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The Green’s function method is used to analyze the boundary effects produced by a Chern-Simons
extension to electrodynamics. We consider the electromagnetic field coupled to a € term that is piecewise
constant in different regions of space, separated by a common interface X, the € boundary, model which we
will refer to as 6 electrodynamics. This model provides a correct low-energy effective action for describing
topological insulators. Features arising due to the presence of the boundary, such as magnetoelectric effects,
are already known in Chern-Simons extended electrodynamics, and solutions for some experimental setups
have been found with a specific configuration of sources. In this work we construct the static Green’s
function in @ electrodynamics for different geometrical configurations of the € boundary, namely, planar,
spherical and cylindrical #-interfaces. Also, we adapt the standard Green’s theorem to include the effects
of the @ boundary. These are the most important results of our work, since they allow one to obtain the
corresponding static electric and magnetic fields for arbitrary sources and arbitrary boundary conditions in
the given geometries. Also, the method provides a well-defined starting point for either analytical or
numerical approximations in the cases where the exact analytical calculations are not possible. Explicit
solutions for simple cases in each of the aforementioned geometries for € boundaries are provided. On the
one hand, the adapted Green’s theorem is illustrated by studying the problem of a pointlike electric charge
interacting with a planar topological insulator with prescribed boundary conditions. On the other hand, we
calculate the electric and magnetic static fields produced by the following sources: (i) a pointlike electric
charge near a spherical 6 boundary, (ii) an infinitely straight current-carrying wire near a cylindrical 6
boundary and (iii) an infinitely straight uniformly charged wire near a cylindrical 8 boundary. Our
generalization, when particularized to specific cases, is successfully compared with previously reported

results, most of which have been obtained by using the method of images.
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I. INTRODUCTION

It is not seldom that seemingly abstract mathematical
models find widespread application in several fields of
theoretical as well as applied physics. A paramount
example of this is Einstein’s theory of general relativity,
because in order to achieve the accuracy that render GPSs
useful, relativistic effects must be taken into account.
Filling the gap from theory to applied engineering is only
a matter of time. Fortunately, the time span from conception
to application gets shorter and shorter. So is the case with
the study of Chern-Simons (CS) forms [1] to its applica-
tions in topological insulators, spintronics and topological
quantum computer science [2,3].

The relevance of CS forms also is apparent in theoretical
physics. In quantum field theories, they play a prominent
role in regard to anomalies. The existence of anomalies can
jeopardize the consistence of the theory as they would be
indicative of gauge symmetry violation, hence the need for
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anomaly cancellation mechanisms. Furthermore, anomalies
are needed to account for certain experimental observables,
e.g., the proper neutral pion decay rate into two photons as
predicted by the nonconservation of the axial-vector current
generated by the Adler-Bell-Jackiw anomaly [4,5]. The
latter can be expressed as the one-loop contribution to the
divergence of a pseudovector or axial current 9 j, 4 « *FF.
In general relativity a similar argument holds. In 3 + 1
spacetime dimensions, general relativity can be thought of
as a non-Abelian gauge theory for the SO(3,1) gauge
group of local Lorentz transformations, for which case a
gravitational anomaly exists D*J,, o P, where J,, is the
lepton-number current and P = *RR is the Pontryagin class
in 3 4+ 1 dimensions. Here one can cancel the anomaly by
adding the appropriate counterterm to the Einstein-Hilbert
action, which turns out to be a CS extension of general
relativity. Further, this CS extended general relativity when
applied to the cosmological context was posed as a possible
explanation for matter-antimatter (baryon) asymmetry in
the Universe [6]. Actually it is a lepton-number asymmetry;
however, particular weak interaction processes in the SM
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mediated by SU(2) instantons (sphalerons) can transmute
leptons into baryons under certain conditions that would
have been met during the out-of-equilibrium inflationary
epoch of the Universe [7,8].

In a very simple guise, CS terms were used by Peccei
and Quinn by the introduction of the axion in order to solve
the strong CP problem of QCD [9]. Soon after 't Hooft
realized that the unobserved U(1) symmetry of QCD can
be understood due to the dynamics of instantons [10].
Wilczek explicitly predicted applications of axion-
electrodynamics to the field of material science [11].
Further studies involve its uses in topological quantum
field theory [12], topological string theory [13] and as a
quantum gravity candidate [14].

In this work we will be concerned with a simple
case of CS theories, akin to axion-electrodynamics,
introduced by Wilczek as mentioned above in the context
of particle physics. We will refer to this particular model as
0-electrodynamics or simply € ED, and it amounts to
extending Maxwell electromagnetism by a gauge invariant
term of the form

ALy = 0(a/47*)E - B. (1)

Here though, 6 is no longer a dynamical field, but rather
we take it as a constant, a genuine Lorentz scalar, and
thus Eq. (1) is a pseudoscalar. Written in a manifestly
covariant way

0 ~
AL@ - —Z(a/4ﬂ2)FﬂyFlw, (2)

the identification with the Pontryagin invariant associated
with the U(1) gauge connection A = A, dx* is immediate.
In the latter we introduced the Hodge dual field strength
electromagnetic tensor F** = e F , and ¢ is the
Levi-Civitd symbol.

The idea of @ ED has been studied in several situations
and also extrapolated to study other systems. In other
contexts, & ED under consideration here has been studied as
a 3 4 1 particular kind of Maxwell-Chern-Simons electro-
dynamics, where it has received considerable attention
[15-31]. And also it has been studied as a restricted subset
of the Standard Model extension [32,33], where several
results have been achieved, too [34-40].

Further, the topological nature of the 0 term of Eq. (2)
can be seen by the fact that this CS extension is a total
derivative. Therefore, it produces no contribution to the
field equations of motion when usual boundary conditions
are met; the contribution is a boundary term that vanishes
whenever one imposes the vanishing of the fields at the
boundary (or at infinity in the case the theory is defined
over the whole space). Should € cease to be a constant in
the manifold where the theory is defined, the CS term
would fail to be a topological invariant, and therefore the
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corresponding modifications to the field equations would
need to be taken into consideration.

In this paper, we will be concerned with the simplest
nontrivial case in this context; namely, we will study the
modifications to Maxwell’s theory defined on a manifold in
which either (a) there are two domains defined by their
different constant values of 6, i.e., 6 is space dependent
O(x), or (b) there is a nonvanishing 6 value and the
manifold has a boundary where the fields or their deriv-
atives are not vanishing, with either Dirichlet or Neumann
boundary conditions. A constant € can be thought of as an
effective parameter characterizing properties of a novel
electromagnetic vacuum, possibly arising from a more
fundamental theory, where discontinuities in the value of
0 has interesting properties. This approach has been taken
in the context of classical @ ED [41-44] and in the context
of quantum vacuum [45]. A similar avenue has been taken
in the context of Janus field theories [46-51]. These were
motivated from the gravitational sector of the AdS/CFT
correspondence, by an exact and nonsingular solution for
the dilatonic field in type IIB supergravity [52]. The
similarity is due to the fact that the coupling constant of
the ensuing four-dimensional N =4 super Yang-Mills
theory living in the boundary exhibits a spacetime depen-
dent character. For further insight on the similarities and
differences between Janus field theories and @ ED as
studied in this work, see Ref. [53] and references therein.
On the other hand, as applied to material media, @ can be
regarded as an effective macroscopic parameter to describe
new degrees of freedom of quantum matter. This approach
has been thoroughly used in the context of topological
insulators (TIs) as will be explained below.

First, recall that in general CS forms are amenable for
capturing topological features of the physical system that
they describe. Formally, this can be seen from the action
principle. Given a symmetry group and an odd-dimensional
differentiable manifold where fields and functions are
defined, a gauge connection one-form can be defined of
which the associated curvature two-form can be used to
build 2k-forms that (i) are gauge invariant under the
symmetry group, (ii) are closed and therefore expressible
in terms of a (2k — 1)-form and (iii) the integral of which is
a topological invariant. This last point is crucial revealing
the importance of boundaries. Its many uses in gravitation
and the former description are clearly reviewed in Ref. [54].

The latter description is tailor made for the understand-
ing of what came to be known as topological phases. The
discovery of the quantum Hall (QH) state made manifest
the existence of new states of matter that do not fall into
Landau-Ginzburg’s effective field theory paradigm. In it,
the quantum mechanical states of matter that determine the
different phases are characterized by the spontaneous
breaking of a global symmetry of the quantum mechanical
system. Von Klitzing’s discovery of the astonishing pre-
cision with which the Hall conductance of a sample is
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quantized [55], despite the varying irregularities of the
sample, turned out to have a topological origin. The
ensuing electric current along the edge of a 2D electron
gas at very low temperature, due to an external magnetic
field applied perpendicular to the sample, is in fact
insensitive to the sample’s geometric details. The reason
for this lies in the band structure of the sample. For the QH
state, the system is insulating in the bulk and conducting in
the boundary. The Hamiltonian of the many-particle system
in the bulk exhibits an energy gap separating the ground
state from the excited states. On the contrary, for the edge
states, the band structure is gapless. Furthermore, one can
define a smooth deformation in the Hamiltonian parameter
space (the symmetry transformation referred to in the
previous paragraph, the transformation taking the coffee
mug to a torus) that does not close the bulk gap. To finally
understand the connection with topology, one can recall the
Gauss-Bonnet formula and Berry’s phase, the generaliza-
tion of the concept of curvature to quantum mechanical
systems. The former allows one to express the genus g of a
surface S in terms of an integral over the local curvature of
the surface. The latter is a measure of the phase accumu-
lated by a wave function as it evolves under a slow and
closed variation in the parameter space of the Hamiltonian.
Back in the QH scenario, the Hall conductance can be
expressed as an invariant integral over the frequency
momentum space, more precisely as an integral of the
Berry curvature over the Brillouin zone [56]. This quantity
plays the role of a topological order parameter uniquely
determining the nature of the quantum state inasmuch as
the order parameter in Landau-Ginzburg effective field
theory determines the usual phases of quantum matter.

