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At zero temperature, the Lorentz invariance is strictly preserved in three-dimensional quantum
electrodynamics. This property ensures that the velocity of massless fermions is not renormalized by
the gauge interaction. At finite temperature, however, the Lorentz invariance is explicitly broken by the
thermal fluctuation. The longitudinal component of gauge interaction becomes short ranged due to thermal
screening, whereas the transverse component remains long ranged because of local gauge invariance. The
transverse gauge interaction leads to singular corrections to the fermion self energy and thus results in an
unusual renormalization of the fermion velocity. We calculate the renormalized fermion velocity
vRðp0;p; TÞ by employing a renormalization group analysis, and discuss the influence of the anomalous
dimension ηn on the fermion specific heat.
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Four-dimensional quantum electrodynamics (QED4) can
describe the electromagnetic interaction with very high
precision after eliminating ultraviolet divergences by
means of renormalization method. Different from QED4,
(2þ 1)-dimensional QED of massless fermions, dubbed
QED3, is super-renormalizable and does not contain any
ultraviolet divergence. However, extensive investigations
have showed that QED3 exhibits a series of nontrivial
low-energy properties, such as dynamical chiral symmetry
breaking (DCSB) [1–17], asymptotic freedom [2], and
weak confinement [11,18,19]. It thus turns out that QED3 is
more similar to four-dimensional quantum chromodynam-
ics (QCD4) than QED4. For this reason, QED3 is widely
regarded as a toy model of QCD4 in high-energy physics.
On the other hand, in the past decades QED3 has proven to
be an effective low-energy field theory for several impor-
tant condensed-matter systems, including high-Tc cuprate
superconductors [20–28], spin-1=2 Kagome spin liquid
[29,30], graphene [31–33], certain quantum critical sys-
tems [34,35], and surface states of some bulk topological
insulators [36–38].
Appelquist et al. analyzed the Dyson-Schwinger equa-

tion (DSE) of fermion mass in zero-T QED3 and revealed
that the massless fermions can acquire a finite dynamical
mass, which induces DCSB, when the fermion flavor is
below some threshold, i.e., N < Nc [3]. Most existing
analytical and numerical calculations [4–10,16,17] agree

that Nc ≈ 3.5 at zero T. This problem is not only interesting
in its own right, but of practical importance since QED3 has
wide applications in condensed-matter physics [20–38].
In particular, it has been demonstrated [21–23,25–27] that
DCSB leads to the formation of quantum antiferromag-
netism. Dynamical mass generation at finite temperature in
QED3 is also an interesting, and meanwhile very compli-
cated, issue that has been investigated for over two decades
[39–45].
If the fermion flavor is large, say N ≥ 4, no DCSB takes

place and the Dirac fermions are still massless despite the
presence of strong gauge interaction. However, QED3 is
still highly nontrivial in its massless phase, because the
gauge interaction can lead to unusual, non-Fermi liquidlike
behaviors of fermions [22,23,46,47]. These non-Fermi
liquid behaviors may be highly relevant to the low-energy
physics of high-Tc cuprate superconductors [20,22,23] and
other strongly correlated systems.
When studying the non-Fermi liquid behaviors of

massless fermions, an important role is known to be played
by the fermion velocity v, which enters into many observ-
able quantities of massless fermions, such as specific heat
[22,48–51] and thermal conductivity [52]. An interesting
property is that the constant velocity can be renormalized
by various interactions and then exhibits unusual momen-
tum dependence. For instance, it is known that the low-
energy elementary excitations of graphene, a single layer
of carbon atoms, are massless Dirac fermions [53]. The
fermion velocity in graphene is certainly a constant in the
noninteracting limit, and its bare value is roughly c=300
with c being the speed of light in vacuum [53]. However,
extensive renormalization group (RG) analysis [53–56] has
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showed that the fermion velocity can be enhanced by the
unscreened long-range Coulomb interaction. In the lowest
energy limit, the velocity flows to very large values and
the fermion dispersion is thus substantially modified.
Remarkably, the predicted near divergence of the renormal-
ized velocity has already been confirmed in recent experi-
ments [57–59]. Another notable example is the effective
QED3 theory of high-Tc superconductors [20,22,23], which
contains only the transverse part of the U(1) gauge inter-
action. Moreover, near the nematic quantum critical point in
high-Tc superconductors, massless Dirac fermions interact
strongly with the quantum fluctuation of nematic order
parameter [60–63]. In both cases, the fermion velocity
receives singular corrections and is driven to vanish in the
low-energy region [20,22,23,60–63], which in turn results in
non-Fermi liquid behaviors [20,22,23,51].
In this paper, we study the renormalization of fermion

