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We present our numerical study of three-dimensional QED with two, four, six and eight flavors of
massless two-component fermions using a parity-preserving lattice regularization with Wilson fermions.
We study the behavior of low-lying eigenvalues of the massless improved Wilson-Dirac operator as a
function of three-dimensional physical volume, after taking the continuum limit at fixed physical volumes.
We find the following evidences against the presence of a bilinear condensate: the eigenvalues do not scale
as the inverse of the three-dimensional physical volume, and the number variance associated with these
eigenvalues does not exhibit ergodic behavior. The inverse participation ratio (IPR) of the associated
eigenvectors exhibits a multifractal volume scaling. The relation satisfied by the number variance and IPR
suggests critical behavior.
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I. INTRODUCTION

Two-component massless fermions coupled to a three-
dimensional Euclidean Abelian gauge field has been a topic
of study in the past three decades for several field-theoretic
reasons, and it is also of interest to condensed matter
physics [1]. The massless Dirac operator is

CðAÞ ¼
X3
k¼1

σk½∂k þ iAkðxÞ�; ð1Þ

where σk are the Pauli matrices and AkðxÞ is a background
Abelian field. Under parity,

x → −x; AðxÞ → −Að−xÞ;
CðAÞ → C†ðAÞ ¼ −CðAÞ: ð2Þ

This theory has a parity anomaly [2,3] since the fermion
determinant is not real [4,5] and its parity-violating phase is
regulator dependent [6–8]. Furthermore, the form of the
parity-violating term at finite temperature and nontrivial
gauge field backgrounds can be quite different from the
perturbative infinite-volume result [9,10].
This parity anomaly can be canceled by suitable

regularization when an even number of flavors of two-
component fermions are present. In this paper, we are only
interested in such a system. Assuming we have a regulated
version of CðAÞ, we can write down a parity-invariant
fermionic action for a 2Nf flavor theory as

Sf ¼
Z

d3x
XNf

i¼1

fχiðxÞCðAÞχiðxÞ þ ϕiðxÞC†ðAÞϕiðxÞg;

ð3Þ

with the fermions transforming under parity as

χiðxÞ → ϕiðxÞ; χiðxÞ → ϕiðxÞ: ð4Þ

It is useful to identify the 2Nf flavors of two-component
fermions as Nf flavors of four-component fermions using
the following notation [11]:

ψ iðxÞ ¼
�
ϕiðxÞ
χiðxÞ

�
; ψ iðxÞ ¼

�
χiðxÞ ϕiðxÞ

�
;

DðAÞ ¼
�

0 CðAÞ
C†ðAÞ 0

�
; ð5Þ

with the associated action,

Sf ¼
Z

d3x
XNf

i¼1

ψ iðxÞDðAÞψ iðxÞ: ð6Þ

Note that the usual anti-Hermitian Dirac operator is

γ5DðAÞ ¼
X3
k¼1

γk½∂k þ iAkðxÞ�: ð7Þ

Under parity,
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ψ iðxÞ → Pψ iðxÞ; ψ iðxÞ → ψ iðxÞP;

P ¼
�
0 1

1 0

�
; DðAÞ → PDðAÞP ¼ −DðAÞ: ð8Þ

The action in Eq. (6) has a Uð2NfÞ symmetry. The two
parity-invariant fermion bilinears which break the sym-
metry to UðNfÞ × UðNfÞ are

Sm ¼
Z

d3x½mpψ iðxÞPψ iðxÞ þ imψ iðxÞψ iðxÞ�: ð9Þ

The fermion determinant in a fixed gauge field background
becomes

Zðm;mpÞ ¼ det ðCðAÞC†ðAÞ þm2 þm2
pÞ; ð10Þ

which makes different choices of m and mp equivalent as
long asm2 þm2

p remains the same. These different ways to
introduce mass will be used advantageously in our lattice
formulation. If the Uð2NfÞ symmetry gets spontaneously
broken to UðNfÞ × UðNfÞ in the massless theory, then
ψ iψ i and ψ iPψ i will pick a vacuum expectation value,
which we refer to as the bilinear condensates. With the right
ordering of limits (the three-dimensional volume l3 is
taken to infinity before the fermion mass is taken to zero),
the bilinear condensates are