As mentioned previously, CS terms lend themselves for
the description of topological features of a given physical
system. Concretely, in material science systems, the
low-energy limit of the electrodynamics of topological
insulators can be described by extending Maxwell electro-
dynamics precisely by the 8 term of Eq. (2), originally
formulated in 4 + 1 dimensions but appropriately adapted
to lower dimensions by dimensional reduction [57]. Thus, 6
ED as a topological field theory serves as model for many
theoretical [58—60] and experimental realizations for study-
ing detailed properties of topological states of quantum
matter [2,41,61,62]. See also the review papers [63,64] and
references therein.

The general scope of this work is to introduce Green’s
function (GF) methods in @ ED, which are well suited to
deal with the calculation of electric and magnetic fields
arising from arbitrary sources, as well as to solve problems
with given Dirichlet or Neumann boundary conditions on
arbitrary surfaces. This approach is more general than the
method of images which, to our knowledge, has been
systematically employed in most of the previous works on
the related literature. On the other hand, the GF method
provides a precise starting point from where either
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analytical or numerical approximations can be performed.
In Ref. [53], we have already presented the first steps in this
direction by constructing the GF for a € boundary with
planar geometry. The method was applied to the calculation
of some specific examples. The GF for a stack of layered
time-reversal-symmetry-broken TIs has been constructed in
Ref. [65] and applied to describe novel field patterns arising
from the magnetoelectric effect due to a dipole close to the
surface of the TL

The paper is organized as follows. In Sec. II, we review
the basics of Chern-Simons electrodynamics defined on a
four-dimensional spacetime characterized by a piecewise
constant value of @ in different regions of space separated
by a common boundary Z. To isolate the effects of the 6
term on the GFs and of the stress-energy tensor, we will
take the media on either side of the ¥ boundary with no
dielectric nor magnetic properties, i.e., ¢ =1 and u =1
across 2. Including electric and magnetic susceptibility
properties proceeds accordingly. We will restrict our
analysis to the case of electro- and magnetostatics. As in
usual Maxwell electrodynamics, a robust static theory is
necessary and important to understand the dynamical case
as well as the ensuing quantum electrodynamics. In this
scenario, the field equations remain the standard Maxwell
equations in the bulk, but the discontinuity of 6 modifies
the behavior of the fields at the interface X. The most
striking feature of this theory is that even in the static limit,
electric and magnetic fields are intertwined. Aspects about
a possibility to circumvent Earnshaw’s theorem and how to
obtain the modified conservation laws are revised; in
particular, a detailed construction of the stress-energy
tensor is presented.

In Sec. III, we start by adapting Green’s theorem to
incorporate the contributions of the 6 boundary. Also, we
classify the different boundary conditions that can be
imposed there. Restricting ourselves to the case where
we do not impose boundary conditions at the € interface
(i.e., boundary conditions only at infinity), we consider the
simplest geometries for the X: planar, cylindrical and
spherical. We present a brief review of the planar case
and construct the static GF matrix for the remaining
geometries, thus providing the general solution to the
modified field equations for the case of arbitrary configu-
ration of sources. The method can be extended to the case
of other geometries, but we focus on these configurations
given the fact that those are the ones that have attracted the
most of the experimental efforts. This is an important part
of our paper. In it, not only do we aim to provide practical
solutions for a given boundary-value problem with arbi-
trary external sources but also to provide a means to
improve the understanding of the theory.

In the appendices, we present the detailed calculations of
the Green’s matrix elements for the cases of cylindrical and
spherical geometries for the 6 boundary. In Sec. IV, we
present a simple application of the adapted Green’s theorem
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when Dirichlet boundary conditions are imposed on a
planar X. Also, we discuss other applications, where we
make contact between the results obtained with our method
and others in the existing literature, a comparison that
endorses our approach, for instance, the problem of a
pointlike charge near a spherical € boundary together with
the cases of a current-carrying wire and a uniformly
charged wire near a cylindrical # boundary. Finally, in
Sec. V, we summarize our results and give further con-
cluding remarks. Throughout the paper, Lorentz-Heaviside
units are assumed (72 = ¢ = 1), the metric signature will be
taken as (+,—,—,—), and the convention €% = +1 is
adopted.

II. 8 ELECTRODYNAMICS IN A
BOUNDED REGION

A. Field equations and boundary conditions

Let us consider the additional coupling of electrody-
namics with the electromagnetic Pontryagin invariant

P=F,F", (3)
via a scalar field @ defined by the action

160(x) a
d*x ——F A P
S = / [ w 427 21 I

(4)

where a = ¢%/fic is the fine structure constant, F* =
%e’”’"‘ﬂ F 4 1s the dual of the field strength tensor and j* is a
conserved external current. The coupling constant for the 8
term, a/4x°, is chosen in such a way that the Dirac
quantization condition for the magnetic charge be an
integer multiple of ¢/2a, as discussed in Ref. [11]. The
topological nature of the Pontryagin density makes the
equations of motions arising from the action (4) invariant
under the change 6(x) — 0(x) + C, with C any constant.
Quantum mechanical arguments impose further conditions
on C, which will be discussed in the following.

The (3 + 1)-dimensional spacetime is M =U x R,
where U is a three-dimensional manifold and R corre-
sponds to the temporal axis. We make a partition of space in
two regions, U/ and U,, in such a way that manifolds U/,
and U, intersect along a common two-dimensional boun-
dary X, to be called the @ boundary, so that U = U,UU,
and X = U;NU,, as shown in Fig. 1. We also assume that
the field € is piecewise constant in such way that it takes the
constant value 6 = #; in region U/ and the constant value
0 = 60, in region U,. This situation is expressed in the
characteristic function

X€U1

0(x) = {91’ . (5)

62, X GZ/{Q
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FIG. 1.
defined.

Region over which the electromagnetic field theory is

In this scenario, the # term in the action fails to be a global
topological invariant because it is defined over a region
with the boundary X. Varying the action gives rise to a set of
Maxwell’s equations with an effective additional current
with support at the boundary

8, F" = 05(Z)n, F* + 4xj*, (6)

where 1, = (0,n), n is the outward unit normal to X and

0=2(0,-0,). (7)

Current conservation can be verified directly by taking the
divergence at both sides of Eq. (6),

9,0,F* = 05 (Z)n,n, F* + 05(2)n,d,F* + 4rd,
(8)

where the left-hand side and the first two terms in the right-
hand side vanish due to symmetry properties.

Together with the Bianchi identity @,F’”’ = 0, the set of
Eqgs. (6) for 8 ED can be written in coordinates adapted to
the surface as

V-E =05(Z)B - n + 4zp, 9)
VxB—a—?:éé(Z)Exn—l-@rJ, (10)
V-B=0, (11)

OB
VXE+—= 12
xE+— 0, (12)

where n is the unit normal to X shown in Fig. 1. In this
work, we consider the simplest geometries corresponding
to the cases where the surface X is taken as (i) the plane
z = a, (ii) a sphere with center at the origin and radius a
and (iii) an infinitely straight cylinder of radius a with axis
parallel to the z direction. In these cases, the choice of
adapted coordinates has an obvious meaning: (i) Cartesian
coordinates, (ii) spherical coordinates and (iii) cylindrical
coordinates, respectively.

As we see from Egs. (9)—(12) the behavior of 8 ED in
the bulk regions U/; and U, is the same as in standard
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electrodynamics. The 0 term modifies Maxwell’s equations
only at the surface X. Here, F0 = E/, F'/ = —¢'/*B* and
F = Bi, FJ = ¢ikE* Equations (9)—(12) also suggest
that the electromagnetic response of a system in the
presence of a @ term can be described in terms of
Maxwell equations in matter

V-D =4znp, VxH=4zn], (13)
with constitutive relations
a o
D=E +-6(x)B, H =B --0(x)E, (14)
T P

where 6(x) is given in Eq. (5). It is clear that if 6(x) is
globally constant in M, there is no contribution to
Maxwell’s equations from the € term in the action, even
though 6(x) still is present in the constitutive relations. In
fact, the additional contributions of a globally constant 6(x)
to each of the equations (13) cancel due to the homo-
geneous equations (11) and (12).

