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We calculate the radiation accompanying the gravitational collision of a domain wall and a point particle
in five-dimensional spacetime. This process—which can be regarded as brane-particle bremsstrahlung,
here called branestrahlung—has unusual features. Since the brane has intrinsic dynamics, it gets excited in
the course of collision, and, in particular, at the moment of perforation the shock branon wave is generated,
which then expands with the velocity of light. Therefore, apart from the time-like source whose radiation
can be computed in a standard way, the total radiation source contains a light-like part whose retarded field
is quite nontrivial, exhibiting interesting retardation and memory effects. We analyze this field in detail,
showing that—contrary to the claims that the light-like sources should not radiate at all—the radiation is
nonzero and has a classically divergent spectrum. We estimate the total radiation power introducing
appropriate cutoffs. In passing, we explain how the sum of the nonlocal (with the support inside the light
cone) and the local (supported on the cone) singular parts of the Green’s function of the five-dimensional
d’Alembert equation together defines a regular functional.
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I. INTRODUCTION

The gravitational interaction of domain walls with matter
was extensively discussed in the past in the context of four-
dimensional cosmology [1–3]. More recently, the general
development of the theory of branes in the superstring
setting stimulated investigation of other aspects of this
interaction, such as collisions of domain walls and other
branes with black holes [4–6]. Especially interesting is the
process of perforation, which was suggested as a new
mechanism of domain-wall destruction in the early
Universe [4,7,8]. Other applications refer to the braneworld
models of the Randall-Sundrum type [9–12], in particular,
the problem of escape of black holes from branes [13–15].
In most of the literature the brane-black hole problem is

treated by considering one object as creating the fixed
background, and another as moving in this background.
But genuine two-body features of their interaction includ-
ing the backreaction are very difficult to describe in the full
nonlinear setting. In an attempt to explore such aspects of
the interaction, we consider a simplified model in which the
second body is the point-like mass living in the bulk.
Recently we have investigated the perforation of a domain
wall by a point mass in a particularly simple setting of
the linearized gravity [16,17]. Due to the continuous nature
of the gravitational field of the domain wall in its location,
one can describe the perforation of the brane in terms of
distributions. This approach allows one to consider one
novel aspect that is difficult to analyze in the full nonlinear
theory, namely, the excitation of the internal degrees of

freedom of the domain wall in the course of collision. The
domain wall gets excited after the perforation in the form of
the spherical shock branon wave propagating outwards
along the brane with the speed of light. This wave is a
reaction of the wall to the change of the particle’s accel-
eration by a finite amount at the moment of piercing. Thus,
contrary to the two-particle case, the collision becomes
classically nonlocal. The energy-momentum balance in this
process can therefore be defined only instantaneously, as it
takes into account the contribution of the branon wave [17].
Here we calculate the radiation accompanying the

particle–domain-wall collision which is somewhat similar
to bremsstrahlung. Actually we are interested in gravita-
tional radiation, but in order to simplify the computation we
consider the emission of the scalar waves, introducing the
interaction of the massless scalar field with the trace of the
brane energy-momentum tensor. We realize that the spec-
tral distribution of radiation is essentially dependent on its
spin, so the scalar case cannot fully reproduce gravitational
radiation. However, such aspects as the propagation of the
wave fronts and causality structure of the radiation field
should be similar for all spins, and in this paper we are
interested mainly with this. The novel feature of this
radiation problem is the presence of the light-like source
due to the branon as a part of the total source. Recently, the
retarded solutions of the d’Alembert equation with light-
like sources were extensively discussed in connection with
the radiation problem [18,19], the memory effect [20–24],
and the Bondi-Metzner-Sachs asymptotic symmetries [25].
Our radiation problem provides a novel interesting setting
for these studies.
As far as the problem of radiation from massless sources

is concerned, the arguments were presented that radiation in
this case is totally absent [26,27]. Indeed,within the classical
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theory the retarded potentials from massless point sources
diverge on a line parallel to the velocity, and various ways to
regularize these divergences—which also have quantum
counterparts as collinear divergences [28–31]—were sug-
gested.Anultimate result of suchprocedureswas sometimes
claimed to be zero. Meanwhile the relativistic Liénard
formula for the total radiation power from an accelerated
point charge diverges in themassless limit. This controversy
was resolved in Ref. [32], where it was shown that radiation
from the massless charge is nonzero and finite, but (being
essentially quantum) it is described by classical theory only
in the IR part of the spectra.We show that branestrahlung—
which always contains a contribution from the massless
component of the source—also has a similar property
requiring appropriate cutoffs.
The computation of radiation depends on the spacetime

dimension in a nontrivial way, being different, in particular,
in the case of even and odd dimensions [33]. Here we
restrict ourselves to the case of the five-dimensional bulk,
appealing primarily to the Randall-Sundrum II (RS II) kind
of setting. Radiation in five dimensions does not satisfy
Huygens’ principle which leads to additional new features
as compared with the four-dimensional case. In particular,
we discuss the structure of the retarded Green’s function of
the five-dimensional d’Alembert operator whose treatment
is often confusing in the literature, emphasizing the
importance of its purely local part as a regulator.

II. THE SETUP

We consider a 3-brane embedded in the 5-dimensional
spacetime (the bulk) with the metric gMN , whereM;N ¼ 0,
1, 2, 3, 4. The brane worldvolume V3þ1 defined by the
embedding equations xM ¼ XMðσμÞ is parametrized by the
coordinates σμ; ðμ ¼ 0;…; 3Þ on V3þ1. The brane gravita-
tionally interacts with a point mass m moving in the bulk.
In addition, the brane (and not the particle) is coupled with
the bulk scalar field φ, being endowed with the charge
density f. Therefore the particle-brane interaction is purely
gravitational, while the scalar radiation is generated only by
the brane. This simplifies the problem considerably, while
still keeping the main features of the realistic gravitational
radiation.
The corresponding action reads

S ¼ −
μ

2

Z
½XM

μ XN
ν gMNγ

μν − 2�
�
1þ f

μ
φ

� ffiffiffiffiffiffi
−γ

p
d4σ

−
1

2

Z �
egMN _zM _zN þm2

e

�
dτ

−
1

ϰ25

Z
R

ffiffiffi
g

p
d5x −

1

2

Z
gMN∇Mφ∇Nφ

ffiffiffi
g

p
d5x: ð2:1Þ

Here μ is the brane mass density (tension), f is the brane
scalar density, XM

μ ¼ ∂XM=∂σμ are the brane tangent
vectors, g ¼ det gMN , and γμν is the inverse metric on

