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We develop a high-precision model for relativistic observables of the Atomic Clock Ensemble in Space
(ACES) experiment on the International Space Station (ISS). We develop all relativistic coordinate
transformations that are needed to describe the motion of ACES in Earth orbit and to compute observable
quantities. We analyze the accuracy of the required model as it applies to the proper-to-coordinate time
transformations, light-time equation, and spacecraft equations of motion. We consider various sources of
nongravitational noise and their effects on ACES. We estimate the accuracy of orbit reconstruction that is
needed to satisfy the ACES science objectives. Based on our analysis, we derive models for the relativistic
observables of ACES, which also account for the contribution of atmospheric drag on the clock rate. We
include the Earth’s oblateness coefficient J2 and the effects of major nongravitational forces on the orbit of
the ISS. We demonstrate that the ACES reference frame is pseudoinertial at the level of accuracy required
by the experiment. We construct a Doppler-canceled science observable representing the gravitational
redshift. We derive accuracy requirements for ISS navigation. The improved model is accurate up to< 1 ps
and ∼4 × 10−17 for time and frequency transfers, correspondingly. These limits are determined by the
higher-order harmonics in Earth’s gravitational potential.
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I. INTRODUCTION

The Atomic Clock Ensemble in Space (ACES) experi-
ment [1] is being developed by the European Space Agency
[2] and Centre National d’Etudes Spatiales (CNES) [3], to
be flown on the International Space Station (ISS) in 2017
and 2018. The ACES experimental package consists of
two atomic clocks: the cold-atom clock Projet d’Horloge
Atomique Par Refroidissement d’Atomes En Orbite
(PHARAO) [4] (developed by CNES [5]) and a space
hydrogen maser (SHM, developed by SpectraTime SA
[6,7]). The experiment will be attached to the external
payload facility on the European Columbus module on the
space station. Associated with ACES is the European Laser
Timing (ELT) experiment [8].
Placed in a microgravity environment on the ISS, the

expected overall frequency stability ofPHARAOis1×10−16

(see Table I). The short-term frequency stability of PHARAO
will be evaluated by direct comparison to the SHM. Long-
term stability will be measured by comparison to ultrastable
ground clocks and systematic frequency shifts will be
evaluated in situ. The medium-term frequency instability
will be evaluated by direct comparison to ultrastable ground
clocks. The long-term stability will be determined by on-
board comparison to PHARAO.
To compare time and frequency between various ground

clocks, ACES will use a two-way microwave system called
the microwave link (MWL) [12–14] (Table I). Given the
anticipated accuracy of the MWL, ACES is expected to
provide absolute synchronization of ground clock time
scales with an uncertainty of 100 ps. The experiment will

also enable comparison of primary frequency standards with
an accuracy at the 10−16 level. Additionally, high-precision
time transfer will be facilitated by the ELTexperiment, with
an overall planned accuracy of 50 ps and a per-pass space-to-
ground clock comparison precision of 4 ps.
With an atomic clock offering such accurate performance

in the microgravity environment, ACES will conduct
several tests of fundamental physics. Specifically, ACES
will conduct gravitational redshift measurements, test
Lorentz invariance, and search for possible variations in
the fine structure constant. It is expected that the uncertainty
on the gravitational redshift measurement will be below
50 × 10−6 for an integration time corresponding to one ISS
pass. However, with the ultimate accuracy of PHARAO,
ACES may reach an uncertainty level of 2 × 10−6.
Measurements can reach a precision level of δc=c≃
10−10 in the search for anisotropies of the speed of light.
Time variations of the fine structure constant α can be
measured at the level of precision _α=α < 1 × 10−16 y−1.

TABLE I. Anticipated frequency and timing stability of the
ACES package [1,9–11]. Note that one pass is ∼300 s.

ACES performance
parameter 1 s 300 s 103 s 104 s 1 d 10 d

PHARAO
frequency stability

10−13 3×10−16 10−16

SHM frequency
stability

2.1×10−15 1.5×10−15

Common view
comparison

2 ps 5 ps 20 ps

Noncommon view
comparison

0.3 ps 6 ps 23 ps
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To reach its science objectives, ACES will rely on the
time and frequency stability of the SHM, PHARAO, the
MWL and clocks over one ISS pass. The most important
component of a clock is an oscillator, the periodic oscil-
lation of which has to be generated, maintained and read
out by suitable means. As it is known, an oscillator on board
the ISS is subject to many classical disturbances. In addition
to relativistic gravity, clock performance is affected by
nongravitational forces external to the station and also by
the dynamical environment on the ISS. This environment is
rather complex and includes forces and torques due to causes
such as extended structure vibrations, frequent thruster
firings, spacecraft docking and undocking, ongoing human
activity, thermal imbalance, outgassing, etc. Some of these
effects directly impact the trajectory of the ISS and, con-
sequently, the relativistic timing and frequency transfer
observables of ACES. Other effects will directly impact
the clock stability by producing unwanted acceleration noise
at the clock’s location. These effects should be accounted for
in a classical description of an oscillator subjected to various
sources of acceleration noise.
Although a Newtonian formulation of the coordinate

reference systems for the ISS is readily available [15], it is
not sufficient for ACES. The requirement to formulate
models of ACES observables within the framework of
Einstein’s general theory of relativity was recognized early
on during mission development [16,17]. ACES will rely on
accurate navigation of the ISS and accurate timing mea-
surements between the station and ground-based terminals.
The experiment will require precision timing of all critical
events related to the transmission and reception of various
microwave and optical signals used on ACES for time and
frequency transfer, as well as navigation. The resulting time
series of high accuracy radio-metric and optometric datawill
provide the time transfer accuracy that is needed to perform
tests of fundamental physics with ACES. Based on the
anticipated performance of hardware that will be involved in
theACES experiment, themodels for theACES observables
must be accurate at the level of 1 ps and δf=f ≃ 1 × 10−16

for time and frequency transfers, correspondingly. We will
use these numbers in developing relativistic models for
observables on the ACES experiment.
To describe the dynamics around the Earth we will

introduce several reference frames, each with its own
coordinate chart. In the immediate vicinity of the Earth
we can introduce a set of local coordinates defined in the
frame associatedwith theEarth: The origin of theGeocentric
Coordinate Reference System (GCRS) is the Earth’s center
of mass (see Fig. 1). Positions of ground stations are given
with respect to another terrestrial coordinate system, the
Topocentric Coordinate Reference System (TCRS; see also
Ref. [18]). We also consider the Spacecraft Coordinate
Reference System (SCRS), the origin of which is fixed at
the ISS’ center of mass. We also use ACES Coordinate
Reference System (ACRS) associated with the ACES

package. The definition and properties of the TCRS,
together with useful details on relativistic timekeeping in
the Solar System, are given in [19]. The SCRSwas discussed
in [19] in the context of the GRAIL mission. Here we
introduce the SCRS on the ISS and we define the ACRS
together with appropriate coordinate transformations.
Previous studies of ACES [10,16,17,20] offered relativ-

istic models of the basic experimental observables: time
and frequency transfer. Some of these efforts treated the ISS
as a free-falling platform, moving on a geodesic worldline
in the GCRS. However, the motion of the space station is
subject to nongravitational forces that are present in the
near-Earth environment (as discussed in [10,21]), including
atmospheric drag, solar radiation pressure and thermo-
elastic cycling. As the shape of the space station is
complex, its center of mass does not coincide with its
center with respect to nongravitational forces. This mis-
match results in torques that affect the orientation of the
ISS. Also, the presence of these dissipative forces results in
the ISS constantly losing altitude, in apparent violation of
naive models of energy-momentum conservation.
Furthermore, as the ISS orbits the Earth, its extended
structure vibrates and flexes, resulting in a complex profile
of nongravitational acceleration noise on the station.
This paper is organized as follows: In Sec. II we discuss

the conventional definitions of the GCRS and TCRS,
including representations of the metric tensor in these
reference systems and the coordinate transformations
between them. We also present the equations of motion
for Earth-orbiting spacecraft and light-time equations. We
pay special attention to contributions by various non-
gravitational forces acting on the ISS and the ACES
package, including atmospheric drag and solar radiation
pressure. In Sec. II D we present the coordinate reference
frames important for the ACES experiment, namely the
SCRS and the ACRS, again including representations of
the metric tensor and coordinate transformations, at a level
of accuracy appropriate for ACES. In Sec. III we discuss
the formulation of the relativistic observables of the ACES
experiment. We present models for time and frequency

FIG. 1. Schematic relationship of the coordinate systems
discussed in the text (not to scale).

TURYSHEV, YU, and TOTH PHYSICAL REVIEW D 93, 045027 (2016)

045027-2



transfer and evaluate the navigational requirements needed
to fulfil the science objectives of ACES. We conclude with
a set of recommendations and an outlook in Sec. IV.

II. REFERENCE FRAMES AND THE
EQUATIONS OF MOTION

A properly defined set of coordinate reference frames
simplifies the discussion of the observables of an experi-
ment. Because of its high-precision science objectives and
its deployment on the ISS, ACES presents a set of unique
features. One of the primary challenges is the presence of
various nongravitational forces acting on the experimental
payload. In this section we present descriptions of various
reference frames relevant to ACES. We pay particular
attention to the dynamical environment relevant to each
of these reference frames. Although our analysis is moti-
vated by the ACES experiment, the results obtained here
are relevant to other missions that will use precision clocks
to reach their science objectives [22].
The coordinate systems that represent the ACES experi-

ment are each characterized by a unique set of harmonic
potentials including the scalar potential w and the vector
potential wλ. Using these harmonic potentials, we represent
the metric tensor of a reference frame in the form1

g00 ¼ 1 −
2

c2
wþ 2

c4
w2 þOðc−6Þ;

g0α ¼ −γαλ
4

c3
wλ þOðc−5Þ;

gαβ ¼ γαβ þ γαβ
2

c2
wþOðc−4Þ: ð1Þ

For the standard nonrotating GCRS, the scalar gravita-
tional potential is formed as a linear superposition of the
gravitational potentialUE of the isolated Earth, and the tidal
potential utidalE of all other Solar System bodies:

wE ¼ UE þ utidalE þOðc−4Þ: ð2Þ

UE is conveniently represented in the form

UEðxÞ ¼
GME

r

�
1 −

X∞
l¼2

�
RE

r

�
l
JlPl0ðcos θÞ

þ
X∞
l¼2

Xþl

k¼1

�
RE

r

�
l
Plkðcos θÞðClk cos kϕ

þ Slk sin kϕÞ
�
; ð3Þ

where ME is the Earth’s mass, RE is its equatorial radius,
Jl ¼ −Cl0 are the zonal harmonics coefficients of the
Earth mass distribution, Plk are the Legendre polynomials,
while Clk and Slk are relativistic normalized spherical
harmonic coefficients that characterize the Earth.
At the level of accuracy required by the ACES experi-

ment, the tidal potential utidalE can be given in terms of
Newtonian contributions only (mostly due the Moon and
the Sun):

utidalE ¼
X
b≠E

ðUbðrbE þ xÞ −UbðrbEÞ − x · ∇UbðrbEÞÞ

≃X
b≠E

GMb

2r3bE
ð3ðnbE · xÞ2 − x2Þ þOðr−4bE; c−2Þ; ð4Þ

where Ub is the Newtonian gravitational potential of body
b, rbE is the vector connecting the center of mass of body b
with that of the Earth, and ∇Ub denotes the gradient of the
potential. The potential can be expanded to higher-order
terms if necessary.
The vector harmonic potential wλ

E captures the contri-
bution of the Earth’s rotation, defined as

wλ
E ¼ −

GME

2r3
½x × SE�λ þOðr−4; c−2Þ: ð5Þ

Equation (5) explicitly accounts only for the largest rota-
tional moment, SE, which is the Earth’s spin moment
(angular momentum per unit of mass), SE≃9.8×108 m2=s.
Although ACES data will be transmitted, received, and

analyzed in GCRS, using TCRS, SCRS, and ACRS, we
still need access to a global inertial reference frame to
account for the presence of the Solar System bodies. For
these purposes, we need one global coordinate chart,
defined for the inertial reference frame that covers the
entire Solar System. The Solar System Barycentric
Coordinate Reference System (BCRS) has its origin at
the Solar System barycenter. It is a convenient reference
system for the purpose of describing the motion of the
Earth, the Moon, and the Sun [23–25], whose dynamics
will be important for ACES. In particular, the ellipticity of
Earth’s orbit introduces annual variations of solar gravity

1The notational conventions used in this paper are as follows.
Latin indices (m; n;…) are space-time indices that run from 0 to 3.
Greek indices α; β;… are spatial indices that run from 1 to 3. In
case of repeated indices in products, the Einstein summation rule
applies: e.g., ambm ¼ P

3
m¼0 amb

m. Bold letters denote spatial
(three-dimensional) vectors: e.g., a¼ða1;a2;a3Þ,b ¼ ðb1; b2; b3Þ.
The dot is used to indicate the Euclidean inner product of spatial
vectors: e.g., ða · bÞ ¼ a1b1 þ a2b2 þ a3b3. Latin indices are
raised and lowered using the metric gmn. The Minkowski (flat)
space-time metric is given by γmn ¼ diagð1;−1;−1;−1Þ, so that
γμνaμbν ¼ −ða · bÞ. We use powers of the inverse of the speed
of light, c−1, and the gravitational constant G as bookkeeping
devices for order terms: in the low-velocity (v ≪ c), weak-field
(GM=r ≪ c2) approximation, a quantity of Oðc−2Þ≃OðGÞ, for
instance, has a magnitude comparable to v2=c2 or GM=c2r. The
notationOðak; blÞ is used to indicate that the preceding expression
is free of terms containing powers of a greater than or equal to k
and powers of b greater than or equal to l.
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potential at the location of the ACES clock which must be
accounted for, as it was done, for instance, in [26].
Otherwise, GCRS fully satisfies the needs of the ACES
experiment.

