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The discontinuity, or imaginary part of a self-energy at finite temperature, is proportional to the rate at
which the corresponding particles are produced when very few of them are present and also to the rate at
which their phase space density approaches the thermal one. These relations were suggested by Weldon
[Phys. Rev. D 28, 2007 (1983)], who demonstrated them for low orders in perturbation theory. Here we
show that they are valid at leading order in a linear coupling of the produced particles, and to all orders in all
other interactions of the hot plasma, if there is a separation of the time scales for the production and for the
thermalization of the bulk of the plasma.
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I. INTRODUCTION

The phase space density, or occupancy fpðt;xÞ, plays a
central role in statistical mechanics, both for equilibrium
and nonequilibrium.1 It is a sensible concept only for
particles which are sufficiently weakly interacting. It is of
little use, e.g., for quarks when the temperature is near or
below the QCD-temperature T ∼ 160 MeV. On the other
hand, it can make perfect sense for neutrinos at the same
temperature.
In thermal equilibrium the phase space density is given

by the Bose-Einstein or Fermi-Dirac distribution. For non-
equilibrium f has been considered in various situations.
Two of them are of interest to us here: (i) f is close to its
equilibrium value, jf − feqj ≪ 1, and (ii) f is very small,
f ≪ 1. We restrict ourselves to homogeneous systems, i.e.,
x-independent f.
We consider the occupancy f of a particle species Φ, and

we assume that most physical quantities equilibrate much
faster than Φ. This is the case if the coupling of Φ is much
weaker than the couplings of the interactions of the other
degrees of freedom. There may be other quantities Xa
besides f which equilibrate slowly as well. We choose them
such that Xa ¼ 0 in equilibrium.
In equilibrium the slow variables fluctuate around their

thermal expectation values. We will be concerned with
nonequilibrium states for which f is much larger than a
typical thermal fluctuation. Then we may consider systems
out of equilibrium for which the out-of-equilibrium state
is specified by the values of f and the Xa, and of the

temperature T.2 This description is valid on time scales
much larger than the equilibration time of the fast degrees
of freedom. The time derivatives of f and the Xa are fully
determined by f, the Xa, and T, because the state of the
system is fully specified by these quantities.
First consider a system in which both f and the Xa are

close to equilibrium. The interaction with the thermalized
plasma will bring f closer to equilibrium. Thus, for
sufficiently small δf ≡ f − feq and Xa, we must have a
linear relation,

_fp;λ ¼ −
X
p0;λ0

~Γpp0;λλ0δfp0;λ0 þ…; ð1:1Þ

where λ labels possible spins or helicities. Furthermore,
“þ…” denotes terms linear in the other slow variables, as
well as higher powers of the deviations from equilibrium.
We will see that at leading order in the interaction of Φ

~Γpp0;λλ0 ¼ δpp0δλλ0Γ
eq
p;λ: ð1:2Þ

Therefore, we can write

_fp;λ ¼ −Γeq
p;λδfp;λ þ…: ð1:3Þ

Now consider an out-of-equilibrium system with very
few Φ particles present, i.e. f ≪ 1. The interactions of the
otherwise thermalized plasma will then create Φ particles.
At the same time the interactions can drive the rest of the
plasma slightly away from equilibrium. Thus, in general
one would have to consider the evolution not only of f
but also of the Xa. However, as long as these are still
sufficiently small, we may expand around f ¼ 0 and
Xa ¼ 0, and keep only the lowest-order term in this
expansion, which defines the production rate Γpro of Φ,
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_f ¼ Γpro þ…: ð1:4Þ

