).

The analysis of reliability and observability of the
obtained anti-Hermitian torsion-fermion interactions makes
meaningful the assumption that in the rotating Universe and
galaxies [50] (see also [51]) the torsion-fermion interaction
0Hj, in Eq. (38) as well as the low-energy effective potential

®'4)(1,7.5) in Eq. (22) might be an origin of (i) violation of
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CP and T invariance in the Universe and (ii) of baryon
asymmetry [28].
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APPENDIX: DETAILED CALCULATION
OF THE OPERATOR G;

In the appendix we give a detailed calculation of the
operator G;. According to Eq. (7) it is defined by

G = 5 BT (W (x) + gy x)2(x)
+ d)fj@(x)eo (x) + wf}k@)%(@’?”)
3 @) g (V)

(A1)

Using /—¢g =1+ U, —=3U_ [1] and the vierbein fields
Eq. (13) we transcribe the r.h.s. of Eq. (A1) into the form

1=, 1. 1.
Gy = 5T ;5(x) + 5 @g;5(x) + 5 @50 (x) K

72 2 2
1 . 30U
~ . ‘k _ = +
+ wa}k(x)r/ ) ax} s (AZ)

where we have made the replacements (1+ U, +
U)T 5(x) = T75(x) and 1+ U, + Ul )i (x)n*

@3 (0)m” k and calculated
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L1 e 300,
2 GG (V) = =57 5
(A3)

keeping only the linear order contributions of the gravita-
tional, chameleon, and torsion fields. Since we keep the

contributions to order O(K/), we get

% I (x) = %Tfm; +%721}}’7%v

%(Z’oj()(x) = % ;% - %% +%IC;@() +%IC}.WK5”,
%&)f«@(x)ﬂ = —%K; 8;‘ +%IC}9@K’:’,
%@“@(ﬂﬂﬁ‘ = 88% + %’Cmﬂ’%i‘ - %K“’Cm’?%- (A4)

Plugging Eq. (A4) into Eq. (A2) we derive the operator G;
in the following form:

10

1 - -
+5 (Too;+ Toagn™ + Koo + K527
1 ., L
+5((Kjop +K;520)K" = K3Kop1n™). (AS)
Using the properties of the contorsion tensor [1] and the

irreducible representation of torsion Eq. (15) we transcribe
Eq. (AS) into Eq. (26) [see also Eq. (14)].
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