A. Terrestrial reference frames

The formulation of the GCRS treats the Earth’s trajectory
in the Solar System as being determined solely by gravi-
tational forces—a well-justified assumption. Indeed, the
largest nongravitational force acting on the Earth is that due
to the solar radiation pressure, which is responsible for
acceleration of 1.95 × 10−16 m=s2, which is negligible for
the ACES experiment. Further details on the formulation of
the GCRS are in [23–25,27].
In Ref. [23], we showed that the transformations between

the harmonic coordinates of the GCRS fxmg≡ ðct;xÞ and
a nonrotating bodycentric reference system fyma g≡
ðcta; yaÞ associated with a body amay be written as below:

t ¼ ta þ c−2
�
ðva0 · yaÞ þ

Z
ta

ta0

�
1

2
v2a0 þ w̄a

ext

�
dt0a

�

þOðc−4Þta; ð6Þ

x ¼ xa0 þ ya þ c−2
�
1

2
va0ðva0 · yaÞ − w̄a

extya þ
1

2
aa0y

2
a

− yaðya · aa0Þ
�
þOðc−4Þ; ð7Þ

where xa0 ¼ xa0ðtÞ is the vector that connects the origin of
the fxmg reference system with that of the fyma g.
The quantity w̄a

ext in (6) and (7) is a combination of
potentials evaluated at the origin of a particular reference
frame. This combination consists of (i) the Newtonian
gravitational potential (including, if necessary, multipole
corrections) due to all bodies in the Solar System other than
body a, at the location of body a, and (ii) a contribution
from nongravitational forces acting on the body a. Next,
va0 ≡ _xa0 is the geocentric velocity of the body a and
aa0 ≡ ẍa0 ¼ −∇wa

ext þOðc−2Þ its Newtonian acceleration
due to wa

ext, i.e., the combined effect from gravitational and
nongravitational forces acting on the body.
Introducing ra ¼ x − xa0 , the inverses of the transfor-

mations (6) and (7) can be written as [19,23–25]

ta ¼ t − c−2
�
ðva0 · raÞ þ

Z
t

t0

�
1

2
v2a0 þ w̄a

ext

�
dt0

�

þOðc−4Þt; ð8Þ

ya ¼ ra þ c−2
�
1

2
va0ðva0 · raÞ þ w̄a

extra

−
1

2
aa0r

2
a þ raðra · aa0Þ

�
þOðc−4Þ: ð9Þ

Note that the c−4 terms in (6) and (8) are of the order of
∼v4ISS=c4 ≃ 4.3 × 10−19 and are therefore negligible for the
ACES experiment. For the complete post-Newtonian form
of transformations (6)–(9), consult Ref. [23].
Applying the coordinate transformations (6) and (7)

together with the external potentials wa
ext and acceleration

aa, from the metric tensor of the GCRS given by (1) one
can derive the metric tensor gamn of the nonrotating
coordinate reference system associated with an object a
(see details in [23]):

ga00 ¼ 1 −
2

c2
wa þ

2

c4
w2
a þOðc−6Þ;

ga0α ¼ −γαλ
4

c3
wλ
a þOðc−5Þ;

gaαβ ¼ γαβ þ γαβ
2

c2
wa þOðc−4Þ; ð10Þ

where wa and wλ
a are the scalar and vector harmonic

potentials representing gravity and inertia in a particular
coordinate reference system associated with the body a.
For completeness, we also include the TCRS, which can

be obtained by transforming the GCRS metric gEmn using (6)
and (7), where the “external” potential wC

ext is now the
gravitational potential wE given by (2) and evaluated at the
surface of the Earth:

wC
extðyCÞ ¼ UEðyCÞ þ

X
b≠E

ðUbðrbE þ yCÞ − UbðrbEÞ

− yC · ∇UbðrbEÞÞ þOðc−2Þ; ð11Þ

where yC is the position vector in the GCRS of a particular
ground station. Note that UEðyCÞ must be treated as
the potential of an extended body and include a multi-
polar expansion with sufficient accuracy, taking into
account time-dependent terms due to tidal effects on
the elastic Earth. The corresponding acceleration is
aC ¼ −∇wC

extðyCÞ.
The proper time τC, kept by a clock C located at the

GCRS coordinate position rCðtÞ, and moving with
the coordinate velocity vC ¼ drC=dt ¼ ½ωE × rC�, where
ωE is the angular rotational velocity of the Earth at C, is
determined by

dτC
dt

¼ 1 −
1

c2

�
1

2
ω2
Er

2
CðθÞsin2θ þUEðrCÞ

�

þOð3.89 × 10−17Þ; ð12Þ
where θ is the latitude of C and the error bound is set by the
lunar tides at the location of the tracking station.
The largest contribution to dτC=dt comes from the

velocity and mass monopole terms, which are estimated
to produce an effect of the order of c−2ð1

2
ω2
ER

2
E þ

GME=REÞ ∼ 6.97 × 10−10. The quadrupole term produces
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a contribution of the order of c−2GMEJ2=ð2REÞ∼
3.77 × 10−13, which is large enough to be included in
the model. Contributions of other zonal harmonics range
from −c−23GMEJ4=ð8REÞ ∼ 4.23 × 10−16 (from J4) to
c−25GMEJ6=ð16REÞ ∼ 1.18 × 10−16 (from J6). Although
individual contributions of these and other terms are quite
small to warrant their place in the model, their cumulative
effect may be noticeable at the level of up to 3 × 10−15.
In practice, time measurements are based on averages of

clock and frequency measurements on the Earth surface
[28]. For this purpose, the time coordinate called Terrestrial
Time (TT) is defined. TT is related to TCG ¼ t linearly by
definition:

dtTT
dt

¼ 1 − LG: ð13Þ

IAU Resolution B1.9 (2000) turned LG into a defining
constant with its value fixed toLG ¼ 6.969290134 × 10−10.
This definition accounts for the secular term due to the

Earth’s potential when converting between geocentric
coordinate time (TCG) and the time measured by an
idealized clock on the Earth geoid [28–31]. Using
Eq. (12), we also have

dτC
dtTT

¼ dτC
dt

dt
dtTT

¼ 1þ LG −
1

c2

�
1

2
v2C þUEðyCÞ

�

þOð3.89 × 10−17Þ: ð14Þ

B. Spacecraft motion in the GCRS

In the GCRS, the relativistic equations of motion of an
artificial Earth satellite are given as [24,25,28,32]

̈r ¼ −
GME

r3
r −

∂
∂r

�
GME

r

X∞
l¼2

Xþl

k¼0

�
RE

r

�
l
Plkðcos θÞðClk cos kϕþ Slk sin kϕÞ

�

þ GME

c2r3

��
2ðβ þ γÞGME

r
− γ_r · _r

�
rþ 2ðγ þ 1Þðr · _rÞ_r

�
þ ðγ þ 1ÞGME

c2r3A
f½_r × ðSE − 3nðn · SEÞÞ�g

þ ð2γ þ 1ÞGMS

c2ρ3
f½½ρ × _ρ� × _r�g −

X
b≠E

GMb

r3bE
ð3ðnbE · rÞnbE − rÞ þ aNG þOð10−12 m=s2Þ; ð15Þ

where r is the position of the satellite in the GCRS, _r is its
velocity, n ¼ r=r is the unit vector in the direction of the
spacecraft, ρ is the Sun-Earth vector, SE is the Earth’s
angular momentum per unit mass, and GME and GMS are
the gravitational coefficients of the Earth and Sun, respec-
tively. Furthermore, rbE ¼ rE − rb is the position of the
body b with respect to the Earth in the BCRS and nbE ¼
rbE=rbE is the unit vector in this direction. The first two
terms in this equation represent the gradient of the New-
tonian relativistic gravitational potential of the extended
Earth, given by (3). The coefficients β and γ are the
parameterized post-Newtonian parameters, equal to 1 in
general relativity. Lastly, aNG is the contribution of non-
gravitational forces (to be discussed in Sec. II B 2).
As expected, Newtonian acceleration has the largest effect

onEarth-orbiting spacecraft. For satellites in thevicinityof the
Earth (up to geosynchronousEarth orbit) the terms in Eq. (15)
can be evaluated with respect to the main Newtonian accel-
eration, as follows:TheSchwarzschild terms (second line) are
a fewparts in 1010 (high orbits) to 109 (loworbits) smaller; the
effects of Lense-Thirring precession (frame dragging, first
term on the third line) and the geodesic (de Sitter) precession
(last term on the third line) are about 1011–1012 smaller. The
main effect of the Schwarzschild terms is a secular shift in the
argument of perigee while the Lense-Thirring and de Sitter
terms cause a precession of the orbital plane at a rate of the
order of 0.8mas/y (geostationary) to 180mas/y (loworbit) for
Lense-Thirring and 19mas/y (independent of orbital altitude)

for de Sitter. TheLense-Thirring terms are less important than
the geodesic terms for orbits higher than Laser Geodynamics
Satellite (LAGEOS) (altitude above 6000 km) and more
important for orbits lower than LAGEOS.

1. Gravitational effects on the ISS orbit

Equation (15) consists of seven terms, the first of which
represents the largest force acting on the ISS, the contri-
bution of the Earth gravitational monopole (∼8.69 m=s2).
The second term arises from treating the Earth as an
extended body and represents the contribution from the
spherical harmonics, contributing a few parts in 10−3 (for
J2) to a few parts in 10−6–10−7 (for harmonics of higher
order) relative to the monopole term. The third term is the
post-Newtonian contribution from the Schwarzschild met-
ric, contributing up to 2.85 × 10−9 m=s2, including also the
contribution due to the eccentricity of the ISS orbit
(eISS ∼ 0.0006), which is ∼1.37 × 10−11 m=s2. The fourth
term represents the Lense-Thirring precession due to the
Earth’s angular momentum, SE ≃ 9.8 × 108 m2=s, amount-
ing to an acceleration of the order of ∼2.15 × 10−10 m=s2.
The fifth term is due to the contribution of solar gravity on
the ISS orbit, with a magnitude of ∼4.56 × 10−11 m=s2.
The sixth term represents the tidal potential (mostly due to
the Earth and the Sun). The tidal acceleration due to the
Moon is of the order of ∼5.85 × 10−7 m=s2 whereas for the
Sun it is ∼2.69 × 10−7 m=s2. Finally, nongravitational

GENERAL RELATIVISTIC OBSERVABLES FOR THE ACES … PHYSICAL REVIEW D 93, 045027 (2016)

045027-5



forces are captured by the symbol aNG and will be
discussed in the next subsection.
The relativistic geocentric equations of motion of a

satellite that are recommended by the International Earth
Rotation and Reference Systems Service [33] may include
the contribution from the relativistic quadrupole moment of
the Earth at the 1=c2 order. It is estimated that the
corresponding J2 term would contribute ∼2.85 ×
10−11 m=s2 for the ISS. As such, the relativistic effects
of the Earth’s oblateness are small for the ISS and may be
neglected in the analysis.
The independent variable of the satellite equations of

motion may be, depending on the time transformation
being used, either TT or TCG. Although the distinction is
not essential to compute this relativistic correction, it is
important to account for it properly in the Newtonian part
of the acceleration.

