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We present a gauged twistor model of a free massive spinning particle in four-dimensional Minkowski
space. This model is governed by an action, referred to here as the gauged generalized Shirafuji (GGS)
action, that consists of twistor variables, auxiliary variables, and Uð1Þ and SUð2Þ gauge fields on the one-
dimensional parameter space of a particle’s worldline. The GGS action remains invariant under
reparametrization and the local Uð1Þ and SUð2Þ transformations of the relevant variables, although the
SUð2Þ symmetry is nonlinearly realized. We consider the canonical Hamiltonian formalism based on the
GGS action in the unitary gauge by following Dirac’s recipe for constrained Hamiltonian systems. It is
shown that just sufficient constraints for the twistor variables are consistently derived by virtue of the gauge
symmetries of the GGS action. In the subsequent quantization procedure, these constraints turn into
simultaneous differential equations for a twistor function. We perform the Penrose transform of this twistor
function to define a massive spinor field of arbitrary rank, demonstrating that the spinor field satisfies
generalized Dirac-Fierz-Pauli equations with SUð2Þ indices. We also investigate the rank-one spinor fields
in detail to clarify the physical meanings of the Uð1Þ and SUð2Þ symmetries.
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I. INTRODUCTION

Twistor theory is basically appropriate for describing
massless systems with conformal symmetry [1–3].
Nevertheless, there have been some approaches to formulat-
ing massive particle systems in terms of twistors [4–17]. For
describing a massive particle, it is common to use two or
more independent twistors. In fact, introducing two twistors
has been considered until recently [9–17], and introducing
more than two twistors was considered in some earlier
studies [4–8]. By virtue of using two or more independent
twistors, an extra symmetry between the twistors occurs
naturally in the system. Penrose, Perjés, and Hughston
proposed the idea of identifying this symmetry with an
internal symmetry in particle physics, such as weak isospin
or flavor, toward explaining internal symmetries of elemen-
tary particles on the basis of twistor theory [4–8]. Although
this idea is quite interesting, it seems that its detailed
investigations have been made from neither a mechanical
point of view nor a dynamical point of view. Therefore we
would have to say that the idea is still poorly understood.
Lagrangian mechanics of a massive spinning particle

formulated in terms of two twistors has been studied in
Refs. [9–17]. Most of these papers begin with generalization
of the Shirafuji action that describes a free massless spinning
particle in four dimensions in terms of a twistor [18]. In fact,

various generalizations of the Shirafuji action have been
presented to specify twistorial models of massive spinning
particles. The generalized Shirafuji actions are constructed
by incorporating a mass-shell condition of a particle and
certain other conditions for the twistor variables. The
canonical formalism based on each generalized Shirafuji
action and its subsequent quantization were also studied in
Refs. [9,11,12,14–17]. It was shown that the canonical
quantization of each twistorial model leads to generalized
Dirac equations or the Dirac-Fierz-Pauli (DFP) equations for
massive spinor fields of arbitrary rank [19–21]. (The super-
symmetric Shirafuji action [18] that is written in terms of a
supertwistor and describes a massless superparticle in four
dimensions has been generalized to the twistorial actions for
massive superparticles in four dimensions [13,14,17]. In this
paper, however, we are not concerned with the supersym-
metric cases.)
In this paper, we consider an alternative generalization of

the Shirafuji action to define a new twistor model of a free
massive spinning particle in four dimensions by using two
twistors. Our formulation is precisely a non-Abelian exten-
sion of the gauged twistor formulation of a free massless
spinning particle in four dimensions [22–24]. In the gauged
twistor formulation, the Shirafuji action is modified in
accordance with the gauge principle so that it can become
invariant under the local Uð1Þ (phase) transformation of
twistor variables. Here “local”means that the transformation
parameter depends on a worldline parameter along the
particle’s worldline. This modification is accomplished by
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gauging the Shirafuji actionwith the aidof aUð1Þgauge field
on the one-dimensional (1D) parameter space of the world-
line and by adding the 1D Chern-Simons term consisting of
theUð1Þ gauge field. Themodified action, named thegauged
Shirafuju action, includes a helicity constraint termdue to the
modification.Hence it follows that this action describes a free
massless spinning particle with a fixed value of helicity.
Remarkably, the gauged Shirafuji action is equivalent to the
action for a massless particle with rigidity, at least at the
classical mechanical level [25]. The Shirafuji action can
furthermore be modified so as to be invariant under the local
scale transformation of twistor variables with the aid of
another gauge field on the 1D parameter space. From the
point of view of twistor theory, it is desirable that the
modified action remains invariant under the combination
of the local Uð1Þ and local scale transformations, which is
referred to in Refs. [23,24] as the complexified local scale
transformation. In actuality, the gauge field for the local scale
transformation can begauged awayby a scalingof the twistor
variables. Therefore it turns out that only the local Uð1Þ
transformation is essential and one does not need to consider
the local scale transformation in practice.
In the next section, we begin with setting up a gener-

alized Shirafuji action that consists of two twistors and
involves a mass-shell condition. Here, for convenience, we
exploit the mass-shell condition with a complexified mass
parameter introduced in Refs. [15,16]. The generalized
Shirafuji action remains invariant under the global Uð1Þ
transformation of twistor variables supplemented with that
of auxiliary fields on the 1D parameter space. In addition,
the generalized Shirafuji action remains invariant under the
global SUð2Þ transformation defined for a doublet of
twistors. In accordance with the gauge principle, we modify
the generalized Shirafuji action in such a way that the
modified action remains invariant under the local Uð1Þ and
SUð2Þ transformations of twistor variables. The modifica-
tion is performed by gauging the generalized Shirafuji
action with the aid of Uð1Þ and SUð2Þ gauge fields on the
1D parameter space and by adding the 1D Uð1Þ and SUð2Þ
Chern-Simons terms. The 1D SUð2Þ Chern-Simons term,
however, vanishes owing to the traceless property of the
SUð2Þ gauge field. For this reason, the variation of the
modified action with respect to the SUð2Þ gauge field
yields too strong constraints that, after quantizing the
model, permit us to have only massive spinless fields in
four dimensions. A similar consequence has been found by
Fedoruk and Lukierski in their twistorial model of a
massive particle [15]. To overcome such an undesirable
situation, they modified the model by incorporating the
Souriau-Wess-Zumino term, following the successful argu-
ment for a twistorial model of a massive spinning particle in
three dimensions [14]. In the present paper, we consider an
alternative approach based on a nonlinear realization of
SUð2Þ to eventually obtain massive spinor fields of
arbitrary rank. This approach makes it possible to define

the 1D Uð1Þ Chern-Simons term consisting of the third (or
diagonal) component of the SUð2Þ gauge field in a particular
gauge. In addition, this approach can provide a novel gauge-
invariant term consisting of the first and second (or off-
diagonal) components of the same SUð2Þ gauge field. With
the new terms, we furthermore modify the generalized
Shirafuji action by adding these terms to the modified action
mentioned above. The completelymodified action is thus the
sum of the gauged twistorial part, the two 1D Uð1Þ Chern-
Simons terms, and the novel term. This action, hereafter
referred to as the gauged generalized Shirafuji (GGS) action,
remains invariant under reparametrization of the worldline
parameter and under the local Uð1Þ and SUð2Þ transforma-
tions. TheGGSactionyields just sufficient constraints for the
twistor variables in a systematic and consistent manner. All
the constraints except for the mass-shell condition are
derived on the basis of the gauge symmetry. This is an
advantage of our gauged twistor model.
Having obtained the GGS action, we study the canonical

Hamiltonian formalism based on it by completely following
theDirac algorithm forHamiltonian systemswith constraints
[31–33]. We see that most of the Dirac brackets between the
twistor variables take on complicated forms. Fortunately,
these Dirac brackets can be reduced to simple Dirac brackets
for new twistor variables that are in one-to-one correspon-
dencewith the old ones. Also, all the constraints for the (old)
twistor variables can be written completely in terms of the
new twistor variables. The canonical quantization of the
twistormodel governed by theGGS action is performedwith
the commutation relations between the operators that corre-
spond to the new twistor variables or the other canonical
variables. Some of the first-class constraints eventually turn
into simultaneous differential equations for a holomorphic
function of half the new twistor variables. Each solution of
the simultaneous differential equations, referred to here as a
twistor function, is characterized by the three quantum
numbers that originate from theUð1Þ and SUð2Þ symmetries
inherent in the GGS action.
We also consider the Penrose transform of the twistor

function to define a four-dimensional spinor field of
arbitrary rank. The spinor field defined in this manner
has extra upper and lower SUð2Þ indices in addition to
dotted and undotted spinor indices. Because of the structure
of the Penrose transform, the number of upper (lower)
SUð2Þ indices is equal to the number of undotted (dotted)
spinor indices. We demonstrate that the present spinor field
satisfies generalized DFP equations with SUð2Þ indices. In
the simplest case, the generalized DFP equations reduce to
the ordinary Dirac equations for particle and antiparticle
spinor fields. Investigating properties of these fields, we
clarify the physical meanings of the Uð1Þ and SUð2Þ
symmetries; ultimately, we see that the Uð1Þ symmetry
is a gauge symmetry concerning the chiralities of the
particle and antiparticle spinor fields, while the SUð2Þ
symmetry is a gauge symmetry realized in a doublet
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consisting of the particle and antiparticle spinor fields.
Therefore it turns out that the idea proposed by Penrose,
Perjés, and Hughston, in which the SUð2Þ symmetry is
identified with the weak isospin symmetry, is not valid in
our gauged twistor formulation.
This paper is organized as follows. In Sec. II, we

elaborate the GGS action, after making some preliminary
arrangements. The canonical Hamiltonian formalism based
on the GGS action is studied in Sec. III, and the subsequent
canonical quantization is performed in Sec. IV. In Sec. V,
we define a massive spinor field of arbitrary rank by the
Penrose transform of a twistor function and demonstrate
that this spinor field satisfies the generalized DFP equa-
tions. In Sec. VI, we particularly investigate the rank-one
spinor fields to clarify the physical meanings of the Uð1Þ
and SUð2Þ symmetries. Section VII is devoted to a
summary and discussion. In the Appendix, we treat the
Pauli-Lubanski pseudovector written in terms of the twistor
variables.

