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The low-energy limit of the massless two-loop five-point amplitudes for both type IIA and type IIB
superstrings is computed with the pure spinor formalism and its overall coefficient determined from first
principles. For the type IIB theory, the five-graviton amplitude is found to be proportional to its tree-level
counterpart at the corresponding order in «'. Their ratio ties in with expectations based on S-duality since it
matches the same modular function Es;, which relates the two-loop and tree-level four-graviton
amplitudes. For R-symmetry violating states, the ratio between tree-level and two-loop amplitudes at
the same o’ -order carries an additional factor of —3/5. Its S-duality origin can be traced back to a modular

form derived from Es,.
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I. INTRODUCTION

In this paper, we determine the low-energy limit of the
five-point closed-string amplitudes among massless
type IIA and type IIB states using the pure spinor (PS)
formalism [1,2]. The precise elaboration of overall coef-
ficients confirms the predictions [3,4] based on the non-
perturbative S-duality of the type IIB effective action [5].
This complements previous S-duality analyses of the five-
point amplitudes at one loop [6] as well as the four-point
amplitudes at two [7,8] and three loops [9].

S-duality constrains curvature couplings of the schematic
form D?*R" (and their supersymmetric completions) to
depend on the scalar fields through modular invariant
functions and thereby relates different loop orders in
perturbation theory. The subsequent two-loop analysis
probes the moduli-dependent coefficient of the D*R* and
D?R’ interactions which was identified as the nonholomor-
phic Eisenstein series Es, in ten dimensions [3,4]. Its
perturbative terms relate the tree-level and two-loop con-
tributions of the corresponding graviton amplitudes and
their R-symmetry conserving superpartners.

Likewise, R-symmetry violating closed-string ampli-
tudes at different loop orders (involving, for instance,
four gravitons and one dilaton) are interlocked by modular
forms [10]. Given that R-symmetry violating four-
point amplitudes vanish, the five-point amplitudes in this
work furnish the simplest perturbative fingerprints of
their modular properties. Specifically, the tree-level and
two-loop results at the o« order under discussion are
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expected to originate from a certain modular derivative
of E5 /2+

We verify the expected ratios by explicit computation at
the five-point level, i.e. by extracting the type IIB compo-
nents involving five gravitons as well as four gravitons and
one dilaton from the supersymmetric two-loop low-energy
limit. This is the first perturbative check at genus two for
the S-duality properties of the five-point interaction D?R>
and its R-symmetry violating counterparts.

Since the main objective of this work requires precise
control over normalizations, Sec. II contains a detailed
account on the conventions used (closely following [8,9]).
In Secs. III and IV, tree-level and one-loop amplitudes are
computed within the setup of Sec. II. Their rederivation
including prefactors paves the way towards comparing low-
energy limits across loop orders and the factorization check
for the two-loop amplitude carried out in the appendixes.
Moreover, the normalization of the five-point one-loop
amplitude has never been determined by direct computa-
tion. The main result on the two-loop five-point amplitude
is derived in Sec. V. Finally, Sec. VI is devoted to the
S-duality analysis of the above results and is suitable for
self-contained reading.

II. REVIEW OF CONVENTIONS

In this section the conventions used in the rest of the
paper are presented. They closely follow the conventions
used in [8,9] but deviations were taken when deemed
appropriate.

A. World-sheet fields

The world sheet action for the left-moving sector in the
nonminimal pure spinor formalism is [2]

© 2016 American Physical Society
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S = T / d*z(0x™"0x,, + & pa00% — &' w,0A*

— AWy + d's%0r,), (2.1)
where m =0,1...,9 and a = 1, ..., 16 are the vector and
spinorial indices of the ten-dimensional Lorentz group, and
o denotes the inverse string tension. In addition, A% and 1,
are bosonic pure spinors and r, is a constrained fermionic
variable,

(Ay™2) =0, (Ay™2) = 0, (y™r) =0. (2.2)
The Green-Schwarz constraint d,(z) and the supersym-
metric momentum I1"(z) are defined by

d(l(z) = Pa —

" (z) =

1
g (yma)aaxm ] (},me) (eymag)

Ox™ 4 = (9}/’"86) (23)

while the BRST charge and the energy-momentum tensor,

0= f(ﬂ“da + W),

1 -
T(z) = - ;axmaxm — Pa00% + W, 02% + W0, — 5701,

(2.4)

are related by {Q, b(z)} = T(z), with the following expres-
sion for the b-ghost [2]

= 5%l —&-m 211" (Ay,,d) —

(e [
TNy ) +24N,T1,
1920)2 | 2 47 mnp) & 24N omn

o (rymnpr) 2
L map ) o) Nmp
2 160 |

Nmn (zymnag) - Jl (’_180)

—(20%0)] +
(P IN"N,,
W} 23)

B. Scalar Green function and OPEs

The regularized scalar Green function G(z, w) is written
in terms of the prime form E(z,w) and the global
holomorphic one-forms ;(z) as [11]

/

G(z.w) = —ﬁln E(z, w)|?

et (i [ o Joms im [ ).

(2.6)

and satisfies
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where Q;; is the genus-g period matrix to be defined in
Sec. I E. Furthermore,

20

’Y(Zi»Zj) =1 = _Ja? G(z;, Zj)' (2.8)

The genus-g OPEs are [12,13]

X"(2.2)x Pal2)0F (W) ~Fan(z,w),

do(2)dp(w) ~— /7(1/} IL,n(z,w),

)
do(2) f(x(W),0(w)) ~Dyfn(z.w),
do(2)T1" (W) ~ 70,0000 (z,w),

l

0(w)~—SK" f(z.w),

2 (W) ~6mG(Z w),

1" (2) f (x(w), (2.9)

where D, = % +1(y"0),k,, is the supersymmetric
derivative and f(x, @) represents a generic superfield.
It follows from (2.9) and (2.3) that

18 a mn
" (&) () ~

Left and right movers can be kept separated in the
evaluation of the amplitude by expanding I1"(z) =
11"(z) + 329_, I’ w,(z) and computing the holomorphic
square with

/

711 = — =" a(ImQ)7. (2.11)

Using this prescription, contributions containing a single
zero mode I1}" or II}" vanish.

C. SYM superfields and massless vertex operators

The closed-string massless vertex operators are related to
the holomorphic square of the open string vertex operators
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V = A%A,(x.0).

/
U = 00°A,(x,0) + II"A,, (x,6) + %daW“(x, 0)

/

+ gN’nnan ('x’ 9)’

7 (2.12)

where A,(x,0),A™(x,0), W*(x,0) and F""(x,0) are the
super-Yang-Mills (SYM) superfields in ten dimensions.
Their equations of motion [14]

DaAm = (ym W)(I + kmAaa

1
DaWﬂ = Z (ymn)aﬁan

DaAﬂ + D/}Aa = ]/ZlﬂAm,
D,F,,, = 2k[m(7n]W)a’

(2.13)

are solved by the 6 expansions in [15] involving gluon

polarization vectors and gaugino wave functions. More
precisely, the closed-string vertex operators are given by

<t
]

X
’

(@)

=V() ® V(9)
UQ)P=U6) ®

ek
(9) ek'x,

e

(2.14)

where V() and U(6) are defined from (2.12) by stripping
off the plane-wave factor, e.g. U(z)= U(6)e*™.
Furthermore, each massless vertex is normalized with
a coefficient k (see e.g. [7]) so the n-point amplitude
prescription contains an overall factor of «". As shown in
Appendix A, unitarity relates it to the other string param-
eters (such as the coupling constant e~?%)
via k?e ™ = /o'’

D. Integration on pure spinor space

The zero mode measures for the nonminimal pure spinor
variables in a genus-g surface have length dimension zero
and are given by [8]

[d/?'] T(l| a5 — Ci€q ...(l|6dlaﬁ ...dA%s s
[dW] = CwTal.

ay...a
s €M dwg L dwy,
[dAT® % = cze"5d)y ...dAy,,,

[AW]T g, 4y = Civ€ay...adW...dW"S,
[dr] = ¢, T %€, 4 .07 ...00",
[ds"] = ¢,Ty, . g€ 505, ... 0%,
[dO] = cyd"0, [dd'] = c,d"°d". (2.15)

The normalizations are [8]
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(2.16)

q
U
|
Y
R N

-4
) (271.)16/2251]6/9’

where Ag = f dzz\/ﬁ denotes the area of the genus-g
Riemann surface with metric £,

1
Zgzi 921,

\/det(2ImQ)

and R is an arbitrary parameter capturing the freedom to
normalize the string tree-level amplitudes.’ As discussed in
[8], the final expressions for multiloop amplitudes are
independent of the area A,. The tensors T,, _,, and T
appearing in (2.15) are totally antisymmetric due to the
pure spinor constraint (2.2),

(2.17)

T o arasasas = (™ )y (A" )y V) s (Vi) atyars

Tecatststs = (Gy™ )@ (Ay" )% (AyP ) (V) 4 (2.18)

and satisfy T - T = 5126(21)°.