velocity due to U(1) gauge interaction in QED3. Whether
the velocity is renormalized depends crucially on the
temperature of the system. At zero temperature, the
Lorentz invariance of QED3 is certainly reserved, and
thus there is no interaction correction to the fermion
velocity. In this case, fermion velocity is always a
constant. At finite temperature, however, the Lorentz
invariance is explicitly broken by thermal fluctuations
[39]. As a result, the longitudinal and transverse parts of
the gauge interaction are no longer identical, and the
fermion velocity may flow with varying energy and
momenta. It is interesting to ask two questions: How
is the fermion velocity renormalized by the gauge
interaction at finite temperature? How are the physical
quantities of Dirac fermions, such as the specific heat,
influenced by the renormalized velocity? In this article,
we study these two questions.
We study this problem and calculate the renormalized

fermion velocity vRðp0;p; TÞ by means of renormaliza-
tion group method. We show that the velocity exhibits a
power law dependence on momentum jpj under the
energy scale T,

vRðp0;p; TÞ ¼
�jpj
T

�
η

; ð1Þ

where the anomalous dimension η are functions of both
T and energy p0, namely η≡ ηðp0; TÞ. We then study
the impact of the renormalized fermion velocity on the
specific heat of massless Dirac fermions.
The Lagrangian density for QED3 with N flavors of

massless Dirac fermions is given by

L ¼
XN
i¼1

ψ̄ iði∂ þ eAÞψ i −
1

4
F2
μν; ð2Þ

where Fμν ¼ ∂μAν − ∂νAμ. The fermion is described by a
four-component spinor ψ, whose conjugate is ψ̄ ¼ ψ†γ0.

The gamma matrices are defined as ðγ0; γ1; γ2Þ ¼
ðiσ3; iσ1; iσ2Þ ⊗ σ3, which satisfy the Clifford algebra
fγμ; γνg ¼ 2gμν with gμν ¼ diagð−1;−1;−1Þ. In (2þ 1)
dimensions, there are two chiral matrices, denoted by
γ3 ¼ I2×2 ⊗ σ1 and γ5 ¼ I2×2 ⊗ σ2 respectively, that anti-
commute with γ0;1;2. This Lagrangian respects a continu-
ous Uð2NÞ chiral symmetry ψ → eiθγ3;5ψ, where θ is an
arbitrary constant. Once fermions become massive, the
Uð2NÞ chiral symmetry is broken down to UðNÞ × UðNÞ.
Here, we consider a general very large N, which implies
the absence of DCSB, and perform perturbative expansion
in powers of 1=N. For simplicity, we work in units
with ℏ ¼ kB ¼ 1.
The fermions have a constant velocity v, which appears

in the covariant derivative in the form ∂ ¼ γ0∂0 þ vγ ·∇.
In most previous studies, it is assumed that v≡ 1. At zero
T, this assumption is perfectly good and not affected by
the gauge interaction since the Lorentz invariance is
absolutely satisfied. To see this, we write the fermion
propagator as

G0ðk0;kÞ ¼
1

γ0k0 þ vγ · k
: ð3Þ

The self-energy corrections due to gauge interaction are
generically expressed as

Σðk0;kÞ ¼ A0ðk0;kÞγ0k0 þ Asðk0;kÞvγ · k: ð4Þ

Here, A0;sðk0;kÞ are the temporal and spatial components
of the wave function renormalization respectively.
At T ¼ 0, the Lorentz invariance ensures that