lim
m→0

lim
l→∞

1

l3

∂ log hZðm; 0Þi
∂m ≠ 0 and

lim
mp→0

lim
l→∞

1

l3

∂ log hZð0; mpÞi
∂mp

≠ 0: ð11Þ

Analytic arguments in favor of a nonzero bilinear con-
densate were first provided by Pisarski [11] in the limit of a
large number of flavors. The associated gap equation was
analyzed in Refs. [12–15] which supports a nonzero
bilinear condensate if Nf < 4. It is worth noting that the
massless fermion propagator was used in the fermion
bubbles summed up to obtain the gauge boson propagator.
In addition, the wave-function renormalization of the
fermion was set to unity in the limit of large Nf. Since
the computation was performed in the large-Nf limit and an
upper bound on Nf was obtained for a nonzero bilinear
condensate, a different approach is needed to verify this

result. Furthermore, estimating the free energy by simply
counting the degrees of freedom in the UVand IR assuming
a nonzero bilinear condensate suggests a bound of Nf < 2

[16]. In another study [17], the stability of the conformal
fixed point of QED in 4 − ϵ dimensions on a sphere,
extrapolated to three dimensions, suggests a critical
Nf < 4. A schematic phase diagram of QED3 as a function
of the number of flavors is shown in Fig. 1, based on the
above plausibility arguments. The question we try to
answer, is whether a region with a condensate and broken
Uð2NfÞ symmetry exists.
Extensive numerical studies have been carefully per-

formed using staggered fermions to investigate the possibil-
ity of a nonvanishing bilinear condensate. A single copy of a
staggered fermion results in a Nf ¼ 2 theory in the con-
tinuum. This particular examplewas studied in Ref. [18] and
an upper bound on the bilinear condensatewas estimated. By
simulating a lattice model that uses the square root of the
staggered Dirac operator, the Nf ¼ 1 theory was carefully
studied in Ref. [19] and it was concluded that there is
evidence for a nonzero bilinear condensate in this theory. In
these studies, the theory with a fermion mass was simulated
and the bilinear was measured as a function of mass to see if
an extrapolation to zero mass yielded a nonzero condensate
in the infinite-volume limit. Although several different
physical volumes and lattice spacings were considered the
analysis did not separate the two effects. In theNf ¼ 1 case,
increasing the physical volume at a fixed lattice spacing
shows a trend in the bilinear as a function of mass, that is in
favor of a nonzero condensate at zero mass. But, a com-
parison of two different physical volumes (the largest two in
the simulation) at two different lattice spacings favors a
vanishing condensate at zero mass. The Nf ¼ 4 theory was
also studied in Ref. [19] with the aim of showing that the
condensate vanishes in this theory. An equation-of-state
analysis of the bilinear condensate as a function of fermion
mass and lattice gauge coupling does not convincingly
provide evidence for a nonvanishing condensate at
Nf ¼ 1 or for a vanishing condensate at Nf ¼ 4.
The aim of this paper is to revisit the problem numeri-

cally using Wilson fermions. The advantage of using
Wilson fermions are twofold. On the one hand, we can
simulate any value of Nf without having to deal with
fractional powers of the lattice Dirac operator. On the other

Condensate Critical Scale invariant

FIG. 1. The conjectured phase diagram of three-dimensional QED as a function of the number of flavors Nf of massless
four-component fermions. The blue region (to the right of the critical point) has a Uð2NfÞ flavor symmetry and scale invariance. The
symmetry is broken to UðNfÞ × UðNfÞ in the red region (to the left of the critical point). This paper deals with whether this region with a
bilinear condensate (and broken scale invariance) exists.
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hand, there is a place for both the bilinears in Eq. (9)—we
usemp on the lattice to realize massless fermions and usem
to find evidence for a nonzero condensate. Wilson fermions
were used earlier in Ref. [20] to study the beta function of
QED3 with Nf ¼ 2; here we use the two different masses to
study Nf ≥ 1 and explore fermionic observables. In con-
trast to the studies in Refs. [18,19] where one simulates a
theory with a nonzero m, we simulate the theory with
m ¼ 0 and study the behavior of the low-lying eigenvalues
as a function of the physical volume. The low-lying
eigenvalues were previously studied in the quenched
approximation in Ref. [21]. Using a different method,
our study here explicitly extracts the scaling behavior of the
low-lying eigenvalues with respect to the volume. In
particular, we expect the lowest eigenvalues of DðAÞ, λi,
in a box of volume l3, to scale such that the expectation
value of λil3Σ has a finite nonzero limit as l → ∞ with Σ
being the value of the nonzero condensate.
The organization of the paper is as follows: we will