One can show using the results of [16] that the
integration over an arbitrary number of pure spinors A%
and /_1/; is given by

/ [dA)[d2)e= A (AA)m 2 - A%l -+ Dy

_ (AN\"T(@B+m+n)
- \2x 302400

aj...o,

R (2.19)

..ay,

where T ;: 5. are the y-matrix traceless tensors discussed
in [9]. From 74 o = 1 it follows that [8]

ap,

'In previous works [8,9] the choice R = v/2/(2'°x) was made
to match the tree-level conventions of [7]. In this work we deviate
from that motivation and the choice (2.24) will lead to tree-level
amplitudes (3.4) with unit overall coefficient.
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/ [d2)[dA)(A2)" e (D) = (%) “ %

For an arbitrary superfield M (4, 4,0, r) we define [8]
(M(1.3.0.7)) (g

_ / 1d6)[dr][dA)|d]

(2.20)

—(A2)—(r0)

WM(A, /_1, 9, r),

(2.21)

and therefore the pure spinor measure (1y"@)(1y*0)(1y'6)x
(0y,5,0) = (A°6°) is mapped to

(6))(.5) = Nipg (£6%)),

5275 27\32 (d\2T(8 + p)
P\a,) \2) "7

35
and the identity factor <(’1—P‘9)>
normalization convention [1]

Np.g (2.22)

=1 keeps track of the

((4r"0)(Ay°0)(4r'0)(0y,5,0)) = P (2.23)
The choice P = 2880 is convenient in view of the factori-
zation properties of pure spinor superspace kinematic
factors and has been observed in [17] to imply tree-level
normalizations compatible with RNS computations. Unless
otherwise noted, we use

71-5

2 __
R =55

P = 2880. (2.24)

1. Abbreviations and (anti)symmetrization combinatorics
The (anti)symmetrization over n indices includes a factor
of 1/n!, the generalized Kronecker delta is 5/‘;" Z":
5[;:‘ ~-~(SZ”] and satisfies &g’ = (%) where d=10 (d = 16)
for vector (spinor) indices. The integration over @ is given by
fdléeea, Q%6 =% %6 gnd 6(11.4.(1“;/]...y5€alma“ﬂ]mﬁ5:
[P ARRA]
111516,
Partitions of d, zero modes are denoted by
(P1. P2+ ... Pg)g» signaling the presence of p, factors of
d!, for I = 1,2, ..., g. Accordingly, contributions from the

b-ghost will be labeled by their partition of d, zero modes

as BE’;‘I' przn o) where the vector indices take into account

that those contributions need not be Lorentz scalars.
Furthermore, we define

1 1
doy + dgygs

a

(€ -T- dl) = %1% T
(Ard'd’) =

ay...as

Ay P r)(d"ynpd?), (2.25)

g (e-T-d)
mpmy...nm, — [ my...m,
D(1]1+2p1,11+pz ~~~~ 14p,) _/l_Ildd 11!5! B(pll P2ePy)

(2.26)
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2. Frequent zero-mode integrals

Some integrals which are frequently used in the next
sections are summarized here.

= 1 1 ‘5 !CdT(ll(lZ(l3(l4”5 ’

/[dd’](e T-d"d, db, d., (d'y™rd")

= 1115196¢4(A71") . (A7) g (A7) g,
9 I =1 ! I 2
‘ / [ (aw][dw!][ds"e=C+'5=(d's"
I=1

f[ e-T-d)[?
sy

(2.27)

49
B <§> (27) 169229222

To prove the third integral one uses [8,16]

_(d'sh) <i>2‘g(2ﬂ.)lly/2z!l]1 g (G,T,dl)

/H 2) R92%(22)% L+ (11151)
. A1)
/Ilj[ 0 = ((2”))11_(/ e (2.28)

E. Riemann surfaces and moduli space

A holomorphic field with conformal weight one in a
genus-g Riemann surface X can be expanded in a basis of
holomorphic one-forms as ¢(z) = ¢(z) + 29, @;(2)¢’,
and ¢! are the zero modes of ¢(z). If {a;, b,} are the
generators of the H,(X,, Z) = Z* homology group, the
holomorphic one-forms can be chosen such that for
1,J=12,....,9

/ w;(z)dz = 6y, / w;(z)dz = Q.
ar by

/dZZCU]CDJ = 2ImQ”, (229)
where Q;; is the symmetric period matrix with g(g + 1)/2

complex degrees of freedom and d’z = idzAdZz =
2dRe(z)dIm(z) [11]. We also define

_ (112
Ln—/iﬂldzl,

Ajj = eV o(z)w,(z;) = 01(z)wa(2)) — 0 (2;) 05 ().

(2.30)
The moduli space M, is defined as the space of inequi-

valent complex structures z; on the Riemann surface of
genus g and has complex dimension 3g — 3, for g > 1. For
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genus two and three, the dimension of the moduli space is
the same as the dimension of the period matrices
Bg—3=g(lg+1)/2 for g=2, 3) and the amplitudes
can be parametrized by the period matrix instead of the
moduli coordinates; more explicitly for genus two [11],

(SQIJ
5T,~ ’

= / d*Q, (2.31)

/ >y (y)w; (y)ui(y) =

/ d*zle
M,

where d’r=[[Y7d%r;, PQ=T]}., d*Q; and F,
denotes the fundamental domain of Sp(2¢,7Z)/Z,. To
avoid cluttering, the domains M, and F, will be hence-
forth omitted.

The Sp(2g, Z)-invariant measure for the genus-g moduli
space and its volume are [18]2

a’Q g
du, = (ettmQ) ™ /dﬂg = ZH ( Czk)

k=1
(2.32)

68211 6Q213 6Q |

iyiyiz o_
1720 6Til 6Tl'2 57'-1'3

In particular,

2r 4r3 2676
d = — d = =, d —_ 5.
/ Hi 3 / H2 335 / M3 36527
(2.33)

F. The amplitude prescription

The multiloop r-point closed-string amplitude prescrip-
tion was given in [2]

V= s /d2 / (b, W)V (0)U2(zy) - --
x U"(z,) ).
M) = el /T‘de /| (b U N(z1) -+
x U"(z,) )P, > 2. (2:34)

The symmetry factors for the one- and two-loop amplitudes
are S| = 1/2 [19,20] and S, = 1/2 [21]. Furthermore,
S, =1 for’ g > 2. The b- ghost insertion is

(b,pj) = /Jzyb y)u;(y j=1,...,39g-3,

(2.35)

*The definition of d2Q here is 299+1)/2 bigger than in the
orlgmal formula of [18].
We thank Edward Witten for emphasizing this point to us.
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where u; denotes the Beltrami differential for the modulus
parameter 7;, and N is the BRST regulator [2]

N =exp (—(/1/_1) —(r0) + Z[(W’W[) (s’d’)]).
=
(2.36)

The bracket ((...)) in (2.34) denotes the path integral which
integrates out the nonzero modes through OPEs and addi-
tionally contains the zero-mode integration measure

(..)= /[de [dr][dA][d])] ﬁdd’ ds!|[di!][dw]. ..
=1

(2.37)

After the integration over [dd!][ds'][dw'][dW'] has been
performed, the remaining variables /1”,/_11;, ¢ and r, have
conformal weight zero and therefore are the same ones
which need to be integrated in the prescription of the tree-
level amplitudes. Using theorem 1 from [9] all correlators at
this stage of the computation reduce to pure spinor super-
space expressions whose component expansions can be
straightforwardly computed4 [23,24] from the € expansions
in [15]. In particular, the last correlator to evaluate is a
combination of the zero-mode integration of tree-level pure
spinor variables (2.22) and x™ [8]

2 Kx/
N(p,g)<1_.[e >
j=1
o\ "1 2°R? (T(8+p)\2
—(271')10510(]{)(5) W(T) 7Y, (2.38)

where 510(k) = 5!°(3",k") and Y is the n-particle Koba-
Nielsen factor

79 = exp (Z sijG,-j), sij=k; k. (2.39)

i<j

Some products which appear in later sections are
a\ )
3([ <Hekfx/> 27[ 10510(/() (E) Ing ’
- N\
NG, <H ek > (27)198'° (k) (5> s s
i/ g0 (21 (9)
Og He 271' 1) (k) E WIH .

(2.40)

*Note that r, variables are converted to D, derivatives using
rpe” ) = D, e %) [22].
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Given the above conventions in (2.47), the length dimen-
sion [...] of the closed-string n-point amplitude is inde-
pendent of the genus; [MY"] = n(2 + [«]). Since [x] = -2
(see Appendix A) the amplitudes are dimensionless.
Furthermore, in most of the calculations below overall
minus signs will not be rigorously tracked.

For four-point amplitudes it is convenient to use the
following shorthand notation for symmetric polynomials in
Mandelstam invariants (2.39):

ad\ko k k
o) = <5> (s, + 515 + 514)- (2.41)

G. Multiparticle fields

The five-point amplitudes at genus g = 1, 2 discussed in
this work reconcile zero-mode saturation with one OPE
among the vertex operators of both left and right movers.
The systematics of OPEs has been studied using multi-
particle fields in [25], starting with

VI(ZI)UZ(Z2) :W<(Z> [V12+Q(...)], (2.42)

221

51 /
Ui(z1)Us(z2) = Lﬂ <Z> [GH“A(LZ +IL,,AT,

221 2
/
<a>d WTZ +— 4 Nmnan:|
+01s(..0). (2.43)

The suppressed BRST-exact terms in (2.42) and world
sheet derivatives in (2.43) drop out from the subsequent
computations. The two-particle superfields of interest in
this work are

Aty =~ S[AMK 42+ AL (W), — (152)]
Wiy = L WRED, + W AT) - (152),
Fig =Py (0 AD) + B+ R (W17 IWs) - (12)
(2.44)
with a similar definition for A5, and
Vip = 2A7, QViz = 512V Va. (2.45)

Generalizations to p > 3 particles, in particular the Vi, ,
mentioned in the context of tree amplitudes, can be found in
[25]. In a notation where A, B, C, ... denote multiparticle
labels such as A = 12...p, the simplest class of one-loop
kinematic factors are given by

PHYSICAL REVIEW D 93, 045030 (2016)

[(rmWa) Ay, Wp)Fe" + (C<A, B)].  (2.46)

W =

Typc=

They were firstly studied in the context of multiparticle
open-string amplitudes at one loop [26] and identified as
box numerators in one-loop amplitudes of ten-dimensional
SYM [27].

H. Length dimensions

For convenience, the length dimensions of various
fields and constants used throughout this work are sum-
marized here:

@]=2, ["]=1, [k"=-1, []=-2.
Gwl =2 Iyl =0. (040w 57) =,
pvadord =—3. [01=[]=(T]=0.
AR =3=p AR =1
Wi J=g-p. [FE)=—p.
VEI=WEI=1 A2 =4
[51(k)] =10, [MP]=0. (2.47)

III. TREE-LEVEL CLOSED-STRING AMPLITUDES

In this section the tree-level amplitudes involving n = 3,
4, 5 closed-string states are reviewed and recomputed using
the normalization conventions of Sec. II. This ensures that
the S-duality discussion of Sec. VI uses amplitudes
computed with a uniform set of conventions (which differ
from [8,9]). For earlier references, see [28-31].