II. CONSTRUCTION OF THE GGS ACTION

In this section, we construct the GGS action for
a free massive spinning particle in four-dimensional
Minkowski space.
In order to describe a massive particle in terms of

twistors, we introduce two twistors ZA
i ¼ ðωα

i ; πi _αÞ ðA ¼
0; 1; 2; 3; α ¼ 0; 1; _α ¼ _0; _1Þ distinguished by the extra
index i ði ¼ 1; 2Þ and their dual twistors Zi

A ¼ ðπiα;ωi _αÞ.
Here, πiα and ωi _α denote the complex conjugates of πi _α
and ωα

i , respectively: π
i
α ≔ πi _α, ωi _α ≔ ωα

i . It is assumed
that ZA

1 and ZA
2 are not proportional to each other: ZA

1 ≠
cZA

2 (c ∈ C), so that Z1
A ≠ cZ2

A. The 2-component spinors
ωα
i and πi _α are related by

ωα
i ¼ izα _απi _α; ð2:1Þ

where zα _α are coordinates of a point in complexified
Minkowski space, CM, with the metric tensor
ημν ¼ diagð1;−1;−1;−1Þ. As can be seen in the literature
on twistor theory [4–16], the four-momentum of a massive
particle is expressed as pα _α ¼ π1απ1_α þ π2απ2_α ≡ πiαπi _α. (For
this reason, πi _α and πiα are named as momentum spinors.)
The squared norm of pα _α remains nonvanishing even after

using the formula πi _απ
_α
i ¼ ϵ _α _βπi _απi_β ¼ 0 (no sum with

respect to i) and its complex conjugate,1 because the cross

terms provided from different twistors still survive:
pα _αpα _α ¼ πiαπi _απ

jαπ _α
j ¼ 2jπ1_απ _α

2j2. Thus the mass-shell
condition pα _αpα _α ¼ m2 with a mass parameter m can be
written as

πiαπi _απ
jαπ _α

j ¼ m2: ð2:2Þ

It is easy to see that this condition is equivalent to

ϵijπi _απ
_α
j −

ffiffiffi
2

p
meiφ ¼ 0; ð2:3aÞ

ϵijπ
i
απ

jα −
ffiffiffi
2

p
me−iφ ¼ 0; ð2:3bÞ

where φ is a real parameter. These equations have
been incorporated in twistorial models of massive
spinning particles [15,16], in which meiφ=

ffiffiffi
2

p
is called

a complexified mass parameter. In this paper, we also
adopt the equation pair Eqs. (2.3a) and (2.3b) as the
mass-shell condition because of the convenience for our
formulation.
The Shirafuji action of a free massless spinning

particle2 can be generalized to describe a free spinning
particle of mass m propagating in four-dimensional
Minkowski space M. A generalized Shirafuji action is
indeed given by

Sm ¼
Z

τ1

τ0

dτ

�
i
2
ðZi

A
_ZA
i − ZA

i
_Z
i
AÞ

þ hðϵijπi _απ _α
j −

ffiffiffi
2

p
meiφÞ

þ hðϵijπiαπjα −
ffiffiffi
2

p
me−iφÞ

�
; ð2:4Þ

where ZA
i ¼ ZA

i ðτÞ and Zi
A ¼ Zi

AðτÞ are understood
as complex scalar fields on the one-dimensional
parameter space T ≔ fτjτ0 ≤ τ ≤ τ1g of a particle’s
worldline, and h ¼ hðτÞ is treated as a complex scalar-
density field of weight 1 on T . [That is, h transforms
as hðτÞ → h0ðτ0Þ ¼ ðdτ=dτ0ÞhðτÞ under the proper repar-
ametrization τ → τ0 ¼ τ0ðτÞ (dτ0=dτ > 0).] The exponent φ
is now considered a real scalar field on T and hence is
treated as a real function φ ¼ φðτÞ. This setting is different
from that in Refs. [15,16], in which the complexified
mass parameter is regarded as a constant. A dot over a
variable denotes its derivative with respect to τ.1The two-dimensional Levi-Civita symbols ϵαβ, ϵαβ, ϵ _α

_β, ϵ _α _β,
ϵij, and ϵij are defined as ϵ01 ¼ ϵ01 ¼ ϵ_0 _1 ¼ ϵ_0 _1 ¼ ϵ12 ¼ ϵ12 ¼ 1

and conform to the rules ϵαβ ¼ ϵ _α _β, ϵαβ ¼ ϵ _α _β, ϵ
ij ¼ ϵij, and

ϵij ¼ ϵij. The contravariant spinors π _α
i and π̄iα are defined by

π _α
i ¼ ϵ _α _βπi_β and π̄

iα ¼ ϵαβπ̄iβ, respectively. These relations can be

expressed as πi _α ¼ π
_β
i ϵ _β _α and π̄iα ¼ π̄iβϵβα.

2With a twistor ZA and its dual twistor Z̄A, the Shirafuji action
is defined by [18]

S0 ¼
Z

τ1

τ0

dτ
i
2
ðZ̄A

_ZA − ZA _̄ZAÞ:
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The variation of Sm with respect to h and h yields the mass-
shell condition (2.3).3

The generalized Shirafuji action Sm remains invariant
under the reparametrization τ → τ0 ¼ τ0ðτÞ. In addition, Sm
remains invariant under the global Uð1Þ transformation

ZA
i → Z0A

i ¼ eiθZA
i ; Zi

A → Z0i
A ¼ e−iθZi

A; ð2:5aÞ

h → h0 ¼ e−2iθh; h → h0 ¼ e2iθh; ð2:5bÞ

φ → φ0 ¼ φþ 2θ; ð2:5cÞ

with a real constant parameter θ and under the global SUð2Þ
transformation

ZA
i → Z0A

i ¼ Ui
jZA

j ; Zi
A → Z0i

A ¼ Zj
AU

†
j
i; ð2:6aÞ

h → h0 ¼ h; h → h0 ¼ h; ð2:6bÞ

φ → φ0 ¼ φ; ð2:6cÞ

with a constant matrix U belonging to SUð2Þ. The SUð2Þ
invariance of Sm can be verified using ϵijUi

kUj
l ¼ ϵkl

and ϵijU†
k
iU†

l
j ¼ ϵkl together with the unitarity property

of U. We thus see that Sm possesses two global internal
symmetries specified by Uð1Þ and SUð2Þ. We also see that

the two terms Zi
A
_ZA
i and ZA

i
_Z
i
A in Eq. (2.4) are invariant

under the global SUð2; 2Þ transformation (or more
simply, the global conformal transformation) ZA

i → Z0A
i ¼

UA
BZB

i ; Z
i
A → Z0i

A ¼ Zi
BU

†B
A, with a constant matrix U

belonging to SUð2; 2Þ. In contrast, the two terms
ϵijπi _απ

_α
j and ϵijπ

i
απ

jα in Eq. (2.4) are invariant only under
the global SLð2;CÞ ⋉ R1;3 transformation (or more simply,
the global Poincaré transformation). Hence it turns out that
the symmetry reduction from SUð2; 2Þ to SLð2;CÞ ⋉ R1;3

occurs in Sm as a result of adding the term proportional to h
and its complex conjugate term.
Now, we perform a gauging of the global Uð1Þ and

SUð2Þ symmetries in such a way that the gauged action
remains invariant under the local Uð1Þ and SUð2Þ trans-
formations that depend on τ. That is, we consider a Uð1Þ ×
SUð2Þ gauge theory on the parameter space T . To this end,
in accordance with the gauge principle, we introduce a
Uð1Þ gauge field, a ¼ aðτÞ, and an SUð2Þ gauge field,
b ¼ bðτÞ. The field a is assumed to be a real scalar-density

field of weight 1 on T , while b is assumed to be a 2 × 2
traceless Hermitian matrix that behaves as a scalar-density
field of weight 1 on T . The field b can be represented as
ðbijÞ with its matrix elements bij and can be expanded in
terms of the Pauli matrices σr (r ¼ 1, 2, 3), satisfying
½σr; σs� ¼ 2iϵrstσt, as b ¼ brσr. Here, br ¼ brðτÞ are real
scalar-density fields of weight 1 on T . The (primitive)
gauged action, Smg, can be obtained by replacing d=dτ in
Sm with a covariant derivative operator as follows:

Smg ¼
Z

τ1

τ0

dτ

�
i
2
ðZi

ADZA
i − ZA

i DZi
AÞ

þ hðϵijπi _απ _α
j −

ffiffiffi
2

p
meiφÞ

þ hðϵijπiαπjα −
ffiffiffi
2

p
me−iφÞ

�
; ð2:7Þ

where

DZA
i ≔ _ZA

i − iaZA
i − ibijZA

j ; ð2:8aÞ

DZi
A ≔ _Z

i
A þ iaZi

A þ iZj
Abj

i: ð2:8bÞ

We see that the action Smg is reparametrization invariant. It
can easily be verified that Smg remains invariant under the
local Uð1Þ transformation

ZA
i → Z0A

i ¼ eiθðτÞZA
i ; ð2:9aÞ

Zi
A → Z0i

A ¼ e−iθðτÞZi
A; ð2:9bÞ

h → h0 ¼ e−2iθðτÞh; ð2:9cÞ

h → h0 ¼ e2iθðτÞh; ð2:9dÞ

φ → φ0 ¼ φþ 2θðτÞ; ð2:9eÞ

a → a0 ¼ aþ _θ; ð2:9fÞ

b → b0 ¼ b; ð2:9gÞ

with a real gauge function θ ¼ θðτÞ and under the local
SUð2Þ transformation

ZA
i → Z0A

i ¼ Ui
jðτÞZA

j ; ð2:10aÞ

Zi
A → Z0i

A ¼ Zj
AU

†
j
iðτÞ; ð2:10bÞ

h → h0 ¼ h; ð2:10cÞ

h → h0 ¼ h; ð2:10dÞ

φ → φ0 ¼ φ; ð2:10eÞ

3Instead of the action Sm, we can consider an alternative action

S0m ¼
Z

τ1

τ0

dτ

�
i
2
ðZ̄i

A
_ZA
i − ZA

i
_̄Z
i
AÞ þ

1

2
fðπ̄iαπi _απ̄jαπ _α

j −m2Þ
�
;

where f ¼ fðτÞ is a real scalar-density field of weight 1 on T .
The variation of S0m with respect to f yields the mass-shell
condition (2.2).
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a → a0 ¼ a; ð2:10fÞ

b → b0 ¼ UbU† − i _UU†; ð2:10gÞ

with a gauge function U ¼ UðτÞ taking its value in SUð2Þ.
Because each of a and br is a single-component gauge field
associated with d=dτ, we cannot define their field strengths.
For this reason, there exists neither the Maxwell action for
a nor the Yang-Mills action for b. As for a, it is possible to
define the (nonvanishing) 1D Uð1Þ Chern-Simons term

Sa ¼ −2s
Z

τ1

τ0

dτa; ð2:11Þ

where s is a real constant. The 1D SUð2Þ Chern-Simons
term for b, i.e., Sb ¼ −2t

R
τ1
τ0
dτTrb vanishes by the reason

of Trb ¼ 0. Since a is a scalar-density field of weight 1, Sa
is reparametrization invariant. Also, Sa remains invariant
under the gauge transformation (2.9f), provided that θ
satisfies an appropriate boundary condition such as
θðτ1Þ ¼ θðτ0Þ. The SUð2Þ invariance of Sa is evident from
Eq. (2.10f). Therefore we can consider the reparametriza-
tion-invariant and gauge-invariant action ~Smg ≔ Smg þ Sa.