present the parity-invariant formalism of Wilson fermions
on the lattice in Sec. II. We will present our results for
Nf ¼ 1 in Sec. III where we will also make contact with
certain ideas in random matrix theory in order to under-
stand the behavior of the low-lying modes of the improved
Wilson-Dirac operator. We will present the results for
Nf ¼ 2, 3 and 4 in Sec. IV, and compare them to the
Nf ¼ 1 case. This will be followed by our conclusions.

II. PARITY-INVARIANT WILSON FERMIONS

We used an isotropic L3 lattice with periodic boundary
conditions in all three directions. Following Refs. [18,19],
we used the noncompact gauge action given by

Sg ¼
L
l

X
n

X3
j<k

½θjðnÞ þ θkðnþ ĵÞ − θjðnþ k̂Þ − θkðnÞ�2;

ð12Þ

where l is the dimensionless linear extent of the periodic
box measured in units of the coupling constant. The θ’s are
related to the gauge fields as θk ¼ l

L Ak. We used the
Sheikhoslami-Wohlert-Wilson-Dirac operator [22] which
was improved further by using one-level hypercubic
(HYP)-smeared fields θsk [23,24] in the naive and Wilson
terms. Let CW denote the two-component Sheikhoslami-
Wohlert-Wilson-Dirac operator including the mass term
MP. We have given the details of smearing and CW in
Appendix A. In four-component notation, our lattice
realization of the continuum parity-invariant operator with
mass terms [refer to Eqs. (6) and (9)] is

DW ¼
�
iM CW

C†
W iM

�
: ð13Þ

The eigenvalues of DW come in complex-conjugate pairs:

DWϕ
�
j ¼ ðiM � ΛjðMPÞÞϕ�

j ;

ϕ�
j ¼ 1ffiffiffi

2
p

� uj

� 1
ΛjðMPÞC

†
Wuj

�
; ð14Þ

where Λj are the eigenvalues of the massless Dirac operator
in lattice units. In terms of the two-component Dirac
operator,

CWC
†
Wuj ¼Λ2

jðMPÞuj; ΛjðMPÞ> 0; u†juj ¼ 1: ð15Þ

As L → ∞, the massless limit is obtained by setting
M ¼ MP ¼ 0. Due to the additive renormalization of
MP, one needs to tune MP as a function of L in order
to remain massless after setting M ¼ 0.
The dimensionless bilinear condensate is given by

Σ ¼ 1

l2

�X
j

2ml
ðλjlÞ2 þ ðmlÞ2

�
; ð16Þ

where the quantities in the continuum are

λjl ¼ lim
L→∞

ΛjðMPÞL and ml ¼ lim
L→∞

ML: ð17Þ

Then, for Σ to be nonzero in the massless limit, we require
the low-lying eigenvalues to obey [25,26]

λjl ¼ Σzj
l2

; ð18Þ

with zj being certain universal numbers obtained from
an appropriate random matrix theory that properly accounts
for the effective low-energy Lagrangian with only the
zero-momentum mode taken into account. This is an
important requirement that we use to check if the bilinear
condensate is present.
We explicitly setM ¼ 0 in our simulations. This enabled

us to use the standard hybrid Monte Carlo (HMC) [27]
algorithm with Nf copies of pseudofermions to simulate a
2Nf flavor theory. We used MP to tune the theory to
massless fermions. The tuning was achieved by finding the
MP that minimizes the lowest eigenvalue, Λ1ðMPÞ, over a
small ensemble of thermalized configurations. We com-
puted these low-lying eigenvalues, including the associated
eigenvectors, using the Ritz algorithm [28]. Our simulation
parameters are given in Appendix B.