A. The amplitude prescription

The prescription to compute the n-point tree-level
amplitude in the PS formalism is [2]

(0)Us(z3)-.-

2

MO = 6‘2’1/Hd2z|

X Un—2 (Zn—2>Vn—l (1)Vn (OO)>>

, (3.1)

where N'(0) = ¢=(4)=1 i the zero-mode regulator at genus
zero. As explalned below (2.36), ((...)) denotes the path
integral which reduces to the integration over the zero
modes of tree-level variables after the nonzero modes are
integrated out through OPEs. The pure spinor computation
of the n-point tree-level correlator can be found in [32]
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<IC(O)(Z2’ ceey Zn—2)> = <<V1 (Z1>U2<Z2) e Un—2(Zn—2)Vn—1(Zn—l)Vn(Zn)»

<V12.“pvn—l,n—2 ..... p+1Vn>

(a/) n—3 n=2
- \2 =1 (212203 - 'Zp—l,p)(Zn—l.n—z : "ZerZA,erl)

+ P2, . n=2), (3.2)

where P(2, ..., n — 2) instructs one to sum over all permutations of 2, ..., n — 2. The Mobius symmetry of the genus-zero
world sheet has been fixed by setting {z;, z,_1, z,} = {0, 1, 00 }. The correlator (3.2) was later identified as a superposition
of SYM tree amplitudes [32] (see [33] for their pure spinor superspace representation),

N3 5, (s s s
KO (g 2 :<ﬁ> £<ﬁ+ﬁ>...<£+...
< ( ? 2)> 2 212 \%13 223 212

n sl,n—2)AYM(l’2’ con—=1,n)+P2,...,n=2). (3.3)
21.n=2

The multiparticle superfields Vi, and V', _, in (3.2) are defined in (2.45) and [25], respectively. Therefore, the prescription

(3.1) yields

n—2 n
0 n o Joxd
M) = e [ Hdzz,»|<ic<°><zZ,...,zn_2>>(3,0)|2<| [ >
i=2

= (271051 (k) <j>_ll<"e—% /

where we used (2.22) and (2.40). Note that the Koba-
Nielsen factor (2.39) simplifies to Iﬁo) =11, |zij\—“’ff/ at
genus Zzero.

B. The three-point amplitude

Using the formula (3.4) and taking Igo) =1 into
account, the three-point amplitude can be written down
immediately

N -1
ﬂ) KSE_MK:gO), (3.5)

Mg()) _ (271')10510(1() (2

where C\” = [(V,V,V3)]> = [AYM(1,2,3)* and (note
K = -2)

(ViVaV3) = (e'-e?) (k- e*) + ey, (rar™xs) +eye(1,2,3).
(3.6)

The component expressions are derived from the 6 expan-
sions of [15] and involve transverse polarization vectors
e’ of the gluon as well as chiral spinor wave functions y; of
the gluino.

C. The four-point amplitude

Similarly, using the formula (3.4) the four-point ampli-
tude becomes

o\ -1
= @ () e [ stz

(3.7)

=1
n-2
[T 22O 2. ooz PTY. (3.4)
i=2
|
where the correlator is [32] (see also [34])
(KO(z22)) = {(Vi(21)Ua(22) V3 (25) Va(2a)))
_ (ﬁ) [<V12V3V4> " ViV V)
2 212 232
a/ S12
= (=) =2AYM(1,2,3,4), 3.8
(5) 240,259 (8)

and we used the following representation for the color-
ordered tree-level SYM amplitude,

1 1
AYM(l, 2, 3,4) —_ <V12V3V4> +

—(ViVa3Vy).
S12 $23

(3.9)

Furthermore, using the explicit form Z'") = |z,|~%*2|1—
2|75 of the Koba-Nielsen factor at {z;,z3.24} =
{0, 1, o}, the integral in (3.7) boils down to [7]

/ /
e 1 s 1 d o
/d2Z222 7512 Z, 512 (l _ Zz) 2s23(1 _ Zz) 5523

a\?2
= 27[5%3 (E) BO (310)
with
_ F(_%SIZ)F(_%/SB)F(_%SM)
r(1 +%512)F(1 +%S13)F(1 +%S14)
3 2
=;+2€3 +§502+§§%53+‘“- (3.11)
3
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Hence, the four-point amplitude (3.7) is given by

N 3
M = (27)195'(k) (‘;) ke 227KV By,  (3.12)
where (note [IQSO)} = -8)
KL = [51252,AYM(1,2,3,4) 2
= [523(V12V3Va) + 512(V1 Va3 V) 2. (3.13)

1. The low-energy limit

From By=(2/')?/(s12813514)++- and AYM(1,2,3.4) =
<V]2V3 V4>/S]2 + <V| V23V4>/523 the kinematic factor in
the amplitude (3.12) becomes

_ (ﬁ/>3,€(0)30 - _ |312s23AYM(1v 2’ 3’ 4)|2
2 4 S12513514

AN i [(V31VaVa)?
S12 S13
2
8§23

where we used <V12V3V4> + <V23V1 V4> + <V31V2V4> =
0 [35]. Therefore the low-energy limit of (3.12) is given by

Vi, ViV, ) |2
ME‘O):(Zn)loélo(k)K“e_z’lZﬂ[iK 12V5V4)l
S12
Vi VoVOPE (Vs V V) P
+|< 31V2 4>| +|< 23V'1 4>|i|+0(a/3)'
S13 8§23

(3.15)

D. The five-point amplitude

According to the formula (3.4), the five-point amplitude
is given by

N -1
Mgo) = (27)19510(k) (%) Se—

3
X/ [T 2O (. ) PT.  (3.16)
=2

(KO (25, 23)) = (V1Us(22)U3(23) V4 V)
/>2 [<V123V4V5> " (Vi2Va3Vs)
{12423 212243
ViV Vs) i
243232

—~

2o3)

N 2
"’) T2 M1 23,4, 5) + (253).
2 212334

(3.17)
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After inserting (3.17) into (3.16), the o expansion of the
resulting integrals can be obtained through the KLT
procedure [29] and arranged in the form [36]

/
ML = (27)1050 (k) <%) KSe 222K (3.18)
~ o3 a\?

+23(%) M3+ 0@ (3.19)

where AL, and A5 are two-component vectors of SYM tree
amplitudes

i _(AYM(1,2,3,5,4)>

*TNAM(1,3,2,5.4) )
AYM(1,2,3,4,5)

Ays = , 3.20

® (AYM(1,3,2,4,5)> (320)

and §; denotes the momentum kernel [37], a convenient
basis choice for the Mandelstam invariants in the KLT
relations [29]

S1a(813 + 8
S = < 12(813 23) (3.21)

S12513 >
S12513 s13(812 + 523)

The 2 x 2 matrices M»,,; introduced in [36] describe the
momentum dependence of the ' corrections and should not

be confused with the amplitudes ME;(’). Their entries are
degree 2n + 1 polynomials in Mandelstam invariants, e.g.
(see also [30,38])

mpp My
M3 = < s
mpy My
My = —513524(81 + 52 + 53 + 54 + 55)

my = 33[—5'1(5'1 +252 + S3) + 85384 + 542‘] +S1S5(S] —+ 55)
(3.22)

with my; = myy|,.5 and myy = my|,.,5 as well as s; =
s;i+1 subject to s5 = sy5. Higher-order analogues such as
M5 relevant for the comparison with the two-loop five-
point amplitude are available for download [39]. The
overall coefficient of the five-point amplitude (3.18) will
be verified by factorization at the lowest order in o in
Appendix A.

IV. ONE-LOOP CLOSED-STRING AMPLITUDES

In this section the overall coefficients of the four- and
five-point one-loop amplitudes are computed using the
conventions of Sec. II, ensuring that the S-duality analysis
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of Sec. VI is unaffected by different conventions in the
literature. Although the coefficient of the five-point ampli-
tude can be derived from factorization (see Appendix A),
its computation from first principles as done in Sec. IV C is
novel and validates the general method developed in [8].
For earlier references, see [40] for the original four-point
derivation, [7,8,20,41] for discussions on its overall coef-
ficient, and [4,26,42-46] for related extensions.

A. The amplitude prescription

According to (2.34), the n-point closed-string one-loop
prescription is

e s

x U(z,)) 2. (4.1)

(b )V (z)U(z) -

where N'(1) is the genus-one instance of the zero-mode
regulator (2.36). The b-ghost insertion (2.35) reads

(b.u) :% / d*yb(y)u(y). (4.2)

where p is the Beltrami differential for the modulus
parameter 7. In terms of the genus-one period matrix €,
equation (2.31) implies

[ @l [ @omoouor = [ @ @)

At genus one, there are (16), zero modes of d, and (11),
zero modes of s%. Since there are no s* variables in the
vertex operators, and the term 5?0/, from the h-ghost (2.5)
does not contribute in absence of sources for w?, the zero
modes of s* are entirely saturated by the regulator through
the factor N'() — (s'd')!!. The remaining (5), zero modes
must come from the b-ghost and the external vertices.
There are two canonical b-ghost contributions to saturate
the fermionic zero modes of d,, with either one or two
zero modes. Expanding I1,,(y) = IT}w, (y) + I1,,(y) and
d,(y) = d-w,(y) + do(y) where ,(z)dz=dz is the
genus-one holomorphic one-form, one can show that
amplitudes up to (and including) five points receive

zero-mode contributions from only two terms’ in the
b-ghost (2.5)
\2 1 1
Lo (b)) = (Z) =
/ el(b.p) (2 (27)% 1922

>Terms containing a single N™ zero mode vanish upon
integration over [dw][dw] [9].

PHYSICAL REVIEW D 93, 045030 (2016)

where the ellipsis represents terms relevant at (n > 6)
points and

G O A ),

Bay = <2) (jj)( 7).

Since the vertex operators are independent of w,, w* and s,
the integration over the zero modes [dw!][dw!][ds!] is
readily performed using (2.27) and yields

B(z) =

(4.5)

‘/ds |[dw!][dw!]e(d"s")~ o) |

1 (e-T-d")?
== 4.6
<2) (27)'2273%|  (11!5)) (4.6)
Defining
_ (e-T-d)
_— L(e-T-dY)
DI, = / ') s Bl (4.7)

as a special case of (2.26), the amplitude (4.1) becomes

AV /dZQ
T\2) (em)'2B32) z3?
1 i
L oz P(ITe ). 4
n—1 /:1

The subscript [d] of the kinematic factor

ICE;]) (Zz, ey Zn)

= (Dgi3) + "Dy + - )V1Us(22) - Un(z,)  (4.9)
emphasizes the remaining integration over the d, zero

modes. The ellipsis along with H’I"DE';Z) refers to b-ghost
contributions which do not affect (n < 5)-point amplitudes.