4

However, ~Smg eventually turns out to govern only massive
spinless fields in four dimensions owing to the too strong
constraints Zi

Aσri
jZA

j ¼ 0 (r ¼ 1, 2, 3) that are derived by

varying ~Smg with respect to br.5 [Here, σrjk denotes the
ðj; kÞ entry of the Pauli matrix σr.] To avoid such an
undesirable situation, next we perform a modification of
~Smg with the aid of a nonlinear realization of SUð2Þ.

Let us now consider the coset space SUð2Þ=Uð1Þ
ð≅CP1Þ and representative elements, Vðξ;ξÞ (V ∈ SUð2Þ,
ξ ∈ C), that are chosen one by one from each left coset of
Uð1Þ in SUð2Þ. Here, ξ labels the cosets in a way of one-to-
one correspondence and can be regarded as an inhomo-
geneous coordinate of a point on SUð2Þ=Uð1Þ. [To
completely coordinatize SUð2Þ=Uð1Þ, it is necessary to
use ξ−1 in addition to ξ.] The representative elements
Vðξ; ξÞ are assumed to constitute a smooth function of ξ
and ξ so that we can simply treat Vðξ; ξÞ as an SUð2Þ-
valued smooth function. We consider ξ to be a complex
scalar field ξ ¼ ξðτÞ on T . The left action of U on Vðξ; ξÞ
generates a nonlinear transformation ξ → ξ0 ¼ ξ0ðξÞ in
accordance with

Vðξ; ξÞ → Vðξ0; ξ0Þ ¼ UðτÞVðξ; ξÞΘ−1ðτÞ; ð2:12Þ
where ΘðτÞ ≔ expfiϑðτÞσ3g, and ϑ ¼ ϑðτÞ is a real gauge
function [26–28]. Note here that ϑ is determined depending
on ðξ; ξÞ as well as U. Using V ¼ Vðξ; ξÞ, we define the
following new fields on T :

ZA
i ≔ V†

i
jZA

j ; Zi
A ≔ Zj

AVj
i; ð2:13aÞ

b ≔ V†bV − i _V†V: ð2:13bÞ

The field b can be expanded as b ¼ brσr, where br ¼ brðτÞ
are real fields. Clearly, br behave as scalar-density fields of
weight 1 on T . With the new fields, the local Uð1Þ
transformation (2.9) reads

ZA
i → Z0A

i ¼ eiθðτÞZA
i ; ð2:14aÞ

Zi
A → Z0i

A ¼ e−iθðτÞZi
A; ð2:14bÞ

h → h0 ¼ e−2iθðτÞh; ð2:14cÞ

h → h0 ¼ e2iθðτÞh; ð2:14dÞ

φ → φ0 ¼ φþ 2θðτÞ; ð2:14eÞ

a → a0 ¼ aþ _θ; ð2:14fÞ

b → b0 ¼ b: ð2:14gÞ

On the other hand, from Eqs. (2.10) and (2.12), we have

ZA
i → Z0A

i ¼ Θi
jðτÞZA

j ; ð2:15aÞ

Zi
A → Z0i

A ¼ Zj
AΘ†

j
iðτÞ; ð2:15bÞ

h → h0 ¼ h; ð2:15cÞ

h → h0 ¼ h; ð2:15dÞ

4The action ~Smg is a simple and natural generalization of the
gauged Shirafuji action (without invariance under the local scale
transformation of ZA and Z̄A)

~S0g ¼
Z

τ1

τ0

dτ

�
i
2
ðZ̄ADZA − ZAD̄Z̄AÞ − 2sa

�
;

where D ≔ d=dτ − ia. This action describes a free massless
spinning particle of helicity s [22–24] and is equivalent to the
action for a massless particle with rigidity at least at the classical
mechanical level [25].

5From the action ~Smg, the Pauli-Lubanski spin vector Wα _α is
found to be

Wα _α ¼ Trσri
jπ̄iαπ _α

j ; Tr ≔
1

2
Z̄i
Aσri

jZA
j

(see Appendix). Using the mass-shell condition (2.3), we can
show that Wα _αWα _α ¼ −m2TrTr. Obviously, Tr ¼ 0 (r ¼ 1, 2, 3)
leads to Wα _αWα _α ¼ 0. Hence, it follows that only massive
spinless particles are admissible in the model defined by ~Smg.
Accordingly, it turns out that only massive spinless fields are
provided after quantizing the model.
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φ → φ0 ¼ φ; ð2:15eÞ

a → a0 ¼ a; ð2:15fÞ

b → b0 ¼ ΘbΘ† þ _ϑσ3: ð2:15gÞ
Equation (2.15) is precisely a local Uð1Þ transformation.
Hereafter, we refer to the local Uð1Þ transformation
specified by Eq. (2.9), or Eq. (2.14), as the Uð1Þa trans-
formation and refer to that specified by Eq. (2.15) as the
Uð1Þb transformation. Their corresponding gauge groups
are simply denoted as Uð1Þa and Uð1Þb. The local SU(2)
transformation is not manifestly seen in Eq. (2.15); instead,
it is realized as a nonlinear transformation of ξ. We may say
that the function V converts the local SUð2Þ transformation
into the Uð1Þb transformation while ξ undergoes a non-
linear transformation. Equation (2.15g) defines the trans-
formation rules of the fields br,

b1 → b01 ¼ b1 cos 2ϑþ b2 sin 2ϑ; ð2:16aÞ

b2 → b02 ¼ −b1 sin 2ϑþ b2 cos 2ϑ; ð2:16bÞ

b3 → b03 ¼ b3 þ _ϑ: ð2:16cÞ

We see that bι̂ ðι̂ ¼ 1; 2Þ transform homogeneously, obey-
ing together an SOð2Þ rotation, while b3 transforms
inhomogeneously as a Uð1Þ gauge field.
Now, we can provide the following two terms:

Sb12 ¼ −k
Z

τ1

τ0

dτ
ffiffiffiffiffiffiffiffi
bι̂bι̂

p
; ð2:17Þ

with bι̂bι̂ ≔ ðb1Þ2 þ ðb2Þ2, and

Sb3 ¼ −2t
Z

τ1

τ0

dτb3: ð2:18Þ

Here, k is a positive constant and t is a real constant. Since
br are scalar-density fields of weight 1 on T , both Sb12 and
Sb3 are reparametrization invariant. It is obvious that Sb12
remains invariant under the SOð2Þ rotation defined by
Eqs. (2.16a) and (2.16b). Also, Sb3, which is the 1D Chern-
Simons term for b3, remains invariant under the gauge
transformation (2.16c), provided that ϑ satisfies an appro-
priate boundary condition such as ϑðτ1Þ ¼ ϑðτ0Þ. We thus
see that both Sb12 and Sb3 possess theUð1Þb symmetry. The
Uð1Þa invariance of Sb12 and Sb3 is evident from
Eq. (2.14g). For our investigation, it is convenient to
express Sb12 as

Sbe ¼ −
Z

τ1

τ0

dτ

�
1

2e
bι̂bι̂ þ k2

2
e
�

ð2:19Þ

with the aid of e ¼ eðτÞ being a positive scalar-density
field of weight 1 on T . It is assumed that e does not change

under the Uð1Þa and Uð1Þb transformations. (At this stage,
we should include the transformation rule e → e0 ¼ e in
each of Eqs. (2.14) and (2.15).) The action Smg can be

rewritten in terms of ZA
i , Z

i
A, h, h, φ, a, and b. The resulting

rewritten expression of Smg is precisely what is obtained by

replacing ZA
i , Zi

A, and b in Eq. (2.7) with ZA
i , Zi

A,
and b, respectively. With this expression, we modify ~Smg ¼
Smg þ Sa by adding Sbe and Sb3 to it. That is, we consider
the modified action S ≔ Smg þ Sa þ Sbe þ Sb3, or more
precisely,

S ¼
Z

τ1

τ0

dτ

�
i
2
ðZi

ADZA
i − ZA

i DZi
AÞ − 2sa − 2tb3

−
1

2e
bι̂bι̂ −

k2

2
eþ hðϵijϖi _αϖ

_α
j −

ffiffiffi
2

p
meiφÞ

þ hðϵijϖi
αϖ

jα −
ffiffiffi
2

p
me−iφÞ

�
; ð2:20Þ

with

DZA
i ≔ _ZA

i − iaZA
i − ibijZA

j ; ð2:21aÞ

DZi
A ≔ _Z

i
A þ iaZi

A þ iZj
Abj

i: ð2:21bÞ

Here,ϖi _α andϖi
α are momentum-spinor components of the

twistors ZA
i ¼ ðϱαi ;ϖi _αÞ and Zi

A ¼ ðϖi
α; ϱi _αÞ, respectively.

We refer to S as the GGS action. From Eq. (2.13a), it
follows that ϖi _α ¼ V†

i
jπj _α and ϖi

α ¼ πjαVj
i. The other

components are given by ϱαi ¼ V†
i
jωα

j and ϱ
i _α ¼ ωj _αVj

i. It

is now obvious thatϖi _α ¼ ϖi
α and ϱαi ¼ ϱi _α. In terms of ZA

i ,
Eq. (2.1) can be written as

ϱαi ¼ izα _αϖi _α: ð2:22Þ

It is clear from (2.20) that the GGS action S remains
invariant under the reparametrization and the Uð1Þa and
Uð1Þb transformations. However, in actuality, S remains
invariant under the reparametrization and the Uð1Þa and
local SUð2Þ transformations, because the Uð1Þb trans-
formation is induced by the local SUð2Þ transformation
in accordance with Eq. (2.12). In fact, we can express S in a
manifestly SUð2Þ invariant form as follows:

S ¼
Z

τ1

τ0

dτ
�
i
2
ðZi

ADZA
i − ZA

i DZi
AÞ

− 2sa − 2tðbrVr
3 − _ξeξ3 − _ξeξ

3Þ

−
1

e
gξξDξDξ −

k2

2
eþ hðϵijπi _απ _α

j −
ffiffiffi
2

p
meiφÞ

þ hðϵijπiαπjα −
ffiffiffi
2

p
me−iφÞ

�
; ð2:23Þ
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with gξξ ≔ eξι̂eξ
ι̂, Dξ ≔ _ξ − brKr

ξ, and Dξ ≔ _ξ − brKr
ξ.