A0ðk0;kÞ ¼ Asðk0;kÞ≡ AðkÞ; ð5Þ

thus the dressed fermion propagator has the form

Gðk0;kÞ ¼
1

½1þ AðkÞ�ðγ0k0 þ vγ · kÞ : ð6Þ

Clearly, the velocity v remains a constant and does not
receive any interaction corrections. It is therefore safe
to set v≡ 1. However, this is no longer true when
the Lorentz invariance is explicitly broken at finite T.
Once the Lorentz invariance is broken, we have
A0ðk0;kÞ ≠ Asðk0;kÞ. The difference ΔA ¼ Asðk0;kÞ −
A0ðk0;kÞ represents the interaction correction to the
fermion velocity v, which then becomes a function of
energy momenta and temperature, i.e., v → vRðp0;p; TÞ.
We now calculate the function vRðp0;p; TÞ by means of
RG method.
We work in the standard Mastubara formalism for finite-

T quantum field theory, and assume the fermion energy to
be of the form k0 ¼ ð2nþ 1ÞπT with n being an integer.
Including the correction of the polarizations, the effective
propagator of gauge boson now becomes
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Δμνðq0;qÞ ¼
Aμν

q2
0

v2 þ q2 þ ΠAðq0;qÞ

þ Bμν

q2
0

v2 þ q2 þ ΠBðq0;qÞ
; ð7Þ

where q0 ¼ 2mπT withm being an integer. The two tensors
Aμν and Bμν are defined as

Aμν ¼
�
δμ0 −

qμq0
q2

�
q2

v2q2

�
δ0ν −

q0qν
q2

�
; ð8Þ

Bμν ¼ δμi

�
δij −

qiqj
q2

�
δjν: ð9Þ

It is easy to verify that Aμν and Bμν are orthogonal and
satisfy

Aμν þ Bμν ¼ δμν −
qμqν
q2

: ð10Þ

The polarizations ΠA and ΠB are defined by

ΠA ¼ q2

v2q2
Π00; ΠB ¼ Πii −

q20
v2q2

Π00 ð11Þ

where

Π00 ¼
α

β

X
k0

Z
d2k
ð2πÞ2 Tr½Gðk0;kÞγ0Gðk0 þ q0;kþ qÞγ0�;

Πii ¼
α

β

X
k0

Z
d2k
ð2πÞ2 Tr½Gðk0;kÞγiGðk0 þ q0;kþ qÞγi�;

with α ¼ Ne2. As usual [3], the parameter α is kept fixed as
N → þ∞. Employing the method utilized in Ref. [39], one
can obtain the following expressions:

ΠA ¼ Π3; ΠB ¼ Π1 þ Π2 ð12Þ

where

Π1 ¼
α

2πv2

Z
1

0

dx
χ sinhðχTÞ

cosh2ð χ
2TÞ − sin2ðxq0

2T Þ
;

Π2 ¼
αq0
4πv2

Z
1

0

dx
ð1 − 2xÞ sinðxq0T Þ

cosh2ð χ
2TÞ − sin2ðxq0

2T Þ
;

Π3 ¼
αT
πv2

Z
1

0

dx

× ln

�
4

�
cosh2

�
χ

2T

�
− sin2

�
xq0
2T

���
;

with χ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞðq20 þ v2q2Þ

p
. In the instantaneous

approximation, the energy dependence of the polarizations

is dropped by demanding ΠA;Bðq0;qÞ → ΠA;Bðq0 ¼ 0;qÞ,
which gives rise to

ΠA ¼ 2αT
πv2

Z
1

0

dx ln

�
2 cosh

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞp

vjqj
2T

��
;

and

ΠB ¼ αjqj
πv

Z
1

0

dx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞ

p
tanh

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞp

vjqj
2T

�
:

To the leading order of 1=N expansion, the fermion self
energy is given by

Σðp0;pÞ ¼
αT
N

X
q0

Z
d2q
ð2πÞ2 γμGðp0 − q0;p − qÞγν

× Δμνðq0;qÞ: ð13Þ

The behavior of Σðp0;pÞ is mainly determined by the low-
energy properties of the gauge boson propagator Δμν,
which in turn relies on the polarization functions ΠA and
ΠB. Before calculating Σðp0;pÞ, it would be helpful to first
qualitatively analyze the properties of ΠA and ΠB at various
values of q.
As shown in Figs. 1–2, for the finite frequency compo-

nents of the gauge interaction, q0 is considered as a
small value in the region jqj ≫ q0; both ΠAðq0; jqjÞ and
ΠBðq0; jqjÞ approach the value vjqj