1. Scalar and vector building blocks at genus one

The integration over the zero-mode d! in (4.9) can be
done using (2.27) and gives

Di3)Va(d'Wg)(d'We)(d'Wp) = 96¢,T y5.c.0(2,4),

D{iy Va(d' W) (d'We)(d'Wp)(d' W)

2
= 96¢, <g> S g e (A ), (4.10)

where
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2 <zym" r) m n
TA\B.C,D(}LJ) = (/1/—1)2 Va(y"Wg)(Ay"We)(AyPWp),
" _ /_Iym)/r/l S
St .60 = LV, G Wa) G W) W We)

(4.11)

with multiparticle labels A, B, ... (see Sec. I G).

At this stage theorem 1 from [9] can be used to factorize
(A2) from the expressions in (4.11). For a general kinematic
factor one then defines Ky (4,4) = (/1/_1)”KA|B.__ for

some power p as the result of this procedure. Doing this
for (4.11) leads to

> ))(3,1) = <TA\B,C.D>(2,1)’
<SX'|B,C,D,E( s )>(3,1) = <SX\B,C,D,E>(3,1) = 1O<SX|B,QD,E>(2,1)’
(4.12)

where symmetry of 7'y 5 ¢ p and SABCDE in (B, C, D) and

(B,C,D, E), respectively, is inherited from (4.10). Note
that any appearance of S%, - ), ; in (n > 5)-point one-loop

. . . .6
amplitudes occurs in the combination

m — m m m
TA|B,C.D,E = AT ycpe+ACTaBDE+APTAB.CE

+AETqgcp + IOS:1|B.C,D.E’ (4.13)

where the factor of 10 is due to the conversion from
<...>(3’1) = 10<><2’1) in (4]2)

B. The four-point amplitude

According to the formula (4.8), the four-point amplitude
is given by

) a'\ 6 Kt d’Q
Y \2) o)tz ZP
4
[ 10 Gz P(TT ). (@14)
3 =1

It is easy to see that D3y is the only nonvanishing
contribution from the b-ghost since the external vertices
cannot provide four d, zero modes to saturate the DZ’;Z)

integral [2]. The integration over [dd'] is readily performed
via (4.10) followed by (4.12)

/

a 3
<<’CE;])(225Z37Z4)>>(3,1) =96¢, <§> (Tpsa) oy  (4.15)

Note that the right-hand side is independent on the vertex
insertion points z,, z3 and z4 because only the zero modes

®Writing the term AT'T)p3,45 is an abuse of notation since when
computing its component expansion the variables r, in the
definition of T34 (4,2) become covariant derivatives D, (see
[22]) and must also act upon the superfield Af'.
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entered the computation. A straightforward application of
(2.40) then implies

1 AN
M\ = (27)1951 (k) (5) YT (Th25.4)

X/ &Q /Im
(ImQ)S 2 v

s +Q
= (2 10510 k ﬁ K (U/ /I(l)
(27) ()<2> 24 | may f T4

(4.16)
where in the second line we used [47] (note [}CE‘I) | =-98)
(Tisa) =40(ViTasa). K =[(ViTos )P (417)

Note that the tree-level (3.13) and one-loop (4.17) kin-
ematic factors are related by [34]

K =x, (4.18)
a well-known result first obtained by Green and

Schwarz [40].

1. The o' expansion of the four-point amplitude

The o« expansion of the four-point amplitude7 has been
extensively studied in a series of papers [41], where the
subleading term in

a’Q 1y  2m I
3

signals the absence of D*R* interactions at one loop in ten
dimensions. Therefore, plugging the above result in the
four-point amplitude (4.16) leads to

/N 3 4
Mg”:(zﬂ)locsl()(k)(ﬁ) K+ O@).  (420)

2) 2%3z%
C. The five-point amplitude

Using the general result (4.8) the five-point amplitude
(4.1) becomes

SN
(271’)]821532 2 Z%Z

5
) SHERESTINCS | CESRTED
4 j=1

M =

"In addition to the analytic momentum dependence shown in
(4.19), threshold singularities arise from the integration region
where ImQ — o0. A careful treatment of these nonanalytic terms
can be found in [41].
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where

’Cfﬂll])@z’ <os25) = (Dy3) +T5,D{1,))V1Ua(22) -+ Us(25).

(4.22)

The [dd'] integration with the operators of (4.7) picks up
the terms with four and three d, zero modes from the
vertices, respectively. Using the multiparticle superfields of
[25,48] one arrives at

/

o\ 4
ViU U3ULUs| p = (3) Vi(d'Wy)(d'Ws5)(d'W,)(d'Ws),

/

o\ 4
ViU, U3U4Us|p = (§> Vip(d'Ws) (d'Wy)(d"Ws)ny,
+(2
o\ 1 | 1
+ > Vi(d'Was)(d' W) (d" Ws)ns
+(2,3|2,3,4,5)

2.3.4,5)

a3
+ <5> 11,V A5 (d"W3) (d'W,) (d' Ws)

+(2

2.3.4,5), (4.23)
where the notation (A}, A,,...,A,|A},A,,...,A,) instructs

one o sum over all possible ways to choose p elements
Ay, A,, ..., A, from the set {A,....,A,}, for a total of (2)
terms. We have w, (z)dz = dz for the genus-one surface, and
nij = ZL” + O(z;;) defined by (2.8) accounts for the singu-

larity from the OPEs among vertex operators. According to
(2.42) and (2.43), they introduce multiparticle superfields
W4, and V, defined in (2.44) and (2.45), respectively.

The integration over the zero modes of d, uses the
formulas (4.10) and (4.12) to yield

1 a3
0 ey = 96605 ) KOGz,
(4.24)
where
a/
KW (z3,....25) = <2> 2T 1opas + (2]2,3,4,5)]
a/
+ <§> 23T 1345 + (2.312,3,4,5)]
+ HrlnT'ln\zsA,s; (4.25)

see (4.13) for the definition of Tﬁ2,3, 45

notation, we keep track of the possibility to contract the

zero mode IT}, T, 5 45 With right-moving counterparts I},

even though its contribution to the open string correlator is
already taken into account by the nonholomorphic term in
the expression (2.8) for #;;. Upon discarding 1}, = 0 and

In slight abuse of

PHYSICAL REVIEW D 93, 045030 (2016)

adjoining the Koba-Nielsen factor, (4.25) is precisely the
open-string correlation function for the five-point pure
spinor one-loop amplitude [26,46] (for the RNS derivation,
see [42,44]).

Therefore, the closed-string amplitude (4.21) becomes

) K <a/>4/d2§2
5 2771.2 2 Zl—l()
5 . .
< [ 1060 oz P(TT )
24 ]:1
K a\3 d2Q
214522 (3) / (ImQ)3

x| KW 2y, ..., 25))PTE)
%

— (27[) 10510(]()

(4.26)

where we used Z71% = (2ImQ)° and the identity (2.40) on
the second line. Integration by parts identities [4,6] allow
one to express (4.26) in terms of 37 basis integrals with
BRST-invariant kinematic numerators. The ' expansion of
these integrals was analyzed in [4,6] and confirms the
absence of D?R’ interactions at one loop in ten dimensions.

1. The leading-order contribution
The low-energy behavior of the X, integral over

(KD (z,, ..., z5))|ZIgl) in (4.26) is governed by two kinds
of contributions [4,6]:
(i) zero-mode contractions IT}IT} — —7,,,(
lowing (2.11) at g =1
(i) kinematic poles8 from the residue of the world sheet
singularity 171,775 ~ |212]7

@) = fol-

2\ 2
’112’_1121%1) = —<_/> _”52(21 - Zz)Igtg) + O(a”).

4.27
a S12 ( )

Nondiagonal products of Green functions such as 7,73 or
127734 do not contribute to the leading order in «'. Hence,
we have

8Strictly speaking, the identity (4.27) is valid under integration
over one of z;, 7, and results from the behavior of the Koba-

(9)

. P
Nielsen factor Z,” ~ |z15|7%%12 as z; = z,:

_ 1 .
/dzzzmzmzzszg) :4ﬂ/|212|d|212|w\212\ w54 O(a?)
12
4
_ O(a).
(1’512+ (a?)

This only depends on the local properties of the world sheet and
therefore holds at any genus.
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|<’C(1)(Zz, ceey
%

__(* 2
= <2)I QIC 24—1—(’)((1 ).

where the kinematic factor ICgl)

z) Pz

(4.28)

is defined by (note

/s’ = -8)
T 2
) = [l g4 5)
S12
(T35 m
+ {SBJF (2.3[2,3,4.5) | + (T34

(4.29)
and the integration over ¥, gives [; = 2*ImQ*. This leads

to the following result for the one-loop five-point amplitude
(recall that [du, = 2x/3):

K+ 0(a).

(1) 10510 ANMES
M = (2 k 4.

In Appendix A the overall coefficient in (4.30) will be
validated by factorization.

2. Components in type IIB and type IIA

The type IIB components of the kinematic factor (4.29)
are related to the first o correction of the five-point tree-
level amplitude (3.18) and (3.19) [23]:

1 ad\ 3 0
’Cg )|IIB =2°5° (E) ’Cg )|C3

{ 1: five gravitons
X

(4.31)

—% : four gravitons, one dilaton '

The relative factor between the tree-level and one-loop
amplitudes at order ’* turns out to depend on the charges
of the external states under the R-symmetry of type IIB
supergravity, as has already been observed in [6].
Components with the same R-symmetry violation as four
gravitons and one dilaton give rise to an additional relative
factor of — % This will be explained in Sec. VIC from an
S-duality point of view. Since R-symmetry violating four-
point amplitudes vanish [10], the five-point amplitudes in
this work provide the simplest context to study the S-
duality properties of interactions with R-charge. Also, five-
point amplitudes that violate R-symmetry by more units
than caused by a single dilaton insertion vanish at any
loop-order.

Type IIA components of the five-point low-energy limit
(4.30) cannot be expressed in terms of AYM bilinears.
Instead, we have

PHYSICAL REVIEW D 93, 045030 (2016)

. a\ 3 ,
IC(I) 5 gravitons _ 2552 <E> [,Cg()) |C3 _ |€melk~e2k3e3k4e4k565 |2]’

5 A
(4.32)
. 172,213,314 ,415,5
where the notation "¢k ek ekeke = fupaz--Psis
el 12 5 03
nkp2 2+ -kp. ey, has been used and the free vector 1ndex

m is contracted between the left- and right-moving factors in
the holomorphic square. The parity-violating type IIA com-
ponent with a B-field and four gravitons has been evaluated
in [6].