Now “þ…” denotes terms of linear or higher order in f and
Xa. The production rate depends on jpj and the parameter
which characterizes the equilibrated plasma, i.e., the
temperature.
If (1.3) were also valid for very small f, where δf is not

small, but of order one, δf ≃ −feq, we would have

Γpro ¼ feqΓeq: ð1:5Þ

Weldon [1] has shown that this relation holds at leading
order in the couplings, and also for multiparticle processes,
assuming the validity of the Boltzmann equation. With the
same assumptions he found that the two rates are propor-
tional to the discontinuity of the Φ self-energy, see (2.19).
In [2] it was assumed that (1.5) also holds when radiative
corrections [3,4] are taken into account. However, for a
proper treatment of radiative corrections one should justify
(1.5) beyond leading order, where the Boltzmann equation
may no longer be valid.
We write the Hamiltonian as

H ¼ H0 þHint; ð1:6Þ

where H0 describes free Φ fields and all other fields
including their interactions. The interaction of Φ with
the other fields is contained in Hint. The relation between
Γpro and the discontinuity of the self-energy is well known
to be valid at leading order in Hint and to all orders in all
other interactions contained in H0 [5,6]. Recently, a non-
linear evolution equation for the phase space density of
sterile neutrino dark matter particles which does not use a
perturbative expansion in H0 has been obtained using an
ansatz for the nonequilibrium density matrix [7]. The
relation (1.5) can then be obtained by expanding the
equation of [7] around small f.
In this note we show that (1.5) holds to all orders in the

couplings in H0 and to leading order in Hint, if there is a
separation of the time scales associated with the inter-
actions in H0 and those in Hint, see (2.23). We use the
theory of quasistationary fluctuations [8] without making
any ansatz for the density matrix, and we treat both bosons
and fermions. Our assumptions differ somewhat from [1],
where the production ofW-bosons was considered; for this
process our assumption about the separation of time scales
is not satisfied.

II. CHARGED PARTICLE SPECIES

Equilibration rates of slowly evolving quantities can
be computed from quantum field theory by defining
appropriate number density operators and matching their
real time correlation functions with the corresponding
one computed from the effective kinetic equations like
(1.1) [8,9].

First we need an operator expression for the occupancy.
We will treat Hint as a small perturbation and work at
leading order in Hint. In the interaction picture with respect
to Hint the field operator Φ can be written as

ΦIðxÞ ¼
X
p;λ

1ffiffiffiffiffiffiffiffiffiffiffiffi
2EpV

p ½e−ipxup;λcp;λ þ eipxvp;λd
†
p;λ�p0¼Ep

;

ð2:1Þ

which defines annihilation operators cp;λ, and dp;λ for
particles and antiparticles, normalized such that

½cp;λ; c†p0;λ0 �−σ ¼ δpp0δλλ0 ; ð2:2Þ

and similarly for the antiparticles. Here σ ¼ þ1 for bosons
and σ ¼ −1 for fermions. The occupancy operator for
particles in the interaction picture can be defined as

ðfp;λÞI ≡ c†p;λcp;λ: ð2:3Þ

We will be interested in the Heisenberg picture-f which is
related to (2.3) via f ¼ eiHte−iH0tfIeiH0te−iHt. For non-
interacting Φ the operator fp;λ would be conserved and
would precisely be the occupancy of free particles. It is,
however, also defined for nonvanishing Hint.
Following [9] one can then compute the coefficients

in (1.1) via

~Γpp0;λλ0 ¼
1

2V

X
p00;λ00

lim
ω→0

ρpp00;λλ00 ðωÞ
ω

ðΞ−1Þp00p0;λ00λ0 ð2:4Þ

with the spectral function

ρpp0;λλ0 ðωÞ ¼
Z

dteiωth½ _fp;λðtÞ; _fp0;λ0 ð0Þ�i; ð2:5Þ

and the matrix

Ξpp0;λλ0 ≡ 1

TV
hδfp;λδfp0;λ0 i: ð2:6Þ

Here and below the pointy brackets denote the thermal
average with Hamiltonian H0 and vanishing chemical
potentials, h���i≡ tr½���expð−H0=TÞ�=trexpð−H0=TÞ. The
right-hand side of (2.6) is determined by the free theory
which yields

hδfp;λδfp0;λ0 i ¼ δλλ0δpp0fσðEpÞ½1þ σfσðEpÞ�: ð2:7Þ

Here fσ is the Bose-Einstein or Fermi-Dirac distribution for
σ ¼ þ1 or σ ¼ −1 respectively, and Ep ¼ ðp2 þm2