2. Nongravitational forces acting on the ISS

The trajectories of Earth-orbiting spacecraft can be
significantly affected by nongravitational forces.
Atmospheric drag is especially significant for the ISS,
which has a very large surface area compared to its weight
(i.e., it has a low ballistic coefficient), while moving in a
low-Earth orbit. Another significant contribution is due to
solar radiation pressure and related torques. Other, lesser
contributions include radiation pressure from the Earth,
interactions with the Earth’s magnetic fields, outgassing,
thermoelastic deformations and extended structure vibra-
tions of the ISS [34]. However, for the ISS these contri-
butions are small compared to the effect of the main
nongravitational forces and will be addressed elsewhere.
The ISS is orbiting at an altitude of ∼400 km. It is

constantly losing altitude due to atmospheric drag. The
station is regularly boosted to prevent atmospheric reentry.
The atmospheric drag force on the station acts in the
opposite direction of its velocity vector and is responsible
for deceleration given by

aad ¼ −
cdA
2m

ρatmv2nv; ð16Þ

where cd is the drag coefficient, ρatm is the air density at the
station location, v is the station’s velocity with respect to
the atmosphere, nv ¼ v=v is the unit vector in the direction
of velocity, and A is the cross-sectional area of the station in
the direction of its motion through the atmosphere. The
drag coefficient and cross-sectional area are dependent on
the geometric shape and orientation of the station. These
are generally determined through experiment or numerical
simulations. Earth orbiting satellites typically have very
high drag coefficients cd in the range of about 2–4.
The atmospheric density ρatm varies by up to 2 orders of

magnitude as it responds to solar and geomagnetic activity
[34]. The MSISE-90 model of the Earth’s upper atmos-
phere [35] provides ρatm as a function of solar activity. At
the altitude of 400 km, the atmospheric density is expected

to be in the range ρatm ¼ ð3.89–50.4Þ × 10−12 kg=m3,
corresponding to mean to extreme high solar activity.
To estimate the magnitude of aad, we use the current mass

of the ISS [36]m ¼ mISS ¼ 4.2 × 105 kg; see Table II. The
largest cross-sectional area, based on the size of the solar
panels, can be estimated at A≲ 8 × ð36.5 m× 11.6 mÞ ¼
3387 m2. We use cd ¼ 2 for the ISS used in orbit analysis
[37]. Substituting these values in Eq. (16), we obtain

jaadj≃ ð1.8–23.9Þ × 10−6 m=s2: ð17Þ
These values2 (corresponding to mean and extreme high
solar activity) are approximately 3 orders of magnitude
larger than relativistic accelerations in the motion of the ISS.
Computational models for solar radiation pressure are

usually developed prior to launch. These models can be
used to compute the acceleration as a function of spacecraft
orientation and solar distance:

asrðrÞ ¼
2f⊙A
cmr2

n⊙; ð18Þ

where f⊙ ¼ 1367 W=ðm2AU2Þ is the solar constant at
1 AU, n⊙ is the unit vector in the direction of the Sun and r
is the distance between the spacecraft and the Sun. Using
the physical parameters of the ISS and its orbit, an upper
limit of Eq. (18) can be obtained:

jasrj≲ 7.3 × 10−8 m=s2; ð19Þ

which is nearly 108 times smaller than the Newtonian
acceleration and over ∼102 to 103 times smaller than the
deceleration due to atmospheric drag. However, solar

TABLE II. Select parameters of the ACES mission [39], along
with corresponding symbols and approximate formulas used in
the text.

Parameter Symbol Value

ISS orbital altitude hISS 400 km
ISS orbital eccentricity e 0.0006
ISS orbital inclination iISS 51.6°
ISS mass mISS 420000 kg
ISS cross-sectional
areaa

AISS 3400 m2

ACES position in
SCRS

yA0 30 m

Geocentric velocity vA0 ¼ ðGME=ðR⊕ þ hISSÞÞ1=2 7.67 km/s
Mean orbital
frequency

ωG ¼ ðGME=ðR⊕ þ hISSÞ3Þ1=2 1.13 mHz

Geocentric
acceleration

aA0 ¼ GME=ðR⊕ þ hISSÞ2 8.70 m=s2

aBased on the size of the solar panels.

2Our estimates are consistentwith the values derived in [38] that
relied on the data representing earlier configuration of the ISS.
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radiation pressure will in general perturb the eccentricity,
which may have to be counteracted by actively controlling
the orbit. This acceleration, if not accounted for, will result
in an error in the estimated radial position of the ISS. Over a
time interval Δt this error is δr ¼ 1

2
δaΔt2, where δa is the

unmodeled acceleration. If the effect of solar radiation
pressure was completely unmodeled, over a period of
Δt ¼ 103 s, the position error due to solar pressure would
be ∼0.04 m, which is negligible over the time scale of one
orbital revolution.

3. Equation of motion appropriate for the ISS

The orbit of the ISS (hence, ACES) is presumed known
to an accuracy of ∼10 m [10,38]. Atmospheric drag
corrupts the orbital estimates for the ISS, making it
impractical to keep terms below ∼1 × 10−7 m=s2.
Consequently, we may neglect all the relativistic terms
[Oðc−2Þ and smaller], i.e., terms three through five in (15),
truncating the equation of motion to its Newtonian form:

̈r ¼ −
GME

r3
r −

∂
∂r

�
GME

r

X∞
l¼2

Xþl

k¼0

�
RE

r

�
l

× Plkðcos θÞðClk cos kϕþ Slk sin kϕÞ
�

−
X
b≠E

GMb

r3bE
ð3ðnbE · rÞnbE − rÞ

−
cdA
2m

ρatmj_rj2nv þOð1 × 10−7 m=s2Þ; ð20Þ

where the bound is provided by the solar radiation
pressure (19).

C. Light travel time

Knowing the time that it takes for a signal to travel
between the Earth and a spacecraft is required both for
radio-metric navigation and for clock synchronization.
Given a time of transmission t1 and a time of reception
t2, the positions of the transmitter (xA) and receiver (xB) are
related by the light-time equation

t2 − t1 ¼
1

c
RðxAðt1Þ;xBðt2ÞÞ; ð21Þ

where RðxA;xBÞ is the total geodesic one-way distance
traveled by light between the transmitter and receiver. To
first order in G, in Ref. [25] it was derived as

RðxAðt1Þ;xBðt2ÞÞ¼ jxBðt2Þ−xAðt1Þjþð1þ γÞGME

c2

×ln

�
rA1þ rB2þ rA1B2
rA1þ rB2− rA1B2

�
þOðc−3;J2Þ;

ð22Þ

with rA1 ¼ jxAðt1Þj and rB2 ¼ jxBðt2Þj being the distances
of the transmitter and receiver from the origin of GCRS
and rA1B2 ¼ jxBðt2Þ − xAðt1Þj is their spatial separation.
The logarithmic contribution in (22) is the Shapiro gravi-
tational time delay [28] that, in the case of ACES, is all due
to the Earth (contributions from the Moon and the Sun are
negligible). Between the ISS and the ground, the Shapiro
time delay is 0.5–3.1 mm (i.e., 1.8–10.4 ps). The next-order
term in this expression would be the one due to Earth’s
quadrupole [25] whose presence extends the standard
formulation given in [28,40]. The largest contribution
from the quadruple will be for a ground-based receiver.
It amounts to ∼3μm (or 0.01 ps) and is negligible for
ACES, providing the corresponding bound in (22).
These computations are applicable when signals travel in

a vacuum. This is not the case for signals between ground
stations and spacecraft in low-Earth orbit. These signals
experience propagation details due to the charged particle
environment in the exosphere and, most notably, due to the
properties and composition of the troposphere. There is
extensive literature available on this topic (see, e.g.,
[5,14,41–46]), a comprehensive discussion of which is
beyond the scope of our present paper.

D. Coordinate systems on the ISS

Observables on board the ISS are naturally described in a
coordinate system (the SCRS) associated with the space
station’s center of mass. However, this choice must be
scrutinized for a precision experiment that is intended to
detect minute gravitational effects, if the experiment is not
located at the station’s center of mass, as it is subject to tidal
accelerations as well as nongravitational forces, such as
structure vibrations. The ACES experiment is some dis-
tance away. For this reason, we also introduce the ACRS
and use the coordinate transformations between the SCRS
and the ACRS to estimate the relativistic corrections due to
the location of ACES. We begin, though, by establishing
the relationship between terrestrial and station reference
frames.

1. Coordinate transformations between GCRS and SCRS

To determine the metric tensor for the SCRS, we perform
the coordinate transformation between the GCRS coordi-
nates, fxmE g≡ ðx0 ¼ ct;xÞ, and coordinates of the non-
rotating ISS-centric reference system fymISSg≡ ðctISS; yÞ
associated with the center of mass of the ISS. With the
help of (6) and (7), these transformations are taking the
form

t ¼ tISS þ c−2
�
ðvISS · yÞ þ

Z
tISS

tISS0

�
1

2
v2ISS þ w̄ISS

ext

�
dt0ISS

�

þOðc−4ÞtISS; ð23Þ
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x ¼ xISS þ y þ c−2
�
1

2
vISSðvISS · yÞ − w̄ISS

ext y

þ 1

2
aISSy2 − yðy · aISSÞ

�
þOðc−4Þ; ð24Þ

where xISS ¼ xISSðtÞ is the geocentric position vector of the
ISS and vISS ≡ _xISS its geocentric velocity. The geocentric
acceleration of the ISS, aISS ≡ ẍISS, is given by Eq. (20),
which is accurate to ∼1 × 10−7 m=s2 and accounts for
Newtonian gravity of the Earth together with the contri-
bution from the atmospheric drag.
The external potential wISS

ext defined in the vicinity of the
ISS is given as

wISS
ext ¼UEðyÞþ

X
b≠E

ðUbðrbEþyÞ−UbðrbEÞ−y ·∇UbðrbEÞÞ

þðaNG ·yÞþOðc−2Þ; ð25Þ

with the last term being the contribution of the nongravita-
tional forces acting on the space station. Evaluated at the
origin of the SCRS (y ¼ 0) this potential is

w̄ISS
ext ¼ ŪE þ

X
b≠E

GMb

2r3bE
ð3ðnbE · xISSÞ2 − x2

ISSÞ þOðc−2Þ;

ð26Þ

where ŪE is the contribution of extended Earth evaluated at
the center of mass of the ISS, as given by Eq. (3) at r ¼
jxISSj ¼ RE þ hISS (see Table II). We can now substitute (3)
in (23) and evaluate all the terms. To facilitate our analysis,
we present the resulting equation in differential form:

dtISS
dt

¼1−c−2
�
1

2
v2ISSþŪEþ

X
b≠E

GMb

2r3bE
ð3ðnbE ·xISSÞ2−x2

ISSÞ

þðaISS ·yÞ
�
þOðc−4Þ: ð27Þ

The first term in curly braces in Eq. (27) is due
to the orbital velocity of the ISS. The actual velocity of
the ISS at the end of a time interval δt may be written as
the sum of the initial velocity vISSðtÞ and perturbations
from gravitational [δvgravðtÞ ¼

R
tþδt
t agravðt0Þdt0] and non-

gravitational [δvNGðtÞ ¼
R
tþδt
t aNGðt0Þdt0] accelerations:

vISSðt þ δtÞ ¼ vISSðtÞ þ δvgravðtÞ þ δvNGðtÞ. Writing
vISS0ðtþ δtÞ ¼ vISSðtÞ þ δvgravðtÞ and replacing aNGðtÞ
with a constant value aNG representing the maximum
nongravitational acceleration allows us to estimate jv2ISS−
v2ISS0 j≲2ðvISS0 ·aNGÞδtþa2NGδt

2. The two largest terms
in aNG are given by Eqs. (17) and (18). Given
vISS0 ∼ 7.67 km=s, over a time interval δt ¼ 103 s, the
contributions of these terms are given by, respectively,
2c−2ðvISS0 ·aadÞδt≲4.1×10−15 and 2c−2ðvISS0 ·asrÞδt≲1.3×

10−17, whereas the contribution of the term ∝ a2NG for that
time interval is ∼Oð10−20Þ. Therefore, we estimate that
atmospheric drag contributes 1

2
c−2ðvISS0 · aadÞ ≲ 2.04 ×

10−15 to clock desynchronization, whereas the contribu-
tions of other nongravitational accelerations are negligible.
The monopole term in the Newtonian potential of

the Earth at the ISS location ŪE is responsible for a
contribution of c−2GME=rISS ≃ 6.55 × 10−10. We estimate
that the quadrupole term produces a contribution of
c−2GMEJ2R2