Upon insertion into (4.30), the kinematic factors (4.31)
and (4.32) give rise to the following low-energy limits for
the five-graviton amplitudes:

(1)) 10510 a\ & 0
MS |HB gravitons:(zﬂ) o (k> E %KS |C3’

o K5 0
|IIA gravitons (2ﬂ)10510(k) <§> % [K:g )|C3

_ |€me'kzezk3e3k464k565 ‘2] (433)
According to (4.31), the R-symmetry violating type IIB
components (e.g. four gravitons and one dilaton) carry an
extra factor of —1.

V. TWO-LOOP CLOSED-STRING AMPLITUDES

In this section we compute the low-energy limit of the
two-loop five-point amplitude including its overall coef-
ficient from first principles. This includes a recomputation
of the four-point amplitude using the conventions of Sec. II.
For previous two-loop four-point results, see [7,8,49-51].

A. The amplitude prescription

The n-point two-loop amplitude prescription (4.1) is
given by

— nZA/HdZ

/ 2) (b, ) UM 1) -

where the zero-mode regulator A/ () is defined in (2.36),
and the b-ghost insertion was specified in (4.2). At genus
two, there are (16, 16), zero modes of d, and (11, 11), zero
modes of s* The latter are entirely saturated by the
regulator through the factor N — (s'd")!(s2a*)!;
see the discussion below (4.3).

In presence of five vertex operators, it is easy to see that
the total number of d,, zero modes from the b-ghosts can be
distributed as (p, ¢) such that p + ¢ is either 5 or 6. These
two contributions can be separately computed using the
zero-mode expansion

U (z,))?

(5.1)
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(dymnpd)(z) - (dl}/mnpdl)wl (Z)w1(2>
+ 2(dl}/mnpdz)a)l (Z)Cl)z (Z>

(d2ymnpd )wZ (Z)w2 (Z>

and the general formulas (2.31) as follows:
3
31 CRAC;
=1

LAN. o)
(%) ——— B
(2) (27)6192° / 1B

+ (IT,,BY 5, + 117, B,

(2.3) Gay) oo 2. (5.2)

The shorthand notations for different b-ghost contributions
are defined by’

I =

7y [2(Ard'd")(Ard d*)(Ard>d?)),

=< ) 96
— (")
(

Ay’
) @

(4
96
(4
— (Aymd")(Ard'd") (Ard*d?)),

B(373) = (

= [2(Ay"d")(Ard" d*)(Ard*d*)

(Ard'd")(Ard*d?)],

B3
B3, < [2(Ay"d*)(Ard'd")(Ard"d?)

(5.3)

with the convention that (Ard'd’) =
Note that B(33) —

(A" Pr) (@'Y aped’).
—B(33) and Bf; ;<> — B{} 5, under the

interchange of zero-mode labels d'<>d?. As indicated by
the ellipsis in (5.2), two-loop amplitudes involving n > 6
closed-string states allow for additional b-ghost contribu-
tions with fewer zero modes of d,,.

Since the vertex operators are independent of w’, w¢ and
s§, the integration over their zero modes can be performed
at an early stage using (2.27),

2
‘/Hdw dw ds —(w'iw)—(d's")
a8 2 (e-T-d")?
- <5> (27) *224222 ,Hl 11151) (5.4)

°The (5,5) « zero modes from the b-ghosts and the vertices can
in principle be saturated by a b-ghost contribution
Bj} , ~ (d’d®)(d'a@*)(I"d*). However, the integration over

the b-ghost insertions via (2.31) yields a 7; integrand

Q0 0Q1p (Tm 9212 m 0Qp
~€iriris 7, o, (ITy 5 + 117 o, ) whose summands do not

depend on all entrles of the penod matrix and which vanish

upon contraction with the antlsymmetnc €iyi;- The same
mechanism suppresses 12, B, 5 and I} nB3 ) from (5.2).
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The tensor structure (e - T - d') is captured by the operators
D(14,14) and D7} (14.13) defined in (2.26). They allow one to

rewrite the amphtude (5.1) as
e _ g’ 14 Py} /dZQ
T2 (271')38251926 73?

/ (KD (), ..-,zn)>>(3.2)|2<f[lekj-xj>’

where
2
de])(zl, ...,Zn) = (D(14 14) + H D(H 14)
+ILD, 5+ ) U (@) - U (z,)-
(5.6)

The ellipsis along with I12,D accounts for b-ghost

D413
zero-mode contributions which drop out from the sub-
sequent four- and five-point computations.

1. Scalar and vector building blocks at genus two

We shall now evaluate (5.6) on the part of the vertex
operators which contribute zero modes d', d*>. One can
show that

D (14,14)(d" W) (d'Wp)(d*W ) (d* W)
= 962C¢21TA,B|C,D(/L/_1)’
D5 14y (@'Wa)(d'Wp)(d' W) (d*Wp ) (d* W)
( )962635ABC|D (A 4).

14 13) (d WA)(JZWB)(‘FWC) (d] "VD)(dl WE)

2 -
( >962 2S/wchE(A,ﬂ)

with multiparticle labels A, B, ...
block

(5.7)
and scalar building

2
)
X (Aymdelm 2) (Ay" W o) (AyP W)
X (A" We)(AyPWp).

TA,B\C.D (’1’ ’_1) = 6 (zym,nlm r) (’iydefﬂ (/_17m2n2p2 r)

—~

(5.8)

The two zero-mode patterns (Ay”'d")(Ard'd?)(Ard*d?) and

(Ay™d?)(Ard'd")(Ard*>d?) in the b-ghost contribution B,

given by (5.3) lead to distinct tensor structures sthm

AB.C|D.E
and SABC‘DE such that
m (D)m (2)m
SABC|DE_SABC|DE+SABC|DE (5.9)
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with
1)m .My d 2 2 a,mn|pym a ny
S D) == 35 A D WD) Fnas ) G0 W g W) G W) G W) G W),
(5.10)
SO (17) = =2 (i) (i A W) (G W) (A= We) Ay W) (Ayhs W 5.11
apcip e A) = ay 5 ("Y1 ) (A 4,030, ) (A by T) (A W4 ) (A 2 W) (Ay S W o) (Ay > W ) (Ay > W ). (5.11)
Note that the integrals of D(13 14) and D7} (14.13) give rise to the same kinematic structure St s CIDE because D< 13.,14) D’<”1 413)
under the interchange of zero-modes d,l<—>d§
2. Kinematic symmetry properties at genus two
The above definitions in (5.7) manifest the symmetry properties
T4 gjc.p(4, A) = T (a.8)\(c.0) (4 A) = Tc.pa.s(4, 2) (5.12)
as well as
S,(qj)B cp.e ) = SEAVZ ol.p) b 2) (5.13)

with j = 1, 2. As demonstrated in Appendix C, gamma-matrix manipulations and the pure spinor constraint imply that the
kinematic factor (5.8) can be rewritten as

192

Tapicp(A4) = “ar

( Yamn” )(ryapqr)(i},mWA)(ly WB)(lprC)(ﬂ'}/qWD) (514)

and satisfies the Jacobi identity,
T a gjc.p(4, 1) + TA.D\B,C(’LZ) + Tacip.s(As 2)=0. (5.15)

The symmetry (5.15) assembles the holomorphic one-forms in the antisymmetric combinations A;; = eMwy(z;)wy(z i)

D(14,14)(dWA)(ZA)(dWB)(ZB><dWC><ZC)(dWD)(ZD)
= 9620§(TA,B|C,D< Do (z4)@1(z5)@2(20)@3(2p) + @(24) @2 (25) @1 (z¢) @ (2p)]
+ TA,C\B,D(/L 2)[0)1 (za)w1(zc) 2 (zp)@2(2p) + @2(24)@2(20) @1 (28) @1 (2p)]
+ TA,D\B,C(/L '1)[0)1 (z4)@1(zp) @, (28)@2(2¢) + @2(z4) @2 (2p) @1 (25) @1 (2¢)])
= —96ZC§[TA,B\C,D (4, 2)Apalpc + Tpap.c( DAspAcp)- (5.16)

As will become clear later, the appearance of A;; in (5.16)  Together with the ten-term identity'
is a crucial requirement for modular 1nvar1ance of the

amplitude. 2)m
Furthermore, it is shown in Appendix C that SALC‘DE SAB .C|D, g4 A)+ (D, E|A,B,C,D,E) =0, (5.18)
can be eliminated in favor of S,(A i} cpE 0 yield
one can show that (5.17) implies a vector generalization of
. - Nm - S ‘
S s oo 1) = ZS;LQDE(/L 1)+ SI(A.)D.E\B,C(/I 7) the scalar Jacobi identity (5.15)
- N - -
+ S}(B,)D,E\A,C(;L’ ’1) + S(C,)D,E\A,B(;L’ i)' The identity (5.18) was checked to hold for its bosonic

(gluon) components [23], and it is believed to hold at the
superfield level using similar manipulations seen in Appendix C.

(5.17)
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*Svg.z),E\A,B(’1 2) + SE.p E|A, c(4: A+ S,rt\n.D.E\B,C(’I’ A).