III. RESULTS FOR Nf ¼ 1

A. Effective potential using Wilson loops

We start with the results for the effective potential by
measuring the energy, − logWðx; tÞ, of a rectangular
Wilson loop, W, of size x × t. We regularized the loop
by spatially smoothening the gauge fields θ1 and θ2
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perpendicular to t, using six levels of APE smearing with
the smearing parameter s ¼ 0.5. By fitting to

logðWÞ ¼ Aþ VðxÞt; ð19Þ
with A and VðxÞ as fit parameters, we obtained the effective
potential, VðxÞ, which is shown in the top panel of Fig. 2.
A dominant logðxÞ behavior is seen. The deviation from the
logðxÞ behavior that is seen at large x, diminishes as the
physical volume is increased. A fit of the data to

VðxÞ ¼ k logðxÞ; ð20Þ
shows that k approaches an infinite-volume result.
But, VðxÞ at a fixed x, does not seem to have a finite
limit. Instead, the log term seems to be of the form
logðxlÞ, as seen from the data collapse in the bottom panel
of Fig. 2. Therefore, the effective potential does have a

three-dimensional Coulomb-like behavior but one cannot
set a scale using the potential.

B. Scaling of low-lying eigenvalues with
physical extent l

We turn our attention to the behavior of the low-lying
eigenvalues as a function of the box size l. In Fig. 3, we
show the lattice corrections to the smallest dimensionless
eigenvalue, λ1l, at various physical volumes l3. As it can
be seen, the lattice corrections are small at all volumes and
under control. Using a linear 1

L extrapolation, we were able
to obtain the continuum limit of the eigenvalues. Such
continuum extrapolations for representative volumes are
shown by the straight lines in Fig. 3. We plot λ1l as a
function of l for the four largest values of L in our
simulation in the top panel of Fig. 4. In addition we also
show the continuum limit in the same plot. We expect
λ1l ∼ l−2 if this theory has a nonzero bilinear condensate.
The data shown in the log-log plot is not described by a
simple linear fit. In the bottom panel of Fig. 4, we compare
the continuum-extrapolated λ1l with a l−2 power law. A
large deviation from the l−2 behavior is seen at all volumes.
To quantify this statement with some confidence, we fitted
the lowest three eigenvalues to a rational ansatz

log ðλlÞ ¼ a1 − ðpþ a2
l Þ logðlÞ

1þ a3
l

; ð21Þ

such that one recovers a power law as l → ∞. Using this,
we extracted the leading power p. The best fit is shown as a
solid blue curve in the bottom panel of Fig. 4. The χ2=DOF
as a function of p is shown in Fig. 5. The value of p around
1 seems to be favored while the value p ¼ 2, as expected
when a nonzero bilinear condensate is present, seems to be
ruled out. The value of χ2 seems to be minimized around

FIG. 2. The effective potential, VðxÞ, as a function of the
separation, x, on several different physical volumes as obtained
from x × t Wilson loops. In the top panel, VðxÞ is plotted as a
function of logðxÞ. The straight lines are the best fits to
VðxÞ ¼ k logðxÞ. In the bottom panel, it is plotted as a function
of logðxlÞ. The data collapse suggests that one cannot set the scale
using the effective potential.

FIG. 3. Continuum limit of the lowest eigenvalue at various
representative box sizes l. The straight lines are the continuum
extrapolations using a linear 1

L fit.
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the same value for all the low-lying eigenvalues, suggesting
that they all scale the same way with l.
It is possible that our studies have not reached asymp-

totically large volumes. In fact such a possibility has been
put forward in Ref. [29] by studying the effect of an
infrared cutoff on the gap equation in Ref. [14]. Of course,
one cannot define a condensate at zero momentum in the
presence of an infrared cutoff but one can ask if the gap
equation has a nontrivial solution. It was argued in Ref. [29]
that one needs to have l > 200 to obtain a nontrivial
solution for Nf ¼ 1. This argument is based on the
assumption that the lowest momentum appearing in the
fermion loop is π=l. If instead, we replace the sum over
momenta in the fermion loop by a sum over the eigenvalues
of the Dirac operator in the presence of a gauge field
background, a more natural choice for the infrared cutoff is
the lowest eigenvalue λ1 which, in our simulations, behaves
like 1=l2. Explicitly, at our largest physical extent
l ¼ 250, 1

λ1
≈ 500 which is well inside the region for a

nontrivial solution in Ref. [29].