E=ð2r3ISSÞ≃ 3.14 × 10−13. Contributions of
J4 and J6 are given by −c−23GMEJ4R4

E=ð8r5ISSÞ ∼ 3.12 ×
10−16 and J6 is c−25GMEJ6R6

E=ð16r7ISSÞ ∼ 7.68 × 10−17,
which are significant. Although individual contributions of
other zonal harmonics (i.e, Jk, k ≥ 7) are small, their
cumulative effect may be noticeable at the level up
to ϵISS0 ≈ 3 × 10−16.
The constant rate ϵISS0 would likely be absorbed in other

terms during clock synchronization. What is important
is the variability in the entire error term ϵISSðtÞ ¼
ϵISS0 þ δϵISSðtÞ, where the amplitude of the variable term
δϵISSðtÞ is due to seasonal changes in the Earth hydro-
sphere, crust, etc., and is expected to be of the order of
δϵISSðtÞ ∼ 3 × 10−17, resulting in the ultimate uncertainty in
ACES clock instabilities δðdτA=dtÞϵISS at that level. Thus,
the mission may consider including the higher spherical
harmonics in the model for Earth gravity potential.
Conversely, the ACES data could be used for accurate
determination and study of the lowest spherical harmonics
(i.e, Jk, k ∈ ½2; 10�), which could be a valuable scientific
result for geodesy [47].
The next 1=c2 term in (27) is the sum of the Newtonian

tides due to other bodies (mainly the Sun and the Moon) at
the origin of the SCRS. These terms are small for the ISS
being of the order of 4.40 × 10−17 for the Moon and 2.02 ×
10−17 for the Sun, and, thus, they may be omitted for
ACES.
The last 1=c2 term in (27) is the acceleration-induced

redshift for clocks on the ISS. Although this term vanishes
at the origin of the SCRS, ACES will not be located at the
center of mass of the ISS, but at some distance of yA0 ¼
30 m away from it. Such an offset leads to acceleration-
induced redshift between a fictitious clock at the origin
of the SCRS and the atomic clocks of the ACES package.
The dominant term in aISS, given by aISS0, yields a surpris-
ingly large contribution: c−2ðaISS0 ·yA0Þ≃2.91×10−15.
Contributions from nongravitational accelerations are
Oð10−20Þ and thus can be safely neglected.
As a result, the temporal part of coordinate transforma-

tion (23) [also given by (27)] takes the following form:

dtISS
dt

¼ 1 − c−2
�
1

2
v2ISS0 þ ðvISS0 · vadÞ þ ŪE þ ðaISS0 · yÞ

�

þOð4.4 × 10−17Þ; ð28Þ
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where the accuracy bound is set by the omitted contribution
from the lunar and solar tides [third 1=c2 term in (27)].
We also evaluate the 1=c2 terms present in the spatial

transformations (24). Taking, for example, the term with
the Newtonian potential we determine that its contribution
is of the order of ∝ c−2ŪEyA0 ≤ c−2ðGME=rISSÞyA0 ¼
6.55 × 10−10yA0. Even for the largest separation on the
ISS, yISS ¼ 120 m, this term is only∼7.86 × 10−8 m.As the
uncertainty in the geocentric position of the ACES package
is expected to be∼1 m, this value is exceedingly small. The
other 1=c2 terms in (24) are also negligible. Thus, the entire
package of 1=c2 terms in (24) may be omitted.
As a result, the spatial part of the coordinate trans-

formations between GCRS and SCRS (24) takes a simple
form:

x ¼ xISS þ y þOð6.55 × 10−10Þy: ð29Þ

Compared to (23) and (24), the coordinate transforma-
tions (28) and (29) have a much simplified form but are
accurate enough to describe the ACES observables and will
be used for this purpose in the remainder of the paper.

2. Metric tensor of the SCRS on the ISS

Using the formalism of Eq. (1), the metric tensor of the
SCRS can be expressed in the harmonic coordinates of this
SCRS, fymISSg≡ ðctISS; yÞ, using scalar and vector poten-
tials that incorporate both gravitational and nongravita-
tional contributions [19,23]:

wISS ¼ UISS þ utidalISS þ ðaNG · yÞ þOðc−3Þ; ð30Þ

wISS ¼ −
GME

2r2ISS
½nISS × SE� −

1

10
ð3yðy · _aNGÞ − _aNGy2Þ

þOðc−2Þ: ð31Þ
Of the terms present in Eq. (30), contributions to clock

desynchronization by the gravitational potential due to the
self-gravity of the ISS at a distance y¼jyj¼30m away
from that point are given by δðdτACES=dtÞISS¼c−2UISS¼
c−2GmISS=jyISSj≃1.0×10−23, which is negligible.
Similarly, contributions from the tidal term,
δðdτACES=dtÞtidal ¼ c−2utidalISS ¼ c−2fGME½3ðnISS ·yÞ2−y2�=
2r3ISSþOðy3;c−2Þg≃1.3×10−20, can also be dropped.
Finally, estimating the contributions from nongravitational
forces by using the largest nongravitational force, atmos-
pheric drag, we find that the magnitude of these contribu-
tions, δðdτACES=dtÞNG¼c−2ðaNG·yÞ∼aadyA0≃8.2×10−21,
means that the third term can also be omitted.
As the center of figure of the ISS does not coincide with

its center of mass, the nongravitational forces may result in
torques applied to the entire space station, changing the
attitude orientation of the ISS. The ISS is maintained in a
“torque equilibrium attitude” [48], which means that the
cumulative effect of torque over a full orbit is near zero, but

during an orbit, significant accelerations may be present. To
estimate the order of magnitude of such torques, we model
the space station as a spherical, homogeneous m ¼ 4.2 ×
105 kg mass of R ¼ 30 m radius, with moment of inertia
I ¼ 2mR2=5, and assume that atmospheric drag, the largest
nongravitational force acting on the station, is displaced by
up to 1 m relative to the center of mass at some point during
the orbit. The torque, then, is given by τ ¼ r × ðmaadÞ≲
10 N · m, and the rotational acceleration isα¼τ=I∼10−7s−2.
At y ¼ 30 m, this translates into an acceleration of
atrq ∼ 2.0 × 10−6 m=s2, contributing δðdτACES=dtÞtrq ≲
c−2atrqy ∼ 10−21, which is negligible.
The space station also rotates. Normally it completes one

revolution per orbit, but higher rotation rates are also
possible. However, even at the unrealistically high rotation
rate ofω ¼ 1°=s,acf ¼ ω2

trqyA0 ≃ 0.009 m=s2, whichwould
contribute to the frequency comparison of the ACES
clocks at the level of δðdτACES=dtÞcf¼ðatrq·yA0Þ=c2 ≃
3.05×10−18, still small compared to our accuracy goal for
ACES.
In Eq. (31), the first term contributes

c−4GMEð½nISS × SE� · vISSÞ=ð2r2ISSÞ ≤ 4 × 10−21, which is
negligible. The second term, a gravitomagnetic term that
results in the dragging of inertial frames and a clock
redshift, is due to temporal variability of the nongravita-
tional accelerations. Taking _aNG ¼ aadωISS, where ωISS is
the orbital frequency of the ISS, this contribution amounts
to c−4ð4aadωISSy2A0vISSÞ=5 ≤ 1.9 × 10−35, which is exceed-
ingly small.
As a result, the SCRS at the position of the ACES

package on the ISS may be treated as inertial, with the
metric tensor given by the Minkowski space-time with
insignificant deviations due to noninertial contributions:

gISS00 ¼ 1þOð3.1 × 10−18Þ≡ 1;

gISS0α ¼ Oð6.3 × 10−16Þ≡ 0;

gISSαβ ¼ γαβ þOð3.1 × 10−18Þ≡ γαβ: ð32Þ

This Minkowski metric covers the entire space station and
may be used to analyze and process the data for the ACES
experiment. In (32), the error terms for temporal, gISS00 , and
spatial, gISSαβ , components are provided by a sudden non-
gravitational torques changing the attitude of the ISS by
1°=s, while the error bound for the mixed terms, gISS0α , is due
to omitted contribution from the Earth’s spin moment. As a
result, to a good approximation, the metric tensor of the
SCRS can be taken in the form of the Minkowski metric
(32), which is sufficient to describe the relativistic observ-
ables of the ACES experiment. The SCRSmay be treated as
a locally inertial frame that covers the entire ISS. Together
with the coordinate transformations (28) and (29) the metric
tensor (32) completes formulation of the SCRS.
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E. ACRS

To describe the observables of the ACES experiment, we
need to introduce the ACRS coordinate reference system
located at the center of mass of the ACES package. The
coordinate transformation between the SCRS and the
ACRS will be given in a form similar to (23) and (24):

tISS ¼ tA þ c−2
�
ðv0 · yAÞ þ

Z
tA

tA0

�
1

2
v20 þ w̄A

ext

�
dt0A

�

þOðc−4ÞtA; ð33Þ

yISS ¼ yA0 þ yA þ c−2
�
1

2
v0ðv0 · yAÞ − w̄A

extyA

þ 1

2
a0y2A − yAðyA · a0Þ

�
þOðc−2Þ; ð34Þ

where yA0 ¼ yA0ðtISSÞ is the positional vector of the ACES
package with respect to the SCRS, with jyA0j ¼ 30 m.
Also, v0 ¼ _yA0 and a0 ¼ ÿA0 are the velocity and accel-
eration of the ACRS as seen from the SCRS, correspond-
ingly. The external potential w̄A

ext is the potential due to the
gravity of the ISS evaluated at the ACES location. Its
magnitude is w̄A

ext=c2 ¼ UISS=c2 ≲ 1.0 × 10−23, making
this term negligible.
The velocity v0 ¼ _yA0 is mostly due to extended struc-

ture vibrations of the ISS. If we assume that the ISS vibrates
at the ACES location at ωvib ¼ 10 Hz with the amplitude
δvib ¼ 0.1 m, this motion leads to a vibrational velocity of
vvib ¼ δvibωvib ¼ 1 m=s, which will be responsible for a
contribution of δðdtISS=dtAÞvib ¼ 1

2
c−2v2vib ¼ 5.56 × 10−18

to ACES clock desynchronization. (As environmental
factors on the ISS may increase the magnitude of this
effect, it is important to analyze it in more detail, which we
plan to do in a separate publication.)
Based on this analysis, we conclude that the coordinate

transformations between the SCRS and the ACRS (33)
and (34) may be given as

tISS ¼ tA þ c−2ðvvib · yAÞ þOð5.6 × 10−18ÞtA; ð35Þ

yISS ¼ yA0 þ yA þOð5.6 × 10−18ÞyA; ð36Þ

where the bound is set by the vibrations of the ISS at the
location of the ACES package. As a result, the metric tensor
representing the ACRS has the nearly Minkowski form:

gA00 ¼ 1þOð1 × 10−16Þ; gA0α ¼ Oð1 × 10−21Þ;
gAαβ ¼ γαβ þOð1 × 10−16Þ: ð37Þ

Furthermore, Eq. (35) implies that the proper time of an
atomic clock at the origin of the ACRS is nearly equivalent
to the time of the SCRS, namely:

dτA
dtISS

¼ 1þOð5.6 × 10−18Þ: ð38Þ

Using the coordinate transformations (28) and (29)
between the SCRS and the GCRS, we can relate ACES
proper time to GCRS geocentric time, TCG. Dropping
quadrupole terms from the expression as well as the
acceleration-dependent term c−2aISS0 ·yA0¼Oð4.2×10−18Þ,
we obtain

dτA
dt

¼ 1 −
1

c2

�
1

2
v2A þ ðvA · vadÞ

þ GME

rA

�
1þ J2

�
RE

rA

�
2 3z2A − r2A

2r2A

��

þOð3 × 10−16Þ: ð39Þ

Clearly, (39) may be obtained directly by defining the
ACRS via a coordinate transformation between the GCRS
and ACRS. However, by introducing the hierarchy of
reference systems GCRS → SCRS → ACRS, we were able
to discuss the appropriate gravitational and nongravita-
tional forces and related torques at each step of these
transformations.
Note that the accuracy of (39) may be improved to

Oð4.4 × 10−17Þ by including several terms with the gravi-
tational harmonics beyond J2. Such an improvement may
be needed to be consistent with the ultimate ACES clock
accuracy, which is expected to be at the level of 1 × 10−16

at 1 d.
Concluding, we emphasize that, contrary to our original

expectations, the ACES coordinate reference system may
be treated as a quasi-inertial one. One can use the
coordinate transformations and the metric tensor discussed
in this section to describe the relativistic observables of the
ACES experiment. However, the proposed Space Optical
Clock mission [22] will require the introduction of a more
accurate set of coordinate reference systems.