Si\n,B.C\D,E(l’ /_1) =
This is instrumental to identifying A;;

(I, D'(% 14)

PHYSICAL REVIEW D 93, 045030 (2016)
(5.19)

in the following permutation sum:

+1I5,D7, 13)(dWa)(24)(dW5) (25) (AW ) (20) (AW ) (2p) (AW ) (2k)

= 962921 <02(/> SQ",B,qD,E(/L Z)[H}nwl (za)@1(zp) @1 (zc) @y (zp)wa (2) + H%rzC‘)Z(ZA)wZ(ZB)wZ(ZC)wl (zp)o1(zE)]

+ (

)

2
= 962‘}1( )SZB c|D. (4 '_1) Z Appo;(zp)Acplly, 4 cyc(A, B,C, D, E).
=1

Applying theorem 1 of [9] to the expressions (5.8) and (5.9)
1

Tapicp(42) = WTA,B\C,D,
- 1
SXB.C‘D,E(X, )= —(/1/_1)2 S;’;’B.C‘D.E, (5.21)
leads to
(Tapicn(AA) 2y = (Tagico)02)
<S,TBCDE(’1 ’1)>32 _8< ABCDE>(02) (5-22)
| \

where the factor 8 comes from (...)(; 5) = 8(...) (g 2)- As we
will see, the vector building block contributing to two-loop
amplitudes with five or more particles is

Ty scpr =AxTscpe +A5TacipE

+ACT s gp.E + SSA,BA,C\D.E’ (5.23)

where the factor of 8 is due to the use of (5.22). By (5.15)
and (5.19), it obeys the same symmetry properties as

SiB.cp, (4 2),

Ty pcpe = Tls.o)n.6)

Ty peiac = Tascpe~ Tapesc = TCoEas (5.24)
Hence, the manipulations shown in (5.20) carry over to
SXB,C\D,E(A’ ) - T3 scpE

B. The four-point amplitude

According to the general formula (5.5) the four-point
amplitude at two loops is given by

M<2)_ o\ 14 K4822 /dZQ
2/ (2r)82°1920 ) 73?

| [(Pasig UiUaUaUi)sa) <H ">

(5.25)

(5.20)

since the four vertices cannot provide enough d, zero

modes to saturate the terms with DZ’h 14) and D(l 413) in

(5.6) [2]. Using the formula (5.7), the Jacobi identity (5.15)
and the definitions (5.22) it is straightforward to verify that
[see (5.16)]

(D(14.10)U Uy U3Uy) 3.5
YA
= —96°c2 <5> (T 2340 (0.2) D41 803
+(T14p2.3) (02 A 12834]- (5.26)
Together with (2.40) and (5.22), this implies that

a/

5 4 24 dZQ
(2) o K'e
M7 = (27)000(K) <§> 245305276 / (detImQ)>

s [ HKO(zy, oo za))PTR,
o

(5.27)

where

<’C(2>(Zl» e 2y)) = <T1.2\3,4>A41Az3 + <T1,4\2,3>A12A34-

(5.28)

In absence of singularities |z; j|_2, using Riemann’s bilinear

identity (2.29) in the form of

/ A12A34A12A34 = 26(det ImQ)z,
Zy

/ A12A34A41A23 = 25 (det ImQ)z (529)
%

leads to the following low-energy limit:

(KO (), ... 2)) PTP = 25 (det ImQ)2KY) + O(a?),

Zy

(5.30)
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where (note [ICEE)} =—12)

2
K = (T 1ap P+ (T 1apa) P + KTau0) P

Finally, using the volume of the genus-two moduli space
[ dus = 2% /(3%5), one arrives at the following low-
energy limit:

(5.31)

N\ 5 4,22
a) s Ky + 0”)

2
MY = (27)195'° (k) <5 Pk FLrzee

N 5 4,24
— 20)/%9°(0)(5) g (5T 5ty + I

21033543

+ O(%). (5.32)

In the second line we used the BRST cohomology
. . 11
manipulation [8,34]

(T1opa) =2"33551,(V T2 34) (5.33)

together with the definition (4.17) of the one-loop kin-

ematic factor ICES) [which in turn agrees with the tree-level
kinematic factor (3.13)].

An alternative presentation of the four-point two-loop
amplitude follows by plugging the result (5.33) in (5.27)
and using the definition [7]

V(z1s s 24) = 512841 A3 + 514412 A5 (5.34)
to obtain
) a\5 ke
MY = (21)19510(k) <5> Sraks
d’Q 27(2)
S s Z,”. 5.35
[ ot fo PP (535)

In the low-energy limit where IEP — 1, using [7]

. V(21,0 24) P = 22(sT, + 573 + 57,) (det ImQ)?
4
(5.36)

and [ du, = 2°7%/(3%5) leads to the same answer (5.32).

C. The five-point amplitude

The five-point amplitude following from the general
formula (5.5) is given by

M _ o'\ 14 K et /JZQ
3 2) (27)%2°1920 ) 72*
5
2 Joxi
O ez isa P(TTe ). (537
5 j=1

"The normalization of T 3,4 here is two times bigger than in
[8]; see definition (5.8).

PHYSICAL REVIEW D 93, 045030 (2016)

where

2 m
]Cfd])(zh [EEP) ZS) = (D(14,14) + HrlnD(13.14>

+1I5,D{, 13)) U1 (21)Ua(22) -+~ Us(zs).

(5.38)

For the first term in (5.38), the external vertices must
contribute four d,(z) variables to saturate the remaining
(2,2), zero modes required by the D y4 14) integration. This
admits one OPE (2.43) resulting in a two-particle superfield
W, from (2.44) accompanied by the singular function ;; ~
Z{I»' defined in (2.8).

However, the OPE (2.43) only determines the residue of
the simple pole zi‘jl and allows for two inequivalent
functions of the world sheet positions—either 9;G;;w,(z;)
or —0;G;;w;(z;). Their difference is regular in z;; and drops
out from the low-energy behavior of the amplitude due to the
factor of 8*(z; — z ;) in (4.27). Since the ambiguity does not
affect the subsequent low-energy analysis, we will use the
notation (dW;;)n;; to leave the subtlety in the exact
dependence on z;, z; undetermined.

Another possible obstruction to extend the current
analysis beyond the low-energy limit might stem from
OPE singularities between the b-ghost and the vertex
operators (see for instance [52,53]). By arguments similar
to [9], these might affect the two-loop five-point amplitude
at order D*R°.

Similarly, for the last two terms in (5.38), the vertices
must provide five d,, variables to saturate either (2, 3), or
(3,2), zero modes. Together with the contributions from
the previous paragraph, we arrive at

0020303l = (% ) W) (@) @ Wi

+(1,2]1,2,3.4,5)]

+ (%)422:1'1’,’%01(@)A,1,1(dW2)(dW3)

I=1

X (dW*)(dW3) + (1<52,3,4,5),
/

0100303l = (5 ) (W)@ @) ) ).
(5.39)

Using the formulas in (5.7) a long but straightforward
calculation leads to

a/

4
<<’CE§})(Z1, ...,Zs)>>(3.2) - (5> 962631<IC<2) (21, ~--’Z5>>(0,2)’
(5.40)

where
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2
K:<2) (Z], ey Zs) = [T;1n’2.3|4’5 Z A51601(Z2)A34H,In + Cy0(12345)]
I=1

o
+ <2> M12(T12314,5824835 + Tip43583445) + (1,2[1,2,3,4,5)], (5.41)

and 77", 345 is defined in (5.23). As detailed in (5.20), the symmetry property (5.24) of 7', 345

line of (5.41) in terms of two factors of A;;. Similar to (4.25), the zero modes I/, in the first line are understood to only
contract right-moving IT via (2.11) since their contributions to the open string correlator are already captured by the
nonholomorphic term in #;; given by (2.8). After discarding IT}, — 0, (5.41) is the low-energy regime of the open-string
world sheet integrand for the five-point two-loop amplitude.

Collecting the above results, the low-energy regime of the two-loop amplitude of the closed string reads

2) '\ ke / d2Q @ . -
M = | — C . | | O
. (2) 27326 | (et ma)s Jy, |V E0 o sheal (L )+ O

J=

/\ 5 KSeZ
= (21)1610 (k) (= / / .
(2m) 67 )<2 295365225 | (det ImQ)’ (K2

where in the second line we used (2.40).

is crucial to obtain the first

Lz PTE + 0@), (5.42)

1. The low-energy limit

The low-energy limit of the genus-two integral in (5.42) can be extracted along the same lines as done at genus one. First
of all, (2.11) allows oneto perform contractions among left- and right-moving zero modes of IT” which can be integrated
over Zs using

A A122“;11601 23)Ags X AIZZH @;(23)Dgs = —2%7 <2>’7mn(det ImQ)?,
5 =

I=1

és AIZZH w1(23) D45 X Ay Znﬁd’J z5)Ap =27z <2>'1mn(det ImQ)?,

I=1

2 o
A I, 0;(z3)Ags x A M@, (z4)As; = —2°7 ( ) o (det ImQ 5.43
[25 12; 1(23)Aas 23; (Z4)As) 3 Honn ( ), ( )
and cyclic permutations. Then, the subset of the terms (@ )>|ZI<2)
~1;jfl pq in (5.42) with “diagonal” labels i = p and j = ¢ s, MERERES 5
contributes according to (4.27), resulting in ten permuta- o
tions of =27 <2> (det ImQ)le + O(a?), (5.44)
/ (T12314,5) A2aBss + (T1pap3,5) Aoz Ags|? 5
= with kinematic factor (note [ng )} =—12)
= 2°(det ImQ)*[[{T2345)* +cyc(3,4,5)],
where the integrals are identical to the four-point case ) _ (T35 [(Tiaps)* KTiaspa)l?
(5.30). Permutations of #5773 or 11,434 from the holomor- 5 = S1 + S + S
phic square in (5.41) do not contribute to the low-energy - )
limit (5.42). —|—\(T345“2>| +(1,2]1,2,3,4,5). (5.45)

By assembling the two sectors with and without con-
tractions between left and right movers, one can show that

the leading-order terms of the five-point two-loop ampli-
tude (5.42) are given by

Hence, using [ du, = 2*23/(335) implies the following
low-energy limit of (5.42),
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(X’) 6 K.S 62/1

2
M =m0 )(5) s

> kP + 0(a7).

(5.46)

2. Components in type IIB and type 11A

A long and tedious calculation [23] identifies the type
IIB components of the two-loop kinematic factor (5.45)
with the o correction ~{s of the five-point tree-level
amplitude (3.18) and (3.19):

) 282622 (4 7 -0)
IC5 |IIB:_2 3°5 3 ’CS |§s

1: five gravitons
X (5.47)

—% : four gravitons, one dilaton '

Similar to the kinematic factor (4.31) in the one-loop
low-energy limit, the relative coefficient to the tree-
amplitude depends on the total R-symmetry charge of
the external states, in line with S-duality. The components
considered in (5.47) extend to a variety of further state
combinations of alike R-symmetry charges by linearized

supersymmetry.
Similar to the analogous one-loop result (4.32),
type IIA components involve additional tensor

structures as compared to the AYM bilinears in the tree
amplitude,

,C(2) 5 gravitons __ 2283652 <(1/> -
5 A - E

5
% IC(O>| _1 52, eme'kzezk3e3k4e4k565|2 ,
506 9 i

1<i<j

(5.48)

me' kel ket kS e® 2 5,5
where ¢ ,€q,--kpse

Upon insertion into (5.46), the kinematic factors (5.47)
and (5.48) give rise to the following low-energy limits for
the five-graviton amplitudes:

— Jmnp2qz...psqs 11,2
=€) e,k

5,24
(2) g0 _ o\ _Ker )
M5 |IIB gravitons (2”) 10510(]() (5) 29335”2 ICS |C5’

2) 10 od KS 6,2/1
Mg )|IIA gravitons <27[) 10510(k) (5) 2933572:2

5

(0) 1 2 | me' kel Pkt et kP e’ |2
X[ICS |§5—§§ s7le I*1.

ij
1<i<j

(5.49)

According to (5.47), the R-symmetry violating type I1IB
components (e.g. four gravitons and one dilaton) carry an
extra factor of —3.
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VI. S-DUALITY PROPERTIES

In this section we are going to show that the type 1IB
five-point amplitudes computed with the nonminimal
pure spinor formalism agree with expectations based on
S-duality.