C. Comparison to nonchiral random matrix theory

We can provide further credence to our conclusion of an
absence of a bilinear condensate at Nf ¼ 1 by borrowing
ideas from random matrix theory. In a theory that has a
nonzero bilinear condensate in three dimensions, we should
find that low-lying eigenvalues scale like 1=l3 and this
behavior should extend for all eigenvalues below a thresh-
old proportional to 1=l2. One expects these low-lying
eigenvalues to be dependent only on the fluctuations of the
zero mode of the chiral Lagrangian, and hence determined
only by the symmetries of the low-energy theory. Thus, a
diminishing fraction of eigenvalues (l out of the l3

eigenvalues), should be described by a random matrix
theory (RMT) which has the same symmetries as that of the
Dirac operator [see Eq. (5)], but the actual number of them
would get larger as one goes to infinite volume. This low-
lying spectrum of eigenvalues is the ergodic regime. The
nonchiral RMT which has the same symmetries as that of
QED3 has been studied in Ref. [26]. A consequence is that
the ratios of eigenvalues must be universal and be described
by this nonchiral RMT. In the top panel of Fig. 6, we plot
the histogram Pðλ1=λ2Þ at various volumes. The expect-
ation from RMT is also shown. A large volume dependence
is seen. In order to take the l → ∞ limit, it was convenient
for us to use the cumulant generating function GðsÞ,

GðsÞ ¼ log
Z

∞

0

PðxÞe−sxdx where x ¼ λ1
λ2

: ð22Þ

These are shown in the bottom panel of Fig. 6. Using a
½1=1� Padé approximant, we extrapolated the GðsÞ to its
l → ∞ limit. This is shown by the green band, labeled
l ¼ ∞, in Fig. 6. It is clear that there is no agreement with
nonchiral RMT. Nevertheless, we note that the ratio λ1=λ2

FIG. 4. The top panel shows the behavior of the lowest
eigenvalue as a function of the physical volume at finite lattice
spacing and in the continuum limit. The bottom panel compares
the l dependence of the lowest eigenvalue (in the continuum
limit) with the expected behavior for a nonzero condensate (red
straight line). The solid blue curve is the best fit using the finite-
volume ansatz in Eq. (21) with p ¼ 1.

FIG. 5. The likelihood of the values of the exponent p
describing the asymptotic behavior λl ∼ l−p. The χ2=DOF for
the fit of the ansatz in Eq. (21) to the l dependence of the
continuum-extrapolated λl is shown as a function of p. The
degrees of freedom DOF ¼ 9 for the fits. The three different
curves correspond to the lowest three eigenvalues. The plot shows
that p ¼ 2, which is expected when a condensate is present, is
excluded.
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does have a nontrivial limit showing that the different
eigenvalues scale the same way with volume. However this
scaling is not 1=l3. This justifies the inference from Fig. 5.

D. Emergence of critical behavior

In the ergodic regime, the eigenmodes would be delo-
calized and the associated inverse participation ratio (IPR),

I2ðλÞ ¼
Z

ðψ�
λðxÞψλðxÞÞ2d3x with normalization
Z

ψ�
λðxÞψλðxÞd3x ¼ 1; ð23Þ

would scale as 1=l3. The IPR for the lowest mode is plotted
in Fig. 7. We see a significant deviation away from the
ergodic behavior. Instead, the modes seem to be delocal-
ized, but multifractal i.e.,