III. MODELING THE RELATIVISTIC
OBSERVABLES FOR ACES

Now that we have successfully formulated all the
coordinate systems and coordinate transformation rules
required to describe the ACES experiment and associated
ground stations, we can proceed with modeling the timing
and frequency observables of ACES.

A. Timing observables

First, we consider the generic two-way scenario shown in
Fig. 2, representative of the European Laser Timing (ELT)
experiment [8], operating in conjunction with ACES.
Depicted are the worldlines of two terminals: A (e.g., a
ground station) and B (the ACES experiment). Proper times
of transmission and reception, time stamped by local clocks,
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are recorded at both locations. Thus, a signal emitted at
~τAðt1Þ ¼ ~τA1 (where the tilde is used to indicate that ~τ is a
discrete data point in a measurement sequence, as distin-
guished from the continuous variable τ representing proper
time) will be recorded at ~τeA1 ¼ ~τA1 þ δ~τeA, where δ~τeA
captures the finite precision of the time stamp and
other instrumental uncertainties. We similarly introduce
the time of the first signal’s reception along worldline B,
~τrB2 ¼ ~τBðt2Þ þ δ~τrB ¼ ~τB2 þ δ~τrB, and the corresponding
quantities for the return signal: ~τeB3 ¼ ~τBðt3Þ þ δ~τeB ¼ ~τB3 þ
δ~τeB and ~τrA4 ¼ ~τAðt4Þ þ δ~τrA ¼ ~τA4 þ δ~τrA. We assume that
δ~τeA, δ~τ

r
A, δ~τ

e
B and δ~τrB are constant and known ahead of time

(through instrumental calibration) though, in general, the
emission and reception delays are different: δ~τeA ≠ δ~τrA and
δ~τeB ≠ δ~τrB. For convenience, we introduce the following
combinations corresponding to pseudoranges:

Δ~τA1B2 ¼ ~τrB2 − ~τeA1; Δ~τB3A4 ¼ ~τrA4 − ~τeB3; ð40Þ

Δ~τA1A4 ¼ ~τrA4 − ~τeA1; Δ~τB2B3 ¼ ~τeB3 − ~τrB2: ð41Þ

These values are all functions of the coordinate time
quadruplet of coordinate times ft1; t2; t3; t4g. Using
Eq. (21), we can use these coordinate times to form the
light travel times

Δt12 ¼ t2 − t1 ¼ c−1RABðxB1;xA2Þ;
Δt34 ¼ t4 − t3 ¼ c−1RABðxB3;xA4Þ; ð42Þ

where

RABðxA1;xB2Þ ¼ jxB2 − xA1j þ ð1þ γÞ

×
GME

c2
ln

�
rA1 þ rB2 þ jxB2 − xA1j
rA1 þ rB2 − jxB2 − xA1j

�

þOðc−3; J2; G2Þ; ð43Þ

RABðxB3;xA4Þ ¼ jxA4 − xB3j þ ð1þ γÞ

×
GME

c2
ln

�
rA4 þ rB3 þ jxA4 − xB3j
rA4 þ rB3 − jxA4 − xB3j

�

þOðc−3; J2; G2Þ; ð44Þ

where we used the shorthand xA1 ¼ xAðt1Þ, xB2 ¼ xBðt2Þ,
xB3 ¼ xBðt3Þ, and xA4 ¼ xAðt4Þ to indicate the various
positions along the two worldlines. Additionally, we can
form the time intervals Δt14 ¼ t4 − t1 and Δt23 ¼ t3 − t2,
which correspond to the intervals of proper time measured
by the clocks on A and B.

1. Clock synchronization

The quantities (40) and (41) together with (42) and (43)
and (44) allow us to expressΔt ¼ t3 − t1, which is required
for synchronization of two clocks [16,24,49]:

Δt ¼ t3 − t1 ¼
1

2
ðΔt14 þ Δt23 þ Δt12 − Δt34Þ: ð45Þ

Δt is known because it is expressed in terms of Δt14 and
Δt23, which are measured at the two terminals, and Δt12
and Δt34, which are computed from Eqs. (42)–(44).
The sum of the two Eqs. (42) may also be written as

t3 − t1 ¼
1

2
ððt4 − t1Þ þ ðt3 − t2Þ þ c−1RABðxB1;xA2Þ

− c−1RABðxA3;xB4ÞÞ: ð46Þ

The difference between the two range measurements
RABðxB1;xA2Þ and RABðxA3;xB4Þ produces a correction
to the the sum of the two clock time intervals measured at
the two terminals. This correction depends on the range rate
between the two terminals [50]. Equation (46) can also be
written as

1

2
ðt1 þ t4Þ −

1

2
ðt2 þ t3Þ ¼

1

2c
ðRABðxA3;xB4Þ

−RABðxB1;xA2ÞÞ; ð47Þ

which represents the essence of Einstein’s procedure for
clock synchronization.
Clearly, for ideal clocks and perfect measurements, (47)

is an exact identity. However, for realistic measurements,
when various sources of noise are present in the system,
(47) could lead to an observational model that may be used

FIG. 2. Timing events for paired one-way scenarios: Depicted
(not to scale) are the trajectories of the terminals A and B, with
corresponding proper times τA and τB and with four events in the
GCRS, corresponding to a one-way signal transmission at xBðt1Þ
and its reception by the A terminal at xAðt2Þ, and, similarly,
another one-way signal transmission at xAðt3Þ by terminal A and
reception of this signal at xBðt4Þ.
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to evaluate the stability of clock synchronization
[41,51,52]. The baseline approach in ACES is to use the
MWL hardware to enable time and frequency transfer [14].
Alternatively, the ELT may also be used for this purpose,
relying only on the timing information in Eqs. (40) and
(41). Below, we develop the appropriate relativistic models.
To express the observed clock offset, we use the

quadruplet f~τeA1; ~τrB2; ~τeB3; ~τrA4g of the time tags reported
by terminals A and B:

δτobsAB ¼ 1

2
ðð~τeA1 þ ~τrA4Þ − ð~τrB2 þ ~τeB3ÞÞ: ð48Þ

This term can also be computed as follows:

δτcomp
AB ¼1

2
ððτ̂A1−τA1ÞþðτA1− t1Þþðτ̂A4−τA4Þ

þðτA4− t4ÞþδτeAþδτrAÞ

−
1

2
ððτ̂B2−τB2ÞþðτB2− t2Þþðτ̂B3−τB3Þ

þðτB3− t3ÞþδτeBþδτrBÞ

þ1

2
ððt4− t3Þ−ðt2− t1ÞÞþ

1

2c
ðδatm34 −δatm12 Þ; ð49Þ

where the terms in the equation above represent five groups
of terms that have the following meaning:

(i) The quantities ðτ̂A1−τA1Þ, ðτ̂A4−τA4Þ and ðτ̂B2−τB2Þ,
ðτ̂B3 − τB3Þ represent the differences between re-
corded time tags and proper times. These clock errors
may be modeled as quadratic functions of the
measured proper time. For example, the time tag
error ð~τA1 − τA1Þ is given as

ðτ̂A1− τA1Þ¼ αAþβAðτ̂A1− τ̂A0Þ

þ1

2
γAðτ̂A1− τ̂A0Þ2þOðΔτ̂3A1Þ; ð50Þ

where τ̂A0 is a specified epoch andΔτ̂A1 ¼ τ̂A1 − τ̂A0.
The constants αA, βA and γA are to be estimated
during the data analysis. The other time tag errors are
modeled in a similar manner.

(ii) The quantities ðτA1 − t1Þ, ðτA4 − t4Þ and ðτB2 − t2Þ,
ðτB3 − t3Þ are the general relativistic differences
between proper time and coordinate time. These
relationships are established by integrating Eqs. (12)
and (39).

(iii) The error terms δτeA, δτ
r
A and δτeB, δτ

r
B are instru-

mental delays due to fixed propagation paths be-
tween the optical systems, detector electronics and
the time tag unit. These delays are usually measured
and calibrated before the flight.

(iv) The terms ðt4 − t3Þ and ðt2 − t1Þ represent the coor-
dinate light transfer time elapsed between the signal
emission at one terminal and its reception at the

opposing terminal, related to pseudoranges as given
by (42).

(v) The term ðδatm34 − δatm12 Þ is the difference the atmos-
pheric signal propagation delay during uplink and
downlink.

In the case of the ELT experiment, the signal received on
the ISS is time stamped at the reception and is simulta-
neously returned by a retroreflector. Thus, ~τrB2 ¼ ~τeB3,
Δ~τB2B3 ¼ 0 and (48) becomes

δτobsAB ¼ 1

2
ð~τeA1 þ ~τrA4Þ − ~τrB2: ð51Þ

Furthermore, ~τrB2 ¼ ~τeB3, and, therefore, (49) becomes

δτcomp
AB ¼ 1

2
ððτ̂A1 − τA1Þ þ ðτA1 − t1Þ þ ðτ̂A4 − τA4Þ

þ ðτA4 − t4Þ þ δτeA þ δτrAÞ − ððτ̂B2 − τB2Þ

þ ðτB2 − t2Þ þ δτrBÞ þ
1

2c
ðRABðxB3;xA4Þ

−RABðxA1;xB2ÞÞ þ
1

2c
ðδatm34 − δatm12 Þ: ð52Þ

This model could be used to evaluate clock desynchroni-
zation in the ACES experiment. It may also be used to
develop an appropriate simulation code that is needed to
understand the features of ACES. Note that when two
ground-based clocks are used for common view compari-
son (see Table I) in a terrestrial reference frame, the Sagnac
effect must also be accounted for, as discussed in [53].
The first 1=c term in (52) represents the difference

between optical paths [given by (43) and (44)] of the two
signals traveling between receiver and transmitter in a two-
way communication link. This term depends on the geo-
centric positions of both the ACES and a ground station.
This information, in particular, is helpful to investigate the
accuracy needed for trajectory reconstruction of the ISS in
order to satisfy the ACES’ science requirements. Similar
questions were addressed previously under different sets of
assumptions [10,13,20,38].
Using (52), we evaluate the geometric uncertainty due to

imprecision in the ISS navigation:

δτcomp
AB jgeom ¼ 1

2c
ðRABðxB3;xA4Þ −RABðxA1;xB2ÞÞ

¼ 1

2c
ðjxA4 − xB3j − jxB2 − xA1jÞ; ð53Þ

where we neglected the contribution from the Shapiro
delay, which, even in the absolute sense, contributes
≤ 10 ps. For the ELT experiment, where t3 ¼ t2, (53)
becomes

δτcomp
AB jgeom ¼ 1

2c
ðnAB · vABÞðt4 − t1Þ þOðc−2Þ: ð54Þ
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Consider the case in which the velocity of the ground-based
station is well known and the largest systematic error comes
from the uncertainty in the velocity of the ISS. We take the
instant with the longest round-trip time Δt14 ¼ t4 − t1 of
Δtmax

14 ¼2c−1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðrEþhISSÞ2−r2E

p
≈2c−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2rEhISS

p ¼15.2ms.
The angle between two unit vectors n̂AB and v̂B at that
instant is also small, cosðn̂AB; v̂BÞ ≈ 1 − hISS=rE. Then,
assuming that the timing accuracy for the ISS pass is better
than δτcomp

AB jgeom ≤ 0.3 ps, from (54) we have the accuracy
at which the ISS velocity needs to be known:

ΔvB ≤
c2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2rEhISS
p 0.3 ps ¼ 0.012 m=s; ð55Þ

which is equivalent to the requirement that the geocentric
position of the ACES package on the ISS be known to
ΔhISS ≤ 2ðrE þ hISSÞΔvB=vISS ¼ 20.8 m, assuming that
this positional error is responsible for the entire timing
error of 0.3 ps. On the other hand, as we see from (52),
there will be many contributions to the timing error, with
the ISS positional error being just one of them. Thus, based
on the anticipated precision of the time transfer experi-
ments, we require that the ISS positional error contributes
less than 10% of the timing error of 0.3 ps, which translates
into a requirement that the geocentric position of ACES be
known to σhISS ≤

ffiffiffiffiffiffiffi
0.1

p
· 20.8 m ¼ 6.3 m. This is consistent

with earlier estimates [10] and can be achieved with
existing navigation capabilities [38].