Here, gξξ is a metric on SUð2Þ=Uð1Þ, ðKr
ξ; Kr

ξÞ ðr ¼
1; 2; 3Þ are the SUð2Þ Killing vectors on this coset space,
and eξr and eξ

r ðr ¼ ι̂; 3Þ are defined by eξrσr ¼
−iV†ð∂V=∂ξÞ and eξ

rσr ¼ −iV†ð∂V=∂ξÞ, respectively.

Also, Vr
3 is defined according to V†σrV ¼ Vr

ι̂σι̂ þ
Vr

3σ3. Using the transformation rule (2.12), we can show

that Vr
ι̂ ¼ Kr

ξeξι̂ þ Kr
ξeξ

ι̂. In addition, it can be verified

that Kr ≔ Kr
ξ∂=∂ξþ Kr

ξ∂=∂ξ satisfy the SUð2Þ com-
mutation relations. In the expression (2.20), we should
understand that the local SUð2Þ symmetry of S is hidden
rather than is broken, because no symmetry breaking
mechanisms are incorporated in the model. The action
(2.20) can be regarded as the action (2.23) in a particular
gauge ξðτÞ ¼ ξ0, where ξ0 is a constant such that
Vðξ0; ξ0Þ ¼ 1. We term this gauge the unitary gauge,
because it corresponds to the so-called unitary gauge in
massive Yang-Mills theory [29,30]. Then b can be said to
be the SUð2Þ gauge field in the unitary gauge. The action
(2.20) can be written as

S ¼
Z

τ1

τ0

dτ
�
i
2
ðZi

A
_ZA
i − ZA

i
_Z
i
AÞ þ aðZi

AZA
i − 2sÞ

þ b3ðZj
Aσ3j

kZA
k − 2tÞ þ bι̂Zj

Aσι̂j
kZA

k

−
1

2e
bι̂bι̂ −

k2

2
eþ hðϵijϖi _αϖ

_α
j −

ffiffiffi
2

p
meiφÞ

þ hðϵijϖi
αϖ

jα −
ffiffiffi
2

p
me−iφÞ

�
: ð2:24Þ

III. CANONICAL FORMALISM

In this section, we study the canonical Hamiltonian
formalism of the model governed by the GGS action in the
unitary gauge.
Let L be the Lagrangian defined in Eq. (2.24) as the

integrand of the GGS action S. We treat the variables
ðZA

i ;Z
i
A; a; br;e; h; h;φÞ as canonical coordinates. Their

canonical conjugate momenta are found to be

Pi
A ≔

∂L
∂ _ZA

i

¼ i
2
Zi
A; ð3:1aÞ

PA
i ≔

∂L
∂ _Zi

A

¼ −
i
2
ZA
i ; ð3:1bÞ

PðaÞ ≔
∂L
∂ _a ¼ 0; ð3:1cÞ

PðbÞ
r ≔

∂L
∂ _br ¼ 0; ð3:1dÞ

PðeÞ ≔
∂L
∂ _e ¼ 0; ð3:1eÞ

PðhÞ ≔
∂L
∂ _h ¼ 0; ð3:1fÞ

PðhÞ ≔
∂L
∂ _h

¼ 0; ð3:1gÞ

PðφÞ ≔
∂L
∂ _φ ¼ 0: ð3:1hÞ

The canonical Hamiltonian corresponding to L is defined
by the Legendre transform of L,

HC ≔ _ZA
i Pi

A þ _Z
i
APA

i þ _aPðaÞ þ _brPðbÞ
r

þ _ePðeÞ þ _hPðhÞ þ _hPðhÞ þ _φPðφÞ − L

¼ −aðZi
AZA

i − 2sÞ − b3ðZj
Aσ3j

kZA
k − 2tÞ

− bι̂Zj
Aσι̂j

kZA
k þ 1

2e
bι̂bι̂ þ k2

2
e

− hðϵijϖi _αϖ
_α
j −

ffiffiffi
2

p
meiφÞ

− hðϵijϖi
αϖ

jα −
ffiffiffi
2

p
me−iφÞ: ð3:2Þ

The equal-time Poisson brackets between the canonical
variables are given by

fZA
i ; P

j
Bg ¼ δjiδ

A
B; fZi

A; P
B
j g ¼ δijδ

B
A;

fa; PðaÞg ¼ 1; fbr; PðbÞ
s g ¼ δrs;

fe; PðeÞg ¼ 1; fh; PðhÞg ¼ 1;

fh; PðhÞg ¼ 1; fφ; PðφÞg ¼ 1;

all others ¼ 0; ð3:3Þ

which can be used for calculating the Poisson bracket
between two arbitrary analytic functions of the canonical
variables.
Equations (3.1a)–(3.1h) are read as the primary con-

straints

ϕi
A ≔ Pi

A −
i
2
Zi
A ≈ 0; ð3:4aÞ

ϕA
i ≔ PA

i þ i
2
ZA
i ≈ 0; ð3:4bÞ

ϕðaÞ ≔ PðaÞ ≈ 0; ð3:4cÞ

ϕðbÞ
r ≔ PðbÞ

r ≈ 0; ð3:4dÞ

ϕðeÞ ≔ PðeÞ ≈ 0; ð3:4eÞ
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ϕðhÞ ≔ PðhÞ ≈ 0; ð3:4fÞ

ϕðhÞ ≔ PðhÞ ≈ 0; ð3:4gÞ

ϕðφÞ ≔ PðφÞ ≈ 0; ð3:4hÞ

where the symbol “≈” denotes the weak equality. Now, we
follow the Dirac algorithm for constrained Hamiltonian
systems [31–33] to establish the canonical formalism of the
present model. We see that the Poisson brackets between
the primary constraint functions ϕ’s are summarized in

fϕi
A;ϕ

B
j g ¼ −iδijδBA all others ¼ 0: ð3:5Þ

The Poisson brackets between HC and the primary con-
straint functions are found to be

fϕi
A; HCg ¼ aZi

A þ brσrjiZ
j
A; ð3:6aÞ

fϕA
i ; HCg ¼ aZA

i þ brσrijZA
j ; ð3:6bÞ

fϕðaÞ; HCg ¼ Zi
AZA

i − 2s; ð3:6cÞ

fϕðbÞ
ι̂ ; HCg ¼ Zj

Aσι̂j
kZA

k −
1

e
bι̂; ð3:6dÞ

fϕðbÞ
3 ; HCg ¼ Zj

Aσ3j
kZA

k − 2t; ð3:6eÞ

fϕðeÞ; HCg ¼ 1

2e2
ðbι̂bι̂ − k2e2Þ; ð3:6fÞ

fϕðhÞ; HCg ¼ ϵijϖi _αϖ
_α
j −

ffiffiffi
2

p
meiφ; ð3:6gÞ

fϕðhÞ; HCg ¼ ϵijϖ
i
αϖ

jα −
ffiffiffi
2

p
me−iφ; ð3:6hÞ

fϕðφÞ; HCg ¼ −i
ffiffiffi
2

p
mðheiφ − he−iφÞ: ð3:6iÞ

With HC and the primary constraint functions, we define
the total Hamiltonian

HT ≔ HC þ uAi ϕ
i
A þ uiAϕ

A
i þ uðaÞϕðaÞ þ urðbÞϕ

ðbÞ
r

þ uðeÞϕðeÞ þ uðhÞϕðhÞ þ uðhÞϕ
ðhÞ þ uðφÞϕðφÞ; ð3:7Þ

where uAi , uiA, uðaÞ, urðbÞ, uðeÞ, uðhÞ, uðhÞ, and uðφÞ are
Lagrange multipliers. The time evolution of a function f of
the canonical variables is governed by the canonical
equation

_f ¼ ff;HTg: ð3:8Þ

Using this equation together with Eqs. (3.4)–(3.7), we can
evaluate the time evolution of the primary constraint
functions. Because the primary constraints (3.4a)–(3.4h)

are valid at any time, they must be preserved in time. This
fact leads to the consistency conditions

_ϕi
A ¼ fϕi

A; HTg ≈ aZi
A þ brσrjiZ

j
A − iuiA ≈ 0; ð3:9aÞ

_ϕ
A
i ¼ fϕA

i ; HTg ≈ aZA
i þ brσrijZA

j þ iuAi ≈ 0; ð3:9bÞ

_ϕðaÞ ¼ fϕðaÞ; HTg ≈ Zi
AZA

i − 2s ≈ 0; ð3:9cÞ

_ϕðbÞ
ι̂ ¼ fϕðbÞ

ι̂ ; HTg ≈ Zj
Aσι̂j

kZA
k −

1

e
bι̂ ≈ 0; ð3:9dÞ

_ϕðbÞ
3 ¼ fϕðbÞ

3 ; HTg ≈ Zj
Aσ3j

kZA
k − 2t ≈ 0; ð3:9eÞ

_ϕðeÞ ¼ fϕðeÞ; HTg ≈
1

2e2
ðbι̂bι̂ − k2e2Þ ≈ 0; ð3:9fÞ

_ϕðhÞ ¼ fϕðhÞ; HTg ≈ ϵijϖi _αϖ
_α
j −

ffiffiffi
2

p
meiφ ≈ 0; ð3:9gÞ

_ϕðhÞ ¼ fϕðhÞ; HTg ≈ ϵijϖ
i
αϖ

jα −
ffiffiffi
2

p
me−iφ ≈ 0; ð3:9hÞ

_ϕðφÞ ¼ fϕðφÞ; HTg ≈ −i
ffiffiffi
2

p
mðheiφ − he−iφÞ ≈ 0: ð3:9iÞ

Equations (3.9a) and (3.9b) determine uiA and uAi , respec-
tively, as follows:

uiA ¼ −iaZi
A − ibrσrjiZ

j
A; ð3:10aÞ

uAi ¼ iaZA
i þ ibrσrijZA

j : ð3:10bÞ

In contrast, Eqs. (3.9c)–(3.9i) give rise to the secondary
constraints

χðaÞ ≔ Zi
AZA

i − 2s ≈ 0; ð3:11aÞ

χðbÞι̂ ≔ Zj
Aσι̂j

kZA
k −

1

e
bι̂ ≈ 0; ð3:11bÞ

χðbÞ3 ≔ Zj
Aσ3j

kZA
k − 2t ≈ 0; ð3:11cÞ

χðeÞ ≔
1

2
ðbι̂bι̂ − k2e2Þ ≈ 0; ð3:11dÞ

χðhÞ ≔ ϵijϖi _αϖ
_α
j −

ffiffiffi
2

p
meiφ ≈ 0; ð3:11eÞ

χðhÞ ≔ ϵijϖ
i
αϖ

jα −
ffiffiffi
2

p
me−iφ ≈ 0; ð3:11fÞ

χðφÞ ≔ iðheiφ − he−iφÞ ≈ 0: ð3:11gÞ

All the Poisson brackets between HC and the secondary
constraint functions χ’s vanish. The Poisson brackets
between the primary and secondary constraint functions
are found to be
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fχðaÞ;ϕi
Ag ¼ Zi