I2ðlÞ ∼ l−3þη with η ≠ 0: ð24Þ
In our case, the value of η is 0.32(1). This multifractal
scaling suggests a critical behavior, which is further

quantified below. It is usual to draw an analogy between
the broken phase where an RMT description is possible and
a metallic state [30]. In this spirit, this behavior of the IPR is
reminiscent of the behavior of an electron wave function at
a metal-insulator critical point.
We proceed to compare the behavior of the IPR of the

lowest mode with that of the number variance, a quantity
that does not depend on the microscopic spectral density,
but is a measure of ergodic behavior [30–33]. The number
variance is computed as follows: having chosen a λ, we find
the number of eigenvalues n below that scale per configu-
ration. Then, the number variance is

Σ2ðnÞ ¼ VarðnÞ: ð25Þ
Normally, one wants to study this quantity in the bulk away
from the edge such that critical behavior sets in at the
transition between the ergodic,

Σ2ðnÞ ∼ ln n; ð26Þ
and diffusive,

Σ2ðnÞ ∼ n
3
2; ð27Þ

behavior. As noted earlier, the region showing the ergodic
behavior should increase linearly with l. In Fig. 8, we show
the behavior of Σ2ðnÞ for several physical volumes. The
behavior at large volumes shows a linear rise over a wide
range with no region that shows ergodic behavior (labeled
as RMT). Furthermore, the slope of the linear growth,

Σ2ðnÞ ¼ χn; ð28Þ
is χ¼ 0.057, which is consistentwith the critical relation [33]

η ¼ 6χ; ð29Þ
between the slope of the number variance and themultifractal
dimension η of the lowest mode. This critical behavior seen

FIG. 6. Distribution of λ1=λ2. The top panel shows the
histogram of λ1=λ2 at various volumes. The magenta diamonds
correspond to that of nonchiral random matrix theory. The bottom
panel shows the 1-σ bands of the cumulant generating function
GðsÞ for the probability distributions in the top panel. The green
band (labeled l ¼ ∞) is the infinite-volume extrapolation of
GðsÞ. The magenta band (labeled as RMT) is the expectation
from nonchiral RMT.

FIG. 7. A plot of the IPR of the lowest eigenmode as a function
of the physical volume. The red circles are the data from our
simulation. The black line is the power-law behavior (I2 ∼ l−2.68)
seen at large enough box sizes l. The ergodic behavior would
have been I2 ∼ l−3.
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right from the lowest mode is surprising. There are random
matrix theory models with special choices of potentials
where all states exhibit critical behavior [34]. An exactly
solvedmodel in this critical class of randommatrix theories is
the q-Hermite model introduced in Ref. [35], and it has a
single tunable parameter, which is the slope χ at large n. The
number variance in the model is given by [36,37]

Σ2ðnÞ ¼ n − 2π2χ2
Z

n

0

ðn − ξÞ
�

sinðπξÞ
sinhðπ2χξÞ

�
2

dξ; ð30Þ

which behaves asymptotically as Σ2ðnÞ ∼ χn. We compare
our data to that of the q-Hermite model as follows: using the
value η ¼ 0.32 thatwe determined from the IPRof the lowest
mode (refer to Fig. 7), we calculated the number variance for
the q-Hermitemodel using the above equationwith χ ¼ η=6.
This is shown as the red solid curve in Fig. 8. An agreement is
seen, even for small n (with no fitting involved).

IV. RESULTS FOR Nf > 1

Our results for Nf > 1 are provided with the aim of
comparing them to the Nf ¼ 1 results. With that in mind,
some of the previous plots are repeated for the convenience
of the reader. The behavior of the lowest eigenvalue as a
function of the physical extent of the box, l, is shown in
the top panel of Fig. 9. Clearly, at any l, the value of the
eigenvalue itself increases with Nf, and this is due to the
suppression of the low eigenvalues by the fermion deter-
minant. In addition, all four cases show a behavior that is
consistent with an absence of a bilinear condensate. The χ2

values for the different values of the exponent p which
describes the asymptotic behavior λ1l ∼ l−p [refer to
Eq. (21)], are shown in the bottom panel of Fig. 9.

From this, we estimate the values of p to be 0.97þ0.34
−0.30 ,

0.63þ0.22
−0.15 , 0.37

þ0.05
−0.06 and 0.28þ0.05

−0.06 for Nf ¼ 1, 2, 3 and 4
respectively. The values of p seem to monotonically
decrease with Nf. In fact, the trend seems to be consistent
with p ¼ 1

Nf
behavior.