V3þ1, with γ ¼ det γμν. Also ϰ2 ≡ 16πG5, eðτÞ is the
einbein on the particle worldline, the metric signature is
ðþ − − − −Þ, and we use the Landau-Lifshitz convention
for the curvature. Note that due to the choice of the
signature, in D ¼ 5 one has g > 0, while γ < 0.
It is worth noting that by taking the interaction of the

scalar field with gravity into account we introduce a
nonlinearity similar to that described by the three-graviton
vertex in the genuine gravitational problem. Due to this
interaction, the effective radiation source term will include
the stress part in the same way that gravitational stresses
contribute to the gravitational radiation amplitude as
prescribed by the Bianchi identity.
The first term in Eq. (2.1), representing the action of the

brane, has to be varied independently over XM and γμν to
get the equations of motion and the constraint. Similarly,
the particle term in Eq. (2.1) has to be varied over zM and e,
while the terms containing the bulk fields φ and gMN ,
before being varied over them, have to be extended to the
bulk integrals by inserting the appropriate delta functions.
The variation of Eq. (2.1) with respect to XM and γμν

gives the brane equation of motion in the covariant form

∇μðXN
ν gMNγ

μν ffiffiffiffiffiffi
−γ

p ðμþ fφÞÞ ¼ ffiffiffiffiffiffi
−γ

p
fφ;M; ð2:2Þ

with ∇μ ≡ XM
μ ∇M, and the constraint equation

γμν ¼ XM
μ XN

ν gMN jx¼X; ð2:3Þ

where we define γμν as the induced metric on V4. Varying S
with respect to zMðτÞ and eðτÞ, one obtains the correspond-
ing system for the particle:

d
dτ

ðe_zNgMNÞ ¼
e
2
gNP;M _zN _zP; ð2:4Þ

e2gMN _zM _zN ¼ m2: ð2:5Þ

Finally, the variation over φ leads to the scalar field
equation

gMN∇M∇Nφ ¼ ρ; ð2:6Þ

with the source

ρ ¼ q
2

Z
½XM

μ XN
ν gMNγ

μν − 2� ffiffiffiffiffiffi
−γ

p δ5ðxM − XMðσνÞÞffiffiffiffiffiffiffiffiffi
gðxÞp d4σ;

ð2:7Þ
or, substituting Eq. (2.3),

ρðxÞ ¼ f
Z ffiffiffiffiffiffi

−γ
p δ5ðxM − XMðσνÞÞffiffiffiffiffiffiffiffiffi

gðxÞp d4σ: ð2:8Þ
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A. Iteration scheme

Next we present the bulk metric as the perturbed
Minkowski metric ηMN ,

gMN ¼ ηMN þ ϰHMN; ð2:9Þ

and expand all quantities in powers of HMN , using ηMN to
raise and lower the indices. As usual, we impose the flat-
space harmonic gauge

∂NHMN ¼ 1

2
∂MH; H ≡ ηLRHLR: ð2:10Þ

Our technique consists in solving the equations for the
bulk metric, the embedding functions zMðτÞ; XMðσμÞ, the
Lagrange multiplier e, the worldvolume metric γμν, and
the scalar φ by iteratively expanding them in terms of the
couplings ϰ, f. When doing this we have to keep only the
mutual interaction terms and omit the self-action. The goal
is to compute the scalar radiation in the lowest reliable
order in both couplings.
The zero-order solution is trivial. It describes the free flat

unperturbed brane and the particle moving with constant
velocity normally to the brane uM ¼ γð1; 0; 0; 0; vÞ, where
γ ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
. Correspondingly, the trajectory 0zM ¼

ð0tðτÞ; 0; 0; 0; 0zðτÞÞ is the straight line 0zMðτÞ ¼ uMτ.
The einbein is chosen equal to the particle mass 0e ¼ m,
so that the trajectory is parametrized by the proper time and
the velocity satisfies the normalization ηMNuMuN ¼ 1.
In the zeroth order in ϰ the brane is assumed to be

unexcited and to fill the plane z ¼ 0,

0XMðσÞ ¼ ΣM
μ σ

μ; ΣM
μ ΣN

ν ηMN ¼ ημν; ð2:11Þ

so the internal coordinates on the brane coincide with the
corresponding bulk coordinates and the induced metric on
V4 is flat: γμν ¼ ημν. Obviously, this is a solution to
Eq. (2.3) for ϰ ¼ 0, and it is convenient to fix ΣM

μ ¼ δMμ
without loss of generality. In other terms, we choose the
Lorentz frame where the unperturbed brane is at rest.
In the first order the metric deviation is the sum of the

contributions of the brane and the particle,

1HMN ¼ hMN þ h̄MN; ð2:12Þ

which satisfy

□hMN ¼ −ϰ
�

0TMN −
1

3
0TηMN

�
;

□h̄MN ¼ −ϰ
�

0T̄MN −
1

3
0T̄ηMN

�
; ð2:13Þ

with□≡ ∂M∂M being the flat five-dimensional d’Alembert
operator and 0T ≡ 0TMNηMN . The source terms read

0TMN ¼ μ

Z
ΣM
μ ΣN

ν η
μνδ5ðx − 0XðσÞÞd4σ; ð2:14Þ

0T̄MN ¼ m
Z

uMuNδ5ðx − 0zðτÞÞdτ: ð2:15Þ

Using hMN and the zeroth-order quantities in Eqs. (2.5)
and (2.4) one obtains for 1e and 1zM the equations1;

1e ¼ −
m
2
ðϰhMNuMuN þ 2ηMNuM1 _zNÞ; ð2:16Þ

and Eq. (2.4) (upon elimination of 1e) gives for 1zM

d
dτ

1 _zM ¼ −ϰ
�
hPM;Q −

1

2
hPQ;M

�
uPuQ: ð2:17Þ

Substituting the first-order metric deviation h̄MN due to
the particle (to be determined below) and the first-order
brane perturbations into Eq. (2.8), and computing the
perturbation of the induced metric (2.3), γμν ¼ ημν þ
1γμν þOðϰ2h2Þ,

1γμν ¼ 2δMðμ
1XN

νÞηMN þ ϰh̄μν;

1 ffiffiffiffiffiffi
−γ

p ¼ 1

2
ð2δMμ 1XN

ν ηMNη
μν þ ϰh̄λλÞ; ð2:18Þ

one gets

ΠMN□D−1
1XN ¼ ΠMNJN;

ΠMN ≡ ηMN − ΣM
μ ΣN

ν η
μν; ð2:19Þ

where □D−1 ≡ ∂μ∂μ and ΠMN is the projector onto
the (one-dimensional) subspace orthogonal to VD−1. The
source term in Eq. (2.19) reads

JN ¼ ϰΣμ
PΣν

Qημν

�
1

2
h̄PQ;N − h̄NP;Q

�
z¼0

; ð2:20Þ

where Σα
M ≡ ΣN

ν η
ναηMN .

Finally, the equation for 1φ is given by the leading order
of Eq. (2.6):

□
1φ ¼ 0ρ ¼ f

Z
δ4ðxμ − σμÞδðzÞd4σ ¼ fδðzÞ; ð2:21Þ

with 0ρ being the leading order of Eq. (2.8).
Equations (2.13), (2.16), and (2.17), together with an

equation for the brane perturbations, form a complete set of
equations to this order. The gauge fixing condition (2.10)
for 1ψMN is a consequence of the conservation of 0TMN .

1Our gauge condition is gMN _zM _zN ¼ 1. To this order it reduces
to 1e ¼ 0.
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To solve the d’Alembert equation for the field variables we
will use the Fourier transforms defined as

φðxÞ ¼ 1

ð2πÞ5
Z

φðkÞe−ikxd5k;

φðkÞ ¼
Z

φðxÞeikxd5x; ð2:22Þ

where kx≡ kMxM.