So far we have considered @ as an external parameter that
can take arbitrary values, albeit respecting the rescaling
symmetry € — 6 + C that we already mentioned. Naively,
this would allow one to set @ to zero at the classical level.
However, quantum mechanically, given that for properly
quantized electric and magnetic fluxes S,/#% is an integer
multiple of 0, then the only allowed values of C are C =
2zn for integer n; otherwise, nontrivial contributions to the
path integral would result. The above argument together
with additional considerations about the behavior of the
system under time reversal (TR) can further constrain 6. In
fact, in the context of TIs, it was originally assumed that
only systems with broken TR symmetry are of relevance;
however, it was soon realized that systems preserving
TR symmetry are as important; see Ref. [66]. Given the
pseudoscalar nature under TR of the CS coupling,
T(E -B) = —E - B, where T is the time-reversal operator
T:t — —t, it seems that breaking TR symmetry is inescap-
able. However, TR symmetry can be preserved as long as 6
takes the values 0 or 7z (mod 2x). For 6 = 0, the system is
trivially TR invariant, whereas for § = 7, it can be restored
by suitably rescaling 0; i.e., T(zE - B) = —zE - B can be
made TR invariant by 6 — 6 = 0 4 2z. For the sake of
generality, in the sequel, we will not restrict to systems with
a definite TR symmetry property, and therefore the only
relevant constraint for 6 that we will consider is that its
observable effects satisfy the & — 0 + 2zn symmetry, [63].
This property is made self-evident because all our observ-

able results will depend only on the combination 0 given
in Eq. (7).

Assuming that the time derivatives of the fields are
finite, in the vicinity of the surface X, the field equations
imply that the normal component of E, and the tangential
components of B, acquire discontinuities additional to
those produced by superficial free charges and currents,
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while the normal component of B, and the tangential
components of E, are continuous. For vanishing external
sources on X, the boundary conditions read

AE,|s = 0B,[s, (15)
ABn|Z = 0’ (17)
AE |5 =0. (18)

The notation is V,|2=% =V, (z)[Z=% =lim._o(V;(z=a+€)—
Vi(z=a—e¢)), €>0 and V,|._, =V,(z=a), for any
vector V.

The continuity conditions, Eqgs. (17) and (18), imply that
the right-hand sides of Eqs. (15) and (16) are well defined
and they represent surface charge and current densities,
respectively. An immediate consequence of the boundary
conditions is that the presence of a magnetic field crossing
the surface X is sufficient to generate an electric field, even
in the absence of free electric charges. For a 8 boundary
characterizing different 6 values of the electromagnetic
vacuum, these issues together with some of its conse-
quences over the propagation of electromagnetic waves
across such interfaces were studied in Refs. [43,44]. It is
worth mentioning that with the modified boundary con-
ditions, several properties of conductors in static fields still
hold as far as the conductor does not lie in the X boundary.
In particular, conductors are equipotential surfaces, and the
electric field just outside the conductor is normal to its
surface.

B. Possibility to circumvent Earnshaw’s theorem

It is a well-established fact in ordinary electrostatics that,
due to electrostatic forces alone, a charge cannot be in
stable equilibrium (Earnshaw’s theorem). More generally,
no static object comprised of electric charges, magnets and
masses can be held in static equilibrium by any combina-
tion of electric, magnetic or gravitational forces.

It is natural to ask whether in the case of 8 boundaries a
charge can or cannot be held in stable equilibrium due to
electrostatic forces alone. This question is certainly relevant
from an experimental point of view but also theoretically.
As we will show below, the case of @ ED is an interesting
one as it opens a window to circumvent Earnshaw’s
theorem. In usual electromagnetism, the lack of the
existence of stable equilibrium points is proven by contra-
diction, owing to the fact that, away from the sources, the
electrostatic potential satisfies Laplace’s equation. We will
show that in @ electromagnetism, there exist points where
such a contradiction no longer takes place. From Eq. (9)
and E = —V¢, we have
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—V2¢ = 4zp + 05()B - n. (19)

We inquire whether the potential has an extremum at a
point P where a test charge is to be held in equilibrium. The
argument proceeds in the usual manner. Suppose that there
exists a point P at which ¢ acquires a minimum. Then, at
every point over the surface of any small closed surface
enclosing P, one must have d,¢ > 0, where n denotes the
outward normal direction to the surface and thus one must
have

O,pds > 0, (20)
av

where the volume ) encloses P. Due to 0,,¢p = V¢ - n and
to the divergence theorem, this latter integral can be cast
into a volume integral of the Laplacian of the potential.
Again, to isolate the contribution due to the 6 term, we set
p =0 to obtain

j{ 8n¢ds:/vz¢dv
oV v

= —9L5(2)B -ndv

= —é/ B,|sd*x. (21)
z

In ordinary Maxwell electrostatics (0 = 0), the right-hand
side of Eq. (21) vanishes, leading to a contradiction
with Eq. (20) and thus proving that P cannot be a local

minimum. In the case of @ ED, however, as far as 0 # 0 and
a nonvanishing normal magnetic field at X exists, the
aforementioned contradiction no longer occurs, for points
P at X, thus removing the immediate obstruction of
ordinary electromagnetism for the existence of local
minima. We emphasize that by no means are we claiming
to have proven the existence of points of stable equilibrium
in @ electrostatics, which can be dealt with elsewhere. To
this end, a more thorough analysis is required along the
lines of Ref. [67] in the context of ordinary electromag-
netism. We consider this an important issue. Charged or
magnetized matter can be held in static equilibrium in a
given experimental setup. However, if this were possible
only with the aid of external devices such as tweezers or
dynamical mechanisms or EM traps, e.g., Penning traps
[68], these could compromise the precision of the mea-
surements or interact with the EM fields under study.

C. Stress-energy tensor

For the case of 8 ED, we still expect the electromagnetic
field to be an energy-momentum transmitting entity. In this
way, for example, we should be able to compute the net
force over a given region in 3-space in terms of the values
of the electromagnetic fields on the bounding surface of
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that region. This requires establishing conservation laws,
as in ordinary Maxwell electrodynamics. In Sec. IT A, we
showed that the 8 term modifies the behavior of the fields at
the surface X only. This suggests that, for each region in the
bulk, the energy-momentum tensor for & ED has the same
form as that in standard electrodynamics, where the 0
dependence appears through the contribution to the fields
arising from the additional sources present on the boundary
2. In fact, the identification of the stress-energy tensor
proceeds along the standard lines of electrodynamics in a
medium (see, for example, Ref. [69]), where we read the
rate at which the electric field does work on the free charges

1 1 oD OB

(22)

and the rate at which momentum is transferred to the
charges

10 1
~LiBvH, —v.(BH). (23)
T

Here, the notation is A;VB; = (A;0;B;)é; and V- (AB) =
(0;A;)Bye, for any vectors A and B. Using the constitutive
relations in Eq. (14), we recognize from Eq. (22) the energy
flux S and the energy density U as
1 I, 5
S=—ExB, U=_—(E*+B?, (24)
4z 871

while from Eq. (23), we obtain the momentum density G,
and we identify the stress tensor 7';; as

1
G =—E xB,
4z %
1 1
T;; = g(E2 + B%)§;; — i (E;E; + B;B;). (25)

Outside the free sources, the conservation equations read

oU_o % gr, - %(E " B)9,6(x).

VoS4 5
(26)

In other words, the stress-energy tensor has in fact the same
form as in vacuum, but, as expected, it is not conserved on
the € boundary because of the self-induced charge and
current densities arising there.

In the standard case, the knowledge of both the stress-
energy tensor together with the GF of the system is also
relevant in the quantum situation. For example, when
dealing with the calculation of Casimir energies, the
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vacuum expectation value of the energy momentum can
be obtained with the aid of the corresponding GF for
Maxwell electrodynamics [70-72]. Using this method,
insights regarding corrections to the Casimir energy in the
context of & ED have been developed in Refs. [45,73], as
well as Ref. [39] for a related perspective. This approach
serves as an additional motivation for the following
Sec. III.

III. GREEN’S MATRIX METHOD

In this section, we use the GF method to solve boundary-
value problems in € ED in terms of the electromagnetic
potential A#. Certainly, one could solve for the electric and
magnetic fields from the modified Maxwell equations (9)
through (12) together with the boundary conditions in
Egs. (15)—(18); however, just as in ordinary electrodynam-
ics, there might be occasions where, besides the knowledge
of the external sources, we are provided with requirements
on the fields at the given boundaries. In these cases, the GF
method provides the general solution to a given boundary-
value problem (Dirichlet or Neumann) for arbitrary
sources. The importance of such a general solution is
evident from an experimental point of view. For example, it
would allow one, at least in principle, to predict the
electromagnetic response of topological insulators with
planar, spherical or cylindrical boundaries in the presence
of more intricate configuration of sources. Moreover, as
already mentioned in Sec. II C, the GF method is useful for
computing the vacuum expectation value of the energy-
momentum tensor in the context of Casimir forces.
Furthermore, the GF method should be also useful for
the solution of dynamical problems in § ED.

In the following, we concentrate only on the static case.
Since the homogeneous Maxwell equations that express the
relationship between potentials and fields are not modified
in € ED, the electrostatic and magnetostatic fields can be
written in terms of the 4-potential A# = (¢, A) according to
E=-V¢ and B=V x A, as usual. In the Coulomb
gauge V- A =0, the 4-potential satisfies the equations
of motion

[_”ﬂuvz

— 05(Z)n e’ 054" = dnjt, (27)

together with the boundary conditions (BCs)

AA#y =0
A(n90,A")|s = —Onge™ 034 5. (28)

Here, n, is the unit normal to X, which depends on the
geometry of the # boundary. One can further verify that the
BCs of Eq. (28) yield those obtained in Egs. (16)—(18),
starting from the modified Maxwell equations.