8
. In this region, the

self-energy corrections due to the longitudinal and trans-
verse components of gauge interaction should nearly cancel
each other. Therefore, the finite frequency components of
the gauge interaction will not induce singular fermion
velocity renormalization in this region. In the region
jqj ≪ q0, q0 is a large value and q20 is an effective screening
factor. Both ΠA and ΠB approach to some finite values in
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FIG. 1. Polarizations ΠAðq0; jqjÞ and ΠBðq0; jqjÞ for different
frequencies. Here, q0 ¼ 2mπT and T is chosen as T=α ¼ 10−5.
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this region in the limit jqj → 0, which implies that the
longitudinal and transverse components of gauge interac-
tion are both screened. In this case, the finite frequency
components of gauge interaction also cannot lead to
singular velocity renormalization.
For the zero frequency component of the gauge inter-

action, as shown in Figs. 1–2, both ΠA and ΠB can be
simplified to jqj=8 if jqj > T. Therefore, the fermion
velocity is indeed not renormalized at energy scales above
T. At energy scales lower than T, however, T can be
considered as a large variable and hence the behavior of ΠA
becomes very different from that of ΠB. In this region, we
find that

ΠAð0;qÞ ≈
2α ln 2

π

T
v2

; ð14Þ

ΠBð0;qÞ ≈
α

12π

q2

T
: ð15Þ

Since T is a relatively large quantity, now the longitudinal
component of gauge interaction is statically screened
and does not play an important role in the low-energy
region. Nevertheless, the transverse component of gauge
interaction remains long ranged, characterized by the
fact that

lim
q→0

ΠBð0;qÞ → 0; ð16Þ

as required by the local gauge invariance. Therefore, the
singular contribution to the fermion self energy can only be
induced by the zero frequency part of the transverse
component of gauge interaction. Taking advantage of this
fact, we can simply ignore the longitudinal component of
gauge interaction and calculate the fermion self energy as
follows:

ΣSðp0;pÞ ¼
αT
N

Z
d2q
ð2πÞ2 γμGðp0;p− qÞγν

Bμν

q2 þΠBðqÞ

¼ αT
N

Z
d2q
ð2πÞ2 γμ

1

p0γ0 þ vγ · ðp− qÞ

× γν
δμiðδij − qiqj

q2 Þδjν
q2 þΠBðqÞ

¼ −
αT
N

Z
d2q
ð2πÞ2

p0γ0 − vγ · ðpþ qÞ þ 2vγ · qp·q
q2

p2
0ð1þ v2ðp−qÞ2

p2
0

Þ

×
1

q2 þΠBðqÞ
: ð17Þ

Since we are now considering the energy scales below T, as
explained above Eq. (14), we can make the following
approximations:

1

1þ v2ðp−qÞ2
p2
0

≈ 1 −
v2ðp − qÞ2

p2
0

≈ 1þ 2v2p · q − v2q2

p2
0

; ð18Þ

which is valid because p0 ∝ T. Now we can divide the self-
energy function into two parts:

ΣSðp0;pÞ ¼−
α

N
T
Z

d2q
ð2πÞ2

p0γ0−vγ · ðpþqÞþ 2vγ ·qp·q
q2

p2
0

×

�
1−

v2q2

p2
0

�
1

q2þΠBðqÞ

−
α

N
T
Z

d2q
ð2πÞ2

p0γ0−vγ · ðpþqÞþ 2vγ ·qp·q
q2

p4
0

×
2v2p ·q

q2þΠBðqÞ
: ð19Þ

Straightforward algebraic calculations show that

ΣSðp0;pÞ ¼ Σ0p0γ0 þ Σ1p · γ; ð20Þ

where

Σ0 ¼ −
αT
Np2

0

Z
d2q
ð2πÞ2

1

q2 þ ΠBðqÞ

þ αT
Np4

0

Z
d2q
ð2πÞ2

v2q2

q2 þ ΠBðqÞ
; ð21Þ

Σ1 ¼
αT
Np4

0

Z
d2q
ð2πÞ2

v2q2

q2 þ ΠBðqÞ
: ð22Þ

The difference between Σ0 and Σ1 is given by
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FIG. 2. Polarizations Πðq0; jqjÞ and ΠBðq0; jqjÞ for different
frequencies. Here, q0 ¼ 2mπT and T is chosen as T=α ¼ 10−3.
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Σ0 − Σ1 ≈ −
αT
Np2