A; fχðaÞ;ϕA
i g ¼ ZA

i ;

fχðbÞr ;ϕi
Ag ¼ σrj

iZj
A; fχðbÞr ;ϕA

i g ¼ σri
jZA

j ;

fχðbÞι̂ ;ϕðbÞ
ȷ̂ g ¼ −

1

e
δι̂ ȷ̂; fχðbÞι̂ ;ϕðeÞg ¼ 1

e2
bι̂;

fχðeÞ;ϕðbÞ
ȷ̂ g ¼ bȷ̂; fχðeÞ;ϕðeÞg ¼ −k2e;

fχðhÞ;ϕi _αg ¼ 2ϵijϖ _α
j ; fχðhÞ;ϕðφÞg ¼ −i

ffiffiffi
2

p
meiφ;

fχðhÞ;ϕα
i g ¼ 2ϵijϖ

jα; fχðhÞ;ϕðφÞg ¼ i
ffiffiffi
2

p
me−iφ;

fχðφÞ;ϕðhÞg ¼ ieiφ; fχðφÞ;ϕðhÞg ¼ −ie−iφ;

fχðφÞ;ϕðφÞg ¼ −ðheiφ þ he−iφÞ;
all others ¼ 0: ð3:12Þ

All the Poisson brackets between the secondary constraint
functions vanish.
Next we investigate the time evolution of the secondary

constraint functions using Eqs. (3.8) and (3.12). The time
evolution of χðaÞ is evaluated as

_χðaÞ ¼ fχðaÞ; HTg ≈ uAi Z
i
A þ uiAZ

A
i : ð3:13Þ

The condition _χðaÞ ≈ 0 is identically fulfilled with the aid of
Eqs. (3.10a) and (3.10b), and hence no new constraints are

obtained from _χðaÞ ≈ 0. The time evolution of χðbÞr is
evaluated as

_χðbÞr ¼ fχðbÞr ; HTg
≈ uAi σrj

iZj
A þ uiAσri

jZA
j

þ usðbÞfχðbÞr ;ϕðbÞ
s g þ uðeÞfχðbÞr ;ϕðeÞg

¼ −2ϵrstbsZ
j
Aσtj

kZA
k

þ usðbÞfχðbÞr ;ϕðbÞ
s g þ uðeÞfχðbÞr ;ϕðeÞg

≈ −
2

e
ϵrsȷ̂bsbȷ̂ − 4tϵrs3bs

þ usðbÞfχðbÞr ;ϕðbÞ
s g þ uðeÞfχðbÞr ;ϕðeÞg ð3:14Þ

by using Eqs. (3.10a), (3.10b), (3.11b), and (3.11c). Then

we see that the condition _χðbÞι̂ ≈ 0 determines uι̂ðbÞ as

follows:

uι̂ðbÞ ¼ 2ϵι̂ ȷ̂bȷ̂ðb3 − 2teÞ þ 1

e
bι̂uðeÞ; ð3:15Þ

while _χðbÞ3 ≈ 0 is identically satisfied. The time evolution of
χðeÞ is calculated as

_χðeÞ ¼ fχðeÞ; HTg

≈ bι̂uι̂ðbÞ − k2euðeÞ ¼
2

e
χðeÞuðeÞ ≈ 0 ð3:16Þ

by using Eqs. (3.15) and (3.11d). Hence _χðeÞ ≈ 0 is identi-
cally satisfied. The time evolution of χðhÞ is evaluated as

_χðhÞ ¼ fχðhÞ; HTg
≈ 2ϵijui _αϖ _α

j − i
ffiffiffi
2

p
meiφuðφÞ

¼ 2iaϵijϖi _αϖ
_α
j − i

ffiffiffi
2

p
meiφuðφÞ

≈ i
ffiffiffi
2

p
meiφð2a − uðφÞÞ ð3:17Þ

by using Eqs. (3.10b), (3.11e) and the formula
σrk

iϵkj ¼ σrk
jϵki. (Its associated formula σri

kϵkj ¼ σrj
kϵki

is also valid.) From the condition _χðhÞ ≈ 0, the Lagrange
multiplier uðφÞ is determined to be uðφÞ ¼ 2a. Similarly,

_χðhÞ ≈ −i
ffiffiffi
2

p
me−iφð2a − uðφÞÞ ≈ 0 leads to uðφÞ ¼ 2a. The

time evolution of χðφÞ is found to be

_χðφÞ ¼ fχðφÞ; HTg
≈ iðuðhÞ − uðhÞÞ − 2aðheiφ þ he−iφÞ; ð3:18Þ

so that the condition _χðφÞ ≈ 0 gives uðhÞ − uðhÞ ¼
−2iaðheiφ þ he−iφÞ. From the above analysis, we see that
no further constraints can be derived; thus, the procedure for
deriving constraints is now completed. We also see that uAi ,
uiA, u

ι̂
ðbÞ, uðhÞ − uðhÞ, and uðφÞ are determined to be what are

written in terms of other variables such as the canonical
coordinates, while uðaÞ, u3ðbÞ, uðeÞ, and uðhÞ þ uðhÞ still remain

as arbitrary functions of τ.
We have obtained all the Poisson brackets between the

constraint functions, as in Eqs. (3.5) and (3.12). However, it
is difficult to classify the constraints in Eqs. (3.4) and (3.11)
into first and second classes on the basis of Eqs. (3.5) and
(3.12) together with the vanishing Poisson brackets
between the secondary constraint functions. To find simpler
forms of the relevant Poisson brackets, we first define

~ϕðeÞ ≔ ϕðeÞ þ 1

e
bι̂ϕðbÞ

ι̂ ; ð3:19aÞ

~ϕðφÞ ≔ ϕðφÞ − ihϕðhÞ þ ihϕðhÞ; ð3:19bÞ

~χðaÞ ≔ χðaÞ þ iZj
Aϕ

A
j − iϕj

AZ
A
j ; ð3:19cÞ

~χðbÞι̂ ≔ χðbÞι̂ þ iZj
Aσι̂j

kϕA
k − iϕj

Aσι̂j
kZA

k − 2teϵι̂ ȷ̂ϕ
ðbÞ
ȷ̂ ;

ð3:19dÞ

~χðbÞ3 ≔ χðbÞ3 þ iZj
Aσ3j

kϕA
k − iϕj

Aσ3j
kZA

k þ 2ϵι̂ ȷ̂bι̂ϕ
ðbÞ
ȷ̂ ;

ð3:19eÞ
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~χðeÞ ≔ χðeÞ þ ebι̂ð~χðbÞι̂ − 2teϵι̂ ȷ̂ϕ
ðbÞ
ȷ̂ Þ; ð3:19fÞ

~χðhÞ ≔ χðhÞ þ 2iϵjkϕj _αϖ
_α
k; ð3:19gÞ

~χðhÞ ≔ χðhÞ − 2iϵjkϕ
j
αϖkα; ð3:19hÞ

where ϕi _α and ϕi
α are spinor components of ϕA

i ¼ ðϕα
i ;ϕi _αÞ

and ϕi
A ¼ ðϕi

α;ϕi _αÞ, respectively. Furthermore, it is con-
venient to define

υð�Þ ≔
1

2
ffiffiffi
2

p
m

�
~ϕðφÞ � 1

2
~χðaÞ
�
; ð3:20aÞ

ϕðþÞ ≔
1

2
ðe−iφϕðhÞ þ eiφϕðhÞÞ; ð3:20bÞ

ϕð−Þ ≔
1

2i
ðe−iφϕðhÞ − eiφϕðhÞÞ; ð3:20cÞ

~χðþÞ ≔
1

2
ðe−iφ ~χðhÞ þ eiφ ~χðhÞÞ; ð3:20dÞ

~χð−Þ ≔
1

2i
ðe−iφ ~χðhÞ − eiφ ~χðhÞÞ: ð3:20eÞ

It can readily be seen that the set of all the constraints given
in Eqs. (3.4) and (3.11), i.e.,

ðϕi
A;ϕ

A
i ;ϕ

ðaÞ;ϕðbÞ
r ;ϕðeÞ;ϕðhÞ;ϕðhÞ;ϕðφÞ; χðaÞ;

χðbÞι̂ ; χðbÞ3 ; χðeÞ; χðhÞ; χðhÞ; χðφÞÞ ≈ 0; ð3:21Þ
is equivalent to the new set of constraints

ðϕi
A;ϕ

A
i ;ϕ

ðaÞ;ϕðbÞ
r ; ~ϕðeÞ;ϕðþÞ;ϕð−Þ; υðþÞ; υð−Þ;

~χðbÞι̂ ; ~χðbÞ3 ; ~χðeÞ; ~χðþÞ; ~χð−Þ; χðφÞÞ ≈ 0: ð3:22Þ
We can show that except for

fϕi
A;ϕ

B
j g ¼ −iδijδBA; fϕðbÞ

ι̂ ; ~χðbÞȷ̂ g ¼ 1

e
δι̂ ȷ̂;

fυðþÞ; ~χð−Þg ¼ 1; fχðφÞ;ϕð−Þg ¼ 1; ð3:23Þ

all other Poisson brackets between the constraint functions
in Eq. (3.22) vanish. In this way, the relevant Poisson
brackets are simplified with the aid of the new constraint
functions. The Poisson brackets between the constraint
functions are summarized in a matrix form as