ΦÞ1=2.
To compute the time derivatives in (2.5) we need to

specify the interaction of Φ. We consider a linear coupling
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Lint ¼ −J̄Φ − Φ̄J; ð2:8Þ

where the operator J can be elementary or composite and
does not contain Φ. Furthermore, Φ̄≡ Φ† for integer spin,
and Φ̄≡ Φ†γ0 for spin 1=2.
In the following we will obtain a master-formula (2.15)

for the coefficients ~Γpp0;λλ0 at leading order in Hint. For this
purpose we now determine the spectral function (2.5) to
this order. The time derivatives of the occupancy operators
in (2.5) are given by

_fp;λ ¼ i½H; fp;λ�: ð2:9Þ

To simplify (2.9) we rewrite the right-hand side in terms of
interaction picture operators, use (2.1) and (2.2) and finally
express the result in terms of Heisenberg operators. At
leading order in Hint, this yields

_fp;λ ¼
iffiffiffiffiffiffiffiffiffiffiffiffi

2EpV
p

Z
d3x½J̄ðxÞe−ipxup;λcp;λ − H:c:�: ð2:10Þ

Since we work at leading order in Hint, we neglect it in the
computation of the expectation value in (2.5). Now we
insert (2.10) into (2.5), use (2.2) and treat Φ as a free field,
after which we obtain Wightman functions,

Δ>
ABðxÞ≡ hAðxÞBð0Þi; Δ<

ABðxÞ≡ σhBð0ÞAðxÞi;
ð2:11Þ

of A ¼ ūp;λJ and B ¼ A†. Using

Δ>
ABðωÞ ¼ ½1þ σfσðωÞ�~ρABðωÞ;

Δ<
ABðωÞ ¼ σfσðωÞ~ρABðωÞ ð2:12Þ

with the spectral function

~ρABðpÞ ¼
Z

d4xeipxh½AðxÞ; Bð0Þ�−σi; ð2:13Þ

we obtain after some work

lim
ω→0

ρpp0;λλ0 ðωÞ
ω

¼ 1

TEp
δpp0δλλ0fσðEpÞ½1

þ σfσðEpÞ�~ρūJ;J̄uðEp;pÞ: ð2:14Þ

Using (2.4) in combination with (2.7) and (2.14), we find
that the equilibration rate indeed takes the form (1.2) with

Γeq
p;λ ¼

1

2Ep
~ρūJ;J̄uðEp;pÞ: ð2:15Þ

Like in [1] we can relate this expression to the Φ self-
energy. A spectral function such as (2.13) can be obtained
by starting with an imaginary time, or Euclidean correlator,

ΔABðiωn;pÞ≡
Z

β

0

dτ
Z

d3xeiðωnτ−p·xÞhAð−iτ;xÞBð0Þi;

ð2:16Þ

with the discrete Matsubara frequencies ωn ¼ nπT with
even and odd integer n for bosons and fermions, respec-
tively. (2.16) can be continued iωn → p0 into the complex
p0 plane. The resulting function has cuts and poles on the
real p0 axis. The spectral function is then proportional to its
discontinuity DiscΔðp0Þ≡ Δðp0 þ i0þÞ − Δðp0 − i0þÞ
across the real axis,

~ρABðp0;pÞ ¼ 1

i
DiscΔABðp0;pÞ: ð2:17Þ

At leading order in Hint the Euclidean Φ self-energy is
given by

Σðiωn;pÞ ¼
Z

β

0

dτ
Z

d3xeiðωnτ−p·xÞhJð−iτ;xÞJ̄ð0Þi:

ð2:18Þ

Therefore,

Γeq
p;λ ¼

1

2iEp
ūp;λDiscΣðEp;pÞup;λ: ð2:19Þ

The same relation has been obtained by Weldon [1]: the
equilibration rate of particles is proportional to the dis-
continuity of their self-energy. We differ from Weldon in
the following two respects: (i) We have shown that this
result is valid at leading order in Hint and to all orders in
the other interactions. In particular, we have, unlike [1], not
made use of the Boltzmann equation which is not valid
beyond leading order. (ii) We have assumed a separation of
the time scales on which Φ thermalizes and on the other
thermalization times in the system. Our derivation would
not be valid for the equilibration of electroweak gauge
bosons, which was considered by Weldon.
The relation between the production rate (1.4) and the

self-energy or the correlation functions of J, which is valid
at leading order in Hint and to all orders in H0, is well
known [5,6]. It can be obtained by considering the
probability PðtÞ to find one Φ particle with momentum
p and spin λ at time t when there was none at time t ¼ 0.
In the interaction picture, it can be written as

PðtÞ ¼ jhf;p; λjUIðt; 0Þjiij2; ð2:20Þ

where i and f label states which contain no Φ particles.
Now expand the time evolution operator UI in powers of
Hint, and choose t small enough, t ≪ tint with some time
scale tint, so that it is sufficient to keep only the term linear
in Hint. Using (2.8), summing over f, and thermally
averaging over i turns (2.20) into
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hPðtÞi ¼ 1

2EpV

Z
t

0

dt1

Z
t

0

dt2

Z
d3x1

×
Z

d3x2eipðx1−x2ÞhJ̄uðx2ÞūJðx1Þi: ð2:21Þ

Now consider the time derivative of hPðtÞi.3 Using trans-
lational invariance of the thermal average and shifting
integration variables it can be written as

dhPi
dt

¼ 1

2Ep

Z
t

−t
dt0

Z
d3x0eipx0 hJ̄uð0ÞūJðx0Þi: ð2:22Þ

Note that (2.22) was obtained assuming t ≪ tint. However,
if the Wightman function on the right-hand side has a finite
correlation time tcorr, so that it practically vanishes for times
jt0j > tcorr, and if furthermore

tcorr ≪ tint; ð2:23Þ

we can choose t in the range tcorr ≪ t ≪ tint. Then we have

dhPi
dt

¼ 1

2Ep
σΔ<

ūJ;J̄uðEp;pÞ: ð2:24Þ

The production rate is

Γpro
p;λ ¼

ð2πÞ3
Vd3p

dhPi
dt

; ð2:25Þ

which in finite volume equals dhPðtÞi=dt. Therefore,

Γpro
p;λ ¼

σ

2Ep
Δ<

ūJ;J̄uðEp;pÞ: ð2:26Þ

Recall that, since we worked at first order in Hint, the
thermal average in (2.21), and thus the Wightman function
in (2.26) does not contain the Φ field. Combining (2.26)
and (2.12) and comparison with (2.15) shows that the
relation (1.5) indeed holds, again at leading order in Hint
and to all orders in H0.

III. UNCHARGED PARTICLES

Now consider particles which are their own antiparticles.
Important examples could be sterile neutrinos which may
be responsible for the baryon asymmetry of the Universe
[10] or constitute the dark matter [11], or other interesting
dark matter candidates, or photons produced in a quark-
gluon plasma. In this case one can write Φ as a field which
is equal to its charge conjugate,

Φ ¼ ΦC; ð3:1Þ

where ΦC ≡ SðΦ̄ÞT with an appropriate matrix S. Then one
can write

Lint ¼ −ĪΦ ¼ −Φ̄I: ð3:2Þ

In this case, we find

_fp;λ;uncharged ¼
iffiffiffiffiffiffiffiffiffiffiffiffi

2EpV
p

×
Z

d3xĪðxÞ½e−ipxup;λcp;λ − eipxvp;λc
†
p;λ�:

ð3:3Þ

Nowwe insert this into (2.5) and follow the same steps as in
Sec. II. We obtain correlation functions of ūI and of v̄I.
Using v ¼ uC and the fact that (3.2) is Hermitian, we obtain

Γeq
p;λ ¼

1

2Ep
~ρūI;ĪuðEp;pÞ: ð3:4Þ

The Φ self-energy is the same as (2.18) but with J replaced
by I. Thus we obtain precisely the same relation (2.19)
between the discontinuity of the self-energy and the
equilibration rate as we did for charged particles. Also
the production rate is simply obtained by replacing J by I in
(2.26) which shows that (1.5) holds under the same
conditions as in the charged particle case.
In the case of sterile neutrinos which are uncharged

particles, the interaction is usually written in the form (2.8).
In the symmetric phase of the Standard Model J ¼ ~φ†hνl,
where ~φ ¼ iσ2φ� is the SU(2) conjugate Higgs doublet, l
are the (left-handed) SU(2) lepton doublets and hν is the
Yukawa coupling matrix. In the symmetry-broken phase
the dominant contribution is obtained by replacing ~φ by
its expectation value which gives J ¼ vhνν=

ffiffiffi
2

p
with v ¼

246 GeV and the neutrino field ν. Writing Φ as a Majorana
spinor, ΦC ¼ Φ, one can also write the interaction in the
form (3.2), where now I ¼ J þ JC. To compute the
equilibration rate, one can use either (2.8) or (3.2). In
the latter case one can directly use the result (3.4), which
shows that (2.19) again holds.
For practical calculations it may be more convenient to

write the rates in terms of correlation functions of J. To
achieve this, one may either use (3.4) and re-express I in
terms of J, or directly start from the form (2.8). Using that
correlators like hJJi in the Standard Model vanish due to
B − L conservation, one obtains4

3We would like to thank the referee for this suggestion.

4It is interesting to note that the second term in the square
bracket on the right-hand side would give precisely the equili-
bration rate for antifermions in the charged particle case (see
Sec. II).
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Γeq
p;λ ¼

1

2Ep
½~ρūJ;J̄uðEp;pÞ þ ~ρv̄J;J̄vð−Ep;−pÞ�: ð3:5Þ

Averaging over spins/helicities, keeping in mind that J is
left-handed, one obtains

Γeq
p ¼ 1

4Ep
Trfp½~ρJJ̄ðEp;pÞ þ ~ρJJ̄ð−Ep;−pÞ�g: ð3:6Þ

Combined with (1.5) this gives the result for the production
rate which was obtained in [6] at leading order in Hint and
to all orders in H0.

IV. SUMMARY AND DISCUSSION

We have revisited Weldon’s relations [1] between the
equilibration rate of a particle species Φ, its thermal
production rate, and the discontinuity of its self-energy.
To obtain these relations we had to assume, in contrast to
[1], that Φ equilibrates much more slowly than the bulk of

the plasma. We find that these relations are valid to leading
order in the interaction of Φ and to all orders in the other
interactions. Unlike [1], we did not make any use of a
Boltzmann equation, which is only valid at leading order.
Our results imply that radiative corrections to the produc-
tion rate of sterile neutrinos [3,4] can also be used for the
equilibration rate, which has been implicitly assumed
previously when incorporating radiative corrections into
leptogenesis computations [2].
In Ref. [7], a nonlinear evolution equation for the phase

space density of sterile neutrino dark matter particles has
been obtained using an ansatz for the nonequilibrium
density matrix. If this equation is expanded around
f ¼ 0, one also finds the relation (1.5) between equilibra-
tion and production rates. It would be interesting to see
whether also higher-order terms in the nonlinear evolution
equation for the phase space density of sterile neutrino dark
matter particles of [7] can be obtained with the methods we
used here.
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