A. Review of four-point S-duality

In the string frame, the SL(2, Z)-duality prediction for
the perturbative four-graviton type IIB effective action is
given by [3,54,55]

Sty :/dlox\/—g[R4(253€_2¢+4Cz)
4 pd 9 8.
+ D*R 2C5€ +§C4€

48 8
+ l)6R4 (4{%6—24) + 8(24’3 + ?4%62(/; + §C6€44))

-]

where the ellipsis refers to terms of higher order D=8R*. A
dilaton dependence of the form e(29-2% is associated with
the g-loop order in string perturbation theory. The tensor
structure of the covariant derivatives D and Riemann
curvature tensors R suppressed in the shorthand R*,
D*R* and D°R* will not be important in the following.
The coefficients of the R* and D*R* interactions can be
identified with the zero modes of the nonholomorphic
Eisenstein series

6.1)

E3/2((I), (i)) = 2c3e—3¢/2 + 44‘2645/2 4+ - (62)

_ 8
Es) (@, ®) =2¢5e772 + §C4e3¢/2 +- (6.3)

depending on the complex axio-dilaton field ® = Cy+
ie™. A relative factor of e¢*?/? stems from the trans-
formation between string frame and Einstein frame. The
Fourier modes in the ellipsis of (6.2) and (6.3) describe the
nonperturbative completion of the type IIB action [3,54] and
ensure modular invariance with respect to ®. The prefactor
of the DSR* operator in (6.1) was first predicted in [55] and
descends from a modular-invariant function which is made
explicit in [56].

The four-point amplitudes reviewed in the previous
sections exhibit the following low-energy behavior (in
both type IIB and type IIA theory):

045030-18



TWO-LOOP SUPERSTRING FIVE-POINT AMPLITUDE AND ...

N 3
M‘(10) _ (271’)10510(]() <%> K4€_2’12751C510>
3 2
x (+2§3+Csaz+é%ag+~~>,
03 3

(I _ A\ K o, G
M, _(2ﬂ)10510(k)(2) 243ﬂIC4 1+§03+~~- ,

(6.4)

) o\ 3 K.462)» 0
My = (22)°5"° (k) <5> 2103353 K (o ++2).

The loop and & orders are in one-to-one correspondence
with the curvature couplings e(?-2?D%*R* in the action
(6.1). Matching the ratio of the R* interactions ~{5 and ~(,
with the values computed in (6.4) relates the coupling
constants ¢? and e?,

o2 72 o2

D 20 _ 564,20
= — et = 21" e"?.
3C3 26371'24’3

(6.5)

Furthermore, one can verify using the conversion factor
(6.5) that the ratios of all the interactions match between
their predicted values in the action (6.1) and the explicit
amplitude computations summarized in (6.4). The first
perturbative verification of the expressions in (6.1) was
achieved in [41,54] for genus one, in [7,49,57] for genus
two and [9] for genus three.

B. S-duality at five points for graviton couplings

We will now check if the above ratios predicted for
the four-point amplitudes at different loop orders also
hold for their corresponding five-point amplitudes at
one and two loops. The extension of the type IIB
effective action (6.1) beyond the four-point level com-
plements the four-curvature corrections D*R* by a tail
of operators'? D2k-DR4! with higher powers of
curvature [ =1,2,...,k required by nonlinear
supersymmetry.

The result for the two-loop five-point amplitude
confirms that the five-field completion (D*R* 4 D’R%)
is accompanied uniformly by the zero modes of Es,
given in (6.3). Similarly, the compatibility of the Ej /2R4
interaction with five-point amplitudes was verified
through the one-loop analysis in [6]. These checks
are based on the o expansion of the five-point IIB
amplitudes at tree level, one and two loop computed in
the previous sections,

"In addition, novel couplings of the form D*R>> without a
four-field representative in their supersymmetric completion
might arise, e.g. the DSR> interaction identified at one loop [6].
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/

Mgo) _ (27[)10510(]() (%) 1<5e‘2’1(27r)21C§0>,

1) ot a\ © 0
Ml = 2000 (5 ) 25 KL

1: five gravitons
X b
—% : four gravitons, one dilaton

2) 16 a/ KSeZ/l o
MP | = (27)1%6" (k) <2> m’cg )|Cs

{ 1: five gravitons
X

(6.6)

—% : four gravitons, one dilaton’

where the tree-level factor K is given by (3.19) [36].
Hence, the ratios of the corresponding five-point
interactions at one loop are easily checked to agree
with the perturbative terms in the Eisenstein series (6.2)
and (6.3),

M) o __
Mé()) IIB gravitons ~— 263”2¢3 - 4,3 s .

and similarly at two-loops (recall that {, = %2 and{, = %),

Mg2) |a,6 B oM 4 e, 65)
Mg()) 1B gravitons — 21133571'4C5 = 3(;5 )

By modular invariance of the Eisenstein series E,, (6.7) and
(6.8) confirm S-duality at the five-point level.

C. S-duality at five-points for dilaton couplings

The ratios of tree-level and loop amplitudes seen in (6.6)
depend on the R-symmetry charges of the external type IIB
states. Trading one of the five gravitons for a dilaton
introduces additional factors of —% and —% into the
comparison of low-energy limits. These numbers have a
natural explanation from the Einstein frame presentation of
the leading terms in (6.1),

RYE;)5(®, ®) + (D*R* + D*R%)Es5 5 (@, @) + -5 (6.9)
see (6.2) and (6.3) for their perturbative contributions.

Processes which violate the R-symmetry of type IIB
supergravity (such as the scattering of four gravitons and
one dilaton) are associated with operators which transform
with modular weight under S-duality [10]. Hence, by
modular invariance of the type IIB action, they must be
accompanied by modular forms of opposite weights. The
latter can be obtained from modular invariant functions
such as E by acting with the modular covariant derivative

D: el — q-e?. (6.10)
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The modular forms obtained from E;;, and Es), are
characterized by the following perturbative terms (with
Fourier-modes in the ellipsis):

- 3 1
DE3;(®. ) = <—§> 20367302 4 (§>4gze¢/2 NI

(6.11)

i 5 ez (3\ 8, se
DEs);(®, @) = ) 2se + 5 55.,’43 + -
(6.12)

In comparison with (6.2) and (6.3), the ratio between tree-
level and higher-genus contributions is deformed by the
covariant derivative in (6.10), namely by —% and —% in
cases of E3/; and Es ), respectively. The modular forms in
(6.11) and (6.12) multiply the R-symmetry violating
counterparts of R* and (D*R* + D?R®) interactions which
in turn describe the dilatonic amplitude components in
(6.6). Hence, the covariant derivative in (6.10) holds the
key for the S-duality origin of the relative factors between
graviton and dilaton amplitudes in (6.6). It would be
interesting to extend the analysis to higher orders in o
and to compare the ratios between amplitudes at tree level
and two loops for higher-derivative operators with and
without R-symmetry charges, as was done in [6] at one loop
up to order (o')°.

VII. CONCLUSION

As the main result of this work, we have computed the
low-energy limit of the five-point two-loop amplitude
among massless type II closed-string states. The superspace
representation of the result is given in (5.45) with prefactors
made precise in (5.46). The type IIB components involving
five gravitons as well as four gravitons and one dilaton were
found to match the tree-level amplitude at the correspond-
ing order in ; see (5.47). The determined ratios tie in with
the S-duality expectation based on the Es/, coefficient of
the (D*R* + D?R5) operator in the effective action [3] and
its counterpart DEs;, with modular weight; see (6.12).

The computation was performed using the nonminimal
pure spinor formalism [2] where the normalizations can be
reliably kept track of and where the b-ghost is explicitly
known. However, subtle issues regarding possible OPE
singularities between the b-ghost and the vertex operators
(see for instance [52]) currently prevent the determination
of the five-point two-loop amplitude to all orders in o'.
These subtleties did not affect the two-loop low-energy
analysis of this work, but it would certainly be desirable to
extend the five-point correlator in (5.41) to all orders in the
low-energy expansion. Starting from the Zhang-Kawazumi
invariant expected at the subleading order in o [57], the
systematics of the low-energy expansion and the threshold
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corrections deserve to be studied along the lines of the one-
loop results in [41]. The o expansion of the corresponding
open string amplitudes at two loops calls for a higher-genus
generalization of the elliptic multiple zeta values [58]
which were studied in the context of planar one-loop
amplitudes in [59].

Also, it would be rewarding to cast the kinematic factors
into the language of the minimal pure spinor superspace of
[1] and to bypass the computational steps required by the
extra world sheet variables of the nonminimal pure spinor
formalism. In particular, this concerns the evaluation of
covariant derivatives originating from r, and the tensor
manipulations required to arrange the 1, into contractions
with A%. For the three-loop four-point kinematic factors of
[9], a much simpler BRST-equivalent representation in
terms of (minimal) pure spinor superspace has recently
been found [48].
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APPENDIX A: WORLD SHEET FACTORIZATION
OF THE AMPLITUDES

In this appendix we show that five-point multiloop
amplitudes computed in the main body of this work
factorize correctly on their massless poles as required by
unitarity. We first fix the overall normalization x of the
vertex operators by imposing unitarity for the four-point
amplitude at tree level. After that there is no freedom left to
adjust parameters and we proceed to check the factorization
of the higher-loop amplitudes.

1. Factorization of the four-point tree-level amplitude

The factorization constraint for the massless pole s, in
the four-point amplitude reads

10
O, _ au [ d7k
M4 |Slz _a/ /<2”)IOZ

where the notation |; ~projects to the pole in s;, and
discards regular terms in sy, the sum ) runs over all
states x in the supergravity multiplet and —x represents the

MO (1,2, )M (=x,3.4)
k2 '

(A1)
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2 3
x
1 4
FIG. 1. The factorization of the tree-level four-point amplitude

in the massless pole sy, in terms of three-point amplitudes. This
condition was used to fix the normalization constant k2 = ’jj—i
in Eq. (A7).