B. Radiation

We will compute the scalar radiation generated in the
particle-brane collision as the simplified version of the
gravitational radiation. Recall that the particle is assumed to
not carry the scalar charge, so the interaction between the
brane and the particle is purely gravitational. Gravity also
interacts with the scalar field, which is generated by the
brane and lives in the bulk. The radiative component of the
scalar field, which is detected by the nonzero Fourier
transform φðkÞ on the mass shell k2 ¼ 0 (five-dimensional
square), appears at the lowest order in the second iteration,
namely, the first in ϰ and the first in f. Expanding Eq. (2.6)
in ϰ, we obtain in this order

□ 2φ ¼ ϰj; ð2:23Þ

with the source term consisting of two contributions,

j ¼ ~ρþ S; S≡ −∂M

�
1

2
h∂M − hMN∂N

�
1φ; ð2:24Þ

while ~ρ≡ 1ðρ ffiffiffi
g

p Þ is the direct, or local, current,

~ρ ¼ f
2

Z
½ϰðh̄λλ − h̄LLÞ þ 21XL

λΣλ
L

− 21XL∂L�δ5ðxA − ΣA
ασ

αÞd4σ; ð2:25Þ

whereas the nonlocal term S (which depends on the bulk
gravitational field) is due to the expansion of the curved-
space d’Alembert operator in ϰ.
The total momentum loss (for a more detailed analysis of

the momentum balance in our problem see Ref. [17]) in the
collision is computed in the standard way and is expressed
in terms of the Fourier transform of the current as follows:

ΔPM ¼ 1

ð2πÞ4
Z

θðk0ÞkMδðk2ÞjjðkÞj2d5k: ð2:26Þ

Finally, by introducing the frequency ω ¼ k0 and integrat-
ing over jkj, for Erad ¼ ΔP0 we arrive at

Erad ¼
1

2ð2πÞ4
Z

∞

0

ω3dω
Z
S3
dΩjjðkÞj2; ð2:27Þ

where the wave five-vector k is null. We will parametrize it
by the frequency, the normal to the brane projection kz, and
the three-dimensional vector k⊥ parallel to the brane:

k2 ¼ kMkM ¼ ω2 − ðkzÞ2 − ðk⊥Þ2 ¼ 0: ð2:28Þ

III. THE FIRST ORDER

The first-order solutions are obtained straightforwardly
by passing to the momentum space, so we just list the
corresponding results.

A. Linearized fields

The brane gravitational field hMNðqÞ is obtained by
taking the Fourier transform of the energy-momentum
tensor (2.14) and dividing by the box operator:

hMNðqÞ ¼
ð2πÞ4ϰμδ4ðqμÞ

q2

�
δμMδ

ν
Nημν −

4

3
ηMN

�
: ð3:1Þ

In the coordinate representation it reads

hMNðxÞ ¼
ϰμ

2

�
δμMδ

ν
Nημν −

4

3
ηMN

�
jzj

¼ ϰμjzj
6

diagð−1; 1; 1; 1; 4Þ; ð3:2Þ

with the trace being

h ¼ −
4

3
ϰμjzj:

The solution of the linearized equation (2.21) for the
scalar field in the momentum representation is

1φðqÞ ¼ −
ð2πÞ4fδ4ðqμÞ

q2
: ð3:3Þ

The corresponding coordinate-space solution

1φðxÞ ¼ −
1

2
fjzj ð3:4Þ

is proportional to the trace of the gravitational perturbation.
Similarly, for the particle’s metric perturbation we get

h̄MNðqÞ ¼
2πϰmδðquÞ
q2 þ iεq0

�
uMuN −

1

3
ηMN

�
; ð3:5Þ

or, in the coordinate representation,

h̄MNðxÞ¼−
ϰm
4π2

�
uMuN −

1

3
ηMN

�
1

γ2ðz−vtÞ2þ r2
; ð3:6Þ
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where r2 ¼ P
n
i¼1ðσiÞ2. This is nothing but the Lorentz-

contracted D-dimensional Newton gravitational field of a
uniformly moving point particle.

B. Branon

The picture of the collision looks as follows. The particle
impinges on the brane normally and perforates it at the
moment t ¼ 0. The particle’s gravitational field causes the
perturbation of the brane worldvolume, which is somewhat
nontrivial to analyze (the details of which can be found in
Refs. [16,17]2); here, we just present the results. Only the
perturbation of XN transverse to the brane is physical; the
longitudinal ones can be gauged away by the coordinate
transformation in the worldvolume. Denoting this compo-
nent as another scalar (branon) ΦðxμÞ ¼ 1Xz and lineariz-
ing the Nambu-Goto equation, we obtain for the branon the
four-dimensional d’Alembert equation

□4ΦðσμÞ ¼ JðσμÞ; ð3:7Þ

with the source term

JðσÞ ¼ ϰ

�
1

2
ημνh̄μν;z − h̄z0;0

�
z¼0

¼ −
λvt

½γ2v2t2 þ r2�2 ;

λ ¼ ϰ2mγ2

4π2

�
γ2v2 þ 1

3

�
: ð3:8Þ

In the momentum space the retarded solution to this
d’Alembert equation reads

ΦðqμÞ ¼ −
JðqμÞ

qνqν þ 2iϵq0
;

JðqμÞ ¼ −
2π2λ

γ

iq0

γ2v2q2 þ ðq0Þ2 : ð3:9Þ

Expanding the double pole into the sum of two simple
poles, we get the decomposition Φ≡ Φa þ Φb, where

ΦaðqμÞ ¼ −
2π2λi
q0

γ2v2

γ2v2q2 þ ðq0Þ2 ;

ΦbðqμÞ ¼
2π2λi
q0

1

q2 þ 2iϵq0
; ð3:10Þ

which have different physical meanings. The component
Φa, which in the coordinate representation reads

Φa ¼ −
λ

2γ3r
arctan

r
γvt

; ð3:11Þ

is antisymmetric in time. Recall that the gravitational force
between the brane and a particle is repulsive and it changes
sign at the moment of piercing. The brane gets deformed in
the direction opposite to the instantaneous location of
particles, and this deformation (described by Φa) is rigidly
tight to the particle motion, without retardation. In the
momentum space it is due to the pole on the imaginary axis.
The second component Φb is the shock branon wave

which is excited just at the moment of perforation. It arises
from the pole on the real axis and corresponds to a (quasi)
free branon wave propagating with the velocity of light
outwards from the center r ¼ 0 where the particle perfo-
rates the brane:

Φb ¼
πλ

2rγ3
θðtÞθðr − tÞ: ð3:12Þ

What is more surprising is that it is only quasifree, since by
acting with the d’Alembert operator one finds the derivative
of the delta function:

□4Φb ¼
λπ

2γ3r
δ0ðtÞ: ð3:13Þ

The peculiar nature of this source is explained as follows.
The force between the particle and the brane at the moment
of perforation is nonzero, and it changes sign. It acts as the
singular local flush which causes the excitation of the shock
branon wave. It is important that the shock wave now
becomes a source of radiation, i.e., we have to explore the
retarded solution of the bulk d’Alembert equation with such
a light-like source. This is a rather nontrivial problem, which
we solve in the next section and the Appendix. It leads to a
complicated structure of fields propagating in the bulk.
The “rigid” part of the deformation of the brane (3.11)

satisfies the following equation:

□4Φa ¼ −
λπ

2γ3r
δ0ðtÞ − λvt

½γ2v2t2 þ r2�2 ; ð3:14Þ

so in the sum of both contributions the delta-function
sources cancel, as expected.
In the ultrarelativistic limit the shock wave dominates.