To obtain a general solution for the potentials ¢» and A
in the presence of arbitrary external sources j#(x), we
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introduce the GF matrix G*,(x, x’), solving Eq. (27) for a

pointlike source,
[_ ’1” v V2

- éé(Z)naeaﬂﬁyaﬂ}G”g(x, x') = 4t ;5 (x — x'),

(29)

together with the BCs of Eq. (28). In the following, we
discuss the general solution to Eq. (29). To this end, we
require an appropriate adaptation of the standard Green’s
theorem, from which the solution of Eq. (29) can be
constructed using well-known methods.

A. Green’s theorem and boundary conditions on X

We begin this section by introducing the differential
operator

On, = g, 0 + 05(2)n,

€m i

. (30)

from which the relations O*,'9;A¥ =4z j* and O*,'0,G , =
dant 8% (x —x') correctly yield the differential equations
for the 4-potential in Eq. (27) and the GF in Eq. (29). Here,
the indexes i, j range from 1 to 3, while y, v range from
0 to 3. These choices reflect that we are working with static
fields and that the normal to the @ boundary is always
spacelike.

The relevant Green’s theorem can be given in terms of
two arbitrary fields, X, and Z¥,. Defining the tensor
T, =X,0",'Z%,, using the divergence theorem for
0;T', and subtracting the equation arising from the inter-
change X < Z, we find

7{ dsw;(X, 00 7%, - 7¢ ;0" X,)
S
- [ @0 0z:) - 2,0, 0X,)
Vv
- / dsx[(aiXy>Oﬂuizya - (852”6)0”/)(”], (31)
|4

where n is the outward normal to the surface S bounding
the volume V. In deriving Eq. (31), we use the result
;01,1 = O+,19;, which follows directly from Eq. (30).

Substituting Egs. (27) and (29) in Eq. (31), we find that
the general solution for the 4-potential in the Coulomb
gauge is

M@)tfffm< x')j*(x')
—]{dS'
- G*"(x,x')0'A,(x")]

—/dzxzn €%, [A(x)0,G* (x,X)

-G (x,x")0;A4(X")]s. (32)

x")0'G*" (x,x)
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where 7 is the normal to the 6 boundary. This result yields
the standard interpretation where the first term is the
contribution from the sources inside the volume V, the
second term represents the effects of the bounding surface
S, while the remaining term replaces the contributions from
the surface S by those of the € boundary.

We next consider the issue of the appropriate BCs for the
fields at the O interface, when we take S as a surface at
infinity where the usual BCs are imposed. Inspection of
Eq. (32) reveals that there are four classes of BCs on X that
specify a solution.

The class BC-I is defined by fixing, on X, the scalar
potential A° and the vector potential parallel to the @
boundary n x A, together with the requirement
n;e’*,'G*" |y = 0 on X. This class describes the case which
corresponds to the nearest analogy with the standard
Dirichlet BCs. Besides, it is the only class for which the
explicit GF is independent of the area of the 8 boundary. In
Sec. IV, we solve the problem of a pointlike charge near a
planar 6 boundary at fixed potential using class BC-L.

The class BC-II is specified by fixing on X the normal
component of the magnetic field B, and the parallel
component of the electric field n x E, plus the condition
n;e’®,19;G" |5 = 1/Ag, where Ag = [ d*xy is the surface
area of the 6 boundary. This class corresponds to the
Neumann BCs in standard electrostatics, which incorpo-
rates a factor of the inverse surface area, generating a term
in the solution involving the average contribution of the
potential.

The class BC-III fixes the scalar potential A° and
the normal component of the magnetic field B, on X,
together with the conditions n,;e/%/G*|y =0 and
n;e’*519,G*s = 1/A,.

The class BC-IV requires specifying n x A and n x E
on X. For this class, we must also demand n;e/%,/G*°|y = 0
and njejokiaiG"k|2 = 1/A9

In the next subsections, we deal with the problem of
constructing the GFs for different geometrical configura-
tions of the € boundary, considering those which could be
more relevant in experimental works, namely, planar,
spherical and cylindrical 6 interfaces. Moreover, having
set the surface S at infinity, with standard BCs there, we
restrict ourselves to the case where we do not specify any
additional condition for the fields at the € boundary. In this
way, A* is given only by the first term of the right-hand side
in Eq. (32).

B. Planar 6 boundary

For the case of planar symmetry, we choose the simplest
setup in which the value of 8 jumps across the plane X and
remains constant at either side of X, defined by z = a and
indicated in Fig. 2. In this way, the adapted coordinates to
this system are the Cartesian ones. The GF we consider has
translational invariance in the directions parallel to X, that is

PHYSICAL REVIEW D 93, 045022 (2016)

>Z

Z=a

FIG. 2. Geometry of the semi-infinite planar f-region.

in the transverse directions x and y, but this invariance is
broken in the direction z. Exploiting this symmetry, we
further introduce the Fourier transform in the direction
parallel to the plane %, taking the coordinate dependence to
be (x —x'); = (x —x',y — '), and define

&p
(2m)?
where p = (py, p,) is the momentum parallel to the plane

2. In the following, we suppress the dependence on p of the
reduced GF ¢#,. In this case, the reduced GF satisfies

G, (x,x') = 4n / PN (2 2 p),  (33)

(020, + i05(z — a)e¥ %, p,) ¢ (2, 7) = ' 6(z — 2),
(34)

where 9% =p?—9%, p*=(0,p) and p?>=-pp,=
P2+ pg. The solution of Eq. (34) is a simple, but not
straight-forward, task. For solving it, we employ a method
similar to that used for obtaining the GF for the one-
dimensional J-function potential in quantum mechanics,
where the free-particle GF is used for integrating the GF
equation with the J-interaction. A main simplification
arises in this case because what normally results in
an integral equation reduces to an algebraic equation in
virtue of the fact that the integration over the S-potential
can be performed. To proceed in an analogous way, we
consider the reduced free GF having the form
G",(z,7) = g(z, 2 )n*,, which solves the equation

G, (z2,7) =n,8(z— 7). (35)

The details of the calculation for solving Eq. (34) were
presented in Ref. [53]. For completeness, we remind the
reader of the general solution

-~ g(z.a)g(a. ')
(z.7) =n'8(2.7) -0 ———%F———
gﬂ ( ) ’/I g( ) 1 + pzezgz(a’a)
x {0g(a.a)[p"p, + (0", + n'n,) p’]
+ i€, P pa}, (36)
where n, = (0,0,0,1) is the normal to X.

The reciprocity between the position of the unit
charge and the position at which the GF is evaluated
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G, (x,x') = G,,(x',x) is one of its most remarkable
properties. From Eq. (33), this condition requires

9u(2.2.p) = 9,(Z. 2. —p). (37)
which we verify directly from Eq. (36). The symmetry
9u(2.7) = g,(2.7) = ghu(z.7) is also manifest. The
various components of the static GF matrix in coordinate
representation were obtained by Fourier transforming
the reduced GF, as defined in Eq. (33). In vacuum, with
no additional boundaries, the reduced GF is g(z,7') =

e~ Pl=¢1/2p, and the corresponding GF matrix in coordi-
nate representation is (see Ref. [53])

1 6 1
G%(x,x') = - = . (38
ol %) x-x'| 4+ VR*+27? (38)
Zé €0i'3Rj ( V4 >
GUAXOXT) — =T - . (39
== e ! Vern)
0 i 0

i N i / i /

Gj(X,X>—”jGO<X7X)_§4+528Kj(x7x)’ (40)

where Z=|z—a|+|d/ —al, R/ =(x—x)}=(x=x,
y=Y), R=|(x —X/)||| and

4 VR*+7*-Z7 _.

Kixx) =2 Y T2 T 2 p (41)

R

Finally, we observe that Egs. (38)—(40) contain all the

required elements of the GF matrix, according to the
choices of z and 7' in the function Z.

C. Spherical 6 boundary

In the preceding section, the problem of an arbitrary
charge and current distributions in the presence of a plane 8
boundary was discussed by the method of GF matrix. In
this section, following the same procedure as in the planar
situation, we discuss the spherical case, in which the value
of 0 has a discontinuity across the surface r = a. In the
adapted spherical coordinates 7, 9, ¢, it proves convenient
to introduce explicitly the angular momentum operator
L= %x x V. In fact, the GF equation (29) can be written as

0 .
V2 = i=5(r —a)(n*on*y — "*n° )Ly | G, (x, X')
a
= 4zan' 8% (x — x'), (42)

with k = 1, 2, 3. Since the square of the angular momentum

L.? commutes with the operator appearing in the left-hand
side of Eq. (42), its solution has the form
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G",(x,x)

o+l

+1
- 47[2 Z Z g/;mm’,z/(r’ rl)Ylm(19’ ¢)Y7m’(8/7 90/)7

1=0 m=-Im'=-1

(43)
with the reduced GF g, . (r.r) satisfying the
equation
~ S(r—r
Org};mm,y(r, r/) = nﬂyw5mm'

: r

0
+ l;é(r - a) (’7”0’7ka - ﬂ”knoa)

+1
x> (Im|Llm" g (r 7). (44)

m'=—

where O, = I(I1 + 1)r2 — r=28,(r20,). This equation can
be integrated in the same way as for the planar symmetry.
The detailed calculation is presented in Appendix A. The
solution is

Finnt (12 7')
= 1,0u(r. )8, — @®O%1(1 + 1)g)(a. a)
x S (r, r’)(lm|I:”I:l,|lm’) + iaéSl(r, r)
x (Im|Lg|lm") (o1, + T#°,), (45)

where f,o is the identity operator, the operator I['** = p —
n*on*o projects a 4-vector into the 3-space, and

/
Sirr) = —Sraslar) g
14+ a?0°1(1 + 1)g7(a, a)
Here, g,(r,7") is the solution of the free reduced GF
equation in the absence of the # boundary which satisfies
Eq. (AS).