0

Z
d2q
ð2πÞ2

1

q2 þ α
12π

q2

T

: ð23Þ

To perform RG transformations, we need first to integrate
over momenta restricted in a thin shell of ½bΛ;Λ�, where Λ
is an ultraviolet cutoff and b ¼ e−l with l being a varying
length scale, which yields

Σ0 − Σ1 ¼ −
α

2π3Nð2nþ 1Þ2ðT þ α
12πÞ

Z
Λ

bΛ

djqj
jqj ;

¼ −
α

2π3Nð2nþ 1Þ2ðT þ α
12πÞ

l: ð24Þ

The unusual velocity renormalization can be calculated
from the difference between Σ0 and Σ1 as follows:

d ln v
dl

¼ dðΣ0 − Σ1Þ
dl

¼ −
α

2π3Nð2nþ 1Þ2ðT þ α
12πÞ

: ð25Þ

Solving this equation leads to the renormalized fermion
velocity. Based on the above calculations and analysis, we
find that the velocity depends on energy, momenta, and
temperature approximately as follows:

vRðp0;p; TÞ ¼
(
ðjpjT Þηn jpj < T;

1 jpj > T:
ð26Þ

The above expression shows that the originally constant
velocity acquires an anomalous dimension ηn,

ηn ¼
α

2π3Nð2nþ 1Þ2ðT þ α
12πÞ

; ð27Þ

in the low-energy region jpj < T. Since ηn > 0, the
renormalized velocity vRðp0; jpj; TÞ vanishes in the limit
jpj → 0, which then leads to an appropriate modification of
the fermion dispersion. If we take the zero temperature limit
T → 0, the velocity is simply equal to unity, namely v≡ 1,
which is well expected since QED3 respects the Lorentz
invariance at zero temperature.
We now examine the impact of the velocity renormal-

ization. Since the fermion dispersion is modified, it is
reasonable to expect that many physical quantities will be
influenced, qualitatively or quantitatively. From the recent
research experience of graphene [48,53,56,64,65] and
high-Tc superconductors [22,49,60,62,63], we know that
unusual fermion velocity renormalization can lead to
significant changes of the spectral and thermodynamic
properties of massless Dirac fermions. It also strongly alters
the critical interaction strength for dynamical chiral sym-
metry breaking in graphene [64]. Here, we consider one
particular quantity, namely the fermion specific heat, and
leave the effects of velocity renormalization on other
physical properties to future work.

For a (2þ 1)-dimensional noninteracting Dirac fermion
system, the specific heat is known to be proportional to T2.
In the following, we examine the influence of renormal-
ized, T-dependent fermion velocity on the specific heat. For
simplicity, we first take the zero-energy limit, and thus have
vR ≡ vRðp0 ¼ 0; jpj; TÞ. In this limit, the corresponding
free energy is given by

FðTÞ ¼ −
2NT
π

�Z
T

0

dkk ln ð1þ e−ðkTÞη0þ1Þ

þ
Z þ∞

T
dkk ln ð1þ e−

k
TÞ
�

¼ −
2NT3

π

�Z
1

0

dxx ln ð1þ e−x
η0þ1Þ

þ
Z þ∞

1

dxx ln ð1þ e−xÞ
�
: ð28Þ

At T ≪ α, the anomalous dimension η0 becomes T
independent, i.e., η0 →

6
Nπ2

; hence the corresponding spe-

cific heat is CV ¼ −T ∂2F
∂T2 ∝ T2. To compute the free energy

with higher accuracy, we need to include the dependence of
anomalous dimension on both p0 and T. At finite T, the
energy p0 takes a series of discrete values, which makes it
difficult to do analytic calculations. We therefore define the
following mean value of the renormalized fermion velocity

v̄RFðpÞ ¼ ðjpjT Þη̄, where η̄ is obtained by performing an
average over all the frequencies:

η̄ ¼
Pþ∞

n¼−∞ ηn
1

ð2nþ1Þ2P∞
n¼−∞

1
ð2nþ1Þ2

¼ 1

2Nπ

α

π2ðT þ 2α
3πÞ

Pþ∞
n¼−∞

1
ð2nþ1Þ4P∞

n¼−∞
1

ð2nþ1Þ2

¼ 1

24Nπ

α

ðT þ α
12πÞ

: ð29Þ

Using the above expressions, we obtain the following
averaged free energy:

FavrðTÞ ¼ −
2NT3

π

�Z
1

0

dxx ln ð1þ e−x
η̄þ1Þ

þ
Z þ∞

1

dxx ln ð1þ e−xÞ
�
: ð30Þ

Both analytical and numerical calculations show that the
corresponding specific heat CVðTÞ is still proportional to
T2 in the low temperature regime, but its coefficient is
strongly altered by the anomalous dimension.
We now remark on the issue of gauge invariance. In a

quantum gauge field theory, it is of paramount importance
to obtain a gauge-independent quantity, which, however, is
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a highly nontrivial task. The studies of QED3 have also
been suffering from this problem for three decades. In
Ref. [3], Appelquist et al. utilized the Landau gauge to
construct DSE for dynamical fermion mass and found a
finite critical fermion flavor Nc ¼ 32

π2
to the lowest order of

1=N expansion. Subsequent work of Nash [4] included the
impact of the next-to-leading order correction and claimed
to obtain a gauge-independent critical flavor Nc ¼ 4

3
32
π2
.

More recently, Fischer et al. [10] studied DCSB by
analyzing the self-consistently coupled DSEs of fermion
and gauge boson propagators. An ansatz for the vertex
correction was introduced in Ref. [10] to fulfil the Ward-
Green-Takahashi identity. In the Landau gauge, the authors
found the critical flavor Nc ≈ 4, which is close to the value
found by Appelquist et al. [3]. However, after comparing
the results obtained in various gauges, they showed that the
conclusion is apparently not gauge invariant. Certainly, one
would obtain a gauge-independent conclusion if the full
DSEs were solved without making any approximations.
This is practically not possible and it is always necessary to
truncate the complicated DSEs in some proper way. How to
truncate the DSEs in a correct way so as to get gauge-
invariant results is still an open question [11–14]. The same
problem is encountered in the application of QED3

[24,25,66–71] to interpret some interesting experimental
facts of cuprate superconductors [72–74]. In this case, it
remains unclear how to obtain a gauge-independent propa-
gator for the massless Dirac fermions [69–71].
In the above discussions, we have used the Landau

gauge, which is widely used in the studies of QED3 and
expected to be the most reliable gauge [11,13,14]. If we
include an arbitrary gauge parameter ξ, the effective gauge
boson propagator becomes

Δμνðq0;qÞ ¼
Aμν

q20 þ q2 þ ΠAðq0;qÞ
þ Bμν

q20 þ q2 þ ΠBðq0;qÞ
þ ξ

qμqν
q4

: ð31Þ

After analogous RG calculations, we find that the anoma-
lous dimension receives an additional term:

ηn
0 ¼ ηn þ ηξ; ð32Þ

where

ηξ ¼
e2ξ

2πð2nþ 1Þ2T : ð33Þ

It appears that the anomalous dimension and also the
renormalized velocity both depend on the gauge parameter
ξ. We expect this gauge dependence can be removed if
higher order corrections could be properly incorporated.
Technically, computing higher order corrections to fermion
self energy in finite-T QED3 is much harder than zero-T

QED3 since the summation over discrete frequency and
integration of momenta have to be performed separately.
Though they are gauge dependent, we still believe that