The second term on the right-hand side of Eq. (3.14) in this
case behaves like the regularized derivative of the delta
function as γ → ∞; an accurate calculation shows that it
exactly cancels the first term. So, the direct action of the
particle upon the brane vanishes for a light-like particle.
This is not surprising since the infinite boost causes the
gravitational field of the particle to become a shock wave
acting solely at the moment of perforation. Hence the total
branon solution caused by the light-like particle is deter-
mined by Φb only. In this case one has to use as a parameter
the particle energy E, arriving at

Φ ¼ ϰ2E
8π

θðtÞθðr − tÞ
r

:

2The transverse coordinate of the brane can be viewed as the
Nambu-Goldstone boson (branon) which appears as a result of
spontaneous breaking of the translational symmetry [34]. In the
braneworld setting it is coupled to bulk gravity and matter on the
brane via the induced metric [35].
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IV. RETARDED FIELD OF THE LIGHT-LIKE
BRANON SOURCE

Before proceeding with the calculation of the total
radiation amplitude 2φ generated by the current jðkÞ, we
consider its relativistic component ψ generated by the
shock branon part of the source term. As we have seen, this
part becomes an exact field in the case of a particle of zero
mass. The construction of the retarded solution of the
d’Alembert equation for the light-like source is nontrivial,
especially in odd spacetime dimensions since the Green’s
function is not localized on the light cone.
Thus we seek the retarded solution of the following five-

dimensional wave equation:

□ψ ¼ −α
θðtÞθðr − tÞ

r
δ0ðzÞ; ð4:1Þ

where we defined α ¼ πλf=2γ3. We will abbreviate the
product of two Heaviside functions as

Θxða; bÞ ¼ θðx − aÞθðb − xÞ

¼

8><
>:

0; x < a;

1; a ≤ x < b;

0; x ≥ b;

for b > a:

In this notation θðtÞθðr − tÞ ¼ Θtð0; rÞ. This double
Heaviside function restricts the domain of integration to
a finite interval:

R
Θxða; bÞfðx;…Þdx ¼ R

b
a fðx;…Þdx.

A. Regularization of the Green’s function
in five dimensions

The retarded Green’s function in five dimensions
satisfying the equation □G ¼ −δ5ðx − x0Þ is obtained
by differentiation of the three-dimensional Green’s func-
tion localized inside the light cone [33] (recall again
that Huygens’ principle does not hold in odd spacetime
dimensions):

GretðXÞ ¼ −
θðTÞ
2π2

d
dX2

θðX2Þ
ðX2Þ1=2 ;

XM ¼ xM − x0M: ð4:2Þ

One obtains therefore the sum of the nonlocal (∼θ) and the
local (∼δ) terms:

GretðXÞ ¼ 1

4π2

�
θðT − RÞ

ðT2 − R2Þ3=2 −
δðT − RÞ

RðT2 − R2Þ1=2
�
;

R2 ≡ ðr − r0Þ2 þ ðz − z0Þ2: ð4:3Þ

As χ≡T�R→þ0 these terms contain nonintegrable sin-
gularities χ−3=2 and δðχÞ=χ1=2, respectively. Nonetheless,
their sum represents the regular functional. To see this we

apply the regularization T → T − ϵ assuming that the
limit ϵ → þ0 has to be taken after summing up both
contributions. The regularization shifts the support of the
Green’s function from the interior of the future light cone
T2 − R2 ¼ 0 into the half of the time-like hyperboloid T2 −
R2 ¼ ϵ2 with an apex at xM. The distance between the cone
and the hyperboloidmeasured along the T axis is ϵ.With this
regularization,

Gret
ϵ ðXÞ ¼ 1

4π2
lim
ϵ→þ0

�
θðT − R − ϵÞ
ðT2 − R2Þ3=2 −

δðT − R − ϵÞ
RðT2 − R2Þ1=2

�
;

ð4:4Þ
where T > 0 and R > 0 are assumed. We are going to show
that the divergent parts of the two terms mutually cancel and
after removing the regularization we are left with the finite
result.
Thereby, we have to compute

ψ ¼ 1

4π2
lim
ϵ→þ0

Z �
θðT − R − ϵÞ
ðT2 − R2Þ3=2 −

δðT − R − ϵÞ
RðT2 − R2Þ1=2

�

×
θðt0Þθðr0 − t0Þ

r0
δ0ðz0Þd5x0: ð4:5Þ

Integrating over z0 with the derivative of the delta function,
one can pass to a differentiation over z since the integrand
depends on z0 and z through the difference z − z0, obtaining

ψ ¼ −α
∂J
∂z ; ð4:6Þ

where

J≡ lim
ϵ→þ0

Z �
θðT−R− ϵÞ
ðT2−R2Þ3=2−

δðT−R−ϵÞ
RðT2−R2Þ1=2

�
Θt0 ð0;r0Þ

r0
d4x0

ð4:7Þ
and, from now on, R≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðr − r0Þ2 þ z2
p

. Since the source
is nonzero only for t0 > 0 and R ≥ 0, it follows that the
solution is nonzero at t > 0, as expected.
First we consider the contribution of the local part of the

Green’s function (4.7) by integrating over t0 with the delta
function. If t − R lies outside the interval ð0; r0Þ, the integral
vanishes; otherwise,

Jloc ¼ −
Z

θðt − RÞθðr0 − tþ RÞ
Rð2Rþ ϵÞ1=2r0 ffiffiffi

ϵ
p d3r0; ð4:8Þ

which diverges as ϵ → þ0.
The nonlocal term in Eq. (4.7) is more complicated.

Using the identity

θðr0 − t0Þθðt − t0 − R − ϵÞ
¼ θðr0 − t0Þθðt − R − r0Þ
þ θðt − t0 − R − ϵÞθðr0 − tþ RÞ; ð4:9Þ
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we split it into two parts, obtaining after integration over t0

Jnloc ¼
Z

½ðFðr0Þ − Fð0ÞÞθðt − R − r0Þ þ ðFðt − R − ϵÞ

− Fð0ÞÞθðr0 − tþ RÞθðt − RÞ� d
3r0

r0
; ð4:10Þ

where the function

FðxÞ ¼ t − x

R2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðt − xÞ2 − R2

p ð4:11Þ

is an antiderivative of 1=½ðt − xÞ2 − R2�3=2. Consider now
the term Fðt − R − ϵÞ in Eq. (4.10) whose contribution to
Jnloc (denoted as Jreg) reads

Jreg ¼
Z

Rþ ϵ

R2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵð2Rþ ϵÞp θðr0 − tþ RÞθðt − RÞ

r0
d3r0:

ð4:12Þ

This differs from the local part (4.8) byOðϵ1=2Þ and thereby
the divergent parts indeed mutually cancel:

lim
ϵ→þ0

ðJloc þ JregÞ ¼ 0: ð4:13Þ

B. Finite part

The remaining part of Eq. (4.10) does not depend on ϵ
and therefore it is regular in the limit ϵ → 0:

J ¼
Z

½ðFðr0Þ − Fð0ÞÞθðt − R − r0Þ

− Fð0Þθðr0 − tþ RÞθðt − RÞ� d
3r0

r0
: ð4:14Þ

Integration over r0 is performed in spherical coordinates
with the polar angle ϑ between r and r0 and the cyclic
azimuthal angle: d3r0 ¼ 2πr02 sinϑdr0dϑ. First we integrate
over r0. In order to reveal the limits of integration, one has to
resolve the inequalities t − R > 0 and t − R − r0 <> 0with
respect to r0. The support of θðt − RÞ is determined by the
solution of the equation t ¼ R,

r02 − 2rr0 cosϑþ r2 þ z2 − t2 ¼ 0; ð4:15Þ

with respect to r0. The discriminant of this quadratic
equation with respect to r0 is