FIG. 2. Factorization channel of the five-point two-loop am-
plitude into a tree-level three-point and a four-point two-loop
amplitude.

state x at momentum —k, and complex conjugate polari-
zation. This is depicted in Fig. 1.

On the one hand, recall the low-energy limit (3.15) of the
four-point amplitude

(ViaV3Vy)[?

0 -
M, = (20) 050 (it on

(A2)

On the other hand, a short computation using the factori-
zation constraint (A1) yields

0 0
MO =g [ 4K MY (1,2, )My (=x,3,4)
4 lsp (2”)10 k)%
10510/ 1y 6p—dd X\ 7 s 2
= (27)'96'%(k)x®e 5) @5 (V1 V3Va) 2,
S12

(A3)
where the three-point amplitude is given by

MO (1,2,x) = (27)1980 (k' + k2 + k)

N -1
< (5) e A

and we used
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/ 10, 0K K24 K)SO (kI -+ K

k3
1
=—08K +E2+ B+ k) (AS)
2S12
together with the explicit component sum [23]
D AVIVaV(ViV3Vi) = (ViaVaVy) + O(spa).  (A6)
Therefore, equating (A2) and (A3) leads to
K?e ™ = %. (A7)

2. Factorization of the five-point tree-level amplitude

The normalization of the five-point tree amplitude (3.18)
will be checked through its factorization on the massless s,
pole according to

MO ot [k ZM§°>(1,2,x)Mg°>(—x,3,4,5)
5 Isip (2”)10

k? '
(A8)

where the three-point amplitude was recalled in (A4) and

MY (=x,3,4,5) = (27)196"0(=k* + I3 + k* 4 k°)cte 2

V. V.V 2 V.V.V 2

X2ﬂ,'|:|< xV3 45>| |< x V4 35>|
S45 §135

|<lxi5‘34>|2

$34

] +O@@?).  (A9)

Using (A7) and the result of a component expansion [23]

D AVIVaV(ViV3Vis) = (ViaV3Vis) 4+ O(s1a, 54s),

X

(A10)
the factorization constraint (A8) gives
/
M§O)|s,2 _ (2]1’)10510(]{) (%) K56—21(2ﬂ)2
o [|<‘/12V3V45>|2+ [(ViaVasVa) 2
S12545 $12535
Vi VsV |?
+ |< 12V5 34>| :| —I—O((Z/3). (All)
512534 S

This ties in with a component comparison of the terms with
a pole in sy,,
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- (ViaVaVas) [P [(ViaV3sVa)|?
A%y - Sy Assly, = [ 1 +
S12845 $12535

Vi,VsVa) 2
+|< 12V5 34>|}
S12534

: (A12)

S12

which confirms the normalization of the five-point closed-
string amplitude (3.18).

3. Factorization of the five-point one-loop amplitude

From the low-energy limit of the five-point amplitude
(4.30), it follows that

ad\* K |<T12\3.4,5>|2

ML, = a5 (5) 2 4 o)
I\ 4 -5 |<V T >|2
— (205101 (L) K_INV12l345/ 17
(27)% U(z) B3 s,
+O®d), (A13)

where in the second line we used (Tyy345) =
40[(V12T345) — 17 (A123.45)] (as shown in Appendix B)
and discarded the contact term since it does not contribute
to the s, pole.

One the other hand, given the three-point tree (A4) and
the low-energy limit of (4.16),

K (a3 /
M) = (27)1950(k) 2431 <E> [(ViT234) + O(a),

(A14)

the factorization constraint

Yy e [k MO (1,2, x)MV (=x,3.4.5)
s, =@ 10 2
(2n) - kz

(A15)

together with (AS) yields
(1) 10510y gt (@) K e 1
M =(2 6" (k — —
D, = s wa () S o
X Z|<V1V2Vx>|2|<VXT3.4,5>|2 +0(a").
(A16)

One can show via a component expansion that the
kinematic factors satisfy [23]

D AVIVaVN Vi Ts45) = (ViaT3as) + Olspa).  (Al7)

X

By (A7), one finally arrives at
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My _ 10s10/5 (N [(ViaT345)] 5
MY, = (21)195'(k K [Wilsasil | oy
5 |.\]2 ( ﬂ) ( )<2> 233 i O( )7

(A18)
in complete agreement with the expression (A13).
4. Factorization of the five-point two-loop amplitude

In the low-energy limit of the five-point two-loop
amplitude (5.46), the terms with a pole in s, are given by

) a/ 6 K562/1
M2, = (2m)1081(k) (—)

2 ) 23739532
T 2 T 2 T 2
% [|< 12,3|4,5>| +|< 12,4\3,5>\ +|< 12,5\3,4>|
S12 S12 S12
(A19)

The s,,-channel factorization (Fig. 2) constraint in the low-
energy limit

M2, = a / 4%k o~ MY (1,2, )M (-x.3.4,5)
e T e g

X

(A20)

for the factorization into a tree-level three-point amplitude
(3.5) and a two-loop four-point amplitude (5.32)

MY — (2710510 Z/ - V V,V3) 2
3 (27) ()2 e MV V) Va7,

i d\5  kte
MP = (27)151 (k) (5) 39513 [{T12p.) P

+ (Trap3) P 4+ [(T132) ] + O(@°), (A21)
yields

a/

(2) 10510 4
M), = (2208 K) (5

2393953”3

K’ [|<T12,34,5>|2
S12

T 2 |r 2
+|< 12,4|3,5>| +|< 12.5\3.4>| ] (A22)
S12 S12
where we used (A5) and [23]
Z<V1 VoV (Tiaias5) = (Tiozus) + O(s12).  (A23)

X

Therefore, the constraint (A7) (a”>k> = me**) implies the
agreement of (A22) with (A19) and establishes the correct
factorization of the five-point two-loop amplitude.
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APPENDIX B: ONE-LOOP KINEMATIC
FACTORS: NMPS VERSUS MPS
REPRESENTATION

From Eqs. (3.7) and (4.7) of [46] and using the
definitions (2.46) it follows that

Tio345 = (A)V12[36T3 45 + 4(Ay"W4) (2y"Ws) F3)
+ 5120123455

Tipsas = (AA)Vi[36T 045 + 4(Ay" Was) (A" Wy) F3,)

+ 523(J1312.45 — J123.45) (B1)
with
Jioppas = (" Wa) (A" Ws)[Vi V(47 W5)
+ Z(JZ)VZ(AI}/mnWS) - (192)] <B2)

Since (4.11) is totally symmetric in 3.,4,5 it is possible to
rewrite (B1) more conveniently by averaging it over its
permutations and using theorem 1 of [9] to factor out (11),

- 1
Tiaj345 =40(24) [V|2T3.4,5 - HS12A123,4,5} ,

_ 1
Tjp345 = 40(44) [V1T23,4,5 T8 (A13pas — A123.4,5)] )

(B3)

- 2
TA,B‘C,D (l» /1) = (/1/_1)6

is now demonstrated to satisfy the identity

Tapic.p(A4) + Tappc(AA) + Tacps(A.4) = 0.

To see this one uses the gamma matrix identity

(A derr) (Ay™ et 2) = 48(AX) (Ay™y™2r) — 48(Ay™y™2) (Ar)
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where

1
A as = ¢ [V (A% W) = V(A" W) iy, W)

X (Ay,W3) + (3<>4,5). (B4)

Note that the admixtures of (B4) drop out from BRST
Tipp3as + Tiopas _
52

invariant combinations of (B3) such as ( ™

T13\z,445>,
sz 12

that is why the amplitudes obtained from the

minimal [26] and the nonminimal pure spinor formalism
[46] agree.

APPENDIX C: SYMMETRIES OF TWO-LOOP
KINEMATIC FACTORS

This appendix collects the superspace manipulations
responsible for some of the symmetry properties of the
two-loop scalar and vectorial kinematic factors.

1. The Jacobi-like identity of scalar kinematic factors
The kinematic factor (5.8)

(W mymyp, ) W et ) (A gy ) (Ay™ 92 2) [(Ay™ W ) (AP W) (Ay"2 W) (AP W )],

together with (4y,,,,,,,7) = (Ay"™2y"yP2r) and (Ay"),(Ay,.,) s = 0 to obtain

(Zymznzm I”) (ZYdef") (/IymldefmzﬂJ =43 (ﬂj) (zymznng r) (lyml },mz }")

my , mp

where the cyclic identity Ya(pYys) =

(X im0 ) A iy o ) (A7 e 7) (™92 2) = 96(A2)% (Ay ™21 r) (rym2P2r).

48(A2) (Ay™y™ 2) (ry™a"2p2r),

(C3)

0 and the constraint (Ay”r) = 0 were used to arrive at the second line. Therefore,

(C4)

After using (C4), the identity (C1) follows by noting that it is equivalent to

(Z}/anlpl r)(ryanZPZ r) + (Zyapzpl r)(r}/anan r) + (ZyanZPI r) (r]/apzn] r) — O’

and (C5) can be shown using y“< =0.

a(p },;15)

(C5)
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2. Relating vector kinematic factors

In order to prove the symmetry (5.17) of the vectorial
kinematic factorin (5.10) and (5.11), the pure spinor constraint
can be invoked to decompose the gamma matrices in the factor

(Way@ e W) (Aymmpim2)
= —(War®yy s W) (Ayey™y"yP1y™A)
contained in (5.10). The identity
(War®y@y®=Wg)(Ay@y™y™yPry™2)
= —(Way®y™y"yPry"™2) (Ay©y@y®Wpg)
= (War®@a)(y"yPry"y™ y@y @y Wp)

PHYSICAL REVIEW D 93, 045030 (2016)

then allows applications of the pure spinor constraint in the
form of (Ay,),(4r"); = 0, ultimately leading to

S(l)m

3 2)m
A,B.C\D.E('l’ A) = Sy

7 (2)m 7
A,B,C\D,Eu“’ A)+ SA,D.E\B,C(/L A)

(2)m 7 (2)m 7
+ SB.D.E|A.C(A’ /1) + SC.D.E‘A,B (/1’ A)

which implies (5.17).
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