D. Cylindrical # boundary

In this section, we discuss the problem of an arbitrary
charge and current distributions in the presence of a
cylindrical @ boundary. Let us consider an infinite cylinder
of which the axis lies along the z direction, such that the
value of 6 has a discontinuity across its surface p = a, as
shown in Fig. 4. In this way, the adapted coordinates are the
cylindrical ones, p, ¢, z, and the GF equation is

[‘ﬂ”»vz - é(‘j(p - a)naeaﬂﬂyaﬂ}Gvo‘(X’ X/)

= 4'7”7#0'5(X - X/>7 (47)
where n, = (0,cos¢,sing,0) is the normal to the 6
interface. The GF must be invariant under translations in
the z direction. In accordance with this symmetry, we start
by writing the solution of Eq. (47) as
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rodk S
G"V(X,X’):4ﬂ/— o (e=2) — Z

o 27 2

x Z 9 (po s K)elmo ) (48)

with the reduced GF ¢"

mm' v

(p,p'; k) satisfying the equation
.ﬁ)m>drlnm’, l95 - Cl) |: Z Am "m ygm”m’,(r
m'=—c0

5 _ /
+el2, %%/g;mg{,} =, %%/, (49)

where

5 19 ( 0 :
O,ﬁ’”————( )+m2 + i,

pOop \' Op
1 . .
A/rlnm v E [5"1-"1”—1 (eﬂu)* + 5m.m”+1€”u]’ (50)
with &, = €'#3, 4+ ie?*3,. This equation can be integrated

in the same way as for the planar and spherical cases.
Detailed calculations are presented in Appendix B.
The solution is

Bt P P) = 1058t (8 (P ') = O, (K)o (p. )]
+ le(mﬁmm’n ot kClA(’)n m, J)Cmm’ (pvpl)’

(51)
g::nm’,g(p’p/) :7]3 5mm’ [gm(p ,0/) _mzézgm(a’a)cmm(p7p/)]
+imO(,+ikabAS,, ) Co (p.0),  (52)

gf'nm’,j(p’p/) = n[j(smm’gm(p7 ,0/> - é2kzazgm (,0’ a)

x z Am 'm0 m’m”]cm//ml(a p) (53)
where fm(k) = ngm<a’a) +%[gm+l (a,a) | (a?aﬂ
and

I \P>A)8py a’pl
Cmm’ (pv ,0/) = ( ) ( ) (54)

L+ 0fp(k)gn(a.a)

Here, g,,(p,p’) is the solution to the reduced GF equa-
tion (49) in the absence of the @ boundary. Note that the
remaining yv-components of the GF matrix can be obtained
from the symmetry property

Gmm' v (,0,,0/; k) = 9n'm.up (pl’p; _k) (55)
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IV. APPLICATIONS

A. Pointlike charge near a planar € boundary
at fixed potentials

Now, we deal with the problem of one or more point
charges in the presence of a planar 6 boundary surface at
fixed potential. This case falls under the BC-I class of
boundary conditions at the € interface. In the planar case,
these BCs reduce to demanding the full BC-I Green
function (Gp)*,(x,x’) to be zero. As an example, let us
consider a pointlike electric charge in front of an infinite
planar 6 boundary at zero potentials (A% A)) = (0,0)
located at z = 0. No additional bounding surfaces are
considered. As discussed in Ref. [53], the problem of a
pointlike charge in front of an infinite planar  boundary is
equivalent to the problem of the original charge, together
with an electric charge and a magnetic monopole located at
the mirror-image point behind the plane but with the 6
interface removed, 1i.e., @ =0. These electric and
magnetic images reproduce the boundary conditions in
Refs. [15-18], induced by the nontrivial jump of the
O-value.

The problem at hand can also be solved in terms of
images. Following similar steps as in the standard case, the
corresponding GF, (Gy)¥,(x,x’), can be constructed as

(G, (x, x') = G¥, (x,x') + F¥,(x,X'),  (56)

with the addition of a matrix F*, which satisfies the

homogeneous equation

[~ V2 = 05(2)e¥, 0, F*(x,X') = 0. (57)
This freedom in the definition of the GF allow us to
choose appropriately the matrix F*, in such a way that
(G, (x,x") = 0 for x" on X. Let us consider a pointlike
electric charge located at 7/ > 0 and assume that z > 0. The
required components of the GF matrix for solving this
problem are

1 & 1

X=X 48 x-xT

20 €ijp(X — X’)ﬂ 7+ 7
) 2 - )
446 R x — x|

G (x.x') =

(58)

G(x,x') = —

(59)

where x’ = (x/,y’,7') denotes the position of the charge
and x” = (x',y’, —7') indicates the position of the images.

Regarding the problem of the BC-I Green function, we
find that
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(G1)°%(x.x') = G%(x.x') = G%(x.x")

(7)==
41 72) \x—x

1
x—x"|)"

(60)
(GI)Oi(X»X,) =G%(x,x') = G%(x,x")
- 20 €0ij3(X—X/)ﬂ z+7  z-7
_4_’_é2 R2 |X—X”\ |X—X/| ’

(61)

which effectively vanish at z/ = 0. We interpret the fields as
follows. The electric field in the region z > 0 is generated by
four electric charges: (i) the original charge of unit strength at
7/, (ii) an equal and opposite charge located at the mirror-
image point, (iii) an electric charge of strength —6° /(4 + 6°)
located at the mirror-image point and (iv) an electric charge
of strength +6%/(4 + 6%) located at z'. The magnetic field
can be interpreted as that produced by two monopoles, one
of strength 2@/ 4+ éz) located at the mirror-image point,
induced by the € boundary, and the other of strength
—20/(4 4 6%) at 7/, arising from the BC Ayl =0.

In a similar fashion, one can further check that the electric
field in the region z < 0 is due to an electric charge of
strength —4 /(4 + 6%) located at z’ plus an electric charge of
strength +4/(4 + 92) located at —z'. The magnetic field can
be interpreted as being generated by two magnetic monop-
oles, one of strength —26/(4 + 6”) located at 7’ together
with its image of strength +26/ (4+ 92) located at —

B. Pointlike charge near a spherical # boundary

The problem we shall discuss is that of a pointlike charge
in vacuum (6, = 0) near a spherical topological medium of
radius a and 6, # 0. For simplicity, we choose the line
connecting the center of the sphere and the point charge as
the z-axis. Thus, the current density can be written as
J(X') = En'o6(r' — b)d(cos & —1)(¢'), with b > a.

The solution for this problem is then

P(x) Z/Goﬂ(x,X’)j”(X’)d3X’=61G00(X,b)» (62)

3
AR =Y / G, (x, X') 4 (X)) PX’
k=1
3
= 4G (x.b)éy, (63)
k=1

where b = bé,. With the use of the corresponding com-
ponents of the GF matrix, Eq. (45), the scalar and vector
potentials are
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X) = 4ﬂqi Z Z (a,(r, b) — a®0*1(1 + 1)

=0 m==Im'=-

x 8)(a.a)S(r. D)8 Yin (9. 9)Y},,(0.¢/).  (64)

oo+l +1 5
X) = 47;612 z Z iafS,(r, b)Y, (9, ¢)

1=0 m=—Im'=-1
x Yi (0,¢")(Im|L|Im'). (65)

From the relations Y,,,(0, @) = 8,,04/%5 and Y;o(9. ¢) =
2P (cos 9), we find

B(x) = > lai(r, b) — B+ Ve, a)S(r, b)
=0

=
x (21 + 1)P;(cos 9), (66)

qz Z la9\/4ﬂ' 204+ 1) S;(r, b)Y, (9, @)

=0 m=-1
« (Im[L.]10), (67)

which immediately yields A, = 0. The remaining compo-
nents of the vector potential can be calculated by intro-
ducing the combinations A, = A, &+ iA,. The result is

X)= qiiaé VAr(2L4+ D)L+ 1) S,(r, b)Y 111 (9, @),
1=0

(68)

where the expected symmetry A, = A* follows from the
relation Y, = —Y,_;. Recalling that

1 . .
Ag=—sin9A, +—cosI(A e ' + A_e'?),

2

1 . .
A, = % (A e ™ —A_e'?), (69)

i
we obtain

- oP 9
Ay =0, Z (21 +1)S,(r, b) 71(5;8 ) ,
(70)

in spherical coordinates.
Now, we analyze the field strengths for the regions 1,
r>b>a, and 2, b>a>r. Using the free GF,
1

& (r.7) =571 Hl, the scalar potential and the (nonzero

component of the) vector potential for the region 1 take the
form
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O*1(1+1)
X) =
) IX—bI qz QI+ 1)+ 611+ 1)
a2l+1
X r,Tb,HPI(COSJ’), (71)

0(21+1)

Z 21+] aPl(COS19)
—1 (204124 1(1+1)r b

FrE
(72)

respectively. The corresponding electric and magnetic field
strengths can be calculated directly from E = —V¢ and
B =V x A, respectively. The result is

_x-b & O*1(1+1)
) =R q;(2l+1)2—l—ézl(l+l)

™ . OPi(cos®) .
XW[—(HLI)PI(COSMH-T 7
(73)
. 0121 + 1) g2+
q; 20+ 1)2 4+ 6*1(1 + 1) b
opP 9) .
X {—(l—i— 1)P,(cos8)f'+%& . (74)