D≡ r2cos2ϑþ t2 − r2 − z2: ð4:16Þ

Denoting

Δ≡ t2 − r2 − z2; ð4:17Þ

we are led to the description of the domains of integration
over r0; ϑ according to different signs of Δ and D. This
analysis is relegated to the Appendix. After careful speci-
fication of the corresponding limits in the double integrals,
one can perform both integrations in terms of antideriva-
tives. The final result reads

J ¼ 2πθðtÞ
r

�
zθðΔÞ

�
arctan

z
ffiffiffiffi
Δ

p

t2 − tr− z2
− arctan

z
ffiffiffiffi
Δ

p

t2 þ tr− z2

þ πsgnðzÞθðtrþ z2 − t2Þ− 2t
z
arctan

rffiffiffiffi
Δ

p
�

− πθð−ΔÞθðt2 − z2Þðt− jzjÞ
�
≡ JþΔ þ J−Δ: ð4:18Þ

According to this formula the retarded solution contains
several sectors divided by the hypersurfaces Δ ¼ 0 and z ¼
�t splitting the spacetime into three regions, as shown
on Fig. 1.
In the sector t < jzj, J is zero. For z2 < t2 < r2 þ z2 it is

determined by the second line of Eq. (4.18), while for t2 >
r2 þ z2 it is determined by the first line. It is easy to check
that J is continuous everywhere at t > 0:

(i) The jump of πθðtrþ z2 − t2Þ in the region Δ > 0 is
compensated by the negative jump of the func-

tion arctan z
ffiffiffi
Δ

p
t2−tr−z2.

(ii) For t → jzj, J−Δ tends to zero, so J is continuous on
the hypersurface t2 ¼ z2.

(iii) For t →
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ z2

p
, J−Δ behaves as

lim
Δ→−0

J−Δ ¼ −2π2θðtÞ t − jzj
r

;

FIG. 1. Spacetime diagram of the spherical (the light cone) and
the plane-wave fronts in the bulk. Inside the light cone S defined
by t2 − r2 − z2 ¼ 0, the solution is ψþΔ; outside the light-cone
between the Σ� (defined by t ¼ �z) the solution is ψ−Δ; outside
the interior of two planes and at t < 0 the solution is zero. The
function ψ is discontinuous at the light cone, but continuous on
the plane fronts.
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while in JþΔ the first two arctan terms in Eq. (4.18)
vanish, and the third one has the limit
arctanðr= ffiffiffiffi

Δ
p Þ → þπ=2. Thus

lim
Δ→þ0

JþΔ ¼ 2π2θðtÞ
r

z

�
sgnðzÞθðrðt − rÞÞ − t

z

�

¼ 2π2θðtÞ
r

ðjzj − tÞ;

compensating the above.
We will also see that, when the derivatives over z are
computed, there are no delta functions with supports on
these boundaries.

C. Physical properties of the solution

Differentiating Eq. (4.18) over z with the help of
Eq. (A18), the solution splits as ψ ¼ ψ−Δ þ ψþΔ, where

ψ−Δ ¼ α

4r
θðtÞθðt2 − z2Þθð−ΔÞsgnz; ð4:19Þ

ψþΔ¼ α

4π

θðtÞθðΔÞ
r

�
arctan

z
ffiffiffiffi
Δ

p

t2− tr−z2
− arctan

z
ffiffiffiffi
Δ

p

t2þ tr− z2

þπsgnðzÞθð−t2þ trþ z2Þ
�
; ð4:20Þ

respectively. One can observe the following.
(i) The solution contains different regions divided by

two characteristic four-dimensional hypersurfaces:
(i) the light cone S, t2 − r2 − z2 ¼ 0, at which the
solution is continuous, and (ii) two planes Σ�,
t� z ¼ 0, at which the solution has jumps. S and
Σ� touch along the lines z ¼ �t, r ¼ 0 (Fig. 1).
Three terms in ψþΔ defined inside the cone t2 <
r2 þ z2 together have no discontinuities on the
hypersurface t2 − tr − z2 ¼ 0.

(ii) The solution has support only in the bulk; its
restriction on the domain wall vanishes. In other
words, the spherical branon shock wave localized on
the brane generates the bulk spherical shock wave
and two planar shock waves. All of them start at the
moment of perforation t ¼ 0, propagate in the
positive and negative z directions, and for f > 0
carry the positively and negatively defined scalar
fields, respectively. The structure of the character-
istic spatial surfaces at fixed t > 0 is presented
on Fig. 2.

(iii) At a given point r in the bulk one first sees a planar
shock wave Σ� arriving at t ¼ jzj, i.e., the jump of ψ
form zero to the value�α=4r for positive/negative z,
respectively (the whole solution is odd in z). These
values are memorized until the arrival of the spheri-
cal wave S, when they start to gradually decay to
zero (Fig. 3). In other words, the perforation of the

brane leaves the temporary memory in the bulk.3 The
front of the spherical shock wave S has no disconti-
nuity. For fixed r and z after the passage of the wave
front, the solution relaxes with time as

ψþΔ ∼
α

2π

z
t2
;

which does not depend upon r. Therefore for large
enough t ≫

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ z2

p
the field on the spatial plane

FIG. 3. The retarded field ψ as a function of time at a fixed
observation point (r > 0; z > 0) in the units α ¼ 1. The moment
t ¼ jzj corresponds to the passage of the planar shock wave
leaving as the memory of the constant value ψ ¼ 1=4r, which
then starts to decay after the passage of the spherical shock front
at the moment t ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ z2

p
.

FIG. 2. The spatial section of the solution at fixed time t > 0.
The planes F� are the t ¼ const sections of Σ�. The surface
z2 þ rt ¼ t2 (dotted line) is a solid of revolution with the axis z
and the parabola with axis “r” as a generatrix inside the sphere
r2 þ z2 ¼ t2.

3This feature is interesting to compare with various memory
effects in asymptotics of the solutions to d’Alembert equations
with light-like sources discussed recently [20–25].
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z ¼ const is constant at fixed moment t. The plot is
presented on Fig. 3.

(iv) The planar shock waves have the structure ψ ∼
θðt� jzjÞ=r which differs from the Aichelburg-Sexl
metric [16,36] hMN ∼ cMcNδðt∓zÞ=r, where cM ¼
ð1; 0; 0; 0;�1Þ by the degree of discontinuity: the
Heaviside function versus the delta function. Our
shock waves therefore are “softer.”

Recall that in this section we have considered the part of
the retarded scalar field due to the light-like part of the
source. For any relative velocity of the collision, this part is
dominant in the region of small kz [Eq. (5.3)] in the
momentum space. For ultrarelativistic velocities it is
dominant for all momenta.