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

ϕj
B ϕB

j ϕðaÞ ϕðbÞ
ȷ̂ ϕðbÞ

3
~ϕðeÞ ϕðþÞ ϕð−Þ υðþÞ υð−Þ ~χðbÞȷ̂ ~χðbÞ3 ~χðeÞ ~χðþÞ ~χð−Þ χðφÞ

ϕi
A 0 −iδijδBA 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ϕA
i iδjiδ

A
B 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ϕðaÞ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ϕðbÞ
ι̂ 0 0 0 0 0 0 0 0 0 0 1

eδι̂ ȷ̂ 0 0 0 0 0

ϕðbÞ
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

~ϕðeÞ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ϕðþÞ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ϕð−Þ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1
υðþÞ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

υð−Þ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

~χðbÞι̂ 0 0 0 − 1
eδι̂ ȷ̂ 0 0 0 0 0 0 0 0 0 0 0 0

~χðbÞ3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

~χðeÞ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

~χðþÞ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

~χð−Þ 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0

χðφÞ 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

:
ð3:24Þ

We can immediately see from this matrix that ϕðaÞ ≈ 0, ϕðbÞ
3 ≈ 0, ~ϕðeÞ ≈ 0, ϕðþÞ ≈ 0, υð−Þ ≈ 0, ~χðbÞ3 ≈ 0, ~χðeÞ ≈ 0, and

~χðþÞ ≈ 0 are first-class constraints, while ϕi
A ≈ 0, ϕA

i ≈ 0, ϕðbÞ
ι̂ ≈ 0, ϕð−Þ ≈ 0, υðþÞ ≈ 0, ~χðbÞι̂ ≈ 0, ~χð−Þ ≈ 0, and χðφÞ ≈ 0 are

second-class constraints. Following Dirac’s approach to second-class constraints, we define the Dirac bracket by using the largest
invertible submatrix of the matrix (3.24). For arbitrary smooth functions f and g of the canonical variables, the Dirac bracket is
defined by
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ff; ggD
≔ ff; gg þ iff;ϕi

AgfϕA
i ; gg − iff;ϕA

i gfϕi
A; gg

− eff; ~χðbÞι̂ gfϕðbÞ
ι̂ ; gg þ eff;ϕðbÞ

ι̂ gf~χðbÞι̂ ; gg
þ ff; χðφÞgfϕð−Þ; gg − ff;ϕð−ÞgfχðφÞ; gg
þ ff; υðþÞgf~χð−Þ; gg − ff; ~χð−ÞgfυðþÞ; gg: ð3:25Þ

The Dirac bracket between f and each of the constraint

functionsϕi
A,ϕ

A
i ,ϕ

ðbÞ
ι̂ ,ϕð−Þ, υðþÞ, ~χðbÞι̂ , ~χð−Þ, and χðφÞ vanishes

identically. For this reason, the second-class constraints can be
set strongly equal to zero and may be expressed as ϕi

A ¼ 0,

ϕA
i ¼ 0, ϕðbÞ

ι̂ ¼ 0, ϕð−Þ ¼ 0, υðþÞ ¼ 0, ~χðbÞι̂ ¼ 0, ~χð−Þ ¼ 0,
and χðφÞ ¼ 0, as long as the Dirac bracket ff; ggD is adopted.
We see that the second-class constraints lead to

Pi
A ¼ i

2
Zi
A; PA

i ¼ −
i
2
ZA
i ; ð3:26aÞ

bι̂ ¼ eZj
Aσι̂j

kZA
k ; PðbÞ

ι̂ ¼ 0; ð3:26bÞ

h ¼ he−iφ; PðhÞ ¼ eiφPðhÞ; ð3:26cÞ

h ¼ heiφ; PðhÞ ¼ e−iφPðhÞ; ð3:26dÞ

φ ¼ −
i
2
ln

�
ϵijϖi _αϖ

_α
j

ϵijϖ
i
αϖ

jα

�
; PðφÞ ¼ −

1

2
χðaÞ; ð3:26eÞ

where h ¼ hðτÞ is a real scalar-density field of weight 1 on T ,
and PðhÞ its associated momentum variable. At this stage, Pi

A,

PA
i , b

ι̂, PðbÞ
ι̂ , h, PðhÞ, h, PðhÞ, φ, and PðφÞ are treated as

dependent variables specified by Eq. (3.26), while the other

canonicalvariablesZA
i ,Z

i
A,a,PðaÞ,b3,PðbÞ

3 ,e,PðeÞ,h, andPðhÞ

are treated as independent variables. By virtue of the strong
equalities of the second-class constraints, the set of all the first-
class constraints, i.e,

ðϕðaÞ;ϕðbÞ
3 ; ~ϕðeÞ;ϕðþÞ; υð−Þ; ~χðbÞ3 ; ~χðeÞ; ~χðþÞÞ ≈ 0; ð3:27Þ

turns out to be equivalent to the set consisting of

ϕðaÞ ≈ 0; ð3:28aÞ

ϕðbÞ
3 ≈ 0; ð3:28bÞ

ϕðeÞ ≈ 0; ð3:28cÞ

ϕðhÞ ≔ PðhÞ ≈ 0; ð3:28dÞ

χðaÞ ≈ 0; ð3:28eÞ

χðbÞ3 ≈ 0; ð3:28fÞ

χðeÞ ≈ 0; ð3:28gÞ

χðhÞ ≈ 0; ð3:28hÞ

χðhÞ ≈ 0: ð3:28iÞ

Here we have taken into account both Eqs. (3.28h) and (3.28i)
for later convenience, although it is sufficient to consider one of
them in actuality.
The Dirac brackets between the spinor components of ZA

i

and Zi
A are found from Eq. (3.25) to be

fϱαi ; ϱβjgD ¼ i

4
ffiffiffi
2

p
m
eiφðϱαi ϵjkϖkβ − ϱβjϵikϖ

kαÞ;

fϱαi ;ϖj_βgD ¼ −
i

4
ffiffiffi
2

p
m
eiφϵikϖkαϖj _β;

fϖi _α;ϖj_βgD ¼ 0;

fϱαi ; ϱj_βgD ¼ i

4
ffiffiffi
2

p
m
ðeiφϵikϖkαϱj_β þ e−iφϱαi ϵ

jkϖ
_β
kÞ;

fϱαi ;ϖj
βgD ¼ −iδjiδαβ þ

i

4
ffiffiffi
2

p
m
eiφϵikϖkαϖj

β;

fϖi _α; ϱj
_βgD ¼ −iδjiδ

_β
_α þ

i

4
ffiffiffi
2

p
m
e−iφϖi _αϵ

jkϖ
_β
k;

fϖi _α;ϖ
j
βgD ¼ 0;

fϱi _α; ϱj_βgD ¼ −
i

4
ffiffiffi
2

p
m
e−iφðϱi _αϵjkϖ _β

k − ϱj_βϵikϖ _α
kÞ;

fϱi _α;ϖj
βgD ¼ i

4
ffiffiffi
2

p
m
e−iφϵikϖ _α

kϖ
j
β;

fϖi
α;ϖ

j
βgD ¼ 0: ð3:29Þ

Using Eq. (3.29) and taking into account Eqs. (3.28h) and
(3.28i), we can show that

fχðaÞ; ϱαi gD ¼ i
2
ϱαi ; fχðaÞ;ϖi _αgD ¼ i

2
ϖi _α;

fχðaÞ;ϖi
αgD ¼ −

i
2
ϖi

α; fχðaÞ; ϱi _αgD ¼ −
i
2
ϱi _α: ð3:30Þ

Many of the Dirac brackets in Eq. (3.29) are rather
complicated. Fortunately, however, Eq. (3.29) can be
expressed in the form of simple canonical brackets as

fραi ;ϖj
βgD ¼ −iδjiδαβ; fϖi _α; ρj

_βgD ¼ −iδjiδ
_β
_α;

all others ¼ 0; ð3:31Þ

in terms of ϖi _α, ϖi
α, and

ραi ≔ ϱαi þ
1

2
ffiffiffi
2

p
m
eiφϵijϖjαχðaÞ; ð3:32aÞ
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ρi _α ≔ ϱi _α þ 1

2
ffiffiffi
2

p
m
e−iφϵijϖ _α

j χ
ðaÞ: ð3:32bÞ

In showing this fact, it is convenient to use Eqs. (3.28e)
and (3.30). Note here that the weak equalities ραi ≈ ϱαi ,
ρi _α ≈ ϱi _α hold owing to Eq. (3.28e). Now we define the
new twistors WA

i ≔ ðραi ;ϖi _αÞ and Wi
A ≔ ðϖi

α; ρi _αÞ, with
which Eq. (3.31) can concisely be written as

fWA
i ;W

j
BgD ¼ −iδjiδAB;

fWA
i ;W

B
j gD ¼ 0; fWi

A;W
j
BgD ¼ 0: ð3:33Þ

Using Eqs. (3.28h), (3.28i), and the formulas given under
Eq. (3.17), we can show for

χ̆ðaÞ ≔ Wi
AWA

i − 2s; ð3:34aÞ

χ̆ðbÞ3 ≔ Wj
Aσ3j

kWA
k − 2t ð3:34bÞ

that

χ̆ðaÞ ¼ 2χðaÞ; ð3:35aÞ

χ̆ðbÞ3 ¼ χðbÞ3 : ð3:35bÞ

Accordingly, the first-class constraints (3.28e) and (3.28f)
read

χ̆ðaÞ ≈ 0; ð3:36aÞ

χ̆ðbÞ3 ≈ 0: ð3:36bÞ

With Eq. (3.35a), Eqs. (3.32a) and (3.32b) can be solved
inversely as

ϱαi ¼ ραi −
1

4
ffiffiffi
2

p
m
eiφϵijϖjαχ̆ðaÞ; ð3:37aÞ

ϱi _α ¼ ρi _α −
1

4
ffiffiffi
2

p
m
e−iφϵijϖ _α

j χ̆
ðaÞ: ð3:37bÞ

Hence it follows that there is a one-to-one correspondence
between ðZA

i ;Z
i
AÞ and ðWA

i ;W
i
AÞ. Taking into account this

fact, we hereafter adopt WA
i and Wi

A as canonical variables
instead of ZA

i and Zi
A. The first equation in Eq. (3.26b) can

be written as bι̂ ¼ eWj
Aσι̂j

kWA
k . Substituting this into

Eq. (3.11d), we see that the first-class constraint χðeÞ ≈ 0
can be expressed as

χ̆ðeÞ ≔ Tι̂Tι̂ −
1

4
k2 ≈ 0; ð3:38Þ

where Tι̂ ðι̂ ¼ 1; 2Þ are defined in

T0 ≔
1

2
Wi

AWA
i ; Tr ≔

1

2
Wj

Aσrj
kWA

k : ð3:39Þ

Using Eq. (3.33), we can readily verify that T0 and Tr
constitute a bases of the Uð1Þa × SUð2Þ Lie algebra in the
following sense:

fT0;TrgD ¼ 0; fTr;TsgD ¼ ϵrstTt: ð3:40Þ

The canonical variables that we need to consider at the
present stage are WA

i , W
i
A, a, PðaÞ, b3, PðbÞ

3 , e, PðeÞ, h, and
PðhÞ. All the Dirac brackets between these variables are
given in Eq. (3.33) and

fa; PðaÞgD ¼ 1; fb3; PðbÞ
3 gD ¼ 1;

fe; PðeÞgD ¼ 1; fh; PðhÞgD ¼ 1

2
;

all others ¼ 0: ð3:41Þ

We also need to consider the first class constraints (3.28a)–
(3.28d), (3.36a), (3.36b), (3.38), (3.28h), and (3.28i).