We now ask what is the behavior of these field strengths
when the separation between the point charge and the
sphere is large compared to the radius of the sphere, b > a.
Since the /th term in the sum behaves as (a/b)"*!, only
small values of / contribute. The leading contribution arises
from [ = 1, and we obtain

x—b p A Cae
E()(x) ~qm+ﬁ(2cos8r+sm&9), (75)
m oA
B(1)(x) ~ — (2 cos 9F + sin 99), (76)
/-

which corresponds to the electric and magnetic fields
generated by an electric dipole p and a magnetic dipole
m lying at the origin and pointing in the z direction,

B Zqé a3é B 2m
94 2P Y 3

Next, we consider the field strengths in region 2:
b > a > r. The scalar potential and the @-component of
the vector potential become
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O*1(1+1)
X
P (x) = IX—bI qz QU+ 172 + U1+ 1)
rl
WP i(cosy), (77)
B i": 0(21+1) r OP(cos 9)
q, QI+ 1?2+ P11+ 1)bH 09
(78)
respectively. The corresponding field strengths are
x—b 0 O*1(1+1)
Eonx)=¢g———=+ =
&) =45 Tys q;(21+1)2+921(z+1)
=1 OP(cos ) 4
X T [lP,(cos&)r—FlaT&], (79)
i’: 120+ 1) +1)
— (20 + 1 +92l(l+1 b
P(
X [ZPZ(COSS)f 0 ICOSl() } (80)

When the separation between the point charge and the
sphere is large compared to the radius of the sphere, b > a,
the field strengths in the region r < a become

x—b 1
E - __P, 81
2)(x) I —bF 3 (81)
2
By (x) ~3M. (82)
where
6g0 1 2
= e —-IM (83)
9+20°b 3

An interesting feature to note is the form of the field
strengths in such region. The electric field behaves as
the field produced by a uniformly polarized sphere with
polarization P, while the magnetic field resembles the one
produced by a uniformly magnetized sphere with magneti-
zation M.

C. Infinitely straight current-carrying wire
near a cylindrical § boundary

Let us consider an infinite straight wire parallel to the
z-axis carrying a current / in the +z direction. The wire is
located in vacuum (6, = 0) at a distance b from the z-axis.
Also, we assume a cylindrical nontrivial topological insu-
lator of radius a < b, with its axis parallel to the wire and
passing through the origin. For simplicity, we choose the
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coordinates such that ¢’ =0. Therefore, the current
density is j*(x') = £n*38(¢/)8(p’ — b). The solution for
this problem is

At (x) = / Gy (x.x') 2 (x')dx!

= 21lim Zoo Z g s(p b k)™, (84)

m——oo m'=—c0

where the various components of the reduced GF in
cylindrical coordinates are given by Egs. (51)—(53). With
the use of the corresponding components of the GF matrix,
the scalar and the (nonzero component of the) vector
potential are

+00
AY(x) = —416 %i_r}réZmCmm(p, b)sinmep, (85)
m=1

— P4, (a,a)Conlp. b)] co8 mq,}. (56)

The reduced GF in vacuum is g,,(p,pk) =
L,(kp-)K,,(kps), where I, and K, are the modified
Bessel functions of the first and second kinds, respectively.
Using the limiting form of the modified Bessel functions
for small arguments [74], the limit k — O of the reduced GF

becomes
1 P< m
, 87

and then limy_,of,, (k) = m/2. The potentials now become

limg,, (0, p's k) =

410 =21 m
A0(x) :_~Zm<z<z> sinmg,  (88)
>

()_21{ logp>+2{ < )

&# 1 [a. a) ’”} }
— cosme p, 89
4t Pm ( b v (89)

where the symbols > and < denote the greater and lesser in
the ratio a/p. The summations can be performed analyti-
cally, with the result

410 i
A°(x) = ——=;arctan <L¢b> , (90)
4460 cos @ — z_ZE
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Ad(x) = I{—log [p? — 2bp cos ¢ + b?]
= ol
+-——=log |1 - 2——cos + .
4+ 6 ¢ p b T\ b
(91)

Next, we analyze the field strengths for regions 1,
p>b>a,and 2, b > a > p.
In region 1, the potentials take the form

416 i
Y arctan [P (92)
4+ cosp -

A?l)(x) = 1[— log (p* + b> — 2bpcos @)

Ay (x) =

& d &
+——=log|(1—-2—-cosp+— ||, 93
440 g( p Y /)2>] 3)

where d = a?/b. The corresponding electric and magnetic
field can be calculated directly as E = —VA? and B =
V x A, respectively. The result is

410 dsin @ .
446 p*+d° —2dpcos«pp

N l_ p—dcosg .
p pP+d*—2dpcose 7\
. —21bsin ¢
Bi)(x) =p| =3
+ b= —2bpcos ¢
2167 dsin @
4_|_92 2+ d*>=2dpcosg
| 2I(p—Dbcose)
+ 2. 52
+ b* —2bpcos @
200 (1 -d
ol p—Aacosy . (94)
44+6*\p p*+d*—2dpcosy

E(1)<X) ==

The fields can be interpreted as follows. The magnetic field
corresponds to that generated by the wire with current /,
plus two image currents: one of strength / 6 /(4 + 92)
located at the origin and the other of strength —/ 6 /(4+ éz)
located at d = a?/b.

In region 2, the potentials are

Al
7 log (p> + b> —2bpcosg). (96)

The fields can be calculated directly. The result is
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B 410 bsin @

440 [ﬂ2 + b2
p—>bcosg

_p2+b2

N

E ) (x)

— 2bp cos gop

4, 97)

—2bpcos ¢

41 2bsin ¢

4+ & [_pz + b2 —2bpcosrpp
2(p—bcosgp) .

p> + b* —2bpcos ¢ }

B(z)(x) =

+

(98)

The magnetic field in this region corresponds to the one
produced by a current 41/ (4 + 6°) located at b.

D. Infinitely uniformly charged wire near
a cylindrical § boundary

Let us consider an infinite straight wire which carries the
uniform charge per unit length 1. The wire is placed parallel
to the z-axis and is located in vacuum (6, = 0) at a distance
b from the z-axis. Also, we assume a cylindrical nontrivial
topological insulator of radius a < b. Again, we choose
the coordinates such that ¢’ = 0. Therefore, the current
density is j*(x') = £n*08(¢')8(p’ — b). The solution for
this problem is

AF(x) = /G”O(X,X’)jo(x’)dx’
= 2/111m Z‘” Z‘”

m*—oo m'=—oo

o(p b K)em. (99)

The nonzero components can be calculated in the same way
as in the previous example. The final result is

A(x) = ﬂ{—log [p? = 2bp cos ¢ + b?]

& [ a.a <a<a>2}}
+——=log{l —2——cosqp+ [ —— s
P PRV

Now, we analyze the field strengths for regions 1,
p>b>a,and 2, b > a > p. In region 1, the potentials
take the form

Al (x) =2 {— log [p? — 2bp cos ¢ + b?]
)

0 d d2>]
+——log(1—-2—cosep+— ||, 102
440 g( p TR (102)
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420 i
— 7 arctan —2¢ , (103)
s+ cosp -

where d = a’?/b. The corresponding electric and
magnetic fields can be calculated as usual. In region 1,
the result is

2M(p — bcos @)
Ey(x) = |55
+ b” —2pbcos g
210" (1 p—dcosp .
410 \p PP+ d—2dpcosg) |’
2Ab sin ¢
T\ =772
+ b” —2pbcos g
210* dsing X
A+ P +d—2dpcosg)?
B (x)—ﬂ 1 p—dcosg R
W47 |\ P+ = 2dpcose)”

dsing R
p?+d? —2dpcosqo¢ ’

—
=
—~
w
~—

(104)

(105)

In region 2, the result is

42 2(p — bcos @)

4 4 0% |p* + b* =2pbcosg
2bsin g R

+p2+b2—2pbcos¢4’

E(z)(x) =

(106)
420 < p—bcosg
1+ 2\

n bsin ¢
¢ p> +b*—2bpcosep)’

By (x) =

—2bpcos ¢

(107)

V. SUMMARY

In this paper, we have considered an appealing
topological extension of Maxwell electrodynamics which
constitutes a low-energy effective theory to study the
response of topological insulators. The model is defined
by supplementing the Lagrange density of classical
electrodynamics in 3+ 1 spacetime dimensions with
the U(1) Pontryagin invariant coupled to a scalar field
6. We take the field 0 as an external prescribed quantity
that is a function of space. This coupling violates
Lorentz, parity and time-reversal symmetries, while
preserving gauge invariance. We have restricted to the
case where 6 is piecewise constant in two different
regions of space separated by a common interface X,
denoted also as the @ boundary. Nevertheless, our
methods can be directly generalized to include additional
spatial interfaces. The related problem of considering
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timelike interfaces is interesting on its own, but it lies
outside the scope of this work and can be dealt with
elsewhere. This would model a system with 6 = 6(r)
rather than 6(x). One can anticipate that to tackle this
problem correctly, a fully dynamical theory would be
necessary. The #-value can be thought of as an effective
parameter characterizing the properties of a novel
electromagnetic media, possibly arising from a more
fundamental theory of matter, which encodes the effect of
novel quantum degrees of freedom. We have referred to
this model as #-electrodynamics (€ ED). In this scenario,
the field equations in the bulk remain the standard
Maxwell equations, but the discontinuity of & at the
surface X alters the behavior of the fields, as shown in
Eq. (6), giving rise to magnetoelectric effects such as a
nontrivial Faraday- and Kerr-like rotation of the plane of
polarization of electromagnetic waves traversing the
interface X as analyzed in Refs. [42—44]. In a preceding
work [53], we introduced the Green’s function method in
static & ED, and we provided the calculation of the
Green’s function for a planar 6 boundary, which is
summarized here in Egs. (38)—-(40), for completeness.
As a first application, we tackled the problem of a
pointlike electric charge located near the planar € inter-
face, and we recovered the results of Ref. [41] which
were obtained with the use of the method of images.
However, the Green’s function approach is far more
general given that it is well suited to deal with the
calculation of electric and magnetic fields arising from
arbitrary sources. The force between the charge and
the € boundary was also computed by two different
methods: (i) we used the Green’s function to calculate
the interaction energy between a charge-current distri-
bution and the 6 boundary, with the vacuum energy
removed; alternatively, (ii) we arrived at the same
result by considering the momentum flux perpendicular
to the interface in terms of the stress-energy tensor.
The problem of an infinitely straight current-carrying
wire near a planar @ boundary was also discussed in
detail.