2. Two-way pseudorange

The time observables (40) and (41) may also be used to
develop a two-way pseudorange estimate. Similarly to (48),
we use the time tag quadruplet f~τeA1; ~τrB2; ~τeB3; ~τrA4g to derive
an expression for the observed two-way pseudorange,
which is half the sum of the one-way pseudoranges:

δρobsAB ¼ 1

2
cðΔ~τA1B2 þ Δ~τB3A4Þ ¼

1

2
cðΔ~τA1A4 − Δ~τB2B3Þ

≡ 1

2
cðð~τeA4 − ~τrA1Þ − ð~τrB3 − ~τeB2ÞÞ; ð56Þ

where all the times are the actual time measurements
reported by the two terminals. In the case of the ELT
experiment [8], ~τrB2 ¼ ~τeB3, and Eq. (56) becomes

δτobsAB ¼ 1

2
cð~τeA4 − ~τrA1Þ: ð57Þ

The computed pseudorange is given by

δρcomp
AB ¼ 1

2
cðΔτ̂A1B2 þ Δτ̂B3A4Þ

≡ 1

2
cððτ̂rB2 − τ̂eA1Þ þ ðτ̂rA4 − τ̂eB3ÞÞ; ð58Þ

where now times are modeled times for those reported by
the clocks on stations A and B. To facilitate computation,
this expression is written as a sum of the following terms:

δρcomp
AB ¼ 1

2
cððτ̂A4− τA4ÞþðτA4− t4Þ− ðτ̂A1− τA1Þ

− ðτA1− t1ÞþδτrA−δτeAÞ−
1

2
cððτ̂B3− τB3Þ

þðτB3− t3Þ− ðτ̂B2− τB2Þ− ðτB2− t2ÞþδτeB−δτrBÞ

þ1

2
cððt4− t3Þþðt2− t1ÞÞþ

1

2
ðδatm12 þδatm34 Þ;

ð59Þ

where all the quantities present in this equation are defined
after (49).
For the ELT experiment, ~τrB2 ¼ ~τeB3, and, therefore, (59)

becomes

δρcomp
AB ¼ 1

2
cððτ̂A4 − τA4Þ þ ðτA4 − t4Þ − ðτ̂A1 − τA1Þ

− ðτA1 − t1Þ þ δτrA − δτeAÞ

þ 1

2
ðRABðxA1;xB2Þ þRABðxB2;xA4ÞÞ

þ 1

2
ðδatm12 þ δatm24 Þ: ð60Þ

The two-way range model (60) may be used to improve
navigation of the ACES package on the ISS. If enough
satellite laser ranging (SLR) stations participate in the laser
ranging campaign, ACES may be able to completely
address its precision navigation needs. Although geodetic
satellites yield trajectory reconstruction accuracy at the level
of∼1 cm, the ISS will not allow for such a precision. As we
discussed earlier, the station is subject to significant non-
gravitational forces whose presence degrades the trajectory
reconstruction. Nevertheless, because of its potential nav-
igational value, the use of SLR for ACES needs further
investigation, especially within the ELT experiment [13].

B. Frequency observables: The gravitational redshift

The MWL component of ACES utilizes three different
microwave frequencies (one uplink, two downlink) to
provide for reliable (not weather-dependent) transfer of
timing and frequency information. In particular, for fre-
quency observables, the combined use of uplink and down-
link observables allows for the formulation of a science
observable, fromwhich the effects of the Doppler frequency
shift and atmospheric noise are canceled to the first order.
To formulate the gravitational redshift observable, we

assume the presence of a one-way and a two-way frequency
observable. Two-way, in this context, means a coherent
retransmission of a signal received from the ground. We
assume that the signal retransmission is instantaneous.
Such an observable can always be synthesized using the
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three radio frequency observables that are produced by the
MWL experiment.
We use τ̂A1 to represent the proper time transmission of a

signal from worldline A at proper time τ̂Aðt1Þ, which is then
received at worldline B at proper time τ̂B2. An infinitesimal
interval dτ̂A1 at the transmitter corresponds to an infini-
tesimal interval dτ̂B2 at the receiver. The number of cycles
transmitted during this interval, dn, is equal to the number
of cycles received at the receiver. On the other hand, the
number of cycles is the product of the signal frequency and
the time interval; therefore ftxAðτ̂A1Þdτ̂A1 ¼ frxB ðτ̂B2Þdτ̂B2, or

frxB ðτ̂B2Þ ¼ ftxAðτ̂A1Þ
dτ̂A1
dτ̂B2

: ð61Þ

Similarly, this signal is immediately retransmitted to the
ground at the same frequency and then received at τ̂A3 in a
two-way retransmission scheme, and the received fre-
quency is given by

f2wA ðτ̂A3Þ ¼ frxB ðτ̂B2Þ
dτ̂B2
dτ̂A3

¼ ftxAðτ̂A1Þ
dτ̂A1
dτ̂B2

dτ̂B2
dτ̂A3

: ð62Þ

Similarly, a one-way signal transmitted from B at τ̂B2 at
frequency ftxB ðτ̂B2Þ is received at station A at the frequency

f1wA ðτ̂A3Þ ¼ ftxB ðτ̂B2Þ
dτ̂B2
dτ̂A3

: ð63Þ

The one-way frequency shift between the transmission and
the reception frequency includes contributions from the
relativistic Doppler effect, from atmospheric noise, and
from the gravitational redshift. In contrast, the frequency
shift in the two-way transmission includes twice the
contributions from the relativistic Doppler effect and from
atmospheric noise, but gravitational redshift contributions
are canceled out to first order [16,54]. This allows for the
formulation of a first-order “Doppler-canceled” observable
in the form

δηobsf ¼ f̂1wB ðτ̂A3Þ− f̂Bðτ̂B2Þ
f̂Bðτ̂B2Þ

−
1

2

f̂2wA ðτ̂A3Þ− f̂Aðτ̂A1Þ
f̂Aðτ̂A1Þ

: ð64Þ

For ACES, the removal of the first-order Doppler effect will
be enabled by the MWL [14], which will also allow for the
removal of the troposphere time delay, as well as the
removal of instrumental delays and common mode effects.
This observable can also be computed from the ratio of

proper times that, in turn, can be estimated from orbits:

δηcomp
f ¼

�
dτ̂B2
dτ̂A3

− 1

�
−
1

2

�
dτ̂A1
dτ̂A3

− 1

�
: ð65Þ

To develop Eq. (65) further, we use the differential
equation that relates the rate of the proper times, τA and τB,

as measured by a ground-based and on-board clock in
Earth’s orbit, correspondingly, to the time in GCRS,
denoted here as t (see Ref. [23]) as

dτA
dt

¼ 1 −
1

c2

�
v2A
2
þ UEðyAÞ

�
þOðc−4Þ and

dτB
dt

¼ 1 −
1

c2

�
v2B
2
þ UEðyBÞ

�
þOðc−4Þ: ð66Þ

Taking into account that ðdτA=dt−1Þ≈ðdτB=dt−1Þ∼10−9,
and assuming that time tag errors τ̂A and instrumental drifts
δτeA are small, we can rewrite dτ̂A1 in the following form:

dτ̂A1 ¼
�
1þ dðτ̂A − τAÞ

dt
þ dδτeA

dt

��
dτA
dt

�
t1

dt1 þOðϵAÞ;

ð67Þ

where we use ðdτA=dtÞt1 to mean the value of the
expression (66) at t ¼ t1 and the error term ϵA is

ϵA ¼ −
�
dτA
dt

− 1

��
dðτ̂A − τAÞ

dt
þ dδτeA

dt

�
þOðc−4Þ: ð68Þ

For ϵA to be less than the frequency stabilization
accuracy anticipated from on ACES, i.e., ϵA ≤ 10−17,
the time tag errors (i.e., scale and clock acceleration
errors) δ _̂τA ¼ dðτ̂A − τAÞ=dt and instrumental drifts
δ_τeA ¼ dδτeA=dt must not exceed δ _̂τA, δ_τeA ≤ 10 ns=s.
Otherwise the approximation needs to be updated to
include (68), which we omit below. Using (50), our
approximation results in

δ _̂τA ≡ dðτ̂A − τAÞ
dt

¼ βA þ γAðτ̂A − τ̂A0Þ þOðΔτ̂2A; c−2Þ:
ð69Þ

As a result, to approximation appropriate for ACES, (67)
takes the following linearized form:

dτ̂A1 ¼ ð1þ δ _̂τA þ δ_τeAÞ
�
dτA
dt

�
t1

dt1: ð70Þ

Similarly, we have the other two expressions

dτ̂A3 ¼ ð1þ δ _̂τA þ δ_τrAÞ
�
dτA
dt

�
t3

dt1; ð71Þ

dτ̂B2 ¼ ð1þ δ _̂τB þ δ_τrBÞ
�
dτB
dt

�
t2

dt1: ð72Þ

Therefore, the ratio of the estimates of proper times in
(65) may be expressed via the ratio of their coordinate
counterparts as
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dτ̂B2
dτ̂A3

¼ ð1þ δ _̂τB þ δ_τrB − δ _̂τA − δ_τrAÞ
�
dτB
dt

�
t2

�
dτA
dt

�
−1

t3

dt2
dt3

; ð73Þ

dτ̂A1
dτ̂A3

¼ ð1þ δ_τeA − δ_τrAÞ
�
dτA
dt

�
t1

�
dτA
dt

�
−1

t3

dt1
dt3

: ð74Þ

As a result, Eq. (65) takes the form

δηcomp
f ¼

�
dt2
dt3

− 1

�
−
1

2

�
dt1
dt3

− 1

�
þ
�
ð1þ δ _̂τB þ δ_τrB − δ _̂τA − δ_τrAÞ

�
dτB
dt

�
t2

�
dτA
dt

�
−1

t3

− 1

�
dt2
dt3

−
1

2

�
ð1þ δ_τeA − δ_τrAÞ

�
dτA
dt

�
t1

�
dτA
dt

�
−1

t3

− 1

�
dt1
dt3

; ð75Þ

where the instances of coordinate time t2 and t3 are related
by (42). Although events of the original signal emission at
t1 and its ultimate reception at t3 are not connected by the
same light cone, we nevertheless may compute the total
time elapsed between the two events (as was first observed
in [55]). Indeed, taking t2 ¼ t3 in (42), we have

t1 ¼ t3 − c−1ðRABðxAðt1Þ;xBðt2ÞÞ
þRBAðxBðt2Þ;xAðt3ÞÞÞ: ð76Þ

Thus, the total coordinate time elapsed between the two
events is fully determined by the locations of the two
stations. In fact, using the first equation in (42) and (76) we
have the following exact expression for the ratio of
coordinate times present in (75):

dt2
dt3

¼ 1 −
1

c
d
dt3

½RBAðxB2;xA3Þ� −
1

c
dδatmB23
dt3

; ð77Þ

dt1
dt3

¼ 1 −
1

c
d
dt3

½RABðxA1;xB2Þ þRBAðxB2;xA3Þ�

−
1

c
d
dt3

ðδatmA12 þ δatmA23Þ; ð78Þ

where we introduced atmospheric delay δatmA12 for the signal
from station A on the uplink and atmospheric delays δatmA23,
δatmB23 for the downlink leg of the two-way signal originating
at station A and the downlink signal originating at B,
respectively. This allows us to account for the fact that
atmospheric delay is a frequency-dependent effect increas-
ing the length of the propagation path in the atmosphere.
Note that, due to the relativistic frequency shift, atmos-
pheric delay is different for uplinks and downlinks.
The results given by Eqs. (77) and (78) allow us to

present (75), describing the frequency difference between
the signal transmitted from B and received at A, comparing
it to the local oscillator at A, as

δηcomp
f ¼ 1

2c
d
dt3

½RABðxA1;xB2Þ−RBAðxB2;xA3Þ�þ
1

c
d
dt3

�
1

2
ðδatmA12þδatmA23Þ−δatmB23

�

þ
�
ð1þδ _̂τBþδ_τrB−δ _̂τA−δ_τrAÞ

�
dτB
dt

�
t2

�
dτA
dt

�
−1

t3

−1

��
1−

1

c
d
dt3

½RBAðxB2;xA3Þ�−
1

c
dδatmB23
dt3

�

−
1

2

�
ð1þδ_τeA−δ_τrAÞ

�
dτA
dt

�
t1

�
dτA
dt

�
−1

t3

−1

��
1−

1

c
d
dt3

½RABðxA1;xB2ÞþRBAðxB2;xA3Þ�−
1

c
d
dt3

ðδatmA12þδatmA23Þ
�
:

ð79Þ

The resulting expression is valid for arbitrary worldlines
of A and B. Although (79) contains all three values of time,
t1, t2, t3, any two of these values are determined by the
third. We choose the time of final reception at A, t3, as the
independent variable. The values of t1 and t2 may be
explicitly expressed via t3 as t1ðt3Þ and t2ðt3Þ by applying
the transformations (42) and (76). Furthermore, (12)
and (66) relate the coordinate time t3 to the proper time
τA3 and can be integrated to determine t3 ¼ t3ðτA3Þ and
vice versa.