IV. CANONICAL QUANTIZATION

In this section, we perform the canonical quantization of
the Hamiltonian system studied in Sec. III. To this end, in
accordance with Dirac’s method of quantization, we
introduce the operators f̂ and ĝ corresponding to the
functions f and g, respectively, and set the commutation
relation

½f̂; ĝ� ¼ i dff; ggD ð4:1Þ

in units such that ℏ ¼ 1. Here, dff; ggD denotes the operator
corresponding to the Dirac bracket ff; ggD. From
Eqs. (3.33), (3.41), and (4.1), we have the canonical
commutation relations

½ŴA
i ; Ŵ

j
B� ¼ δjiδ

A
B; ð4:2aÞ

½ŴA
i ; Ŵ

B
j � ¼ 0; ½Ŵi

A; Ŵ
j
B� ¼ 0; ð4:2bÞ

½â; P̂ðaÞ� ¼ i; ½b̂3; P̂ðbÞ
3 � ¼ i; ð4:2cÞ

½ê; P̂ðeÞ� ¼ i; ½ĥ; P̂ðhÞ� ¼ i
2
; ð4:2dÞ

all others ¼ 0: ð4:2eÞ

The commutation relations (4.2a) and (4.2b) govern
together so-called twistor quantization [1,2].
In the procedure of canonical quantization, the first-class

constraints are treated as conditions imposed on the
physical states, after the replacement of the first-class
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constraint functions by the corresponding operators. In
the present model, the physical state conditions are found
from Eqs. (3.28a)–(3.28d), (3.36a), (3.36b), (3.38), (3.28h),
and (3.28i) to be

ϕ̂ðaÞjFi ¼ P̂ðaÞjFi ¼ 0; ð4:3aÞ

ϕ̂ðbÞ
3 jFi ¼ P̂ðbÞ

3 jFi ¼ 0; ð4:3bÞ

ϕ̂ðeÞjFi ¼ P̂ðeÞjFi ¼ 0; ð4:3cÞ

ϕ̂ðhÞjFi ¼ P̂ðhÞjFi ¼ 0; ð4:3dÞ

ˆ̆χðaÞjFi ¼
�
1

2
ðŴi

AŴ
A
i þ ŴA

i Ŵ
i
AÞ − 2s

�
jFi

¼ 2ðT̂0 − s − 2ÞjFi ¼ 0; ð4:3eÞ

ˆ̆χðbÞ3 jFi ¼
�
1

2
ðŴj

Aσ3j
kŴA

k þ ŴA
k σ3j

kŴ
j
AÞ − 2t

�
jFi

¼ 2ðT̂3 − tÞjFi ¼ 0; ð4:3fÞ

ˆ̆χðeÞjFi ¼
�
T̂ι̂T̂ι̂ −

1

4
k2
�
jFi ¼ 0; ð4:3gÞ

χ̂ðhÞjFi ¼ ðϵijϖ̂i _αϖ̂
_α
j −

ffiffiffi
2

p
meiφ̂ÞjFi ¼ 0; ð4:3hÞ

χ̂ðhÞjFi ¼ ðϵijϖ̂i
αϖ̂

jα −
ffiffiffi
2

p
me−iφ̂ÞjFi ¼ 0: ð4:3iÞ

Here, jFi denotes a physical state, T̂0 and T̂r ðr ¼ ι̂; 3Þ are
defined by

T̂0 ≔
1

2
ŴA

i Ŵ
i
A; T̂r ≔

1

2
σrj

kŴA
k Ŵ

j
A; ð4:4Þ

and φ̂ is defined according to the first equation in
Eq. (3.26e) as

φ̂ ≔ −
i
2
½ln ðϵijϖ̂i _αϖ̂

_α
j Þ − lnðϵijϖ̂i

αϖ̂
jαÞ�: ð4:5Þ

In defining the operators ˆ̆χðaÞ, ˆ̆χðbÞ3 , and ˆ̆χðeÞ, we have
obeyed the Weyl ordering rule and have used the commu-
tation relation (4.2a) to simplify the Weyl ordered oper-
ators. Using Eqs. (4.2a) and (4.2b), we can easily show that

½T̂0; T̂r� ¼ 0; ½T̂r; T̂s� ¼ iϵrstT̂t; ð4:6Þ

which is precisely the quantum mechanical counterpart of
Eq. (3.40). It is evident that T̂0 is the generator ofUð1Þa and
T̂r ðr ¼ 1; 2; 3Þ are the generators of SUð2Þ. In particular,
T̂3 is the generator of Uð1Þb.

Now we introduce the bra-vector

hW; a; b3; e; hj ≔ h0j expð−WA
i Ŵ

i
A þ iaP̂ðaÞ þ ib3P̂ðbÞ

3

þ ieP̂ðeÞ þ 2ihP̂ðhÞÞ ð4:7Þ

with a reference bra-vector h0j satisfying

h0jŴA
i ¼ h0jâ ¼ h0jb̂3 ¼ h0jê ¼ h0jĥ ¼ 0: ð4:8Þ

Using the commutation relations (4.2a)–(4.2e), we can
show that

hW; a; b3;e; hjŴA
i ¼ WA

i hW; a; b3; e; hj; ð4:9aÞ

hW; a; b3; e; hjâ ¼ ahW; a; b3; e; hj; ð4:9bÞ

hW; a; b3; e; hjb̂3 ¼ b3hW; a; b3; e; hj; ð4:9cÞ

hW; a; b3; e; hjê ¼ ehW; a; b3; e; hj; ð4:9dÞ

hW; a; b3; e; hjĥ ¼ hhW; a; b3; e; hj: ð4:9eÞ

Equation (4.9a) can be decomposed into two parts,

hW; a; b3; e; hjρ̂αi ¼ ραi hW; a; b3; e; hj; ð4:10aÞ

hW; a; b3; e; hjϖ̂i _α ¼ ϖi _αhW; a; b3; e;hj: ð4:10bÞ

Also, it is easy to see that

hW; a; b3; e; hjŴi
A ¼ −

∂
∂WA

i
hW; a; b3; e; hj; ð4:11aÞ

hW; a; b3; e; hjP̂ðaÞ ¼ −i
∂
∂a hW; a; b3; e; hj; ð4:11bÞ

hW; a; b3; e; hjP̂ðbÞ
3 ¼ −i

∂
∂b3 hW; a; b3; e; hj; ð4:11cÞ

hW; a; b3; e; hjP̂ðeÞ ¼ −i
∂
∂e hW; a; b3; e; hj; ð4:11dÞ

hW; a; b3; e; hjP̂ðhÞ ¼ −
i
2

∂
∂h hW; a; b3; e; hj: ð4:11eÞ

Equation (4.11a) can be decomposed into two parts,

hW; a; b3; e; hjϖ̂i
α ¼ −

∂
∂ραi hW; a; b3; e; hj; ð4:12aÞ

hW; a; b3; e;hjρ̂i _α ¼ −
∂

∂ϖi _α
hW; a; b3; e; hj: ð4:12bÞ

Multiplying each of Eqs. (4.3a)–(4.3i) by hW; a; b3; e; hj
on the left and using Eqs. (4.9)–(4.12), we obtain a set of
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simultaneous differential equations for FðW; a; b3; e;hÞ ≔
hW; a; b3; e; hjFi as follows:

∂
∂aF ¼ 0; ð4:13aÞ

∂
∂b3 F ¼ 0; ð4:13bÞ

∂
∂eF ¼ 0; ð4:13cÞ

∂
∂hF ¼ 0; ð4:13dÞ

T
̬

0F ¼ ðsþ 2ÞF; ð4:13eÞ

T
̬

3F ¼ tF; ð4:13fÞ

T
̬

ι̂T
̬

ι̂F ¼ 1

4
k2F; ð4:13gÞ

ϵijϖi _αϖ
_α
jF ¼

ffiffiffi
2

p
meiφ

̬

F; ð4:13hÞ

ϵijϵ
αβ ∂
∂ραi

∂
∂ρβj

F ¼
ffiffiffi
2

p
me−iφ

̬

F: ð4:13iÞ

Here, T
̬

0 and T
̬

r ðr ¼ ι̂; 3Þ are defined by

T
̬

0 ≔ −
1

2
WA

i
∂

∂WA
i
; T

̬

r ≔ −
1

2
σrj

kWA
k

∂
∂WA

j
; ð4:14Þ

and φ
̬
is defined by

φ
̬
≔ −

i
2

�
ln ðϵijϖi _αϖ

_α
j Þ − ln

�
ϵijϵ

αβ ∂
∂ραi

∂
∂ρβj

��
: ð4:15Þ

Equations (4.13a)–(4.13d) imply that F is actually inde-
pendent of a, b3, e, and h. Hence it follows that F is a
function of the twistors WA

i only. The holomorphic func-
tions of WA

i , such as F, are often referred to as the twistor
functions. As can be seen immediately, Eqs. (4.13h) and
(4.13i) are respectively equivalent to