In this work we extend our method to compute the
static Green’s function for a @ boundary with spherical
and cylindrical geometries, given the fact that those
geometries seems to be relevant for a large number of
experimental settings. The results are presented in
Eq. (45) for the spherical case and Egs. (51)-(53) for
the cylindrical case. Prior to this, we have dealt with
some important structural aspects of classical static
electromagnetic theory, namely the issue of the pos-
sibility of having stable equilibrium due to electromag-
netic forces only and the correct construction of the
stress-energy tensor to further analyze the status of
conservation laws. Regarding the former, in Eq. (21),
we have shown that for the case of 6 ED, points of
stable equilibrium are not a priori forbidden, at least not
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in a trivial way as in ordinary electromagnetism. Thus,
TIs as modeled by @ interfaces have a chance to
circumvent Earnshaw’s theorem. With respect to the
stress-energy tensor, we found that the energy density,
energy flux, momentum density and the stress tensor are
defined in the usual way; however, the ensuing con-
servation laws reveal a nonconservation of the stress-
energy tensor on the @ boundary, which in retrospect is
not unexpected since the mere existence of the boundary
breaks translational symmetry along the direction
perpendicular to it. Also, as shown in Eq. (32), we
extend the Green’s theorem to 6 ED, and we classify the
boundary conditions that can be imposed on X in four
different classes. Class I makes contact with the
Dirichlet boundary-value problem in standard electro-
statics, while the remaining classes yield boundary
conditions depending on the surface area of the 6
boundary. These are the most important results of our
work, since they allow one to obtain the corresponding
static electric and magnetic fields for arbitrary sources
and arbitrary boundary conditions in the given geom-
etries. Also, the method provides a well-defined starting
point for either analytical or numerical approximations
in the cases where the exact analytical calculations are
not possible. As an illustration of the extended Green’s
theorem, we analyze the problem of a pointlike electric
charge near a grounded planar @ boundary, i.e., having
zero scalar potential, together with zero parallel com-
ponents of the vector potential. In this case, the
boundary conditions imply that the Green’s function
is zero at the 6 boundary. In close analogy with the
standard case, this GF is subsequently constructed
starting from the original plane symmetric GF given
in Egs. (38)-(40), by adding a homogeneous solution of
Eq. (29) in order to fulfill the boundary conditions. In
this simple situation, the method of images allows one
to readily identify these solutions, and the final con-
figuration can be interpreted in terms of suitable images
charges and induced magnetic monopoles. Regarding
the interpretation of the solution as due to image
charges and image magnetic monopoles, let us recall
that these images are just artifacts. In fact, the physical
situation under study is mimicked by a hypothetical one
with the same physical sources with the € boundary
removed plus the fictitious sources (image charges and
monopoles) to ensure that the boundary conditions of
the fields are met at the location of the boundary. The
appearance of magnetic monopoles in this solution
seems to violate the Maxwell law V-B =0, which
remained unaltered in the case of & ED. However, this is
not the «case. In fact, given (x=+r)/|x+r|’~
V.(1/|x £ r|), we have V-B~V2(1/|x+r|)~5(x*T)
in a region where x # +r. Physically, the magnetic

field is induced by a surface current density J =
05(z)E xn that is circulating around the origin.
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Additional applications include the use of the spherical
Green’s function to analyze the problem of a pointlike
charge near a spherical 6 boundary, while the cylindrical
Green’s function allows for the calculation of the fields
produced by an infinitely current-carrying wire and by a
uniformly charged wire, both near a cylindrical 6
boundary and parallel to its axis.

The Green’s function method should also be useful for
the extension to the dynamical case. In this respect, to our
knowledge, little efforts have been done in the context of
topological insulators. Furthermore, Green’s functions are
also relevant for the computation of other effects, such as
the Casimir effect.

The method here expanded and initiated in Ref. [53],
when applied to specific configurations representing given
experimental setups, predicts results that coincide with
those in the previously existing literature. Our method,
however, enjoys a certain generality in the sense that can be
applied to a more intricate configuration of sources, in
which case, for example, the method of images can be more
cumbersome.
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APPENDIX A: GF FOR A
SPHERICAL 6 BOUNDARY

In this section, we construct the GF in spherical
coordinates for the configuration shown in Fig. 3 where
the € boundary is the surface of a sphere of radius a with
center at the origin. Here, the adapted coordinate system is
provided by spherical coordinates. The various components
of the GF are the solution of

8,

FIG. 3. Spherical region.

PHYSICAL REVIEW D 93, 045022 (2016)

0 .
_nﬂavz - i_5(r - a)(’?”oﬂka - nﬂkrloa)Lk Galz(x’ X/)
a

=4’ ,6(x —x'), (A1)
with &k =1,2,3. Here, I:k are the components of the
angular momentum operator. Since the completeness rela-
tion for the spherical harmonics is

5(cosd —cos )5 io: 3 Y1 (8,90)Y7,(9.¢"),
1=0 m=—1
(A2)
we look for a solution of the form
I R
G X) =42 3> D G (17)
1=0 I'=0 m=—Im'=—I'
XY (8, 9)Y 5, (9. 0"), (A3)

where ¢y, . (r,7) is the reduced GF analogous to
¢*,(z,7') in the case of planar symmetry. The operator

in the left-hand side of Eq. (A1) commutes with I.? in such
a way that

dlll’mm’,u(r’ }’/) = 5ll'g7mm’,y(r7 r/)' (A4)

In the limiting case 0— 0, the matrix elements take
the simple form g’l'm_y(r, 'y =nt,q,(r, 1), where g;(r,r)
solves the equation

N S(r—r
O,q(r.r) = % (AS5)
with the radial operator being
~ l(I+1) 10 0
Or = r2 _28_ <r 5) . (A6)

The solution to Eq. (A5) for different configurations is well
known (see for example Ref. [69]). In free space, with
boundary conditions at infinity, the solution is

rl< 1

e A7
P2+ 1 (A7)

g (r,r) =

where r. (r.) is the greater (lesser) of r and r'. The
substitution of Eq. (A7) into Eq. (A3) correctly reproduces
the well-known result |x — x|~!.

In the following, we focus on determining the various
components of the GF matrix in Eq. (A1l). The method we
shall employ is similar to that used for solving the planar
case, but the required mathematical techniques are more

045022-16



ELECTRO- AND MAGNETOSTATICS OF TOPOLOGICAL ...

subtle because of the dependence upon the angular
momentum operator.

Substituting Eq. (A3) into Eq. (A1) and using —=V? — @,
gives

i Z [11” O, —l— (r—a)(n"on — o) Ly

=0 m=-I
X G D(", )Y (9. 9)Y, (8. ¢')
S S 0 )2 (59

=0 m=-I

The linear independence of the spherical harmonics
Y; (8. ¢') yields

0 +1 R 6 R
E |:’1'u(10r - i—é(l" - a)(”ﬂorlka - nﬂknoa)Lk
a

X g[amm/ y(r’ rl)Ylm(g’ (p)

= ﬂiZYlmﬁqo r—r)(s

=0 m=-1

(A9)

Next, we multiply Eq. (A9) to the left by Y}, (9, ) and
integrate over the solid angle dQ(9, ¢). After using the
properties of the spherical harmonics,

(" im) = S8

W Eyim) = 8,V | L"), (A10)
where
(mlaliny = [ ¥, (0. 0)LeY (0,002 (A1)
we obtain
A S(r—r
Orgfl‘mm’,v(r’ I"/) - ’7”” ( 72 )5mm’
é k k,,0
= 155(r—a)(71”on a=1"N")
+1 .
x> {m|Ly|im") g, (1), (A12)

m'"=-1

where we have relabeled [” — [ and m” <> m.