To simplify the model (79), we evaluate the terms on the
right-hand side of this equation using the ACES configu-
ration. To do this, we estimate the following ratio:

1 −
�
dτB
dt

�
t2

�
dτA
dt

�
−1

t3

¼ 1

c2

�
1

2
ðv2B2 − v2A3Þ þ UEðxB2Þ

− UEðxA3Þ
�
þOðc−4Þ

≃ 3.675 × 10−10: ð80Þ
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This term is significant and must be kept in the model. The
1=c4 terms in (80) produce contributions of the order of
∼5 × 10−19, which is beyond the ACES capability and
may be omitted. Next, using expansions presented in
Appendix B of [25] we evaluate the term

1

c
d
dt3

½RBAðxB2;xA3Þ� ¼
1

c
d
dt3

jxAðt3Þ − xBðt2Þj þOðc−3Þ

¼ 1

c
ðnA3B2 · vA3B2Þ þOðc−2Þ

¼ 2.71 × 10−5 þOð7 × 10−10Þ;
ð81Þ

where rA3B2¼rB2−rA3, rA3B2¼jrA3B2j, nA3B2¼rA3B2=
rA3B2, and vA3B2 ¼ vB2 − vA3. Thus, this term also must
be included in the model. However, the atmospheric
contribution may be omitted from this term. Indeed,
atmospheric delay is δatm12 ∼ 2 m and, even if it changes
at a rate of ∼2 m=s, the resulting term c−1δatm12 ¼
6.67 × 10−9, multiplied by (80), produces a negligible
contribution.
Similarly we evaluate the factor in the square brackets in

second term of (79). Thus, using (66) we have

1 −
�
dτA
dt

�
t1

�
dτA
dt

�
−1

t3

¼ 1

c2
d
dt

�
v2A
2
þ UEðxAÞ

�
Δt13

þOðΔt213; c−4Þ; ð82Þ

where Δt13 ¼ t3 − t1. The magnitude of the right-hand
side can be easily evaluated. For the time of transmission in
the two-way case, we get Δt13 ∼ 2dAB=c, with maximal
value of Δtmax

13 ¼ dmax
AB =c ¼ 2c−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðrE þ hISSÞ2 − r2E

p
≈

2c−1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2rEhISS

p ¼ 15.2 ms. Therefore, the right-hand side
of (82) has the magnitude

d
dt

�
v2A
2
þGM

rA

�
·
2dAB
c3

≤ 1.3 × 10−18; ð83Þ

which is negligible for ACES, allowing us to drop from
(79) the combination of terms proportional to (82).
To simplify the third term in (79), we need to express

time t1 via t3, which can be done by using (76):

t1 ¼ t3 −
2

c
rA3B2 −

2

c2
ðrA3B2 · vA3Þ þOðc−3Þ: ð84Þ

Next, using formulas from Appendix B of [25], the third
term in (79) takes the form

RABðxA1;xB2Þ −RBAðxB2;xA3Þ

¼ 2

c
ðrA3B2 · vA3Þ þ

2rA3B2
c2

ðv2A3 − ðrA3B2 · aA3ÞÞ
þOðc−3Þ; ð85Þ

where aA ¼ _vA is the acceleration of station A. To take the
derivative d=dt3 from (85) we first need to account that t2
and a faction of t3. Thus, using (77), with sufficient
accuracy, we have

dt2
dt3

¼ 1 −
1

c
ðnA3B2 · vA3B2Þ þOðc−2Þ: ð86Þ

As a result, the third term in (79) takes the form

1

2c
d
dt3

½RABðxA1;xB2Þ−RBAðxB2;xA3Þ�

¼ 1

c2
ððvA3B2 ·vA3ÞþðrA3B2 ·aA3ÞÞ

�
1−

1

c
ðnA3B2 ·vA3B2Þ

�

þ 1

c3
rA3B2ððð3vA3−vB2Þ ·aA3Þ−ðrA3B2 · _aA3ÞÞþOðc−3Þ:

ð87Þ

As a result, Eq. (79) may be written as

δηcomp
f ¼ −

1

c2

�
1

2
v2A3B2 þUEðxB2Þ −UEðxA3Þ − ðrA3B2 · aA3Þ

��
1 −

1

c
ðnA3B2 · vA3B2Þ

�

þ 1

c3
rA3B2ððð3vA3 − vB2Þ · aA3Þ − ðrA3B2 · _aA3ÞÞ þ

1

c
_ρatm3w þ ðδ _̂τB þ δ_τrB − δ _̂τA − δ_τeAÞ

�
1 −

1

c
ðnA3B2 · vA3B2Þ

�

þ 1

2
ðδ_τeA − δ_τrAÞ þOð1.3 × 10−18Þ: ð88Þ

This quantity is fully determined by the worldlines of the
two stations at various moments of signal propagation. We
introduced ρatm3w ¼ 1

2
ðδatmA12 þ δatmA23Þ − δatmB23, which denotes

temporal change in the asymmetry of the atmospheric
delay between down- and uplinks during the combination of

a two-way and a one-way communication link used to cancel
the first-order Doppler shifts. We can see that the first-order
Doppler cancellation scheme given by Eqs. (64) and (65)
also greatly reduces contributions associated with various
noise sources, especially atmospheric noise.Originally,with
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accuracy up to 1=c2, Eq. (88) was developed for theGravity
Probe A experiment [54], whichwas later updated forACES
to include the 1=c2 terms in [16]. Our results are similar, but
they were developed using a different approach, which
allows for a significant generalization.
As a last step, we express all the quantities in (88) using

the proper time of final reception, τA3, corresponding to

coordinate time t3. This can be done by using the relation
between t2 and t3, which to sufficient order is

t2 ¼ t3 −
1

c
rAB þOðc−2Þ: ð89Þ

As a result, we are able to express the model (88) for the
Doppler-canceled gravitational redshift in its most conven-
ient form:

δηcomp
f ¼ −

1

c2

�
1

2
v2AB þ UEðxBÞ −UEðxAÞ − ðrAB · aAÞ

��
1 −

1

c
ðnAB · vABÞ

�

−
1

c3
rABð2ðvAB · aAÞ þ ðvA · aABÞ þ ðrAB · _aAÞÞ þ

1

c
_ρatm3w þ ðδ _̂τB þ δ_τrB − δ _̂τA − δ_τeAÞ

�
1 −

1

c
ðnAB · vABÞ

�

þ 1

2
ðδ_τeA − δ_τrAÞ þOð1.3 × 10−18Þ; ð90Þ

where aAB ¼ aB − aA and all the quantities are expressed
in terms of t3. Ultimately, ACES will be able to test the
gravitational redshift to an uncertainty level of < 2.0 ×
10−6 in 10 d of integration time. Therefore, the contribution
of each term in (90) must be known to an appropriate
accuracy. We address these questions and the related
precision of the ISS orbit in the following subsection.
Note that one can also use timing observables to

investigate the relative frequency stability between the
clocks on the ground and those is space. In Sec. III A,
we introduced desynchronization between the two clocks
with observable δτABðtÞ, given by (51) and the model (52).
The local time stability of these measurements may allow
for a precise estimation of a time drift over a short duration
(around 1 min), according to this approximation of the
derivative:

δfobsAB

f0
¼ 1

T

�
δτobsAB

�
tþ1

2
T

�
−δτobsAB

�
t−

1

2
T

��
and

δfcomp
AB

f0
¼ 1

T

�
δτcomp

AB

�
tþ1

2
T

�
−δτcomp

AB

�
t−

1

2
T

��
: ð91Þ

These quantities correspond to a relative frequency offset,
δfAB, seen by the station A during the time interval T with
respect to the nominal frequency f0 of the oscillator at A.
Such a quantity may allow the use of laser ranging data
from the ELT experiment for an independent verification of
δfAB=f0 established by the MWL.

C. Precision of ISS navigation

Now we can address the question of navigational pre-
cision for the ISS, which is needed to satisfy the ACES
requirements based on the anticipated precision of the
redshift experiment. To do that, we consider the proper-
to-coordinate time transformation for the clock on the ISS
that is given by (39). We begin with presenting this equation

in terms of the Keplerian elements of the orbit of the ISS
including the semimajor axis a, eccentric anomaly E ¼
Mþ e sin E (withM being the mean anomaly), eccentric-
ity e, and orbital radius r ¼ að1 − e cos EÞ.
Collecting all the terms relevant to establishing the orbit

of the ACES clocks, we have

dτB
dt

−1¼−
GME

c2a0

�
3

2
þ7

2
J2E

�
RE

a0

�
2
�
1−

3

2
sin2i0

�

þ2

�
1−

3

2
J2E

�
RE

a0

�
2
�
1−

3

2
sin2i0

��
e0 cosE0

þ2e20cos
2E0þJ2E

�
RE

a0

�
2

sin2i0 cos2ðω0þuÞ

−cosθA0

yA0
a0

þπ
cdA
m

ρatma0

�
þOð4.4×10−17Þ;

ð92Þ

where i0 is the inclination, ω is the altitude of perigee and u
is the true anomaly. Also, the subscript 0 refers to an
unperturbed quantity and the error term is set by the
lunar tides.
The first term in Eq. (92) evaluates to 9.83 × 10−10 and is

responsible for the largest frequency shift for a clock on
Keplerian orbit around the Earth. The second term, which is
of the order of 1.73 × 10−13, represents perturbation due the
Earth’s oblateness. The third term is the eccentricity
correction, which was evaluated to be 7.86 × 10−13.
Note that oblateness contributes an ∼1 × 10−16 correction
to this term. The fourth term is a quadratic eccentricity
correction with a magnitude of 4.72 × 10−16. The fifth term
has an amplitude 3.86 × 10−13. The sixth term amounts to
∼3.39 × 10−16 and is due to the shift of the ACES position
with respect to the center of origin of the SCRS on the ISS.
The last term has the magnitude of up to ∼1.15 × 10−14 is
due to atmospheric drag. The contributions of all these
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terms are significant at the expected level of accuracy
of ACES.
Considering the first term in Eq. (92) [or, similarly, the

first two terms in (88) for the redshift experiment], we see
that during a 90-min ISS orbit, the altitude of the space
station must be known to

δa0 ¼ a0

�
3GME

2c2a0

�
−1
δ

�
dτA
dt

�
≤ 6.89 × 1015δ

�
dτA
dt

�
m:

ð93Þ

It is anticipated that during an integration time of 103 s, the
frequency stability of the ACES clock is dominated by the
stability of the MWL and should be better than δf=f ¼
δðdτA=dtÞ ¼ 2.1 × 10−15 (Table I). To estimate the size of
allowable navigational error, we rely on the “rule of thumb”
stating that no individual contribution to the total error shall
exceed 10% of the total error. This implies that the position
of the ISS on its orbit around the Earth should be known
with accuracy better than δa0 ≲

ffiffiffiffiffiffiffi
0.1

p
· 14.47 m≃ 4.58 m

(i.e., similar to [11,21]). As the orbital plane of the ISS
precesses with each revolution, it is necessary to track the
orbital changes on a permanent basis. Therefore, a combi-
nation of several methods of orbit determination may be
needed, including the use of traditional radio-tracking in
conjunction with GPS and SLR (for instance, as part of the
ELT experiment).
The presence of the J2 term in (92) may be accounted for

within a perturbation theory. Perturbations of the ISS orbits
due to Earth’s quadrupole are a significant fraction of the
change in semimajor axis associated with the correspond-
ing orbit change. One needs to estimate the effect of the
Earth’s quadrupole moment on the orbital elements of a
Keplerian orbit of the space station and also on the change
in frequency induced by an orbit change. Accounting for
the perturbation in Keplerian orbital elements of the ISS
orbit including the semimajor axis a, eccentric anomaly
E ¼ Mþ e sin E (with M being the mean anomaly),
eccentricity e, and orbital radius r ¼ að1 − e cos EÞ, we
can compute perturbations to each of the terms v2A, in
GME=rA and the quadrupole term in (39) [or, equivalently,
in Eq. (92)]. The corresponding calculations are lengthy but
straightforward and are well known. Here we present only
the final relevant result to the frequency shift of the ACES
clock induced by the orbital parameters of the ISS.
Considering only the last periodic term in (92), the
additional time elapsed for an orbiting clock may be
given as

ΔtJ2 ¼ −
GME

c2a0
J2E

�
RE

a0

�
2

sin2i0

Z
path

dt cos 2ðω0 þ ntÞ;

ð94Þ

where the true anomaly was replaced by u ¼ nt, with n ¼
ðGME=a30Þ

1
2 being the approximate mean motion of the ISS.