our RG results are qualitatively correct. To gain a better
understanding of the essence of singular velocity renorm-
alization and the appearance of anomalous dimension, we
now make a comparison between a number of physically
similar systems. The first example is zero-T QED3 at a
finite chemical potential μ, which induces a finite Fermi
surface of Dirac fermions. The Fermi surface explicitly
breaks the Lorentz invariance and also leads to static
screening of the longitudinal component of gauge inter-
action. The transverse component of gauge interaction is
still long ranged and thus is able to generate singular
velocity renormalization. It was previously shown in
Ref. [50] that the velocity behaves like vR ∝ ðkμÞη, where
η is a finite number. The second example is graphene in
which massless Dirac fermions emerge as low-energy
excitations. The long Coulomb interaction also breaks
Lorentz invariance explicitly, and is unscreened due to
the vanishing of zero-energy density of states. In this case,
the fermion velocity is singularly renormalized and
increases indefinitely as the energy is lowering [54–56].
As aforementioned, analogous velocity renormalization
takes place in the effective QED3 theory of high-Tc cuprate
superconductors [20,22,23] and also at nematic quantum
critical points [60–63] which also result from the breaking
of Lorentz invariance. We can extract a generic principle
from all these examples that the long-range interaction
always leads to singular fermion velocity renormalization
once the Lorentz invariance is broken. It is known that the
Lorentz invariance is broken at finite T in QED3 [39–41].
According to this principle, the fermion velocity has to be
singularly renormalized. Therefore, our RG results for the
renormalized fermion velocity and the anomalous dimen-
sion should be qualitatively reliable even though the
results may not be quantitatively precise due to the gauge
dependence.
Recently, a three-dimensional (3D) Dirac semimetal

state was observed at the quantum critical point between
a bulk topological insulator and a trivial band insulator
[75]. Experiments also confirmed that Na3Bi [76] and
Cd3As2 [77] are 3D Dirac semimetals in which the
massless Dirac fermions are stable due to the protection
of crystal symmetry. Isobe and Nagaosa [78,79] showed
that in the presence of an electromagnetic field, the velocity
of Dirac fermions does not receive singular renormalization
but flows to some finite value in the lowest energy limit,
which is a consequence of the emergence of Lorentz
invariance. However, if a finite chemical potential is
induced in 3D Dirac semimetals by doping, the longi-
tudinal component of electromagnetic field will be
screened. However, the transverse component of electro-
magnetic field is not screened and is able to result in
singular renormalization of fermion velocity. Therefore, the
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doped 3D Dirac semimetals placed in an electromagnetic
field provide an ideal platform for measuring singular
fermion velocity renormalization.
We now connect our analysis to the issue of infrared

divergence. In the ordinary calculations based on pertur-
bation expansion or nonperturbative DSEs of fermion self
energy, the lower limit of momenta is zero. At finite T,
there is an infrared divergence in the fermion self energy
induced by the zero frequency part of the transverse
component of gauge interaction [40,45,80]. As pointed
out by Lo and Swanson [80], this divergence has not been
seriously considered in previous studies, where this prob-
lem is usually bypassed by completely ignoring the trans-
verse component of gauge interaction. They showed [14]
that this infrared divergence is endemic in finite-T QED3

and proposed to remove it by choosing a proper
T-dependent gauge parameter. This strategy is essentially
equivalent to dropping the zero frequency part of the
transverse component of gauge interaction but retaining
the nonzero frequencies. In the modern RG theory [81], one
needs to integrate over field operators defined in a thin
momentum shell ðbΛ;ΛÞ. After performing RG manipu-
lations, there will be a singular renormalization for some
quantities, such as fermion velocity, caused by the long-
range interaction. This singular renormalization should
have important influence on the infrared behaviors of
QED3. It would be interesting and also challenging to
study whether the infrared divergence appearing in the DSE
of dynamical fermion mass [40,45,80] can be eliminated by

taking into account the influence of singular velocity
renormalization.
In summary, we have studied the renormalization of

Dirac fermion velocity in QED3 at finite temperatures by
means of RGmethod. We first demonstrate that the velocity
renormalization is a consequence of the explicit breaking of
Lorentz invariance due to thermal fluctuations. We then
obtain the renormalized fermion velocity as a function of
energy, momentum, and temperature, as shown in
(26)–(27). We have also computed the specific heat after
taking into account the velocity renormalization. It would
be interesting to further study its impacts on DCSB [39,45]
and non-Fermi liquid behaviors [46,47] in the future.
Moreover, we emphasize that the velocity renormalization
can be testified by realistic experiments. Actually, recent
experiments have already extracted the detailed momentum
dependence of renormalized fermion velocity (caused by
long-range Coulomb interaction between Dirac fermions)
in graphene [57–59]. Since QED3 is widely believed to be
the effective field theory of a number of condensed-matter
systems [20–38], it would be possible to probe the
predicted unusual velocity renormalization in certain angle
resolved photoemission spectroscopy experiments [59].
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