In Fig. 10, we compare the IPR of the lowest mode
for Nf ¼ 1 (top left panel) to that of Nf ¼ 2 (top right),
Nf ¼ 3 (bottom left) and Nf ¼ 4 (bottom right). The black
lines are the power-law fits, l−3þη, to the data at large
volumes. In all four cases, we see systematic deviation
away from the ergodic l−3 behavior; instead, we see a
multifractal scaling at all Nf. The deviation from the
ergodic behavior gets smaller as we increase Nf. In
Fig. 11, we compare the number variance of Nf ¼ 1

(top left panel) with that of Nf ¼ 2 (top right), Nf ¼ 3

(bottom left) and Nf ¼ 4 (bottom right) for different
choices of physical volume. Let us first focus on the
Nf ¼ 2 case. The signature of critical behavior is the linear

FIG. 8. A plot of the number variance Σ2ðnÞ as a function of n,
the number of eigenvalues below a certain scale, for different
physical volumes. The green points (labeled RMT) are the ones
expected from nonchiral random matrix theory, which is ergodic.
The red solid curve is obtained from the q-Hermite random
matrix model [refer to Eq. (30)], which is critical and has an
asymptotic behavior Σ2ðnÞ ∼ χn. The value of χ was set to η=6 ¼
0.053 as inferred from the l dependence of the IPR in Fig. 7.

FIG. 9. The top panel shows the l dependence of the con-
tinuum-extrapolated dimensionless eigenvalue, λ1l, for Nf ¼ 1,
2, 3, 4 (as labeled on the left of the plot). The power law l−2,
which is expected if a condensate is present, is shown for
comparison. The different curves are the best fits of the finite-
volume ansatz in Eq. (21) to the data. The bottom panel shows the
χ2=DOF for the fit of the finite-volume ansatz to the data, as a
function of exponent p, which describes the asymptotic behavior
λ1l ∼ l−p. The most likely value of p seems to decrease
monotonically with Nf .
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FIG. 10. A plot of the IPR, I2, of the lowest eigenmode as a function of the physical extent of the box, l, for Nf ¼ 1 (top left), Nf ¼ 2

(top right), Nf ¼ 3 (bottom left) and Nf ¼ 4 (bottom right). The black lines are the best fits of the power law, I2 ∼ l−3þη, to the IPR at
large volumes.

FIG. 11. A plot of the number variance for several different physical volumes for Nf ¼ 1 (top left), Nf ¼ 2 (top right), Nf ¼ 3
(bottom left) and Nf ¼ 4 (bottom right). The red solid curves are obtained from the q-Hermite random matrix model [refer to Eq. (30)],
tuned to have a behavior Σ2ðnÞ ∼ η

6
n, at large n, with η determined from the IPR of the lowest mode (refer to Fig. 10).
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rise of Σ2ðnÞ. The linear rise seen forNf ¼ 1 is also present
for Nf ¼ 2. As explained in Sec. III, the number variance
for the critical q-Hermite random matrix model, tuned to
have an asymptotic behavior Σ2ðnÞ ∼ η

6
n, is also shown as a

red solid curve. At the volumes we simulated, an agreement
is not seen forNf ¼ 2. Nevertheless, the linear rise in Σ2ðnÞ
approaches η=6 at large volumes (as seen by comparing the
slope of the linear rise in the data to that of the red solid
curve). The trend in the data is for the linear segment of
Σ2ðnÞ to shift upwards towards the critical random matrix
model with increasing volume. To check if an agreement is
seen at even larger physical volumes, requires lattices with
larger L in order to control lattice artifacts. Such a
computation is beyond the scope of this work. The presence
of a possible linear rise for Nf ¼ 3 and Nf ¼ 4 is marred
by an oscillatory behavior, perhaps because of the com-
paratively small value of the slope as inferred from η.