Integrating and dropping the constant of integration
(assuming as usual that such constant time offsets are
lumped with other contributions) gives the periodic rela-
tivistic effect on the elapsed time of a clock due to Earth’s
quadrupole moment:

ΔtJ2 ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GMEa0

p
2c2

J2E

�
RE

a0

�
2

sin2i0 sin 2ðω0 þ ntÞ: ð95Þ

The phase of this effect is zero when the ISS passes through
Earth’s equatorial plane going northwards. The magnitude
of this effect ΔtJ2ACES ¼ 1.70 × 10−10 s, which is signifi-
cant for the ACES experiment. Contributions of higher
zonal harmonics in the Earth’s gravitational potential are
beyond the ACES sensitivity and may be neglected.
Next, we consider the frequency shift due to the ACES

position on the ISS. By parameterizing the ACES position
vector with respect to the SCRS as yA0 ¼ yA0nA0, we may
present the relevant term in (39) in the form

�
dτB
dt

− 1

�
loc

¼ −
1

c2
ðaISS0 · yA0Þ ¼

GME

c2a20
yA0ðnISS0 · nA0Þ

≤ 2.91 × 10−15 cos θA0
; ð96Þ

where cos θA0
¼ ðnISS0 · nA0Þ with nISS being the unit

vector in the direction to the ISS from GCRS.
As the reference systems introduced on the ISS accel-

erate in the Earth’s gravity field, their clocks follow
different worldlines separated by a small, but finite dis-
tance. Such a separation leads to an acceleration-induced
redshift between the clocks at the origins of the SCRS and
the ACRS. Instrumentally, this effect represents a constant
bias in the ACES clocks compared to the time in the SCRS.
Because of the small eccentricity of the ISS orbit of e ¼
0.006 (see Table II), any variability in (96) will be at least e
times smaller and, thus, insignificant. The ACES package
will be located on the exterior surface of the Columbus
module being at ∼30 m from the ISS center of gravity. In
addition, the package will be at ∼3.5 m in the nadir
direction from that point. This position results in
cos θA0

≃ 0.12, thereby reducing the effect (96) to
3.39 × 10−16, which is small, but still significant for ACES.
The near-Earth environment also contributes to the clock

rate, especially the atmospheric drag which depends on the
air density, ρatm, at the ISS altitude. Thus, the density of the
upper Earth’s atmosphere must be monitored.
Equation (92) suggests that one needs to know the quantity

δρatm
ρatm

¼
�
GME

c2
π
cdA
m

ρatm

�
−1
δ

�
dτB
dt

�

¼ 8.80 × 1013δ

�
dτB
dt

�
; ð97Þ
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which implies that the atmospheric conditions along the
orbital track of the ISS must be known to an accuracy better
than 18%, which may be challenging as this effect is
dissipative and changes each orbital pass. Furthermore, due
to unavoidable orbital boosts needed to raise the altitude of
the ISS, the air density will also change.
Atmospheric drag results in the lowering of the semi-

major axis of the ISS, leading to a change of the
gravitational potential and velocity of the station. This
change may indirectly affect relativistic observables.
Assuming a circular orbit for the ISS, we approximate
the changes in the semimajor axis a and orbital velocity v,
using the equations

½Δaad�rev ¼ −2π
cdA
m

ρatma20;

½Δvad�rev ¼ π
cdA
m

ρatma0v0; ð98Þ

where a0 is the initial length of the semimajor axis and v0 is
the initial velocity. For the ISS, we determine that during
each revolution, atmospheric drag causes the station’s
altitude and velocity to change by up to −18.4 m and
0.01 m/s, respectively, during the period with mean solar
activity; and by up to −239 m and 0.13 m/s during extreme
solar activity. These numbers are of course worst-case
estimates, calculated by assuming that the entire area of the
solar panels contributes to the effect (i.e., that the solar
panels are perpendicular to the velocity vector with respect
to the atmosphere). Nevertheless, to compensate for this
drop in orbital velocity, the ISS periodically has to reboost
and regain velocity and orbital altitude.
Orbital changes due to atmospheric drag (98) will have a

direct impact on the relativistic time and frequency observ-
ables of ACES. Taking, for instance, the velocity change
per revolution Δvrev [given by the second equation in (98)],
from (39) we see that, depending on the solar activity, these
changes produce the contribution to proper-to-coordinate
time of the order of ðdτA=dtÞad and, as a result, its effect on
frequency stability may be given as

�
1 −

dτB
dt

�
ad
¼ 1

c2
ðvISS0 · vadÞrev ≤ π

cdA
mc2

ρatma0v20

¼ GME

c2
π
cdA
m

ρatm ≃ ð0.89–11.54Þ × 10−15:

ð99Þ

Although there is no explicit dependence of this effect on
the ISS orbit, there is implicit dependence as the air density
at the ISS orbit is a function of its altitude and orbital
inclination. Atmospheric drag results in the loss of the
ISS orbital altitude, causing changes of the gravitational
potential at the clock’s location. Such an altitude
decrease results in the change of the clock rate per orbital

revolution at the level of ð1−dτB=dtÞad¼c−2∇UE½Δaad�rev≃
ð1.78–23.11Þ×10−15.
An order-of-magnitude improvement in the contribution

of position errors to the ACES’ frequency transfer stability
to δf=f ¼ 1 × 10−16 would put even tougher requirements
on the knowledge of the ISS position and the air density at
its altitude. In fact, in accord with (93) and (97), one would
have to require that the geocentric position of the ISS and
the air density for each orbit must be known to 0.2 m and
2%, correspondingly. If the orbital parameters of the ISS
would stay constant over many days, these new require-
ments would not matter. In that case, the corresponding
effects would contribute only constant once-per-orbit
terms, which could be estimated and removed in the data
analysis. However, we know that this is not true [38] and
the trajectory of the space station changes significantly
each orbit. Therefore, finding ways to mitigate the related
uncertainty deserves further study.

IV. CONCLUSIONS AND RECOMMENDATIONS

We considered the formulation of a relativistic model for
the observables of the ACES mission. We derived an
analytic expression that characterizes the process of form-
ing the frequency comparison observables. This material
can be used to improve the accuracy of modeling of the
ACES fundamental observables.
We presented a hierarchy of relativistic coordinate

reference frames that are needed to ACES. We introduced
the geocentric (GCRS), topocentric (TCRS), spacecraft
(SCRS), and ACES-centric coordinate reference systems,
together with the structure of the corresponding metric
tensors in each of these systems and the form of the proper
relativistic gravitational potentials—all presented at the
accuracy required for ACES. We presented the rules for
transforming time and position measurements between the
reference frames involved. We demonstrated, by meticu-
lously computing all possible forces, that contrary to initial
expectations the ACES reference frame is pseudoinertial at
the level of accuracy required by the ACES experiment. We
also emphasized the need to recognize the importance of
the barycentric (BCRS) reference frame for proper model-
ing of the solar gravity potential at the ACES’ location.
We considered the model for the relativistic observables

of the ACES experiment. The currently implemented
proper-to-coordinate time transformation is a concern as
it accounts only for the monopole contribution of the
Earth’s gravity field omitting higher multipoles. As such,
the current model is accurate only up to 3.86 × 10−13 for
ACES. Including the Earth’s oblateness J2 improved the
relation between proper and coordinate times. In the
improved model, J2 is responsible for a periodic effect
of the order of 170 ps (or ∼10.2 cm peak to peak)
for ACES.
After accounting for the Earth’s oblateness J2, the error

term in the updated model for ACES is at the level of
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3 × 10−16, the limit set by the higher other gravity har-
monics in the gravitational potential of the extended Earth.
The conventional form of the light-time solution is accurate
up to the order of ∼2 × 10−15 s (due to the Earth’s J2
coefficient) and, thus, it is adequate for ACES. The usual
form for relativistic terms in the spacecraft equations of
motion are also adequate for the task. They are accurate up
to the contribution coming from a relativistic term due to
Earth’s oblateness [56], which was evaluated to be of the
order of ∼2.85 × 10−11 m=s2 for a LEO spacecraft, which
may be important for some high-precision orbit determi-
nation in the near future. However, the presence of the
nongravitational forces, especially atmospheric drag, limits
the equation to only ∼1.0 × 10−7 m=s2 [from (19)] result-
ing in (20), which is adequate for the anticipated positional
accuracy needed for ACES.
In a practical sense, the small relativistic terms that we

calculated are easily absorbed into constant and periodic
ad hoc biases that are introduced during data analysis, with
no impact whatsoever on mission objectives or the quality
of the mission’s results. Yet the existence of these terms and
the fact that they are observable at the level of sensitivity of
the ACES experiment demonstrate that ACES is already a
practical instrument for relativistic geodesy. For future
spacecraft that operate at even greater accuracy, accounting
for these relativistic terms will be essential.
As we discussed, the ISS is a subject to many non-

gravitational forces and related torques; therefore, the ISS
may not be treated as a free-falling platform. Although any
direct effect of nongravitational accelerations on clock rates
is negligible, these forces still affect the ACES experimen-
tal precision. The effect is indirect and comes from the
uncertainties introduced in the estimates of the ISS trajec-
tory. In fact, the ACES experiment must rely on the
navigational precision of the ISS to reach its science
objectives.
In particular, it is necessary to consider the effect due to

attitude variations. While this effect is small, it is larger than
that of the atmospheric drag and, thus, it is of concern. If
such a contribution to the frequency comparison is of a
systematic origin, it is possible to develop a model to
calibrate ACES observables and remove such an unwanted
effect. However, attitude variations at this level may occur
during various mission events (e.g., docking and undocking
of the crew and cargo supply vehicles, configuration
changes in the ISS, crew exercise, thruster firings, etc.).
It may be necessary to monitor the dynamical environment
on the ISS to keep track of those changes in order to be able
to account for their likely effects on the ACES clock.
Comparing the newly developed models for time transfer

and gravitational redshift given by (52) and (90), we see
that frequency transfer puts more demanding requirements
on the orbit of the space clock. Similar questions were
addressed previously under different set of assumptions
[10,13,20,38]. Our intent here was to explicitly describe the

sources of systematic error that could affect the time and
frequency transfer measurements on ACES. We developed
a set of relativistic models for the ACES observables and
were able to dissect the total error into various dynamical
contributions. In this work, we found that to satisfy the
anticipated stability of the frequency transfer, the geo-
centric position of the ACES clock and the air density at the
ISS altitude must be known to ∼4.6 m and 18%, corre-
spondingly, consistent with earlier results [9]. We inves-
tigate the ways to satisfy these requirements including the
use of the advanced facility for high-precision satellite laser
ranging being currently developed at JPL and implemen-
tation of the new data analysis strategy that relies on
processing the clock and navigational data together.
To evaluate navigational needs of ACES, we used an

approach typical for deep space navigation, where the clock
(orUSO) is treated as part of navigational subsystem that has
a direct impact on navigation and, thus, on science. The orbit
of a spacecraft in this case is typically determined in a joint
data analysis relying on the clock and relevant navigational
data—the process that could also be used to estimate various
science data parameters. Although, our results are similar to
those obtained earlier (i.e., [9]), our approach is somewhat
different from the sequential data analysis flow adopted for
ACES, where the GPS navigational solutions are used to
calibrate the MWL products, which then are used to process
the ACES clock data for science investigations. The for-
mulation presented here allows one to process the ACES
clock measurements together with the data from other
spacecraft instruments and subsystems. Such a concurrent
data analysis capability is new and could be used as a general
tool for future ACES‐like experiments with clocks of higher
precision (for instance, [22]).
Concluding,wemention thatwehavebegun toaddress the

issues above by developing a comprehensive modeling,
simulation, and data analysis software system for ACES.
To that extent, we already initiated the development of a
simulation system relying in part on existing software suite
developed for other missions (i.e., Optical Payload for
Lasercomm Science [57]). We pay special attention to the
issues related to ISS navigation and combination of various
data types needed to achieve not only high-precision navi-
gation but also highly accurate science models. The high-
accuracy models for the time transfer and the gravitational
redshiftexperimentdevelopedherewillbeusedtoprocess the
ACES measurements for science data analysis. The corre-
sponding software suite relying on themodels obtained here
is currently being developed. Preliminary results are encour-
aging and will be published in subsequent publications.
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