The resulting equation can be integrated using the
free reduced GF g,(r, r’), satisfying Eq. (A5), with the
result
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-dl‘mm’,y(r’ r/) = ’7’991(”7 r/)émm’

+ ial(n* ot o — 11004 (r, a)

+1
x Z g7n1”m’,y(a’ r/)<lm‘£k|lm”>-

m'=—1

(A13)

Now, we have to solve for the various components.
To this end, we split Eq. (A13) into the components y = 0
and y = k;

g?mm’.u(r’ }’/) = ’701,91(” r,)(smm’

x (a r)(lm|Lk|lm”>, (A14)
gfmm’,y(rv r/) = nkvgl(r7 r/)émm’ + iaégl(rv a)
x Z 9 i () (Im[Ly | Im"),  (A15)

m’'=—1

where the second term in the right-hand side produces the
coupling between the two types of components. Now, we
set r = a in Eq. (A15) and then substitute into Eq. (A14)
yielding

) = nougl(r’ r/)émm’
+iafg,(r, a)g;(a. ) {Im|n*, Ly |Im’)
— 011+ 1)gy(a.a)g(r.a)g,, (a. 7).

0 /
glmm/.v(r’ r

(A16)
where we have used the result
3 +1 R
> lm|Lk|lm (Im'| Ly | Im”)
k=1 m'=—
3
Z (Im|C3Im"y = 11+ ). (A17)

k=1

Now, we set r=a in Eq. (A16) and solve it for

/ ..
glmm’,y(av r ), Obtalnlng

_ nouémm’ + iaég[(a, a) Zi:l <lm|nkvﬁk|lm,>
14 a20*1(141)g3(a, a)
xg(a,r),

g?mm’,v(a’ rl)
(A18)

which we insert back into Eq. (A16) with the final
result
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g?mm’,y(r? }"/) = novémm’ {gl(r’ I"/) - azézl(l + I)Sl(r’ I",)]
+ ia0S,(r, ¥') (Im|n* L |Im'), (A19)
where the function S;(r, r’) was defined in Eq. (46).
The remaining components now can be computed

directly. The substitution of Eq. (A18) into Eq. (Al5)
produces

gfmm’,y("’ rl) = nﬂygl(r’ r/>5mm’ =+ iaésl(r7 rl)
O (Im|L|lm') — a®0*1(1 + 1)g;(a, a)
x 8;(r, P)(Im|y" L L, | Im'). (A20)

One can further check that ¢ . (r.r') =g . o(r.r).

Thus, the general solution can be written in a compact
way as

-dllmm’,y<r’ I‘/) = ’7”1/91(’, r/)émm’ - azézl(l + 1)
x g(a.a)S;(r.7)(Im|L,L,|Im’)
+iaBS;(r. ') (0%, + T 90,

x (Im|Ly|Im'), (A21)

where L, denotes the identity operator and I" =
" =n'or’o.

APPENDIX B: GF FOR A CYLINDRICAL
6 BOUNDARY

Now, we concentrate in constructing the GF in cylin-
drical coordinates for the configuration shown in Fig. 4
where the € boundary is the surface of a cylinder of radius a
with its axis lying along the z direction. The various
components of the GF are the solution of

[_nﬂuvz - é5(p - a)naeaﬂﬁuaﬂ]G
=4t 6(x — x'),

Yo (x, )

(B1)

where n, = (0,cos@,sing,0) is the normal to the 6
interface. Since we have the completeness relation

5(p—¢')o(z—-7)

:/_:L:Od]]i ik(z—7) 2” Zoo Zoo 5mm lmt/l m(/))

(B2)
we look for a solution of the form
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FIG. 4. Cylindrical region.

Gﬂ(xx’)_47r/+ 9 i L i Z
o 2r 27

L m=—o00 m'=—c0

x g’:nm,,y(p,p’; k)eitmo=m'y'), (B3)

where ¢!

mm' v

¢*,(z,7') in the case of planar symmetry.

(p,p'sk) is the reduced GF analogous to

In the limiting case € — 0, the matrix elements take the
simple form ¢, . (p.p's k) = 1,8, 8 (p. p's k), Where
8, (p,p's k) solves

s(p—p')

Oy au(p. p's k) = — (B4)
with the radial operator being
A 10 0
(m) — __~ k2. B5
’ pOp ( 3p> T (B3)

The solution to Eq. (B4) in free space, with standard
boundary conditions at infinity, is

8 (p.p's k) =1, (kp K, (kp-.),

where p.. (p.) is the greater (lesser) of p and p’. Here, 1,
and K,, are the modified Bessel functions of the first and
second kinds, respectively. The substitution of Eq. (B6)
into Eq. (B3) correctly reproduces the well-known result
|x — x'|7! for the free case.

In the following, we focus on solving Eq. (B1) for
the various components of the GF matrix. To this end, we
first observe that the additional differential operator in
Eq. (B1) does not involve radial derivatives, but only
derivatives with respect to the coordinates z and ¢. That
is to say

(B6)

1
nge®’ 05 = (cos ge'3, + sin pe*s )0, + 61”2,,;8(/,.

(B7)

Substituting Eq. (B3) into Eq. (B1) and using 0, — ik,
9, — im, =V* > (AQ/(,m) gives
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+eo dk ik(z—7 1 s i(mo—m'¢’' 7y(m) 0
/_oo ﬁe (Z Z)me/zz_oog< @ (/’){r]ﬂyoﬂ _105('0_
8(p—p) /+°° dk . 1
g N P eik(z=7) 5. elmo—m'e’)
e P) . 271_ 2” Z mm' €

mm:—oo

. . . S Y
Using the linear independence of e™'¢" and e~

+00

m=—co
In analogy with the spherical case, we next multiply

Eq. (BY) to the left by e~""? and integrate with respect to
@. After using the relations

1 2r . ,
mm' — A5 et(m—m )(ﬂd(p, (BlO)
2r 0
1 2r . p
Al = 2, dpe™? (cos pe'*3, + sin e ,))e~im'¢
1 L i
- E [5m~m”—l (eﬂv) + 5m,m”+1€”v]v (Bl 1)
where &, = €', + €23 i, Eq. (B9) simplifies to
O/<7m>g’:nm’ o l95 |: Z Am 'm ygm"m’,ﬁ
2 M o (P -7 12
+er, ;5’"”1’9;1;%’,0' =Ns 7511";1’7 (B )

where we have relabeled m” <> m.
The resulting equation can be integrated using the free
reduced GF g,,(p, p'; k), satisfying Eq. (B4), with the result
Tt o (PP') = 1 B8 (p- p') + i0me2,g,,(p. a)
X G o\asp') + itkag,,(p, a)
x Z Am 'm L/gm”m’,ry(a’p/)‘

m :—00

(B13)

Note that we have suppressed the dependence of the
reduced GF on k for the sake of brevity. Now, we have
to solve for the various components. To this end, we
observe that the nonzero components of A”m .y AT

i

Ainm”,O = A?nm”,l = +§ (5m,m”+1 - 5m,m”—1)’ (B14)
1

Afnm//.() = A?ﬂm”,2 == 5 (5m,m”+l + 5m.m”—1)- (BIS)

a) | k(cos pe'¥3, + sin e ) + €42, ﬂ} }g’“
p

) {n0<> _ id6(p - a) [k<cos pElB, 4+ sin e, ) + chi2, @] }gz,m/,g -y
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mm' ¢

(B8)

, we are left with

3p=r) xZémm mo_ (BY)

m=—0oco

This result allows us to split Eq. (B13) into the components
u=0,pu=3and y=j=1,2, obtaining

g?nm’,o-(p’p ) =n o‘(smm’gm(p P ) + l@mgm(p, ) mm 5(a ﬂ)

Z Am "m, l-gm”m’,a(a’p,)’

m :—oo

+ ibkag,, (p. a)

(B16)

=1 O 8 (0-9') + 10, (p.@) g, (a.p)).
(B17)

Gyt (PP

ginm’.(r(p’ pl) = ﬂjo’émm’gm(p’ p/)

Z Am”m Ogm”m’,v(a’ ﬂ’),

m'’'=—c0

+ leagm p,a

(B18)

where the index i = 1, 2.
Setting p = a in Egs. (B17) and (B18) and then sub-
stituting into Eq. (B16) yields

Pt o (P-P') =1 o8t (0. 9') + 1O[mB,m,
+ kaA}(')n m, a]gm (/0’ a)Qm’ (aa ;0/)

= 0°,,(p. @) (k)G (a. 0. (B19)

where f,, (k) =m?g,,(a.a) +55 (8,11 (a,a) + g1 (a,0)).
In deriving Eq. (B19), we use the result

b S
50
3
ES
3

3

(=]
N —

(5m,m”+15m’.m—l + 5m,m”—15m’,m+l ) ’
(B20)

which can be verified directly from Egs. (B14)—-(B15).
Solving for ¢° , (a,p') by setting p = a in Eq. (B19)
and inserting the result back in this equation, we obtain
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g&m’,a (,0, ,0/) = noaémm’ [gm (,0, ,0/)

where the function C,,,, (p, p') was defined in Eq. (54).

- ézfm(k)cmm(p’ ,0/)] + le(mémm ’7 ot kaAg, m, o') mm’(,g? ,0/),
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(B21)

The remaining components now can be computed similarly. The substitution of ggm,,a(a, p') in Egs. (B17) and (B18)

yields

gfnm’.o'(p’p/) = 773o'5mm’ {gm (,07 ,0/)

~ 0°K*d’g,(p.a

= m?0°q,,(a.a)Cy(p.p)] + imO(n°, + ikabAS, , )Cou(p. ). (B22)
G o (PP') = 088 (p. ') + ikaO[Cy + it ' 4,y (@, @)JAL, . Crm(p'.p)
Z AL A% Cor(a.p'). (B23)

m :—00

These results establish Egs. (51)—(53).
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