V. RADIATION AMPLITUDE

To select the radiative part of the retarded potential, one
has to pass to the momentum representation of the full
current (2.24) consisting of the local and the stress terms.
The first-order perturbation of the brane stress tensor in the
coordinate representation is given by Eq. (2.25).
Substituting there the first-order quantity 1XN ¼ ΦðσÞδNz ,
we find

~ρðkMÞ¼ f
4π

Z
½ϰh̄zzðqÞ−2ikzΦðqÞ�δ4ðkμ−qμÞd5q; ð5:1Þ

where

ΦðqMÞ ¼ −
iπϰ2m

γ

qzδðq0 − vqzÞ
q2ðqμqμ þ 2iϵq0Þ

�
γ2v2 þ 1

3

�
: ð5:2Þ

The integration over q is fulfilled by using delta functions,
resulting in

~ρðkMÞ ¼ ϰ2fm
2

γv
ω2 þ k2⊥γ2v2

�
γ2v2 þ 1

3

�

×

�
k0kz

vðkμkμ þ 2iϵk0Þ − 1

�
; ð5:3Þ

where k2⊥ ≡ δijkikj.
The stress part of the second-order current is given by

Eq. (2.24) where only the metric perturbation due to the
particle has to be retained:

SðxMÞ ¼ ∂M

�
h̄MN∂N −

1

2
h̄∂M

�
1φ: ð5:4Þ

Representing the products of fields as a convolution in the
momentum space, and integrating using delta functions,

Z
δðku − quÞδ4ðqμÞ

q2ðk − qÞ2 d5q

�����
k2¼0

¼ γ3v3

ðkuÞ3ðk̄uÞ ;

k̄M ¼ ðk0;−k;−kzÞ; ð5:5Þ

one obtains

SðkMÞ ¼ ϰ2fmγ3v3

ðkuÞðk̄uÞ : ð5:6Þ

We now consider some particular cases.

A. Ultrarelativistic case

Denoting the ratio of the component kz (orthogonal to
the domain wall) to the total energy of the emitted quantum
as cos χ ¼ kz=k0, we obtain in the limit v → 1, γ → ∞ the
local contribution (5.3) in the form

~ρðkMÞ ¼ ϰ2fE
4ω2

1

cos χcos2ðχ=2Þ ; ð5:7Þ

while the stress term (5.6) reads

SðkMÞ ¼ ϰ2fE
ω2ð1 − v2cos2χÞ : ð5:8Þ

One observes the following.
(i) At χ ≈ π=2 the brane contribution dominates and

blows up at χ → π=2.
(ii) At χ < γ−1 in the forward/backward direction the

stress contribution has apparent maxima and blows
up at χ → 0 in the massless limit.

(iii) At χ ≈ π the brane contribution also blows up due to
cos2ðχ=2Þ in the denominator.

Considering the last case more closely, we introduce χ0 ¼
π − χ and find that the local amplitude is negative and
diverges quadratically as χ0 → 0:

~ρðkMÞ ¼ −
ϰ2fE
4ω2

1

sin2ðχ0=2Þ≃ −
ϰ2fE
ω2χ02

: ð5:9Þ

The stress term (5.6) is positive and is equal to minus
Eq. (5.9):

SðkMÞ ¼ ϰ2fE
ω2sin2χ

≃ ϰ2fE
ω2χ02

: ð5:10Þ

Thus, as could be expected, radiation is asymmetric with
respect to the particle motion and there is no radiation in the
backward direction.
To get the total radiation power, we note that (only) the

stress amplitude is dominant and is beamed around the
forward direction. So to get an estimate of the total power
we substitute Eq. (5.8) in Eq. (2.27) and integrate over
angles for finite γ. The remaining integral over the spectrum
diverges both in the low and high frequencies requiring the
IR and the UV cutoffs:
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Erad ¼
ϰ4f2m2γ2

ð2πÞ3
Z

∞

0

dω
ω

Z
π=2

0

sin2χdχ
ð1 − v2cos2χÞ2

≃ ϰ4f2E2γ

8ð2πÞ2 ln
ωmax

ωmin
: ð5:11Þ

Note that this expression diverges in the massless limit
γ → 0, indicating that the interaction of the brane with
massless particles appeals to quantum theory.

B. Nonrelativistic collision

Now consider the opposite case: v ≪ 1. Then the stress
part (5.6) is small, so the total amplitude jðkÞ is given by
the brane contribution (5.3) only:

jðkÞ ¼ ϰ2fm
6ω

kz

kμkμ þ 2iϵk0
; ð5:12Þ

where μ ¼ 0…3 and the five-dimensional wave vector
in null, so kμkμ ¼ ðkzÞ2, ω2 ¼ ðkzÞ2 þ k2⊥. This can be
rewritten as

jðkÞ ¼ ϰ2fm
6

1

kz
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkzÞ2 þ k2⊥

p ; ð5:13Þ

so we see that the integration over kz is dominated in the
infrared, and with logarithmic accuracy we can set
ðkzÞ2 þ k2⊥ ∼ k2⊥, obtaining

Erad ≃ ϰ4f2m2

36ð2πÞ3
Z

dkz

ðkzÞ2
Z

dk⊥ ∼
ϰ4f2m2

18ð2πÞ3
kmax⊥
kzmin

; ð5:14Þ

where the nature of the cutoff has to be clarified. Actually,
the divergence of the amplitude in the directions of the
emitted quanta along the brane takes place for any velocity,
and its origin is worth discussing when going to the
coordinate representation.

C. Emission along the brane

The general expression for the five-momentum loss
under collision in the coordinate representation is

ΔPM ¼
Z

∇NTMN ffiffiffiffiffiffi
−g

p
d5x ¼

Z
φ;Mρd5x: ð5:15Þ

Since the source on the right-hand side of Eq. (4.1) has
support only at r > t > 0, under the multiplication by ψ
only the ψ−Δp art of ψ will contribute. Computing the time
derivative of ψ [Eqs. (4.19) and (4.20)], we multiply by a
source term (4.1), obtaining the estimate

Erad ∼
ðλfÞ2
γ6

rmax

zmin
; ð5:16Þ

where for consistency and independence of the integration
sequence, the formal cutoffs for r and z are introduced.
Meanwhile, the validity of our iteration scheme has some

restrictions. The gravitational constant in five dimensions
has the dimension of ðlengthÞ3. Combining it with the
particle energy E [dimension of ðlengthÞ−1] and the brane
tension μ [dimension of ðlengthÞ−2], we have two length
parameters: l ¼ ϰ2μ; rS ¼ ϰ

ffiffiffi
E

p
, with the first correspond-

ing to the curvature radius of the bulk in the RS II setup,
and the second to the gravitational radius of the energy E.4

To keep contact with the RS II model we have to consider
distances that are small with respect to l, while to justify
the linearization of the metric for the particle we have
to consider distances that are large with respect to rS. So to
apply the linearized theory to both objects we have to
assume l ≫ rS, or E ≪ ϰ2μ2. With this motivation we take
the maximal cutoff parameters to be

rmax ∼ jzjmax ∼ ½ϰ2μ�−1: ð5:17Þ

The minimal values of r, z can be estimated from the
assumed convergence of the iterative solution. For the
second and the first terms of the scalar field, we expect
j2φj ≪ j1φj. Comparing 2φðψÞ [Eq. (4.19)] with 1φ
[Eq. (3.4)] for sufficiently small r, one finds

r2S < rjzj: ð5:18Þ

On the other hand, we need r > rS in order to use the
linearized gravity and the concept of a point-like particle.
Combining these arguments, we conclude that for

rmin ∼ zmin ∼ rS; ð5:19Þ

the perturbation theory converges.
The momentum-space formula (5.14) matches with

Eq. (5.16) if

kzmin ∼ 1=zmax; kmax⊥ ∼ 1=rmin; ð5:20Þ

assuming that the bulk coordinate z is restricted by the same
curvature effect as the brane coordinate r.
With these cutoffs the total radiation loss becomes

Erad ∼
λ2f2

γ6
1

ϰ3μ
ffiffiffi
E

p ∼
ϰE3=2f2

μ
; ð5:21Þ

with the last estimate being valid in the massless-
particle limit.
Finally, from the above restrictions we obtain the

frequency cutoffs:

4Similarly, 1=ϰf will be the scalar analogue of the curvature
length parameter.
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ωmin ∼ ϰ2μ; ωmax ∼ 1=rS: ð5:22Þ

D. Radiation normal to the brane

Now we come back to the massless limit by taking into
account the existence of rmin preventing the angle χ from
approaching zero:

χmin ∼ arctan
rmin

zmax
≃ rmin

zmax
≪ 1:

In the relativistic case we thus have to integrate the
angular distribution (5.11) from χmin to π=2. Since the
integrand is beamed inside the cone 0 < χ ≲ 1=γ, the final
result depends upon the relation between 1=γ and χmin.
Namely, by expanding the numerator and the denominator
in Eq. (5.11) in χ ≪ 1,

1 − v2cos2χ ≃ χ2 þ γ−2;

we are led to consider two cases.
Case A: χmin > 1=γ. Then, 1 − v2 cos2 χ ≃ χ2, so

Erad ¼
ϰ4f2m2γ2

ð2πÞ3 ln
ωmax

ωmin

Z
π=2

χmin

sin2χdχ
ð1 − v2cos2χÞ2

≃ ϰ4f2E2
rmax

rmin
ln
rmax

rmin
: ð5:23Þ

The radiation efficiency ϵ ¼ Erad=E then reads

ϵ ∼ ϰ4f2E
rmax

rmin
ln
rmax

rmin
→ ϰ2μ2E

rmax

rmin
ln
rmax

rmin

∼
rmin

rmax
ln
rmax

rmin
< 1; ð5:24Þ

since the function ln x=x does not exceed 1 for x > 1.
Hence there is no efficiency catastrophe in our model.
Case B: χmin < 1=γ. Now 1 − v2 cos2 χ ≃ γ−2. Then,

Eq. (5.11) holds, but according to the above restrictions,

Erad ∼ ϰ4f2E2γ ln
rmax

rmin
<

rmax

rmin
ln
rmax

rmin
; ð5:25Þ

so the emitted radiation is smaller than in case A. But now
radiation is beamed inside the characteristic cone in the
forward direction χ ≲ 1=γ.

VI. CONCLUSIONS

In this paper we have considered radiation in the
collision of a point particle with an extended object—
namely, a domain wall—possessing an internal dynamics.
The interaction between them is assumed to be purely
gravitational, while the radiation is scalar and it is generated
solely by the domain wall. The main new feature of this
process is the creation of the shock spherical branon wave,
which propagates freely along the wall with the velocity of

light. This branon constitutes the part of the source of the
scalar radiation. We have carefully calculated the retarded
solution of the bulk d’Alembert equation with such a light-
like source, revealing a sophisticated structure of the
solution. This solution dominates in the case of the ultra-
relativistic collision. We also computed the full radiation by
taking into account other relevant source terms.
Performing these calculations, we encountered classical

singularities in the solutions of the five-dimensional
d’Alembert equation which are absent in four dimensions.
Namely, the local and the nonlocal parts of the Green’s
functions generate two singular parts of the full solution5

which require regularization. We have then proved that the
sum of these singular parts remains finite when the
regularization is removed. A similar picture holds in higher
odd spacetime dimensions, so our regularity proof may
help in other dimensions too.
The retarded potential of the branon contains two shock

planewaves Σ� which have theta-like behavior on the front,
differing from the well-known Aichelburg-Sexl solution
[36] which has a δ singularity there. Correspondingly, our
planewaves have no point-like sources located at the centers
of the wave fronts. The theta-like nature of the planar waves
means that after the passage of the wave front the field
remains constant, imitating the memory effects [20,21].
After the subsequent arrival of the spherical wave, this value
starts to decrease and asymptotically disappears.We realize,
however, that this memory is basically due to the nonlocal
nature of the retarded Green’s function in five dimensions.
Finally, we would like to draw attention to one pecu-

liarity of the radiation amplitude: it exhibits backward
destructive interference between the local and nonlocal
contributions, contrary to the forward destructive interfer-
ence of the particle-particle bremsstrahlung [38,39] and
synchrotron radiation [32,40]. In an attempt to explain the
difference, one can observe that i) the brane gravity is
repulsive, and ii) the source of radiation is the brane, which
moves in the particle rest frame in the backward direction.
We expect that basic features of the scalar branestrahlung

will survive in the case of the true gravitational radiation.
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APPENDIX: DERIVATION OF THE RETARDED
SOLUTION (4.14)

Here we give details of the calculation of the retarded
field generated by the light-like branon source (4.14).
Integration domains: The limits of integration in r0; ϑ are

restricted by several Heaviside functions in the integrand
depending on the signs of the parameters Δ, D defined in
Eqs. (4.16) and (4.17).
Δ > 0. If Δ > 0, then t > r;D > 0, and the roots of

Eq. (4.15)

r0� ¼ r cos ϑ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 cos2 ϑþ Δ

p
ðA1Þ

(positive and negative, respectively) exist for all angles ϑ.
For fixed t, r, z, and ϑ, the quadratic form R2 − t2 as a
function of r0 goes toþ∞ if r0 → �∞, and hence the support
of θðt − RÞ lies between the roots. Thus θðt − RÞθðΔÞ ¼
Θr0 ðr0−; r0þÞθðΔÞ. Finally, since r0− < 0, by assuming r0 > 0
one obtains θðt − RÞθðΔÞθðr0Þ ¼ Θr0 ð0; r0þÞθðΔÞ.
The next restricting inequality for the second term of

Eq. (4.14) is R > t − r0. Being squared, this is equivalent to
2r0ðt − r cosϑÞ > Δ. If Δ > 0, then t > r > r cosϑ, so

r0 >
1

2

Δ
t − r cosϑ

≡ r0; r0 > 0;

θðr0 − tþ RÞ ¼ θðr0 − r0Þ: ðA2Þ
Substituting r0 ¼ r0 into the form R2 − t2 makes it negative.
Indeed, being a root of the equation r0 − tþ Rðr0Þ ¼ 0, r0

satisfies r0 − tþ R ¼ 0, where R≡ Rðr0Þjr0¼r0 . Thus R
2 −

t2 ¼ ðR − tÞðRþ tÞ ¼ −r0ðRþ tÞ < 0 by virtue of the
positiveness of r0, t, and R. It follows that r0− < r0 < r0þ.
To, summarize: if t2 − r2 − z2 > 0, then

r0− < 0 < r0 < r0þθðr0 − tþ RÞθðt − RÞθðΔÞθðr0Þ
¼ Θr0 ðr0; r0þÞθðΔÞ: ðA3Þ

Next consider the first term in Eq. (4.14): according to
Eq. (A2) one obtains

θðt − r0 − RÞ ¼ θðr0 − r0Þ;
θðt − r0 − RÞθðΔÞθðr0Þ ¼ Θr0 ð0; r0ÞθðΔÞ: ðA4Þ

Thereby making use of Θr0 ð0;r0ÞþΘr0 ðr0;r0þÞ¼Θr0 ð0;r0þÞ,
one concludes that the θðΔÞ contribution becomes