V. CONCLUSIONS

We have numerically studied a parity-invariant formu-
lation of QED in three dimensions using Wilson fermions.
We investigated theories with two, four, six and eight
flavors of massless two-component fermions. We used the
behavior of low-lying eigenvalues of the four-component
Dirac operator to investigate the presence or absence of a
bilinear condensate that preserves parity. Our computations
were performed on several physical volumes and lattice
spacings. The resulting low-lying spectrum did not exhibit
a l−3 dependence on the physical linear extent, l, of the
three-dimensional symmetric periodic box for any of the
theories studied here. A study of the inverse participation
ratio of the eigenvectors associated with the low-lying
eigenvalues shows that the modes exhibit critical behavior
when the scaling exponent was compared to the linear rise
of the number variance associated with the low-lying
eigenvalues. Furthermore, the agreement of the number
variance for Nf ¼ 1 between a q-Hermite random matrix
model and our data warrants further comparison with a

critical random matrix model. For example, we plan to
compare the distribution of low-lying eigenvalues of QED3

with that of a critical random matrix model. We also plan to
study non-Abelian fields coupled to massless fermions.
These theories are expected to be different since there is a
nonvanishing string tension in pure gauge theories.
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APPENDIX A: DETAILS OF THE TWO
COMPONENT SHEIKHOSLAMI-WOHLERT-

WILSON-DIRAC OPERATOR

We are dealing with Abelian gauge theory, and therefore
we smeared the gauge fields θi and then constructed the
smeared links from them. Let the directions ĵ and k̂ be
orthogonal to î. Explicitly, the HYP-smeared field θsi ðnÞ is
given by

θsi ðnÞ ¼ s22

�
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θjðnþ î − ĵþ k̂Þ − 1

8
θkðnþ î − ĵÞ − 1
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We set the smearing parameters to s1 ¼ 0.6 and s2 ¼ 0.5.
The unsmeared and smeared link variables are given by

UiðnÞ ¼ eiθiðnÞ and ViðnÞ ¼ eiθ
s
i ðnÞ; ðA2Þ

respectively. The Sheikhoslami-Wohlert-Wilson-Dirac op-
erator for the two-component fermion, in lattice units, is

CWðn;mÞ ¼ ð−3þMPÞδn;m þ 1

2

X3
i¼1

fð1þ σiÞViðnÞδnþi;m

þ ð1 − σiÞV�
i ðn − îÞδn−i;mg

þ i
κSW
8

δn;m
X3
i;j;k¼1

ϵijkCijðnÞσk; ðA3Þ

where the clover term is

CijðnÞ ¼ PijðnÞ þPijðn− îÞ þPijðn− ĵÞ þPijðn− î− ĵÞ;
ðA4Þ

in terms of the plaquette,

PijðnÞ ¼ UiðnÞUjðnþ îÞU�
i ðnþ ĵÞU�

jðnÞ: ðA5Þ

We used the value κSW ¼ 0.5 at all l and L. Using these
values of κSW and the smearing parameters, s1 and s2, we

found the additive mass renormalization to be greatly
reduced even in our coarsest lattices.

APPENDIX B: SIMULATION DETAILS

The free parameters are the physical extent of the box, l,
the lattice size, L, the tuned Wilson mass, MP, and the
number of flavors, Nf. We used Nf ¼ 1, 2, 3 and 4 in our
simulations. The continuum limit is taken by taking L → ∞
keeping l fixed. For this, we used L ¼ 16, 20, 24 and 28
lattices. At any finite L, the additive renormalization of the
fermion mass is taken care of by tuningMP. Since QED3 is
super-renormalizable, MPL is a finite additive renormali-
zation. We tabulate the simulation parameters for the
Nf ¼ 1 data set in Table I. We also show MPL as a
function of l graphically in Fig. 12. We used the same set
of l for Nf ¼ 2, 3 and 4 as well.
In the HMC simulation, we kept the molecular dynamics

step sizeΔt to be 1=NMD. We tuned the number of steps per
trajectory, NMD, at run time to keep the Monte Carlo
acceptance near 80%. At all simulation points, we ran about
13 500 trajectories with the first 300 trajectories discarded
for thermalization. Then, we used only the gauge configu-
rations separated by an autocorrelation time, τ, as deter-
mined from the smallest eigenvalue of the Dirac operator.
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