JþΔ ¼ 2πθðΔÞ
Z

½Fðr0ÞΘr0 ð0; r0Þ

− Fð0ÞΘr0 ð0; r0þÞ�r0dr0 sin ϑdϑ: ðA5Þ

Δ < 0, D > 0. This happens if r2 > t2 − z2 > r2 sin2 ϑ.
Here the equation t ¼ R also has two real roots given by
Eq. (A1) which have the same sign as cos θ. Thus if
cosθ>0, then ϑ<arcsinð

ffiffiffiffiffiffiffiffiffiffiffi
t2−z2

p
=rÞ, and 0<r0−<r0þ; hence,

θðr0Þθðt − RÞ ¼ θðcosϑÞΘr0 ðr0−; r0þÞ: ðA6Þ

In the case cosϑ < 0 one has r0− < r0þ < 0, so by restoring
θðr0Þ, the indicator θðr0Þθðt − RÞ ¼ 0, so that the second
term in the integrand of Eq. (4.14) vanishes.
Now consider the support of θðt − r0 − RÞ. The limiting

value,r0 is still determined by Eq. (A2), but the sign
depends upon the sign of t − r cos ϑ. If t > r cosϑ, then
r0 < 0 by virtue of Δ< 0. Here θðt−r0−RÞ¼ θðr0− r0Þ but

θðr0Þθðt − r0 − RÞ ¼ 0 ðA7Þ

since r0 is negative. Thus the first term in the integrand
of Eq. (4.14) vanishes, while the integration range for the
second one is determined by θðt−RÞ and reads r0−<r0<r0þ.
If t < r cos θ, then r0 [given as before by the Eq. (A2)]

becomes positive, but this root is false and represents an
artifact of the inequality squaring in Eq. (A2). Indeed, the
formal resolution of ðt − r0Þ2 ¼ R2 gives r0 > r0 ¼ ðr2 þ
z2 − t2Þ=½2ðr cosϑ − tÞ� and r0 > t by virtue of the inequal-
ity chain t2 þ r2 þ z2 ≥ t2 þ r2 ≥ 2rt > 2rt cosϑ, which
is equivalent to r2 þ z2 − t2 > 2tðr cosϑ − tÞ. Meanwhile,
t > r0 þ R > r0, in contradiction with the latter. In what
follows, the property (A7) is valid for all cases of the sign
of ðt − r cosϑÞ.
To conclude: in all cases with Δ < 0; D > 0 the first

term in Eq. (4.14) vanishes, while the second is to be
integrated over r0 from r0− to r0þ with an additional angular
restriction 0 ≤ ϑ ≤ π=2.
D < 0. This restriction is equivalent to t2 − z2 <

r2 sin2 ϑ and implies Δ < 0. The equation t ¼ R has no
real roots in this case, so the second term in the integrand
of Eq. (4.14) vanishes completely. The restrictions on
θðt − r0 − RÞ are the same as in the previous case, so
θðr0Þθðt − r0 − RÞ ¼ 0. Thus one concludes that both terms
in the integrand of Eq. (4.14) have no support, and hence
the contribution JD<0 to the total J vanishes. Combining
the two cases D > 0 and D < 0 of Δ < 0, one finds

J−Δ ¼ −2πθð−ΔÞ

×
Z

Fð0ÞΘr0 ðr0−; r0þÞr0dr0Θϑð0; π=2ÞθðDÞ sinϑdϑ:

ðA8Þ

Integration over r0: We have to integrate J−Δ, given by
Eq. (A8), and JþΔ from Eq. (A5). First consider J−Δ: by
integrating Eq. (A8) from r0− to r0þ with help of the table
integral
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Z ðαxþ βÞdx
ðx2 þ b2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − x2

p ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
�
β

b
arctan

x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p

b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − x2

p

− α arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − x2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
�
; ðA9Þ

one arrives at

J−Δ ¼ −2π2rθðtÞθð−ΔÞ
Z

θðDÞ cosϑ sin ϑffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ r2 sin2 ϑ

p dϑ; ðA10Þ

with the remaining integral over ϑ.
The contribution JþΔ consists of two parts:

JþΔ ≡Q1 þQ2. The one containing Fð0Þ is of the type
(A9), so by integrating it from 0 to r0þ we obtain

Q2 ¼ −
1

2
ln
tþ ffiffiffiffi

Δ
p

t −
ffiffiffiffi
Δ

p −
r cosϑffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z2 þ r2 sin2 ϑ
p

×

�
arctan

rt cosϑffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δðz2 þ r2 sin2 ϑÞ

p þ π

2

�
: ðA11Þ

The first contribution in Eq. (A5) coming from the Fðr0Þ
term contains the integrals of type

Z ðαx2 þ βxþ γÞdx
ðx2 þ b2Þ ffiffiffiffiffiffiffiffiffiffiffi

c − x
p : ðA12Þ

A routine calculation gives

Q1 ¼
1

2
ln
tþ ffiffiffiffi

Δ
p

t−
ffiffiffiffi
Δ

p −
ffiffiffiffi
Δ

p

t− rcosϑ
þ rcosϑffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z2þ r2sin2ϑ
p

×

�
arctan

t− rcosϑþ ffiffiffiffi
Δ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2þ r2sin2ϑ

p − arctan
t− rcosϑ−

ffiffiffiffi
Δ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2þ r2sin2ϑ

p
�
:

Combining it with Eq. (A11) and using the identity

arctan x − arctan y ¼ arctan
x − y
1þ xy

þ πθð−1 − xyÞsgnx;

ðA13Þ

we get

JþΔ¼ 2πθðΔÞ
Z �

−
ffiffiffiffi
Δ

p

t− rcosϑ
þ rcosϑffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z2þ r2sin2ϑ
p

×

�
arctan

ffiffiffiffi
Δ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2þ r2sin2ϑ

p

r2þ z2− rtcosϑ
þπ

2
sgnðrtcosϑ− z2− r2Þ

− arctan
rtcosϑffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Δðz2þ r2sin2ϑÞ
p

��
sinϑdϑ: ðA14Þ

Integration over ϑ: The condition D > 0 is equivalent to
t2 − z2 > r2 sin2 ϑ > 0 in addition to θð−ΔÞ. Thus one
integrates over ϑ from zero to arcsinð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 − z2

p
=rÞ. A

thorough analysis of the characteristic domains gives in
this case a simple overall condition t > jzj:

θð−ΔÞθðDÞ ¼ θð−ΔÞθðt2 − z2ÞΘϑ

�
0; arcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 − z2

p

r

�
:

ðA15Þ

Using this in the angular integral in Eq. (A10), we obtain

J−Δ ¼ −2π2θðtÞθð−ΔÞθðt2 − z2Þ t − jzj
r

: ðA16Þ

For the region Δ > 0 one has to integrate Eq. (A14). The
first term in the brackets yields

−
Z

π

0

ffiffiffiffi
Δ

p
sin ϑ

t − r cosϑ
dϑ ¼

ffiffiffiffi
Δ

p

r
ln
t − r
tþ r

: ðA17Þ

The second one is integrated by parts, taking into account
the jump of the arctangent:

d
dx

arctan
1

x
¼ −

1

1þ x2
þ πδðxÞ: ðA18Þ

One obtains

JþΔ¼ 2πzθðtÞθðΔÞ
r

�
arctan

z
ffiffiffiffi
Δ

p

t2− tr− z2
− arctan

z
ffiffiffiffi
Δ

p

t2þ tr− z2

þπsgnðzÞθðtrþ z2− t2Þ−2t
z
arctan

rffiffiffiffi
Δ

p
�
:

Combining this with Eq. (A16), we find the result (4.18)
presented in the main text.
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