ϖi _αϖ
_α
jF ¼ mffiffiffi

2
p ϵijeiφ

̬

F; ð4:16aÞ

ϵαβ
∂
∂ραi

∂
∂ρβj

F ¼ mffiffiffi
2

p ϵije−iφ
̬

F: ð4:16bÞ

Combining Eqs. (4.13e) and (4.13f), we have

WA
1

∂
∂WA

1

F ¼ −2ðs1 þ 1ÞF; ð4:17aÞ

WA
2

∂
∂WA

2

F ¼ −2ðs2 þ 1ÞF; ð4:17bÞ

where

s1 ≔
1

2
ðsþ tÞ; s2 ≔

1

2
ðs − tÞ: ð4:18Þ

The pair of Eqs. (4.13e) and (4.13f) is equivalent to the pair
of Eqs. (4.17a) and (4.17b). Obviously, Eqs. (4.17a) and
(4.17b) are simultaneously satisfied by a homogeneous
twistor function of degree −2s1 − 2with respect toWA

1 and
degree −2s2 − 2with respect toWA

2 . These degrees must be
integers so that F can be a single-valued function ofWA

i . In
this way, the allowed values of s1 and s2 are restricted to
arbitrary integer or half-integer values, and accordingly s
and t are also restricted to arbitrary integer or half-integer
values. We thus see that the Chern-Simons coefficients 2s
and 2t, which are coefficients of the one-dimensional
Chern-Simons terms Sa and Sb3, respectively, are quantized
to be arbitrary integer values.
The operators T

̬

r fulfill the SUð2Þ commutation relation

½T
̬

r;T
̬

s� ¼ iϵrstT
̬

t: ð4:19Þ

Following the general method for solving the eigenvalue
problem in the SUð2Þ Lie algebra [34], we can simulta-
neously solve the eigenvalue equation for the Casimir

operator T
̬

rT
̬

r ¼ T
̬

ι̂T
̬

ι̂ þ T
̬

3T
̬

3, i.e.,

T
̬

rT
̬

rF ¼ ΛF; ð4:20Þ

and Eq. (4.13f) to obtain

Λ ¼ IðI þ 1Þ; I ¼ 0;
1

2
; 1;

3

2
;…; ð4:21aÞ

t ¼ −I;−I þ 1;…; I − 1; I: ð4:21bÞ

In deriving Eqs. (4.21a) and (4.21b), we assume the
existence of a positive-definite inner product in the function
space consisting of twistor functions. (As for the twistor
formulation of a massless system, a twistor-function space
with a positive-definite inner product has been established
[35].) Since t takes integer or half-integer values as
explained above, I also takes integer or half-integer values
accordingly. From Eqs. (4.13f), (4.13g), (4.20), and
(4.21a), the allowed values of the positive constant k are
determined to be

k ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
IðI þ 1Þ − t2

q
: ð4:22Þ

In this way, the coefficient of Sb12 is also quantized in
addition to the Chern-Simons coefficients. It is now clear
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that the twistor function F is characterized by the set of
three quantum numbers ðs; I; tÞ, or equivalently, by
ðI; s1; s2Þ; for this reason, it is convenient to label F as
Fs;I;t or FI;s1;s2.

V. PENROSE TRANSFORM AND A MASSIVE
SPINOR FIELD OF ARBITRARY RANK

In this section, we define a spinor field of arbitrary rank
by the Penrose transform of FI;s1;s2 . We also demonstrate
that this spinor field satisfies generalized DFP equations
with SUð2Þ indices.
Let us consider the Penrose transform of FI;s1;s2

specified by

Ψ
i1…ip
α1…αp;j1…jq; _α1… _αq

ðzÞ

¼ 1

ð2πiÞ4
I
Σ
eipφ

̬

ϖj1 _α1 � � �ϖjq _αq

×
∂

∂ρα1i1
� � � ∂

∂ραpip
FI;s1;s2ðWÞd4ϖ ð5:1Þ

with

d4ϖ ≔ dϖ1_0∧dϖ1_1∧dϖ2_0∧dϖ2_1 ð5:2Þ

to define the rank-ðpþ qÞ spinor field Ψ
i1…ip
α1…αp;j1…jq; _α1… _αq

(occasionally abbreviated asΨ) on complexifiedMinkowski
space CM. Here, Σ denotes a suitable four-dimensional
contour. Equation (5.1) is identified as a nonprojective
form of the Penrose transform in the massive case [2].6 It
should be noted that Ψ has the upper and lower SUð2Þ
indices in addition to the dotted and undotted spinor
indices. Because of the structure of Eq. (5.1), the number
of upper (lower) SUð2Þ indices is equal to the number of
undotted (dotted) spinor indices. It is obvious thatΨ has the
symmetric properties

Ψ
i1…im…in…ip
α1…αm…αn…αp;j1…jq; _α1… _αq

¼ Ψ
i1…in…im…ip
α1…αn…αm…αp;j1…jq; _α1… _αq

; ð5:3aÞ

Ψ
i1…ip
α1…αp;j1…ja…jb…jq; _α1… _αa… _αb… _αq

¼ Ψ
i1…ip
α1…αp;j1…jb…ja…jq; _α1… _αb… _αa… _αq

: ð5:3bÞ

Suppose that among i1;…; ip, the number of 1’s is p1 and
the number of 2’s is p2ð¼ p − p1Þ. Similarly, suppose that
among j1;…; jq, the number of 1’s is q1 and the number of
2’s is q2ð¼ q − q1Þ. The integral in Eq. (5.1) can remain
nonvanishing if

s1 ¼
1

2
ðq1 − p1Þ; s2 ¼

1

2
ðq2 − p2Þ: ð5:4Þ

Combining Eqs. (4.18) and (5.4), we have

s ¼ 1

2
ðq1 − p1 þ q2 − p2Þ; ð5:5aÞ

t ¼ 1

2
ðq1 − p1 − q2 þ p2Þ: ð5:5bÞ

Now we can show that

∂
∂zβ _β FðWÞ ¼ ∂ργk

∂zβ _β
∂
∂ργk FðWÞ ¼ ∂ϱγk

∂zβ _β
∂
∂ργk FðWÞ

¼ ∂ðizγ _γϖk_γÞ
∂zβ _β

∂
∂ργk FðWÞ ¼ iϖ

_β
kϵ

βγ ∂
∂ργk FðWÞ:

ð5:6Þ

Here the weak equality ργj ≈ ϱγj, Eq. (2.22), and the formula

∂=∂zβ _β ¼ ϵβαϵ_β _α∂=∂zα _α have been used. The derivative of
Ψwith respect to zβ _β can be calculated by using Eq. (5.6) as
follows:

∂
∂zβ _β Ψ

i1…ip
α1…αp;j1…jq; _α1… _αq

ðzÞ

¼ 1

ð2πiÞ4
I
Σ
eipφ

̬

ϖj1 _α1 � � �ϖjq _αq

×
∂

∂ρα1i1
� � � ∂

∂ραpip
∂

∂zβ _β FI;s1;s2ðWÞd4ϖ

¼ i
ð2πiÞ4

I
Σ
eipφ

̬

ϖj1 _α1ϖ
_β
kϖj2 _α2 � � �ϖjq _αq

×
∂

∂ρα2i2
� � � ∂

∂ραpip
ϵβγ

∂
∂ρα1i1

∂
∂ργk FI;s1;s2ðWÞd4ϖ: ð5:7Þ

Contracting over the indices _β and _α1 in Eq. (5.7) and using
Eq. (4.16a), we obtain

6The two-dimensional projective form of the Penrose trans-
form (5.1) is given by

Ψ
i1…ip
α1…αp;j1…jq; _α1… _αq

ðzÞ

¼ 1

ð2πiÞ2
I
Γ
eipφ

̬

ϖj1 _α1 � � �ϖjq _αq

×
∂

∂ρα1i1
� � � ∂

∂ραpip
FI;s1;s2ðWÞϖ1_βdϖ

_β
1∧ϖ2_γdϖ

_γ
2;

where Γ denotes a suitable two-dimensional contour [3]. We can
also find the three-dimensional projective form of the Penrose
transform (5.1) [8].
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∂
∂zβ _β Ψ

i1…ip
α1…αp;j1…jq; _β _α2… _αq

ðzÞ

¼ mffiffiffi
2

p ϵβγϵj1k
i

ð2πiÞ4
I
Σ
eiðpþ1Þφ̬ ϖj2 _α2 � � �ϖjq _αq

×
∂
∂ργk

∂
∂ρα1i1

� � � ∂
∂ραpip

FI;s1;s2ðWÞd4ϖ

¼ imffiffiffi
2

p ϵβγϵj1kΨ
ki1…ip
γα1…αp;j2…jq; _α2… _αq

ðzÞ: ð5:8Þ

Similarly, contracting over the indices β and α1 in Eq. (5.7)
and using Eq. (4.16b), we obtain

∂
∂zβ _β Ψ

i1…ip
βα2…αp;j1…jq; _α1… _αq

ðzÞ

¼ mffiffiffi
2

p ϵ_β _γϵi1k
i

ð2πiÞ4
I
Σ
eiðp−1Þφ

̬

ϖk_γϖj1 _α1 � � �ϖjq _αq

×
∂

∂ρα2i2
� � � ∂

∂ραpip
FI;s1;s2ðWÞd4ϖ

¼ imffiffiffi
2

p ϵ_β _γϵi1kΨ
i2…ip
α2…αp;kj1…jq;_γ _α1… _αq

ðzÞ: ð5:9Þ

In this way, it has been shown that the spinor field Ψ
satisfies the generalized DFP equations with SUð2Þ indices

i
ffiffiffi
2

p ∂
∂zβ _β Ψ

i1…ip
α1…αp;j1…jq; _β _α2… _αq

þmϵβγϵj1kΨ
ki1…ip
γα1…αp;j2…jq; _α2… _αq

¼ 0; ð5:10aÞ

i
ffiffiffi
2

p ∂
∂zβ _β Ψ

i1…ip
βα2…αp;j1…jq; _α1… _αq

þmϵ_β _γϵi1kΨ
i2…ip
α2…αp;kj1…jq;_γ _α1… _αq

¼ 0: ð5:10bÞ

Using Eqs. (5.10a) and (5.10b) and noting

∂
∂zα _β

∂
∂zβ _β ¼

1

2
δβα

∂
∂zγ _γ

∂
∂zγ _γ ; ð5:11Þ

we can derive the Klein-Gordon equation

� ∂
∂zβ _β

∂
∂zβ _β þm2

�
Ψ

i1…ip
α1…αp;j1…jq; _α1… _αq

¼ 0: ð5:12Þ

This makes it clear that Ψ is a field of mass m. Thus, we
obtain a spinor field of arbitrary rank with mass m by
means of the Penrose transform (5.1).

VI. RANK-ONE SPINOR FIELDS AND PHYSICAL
MEANINGS OF THE GAUGE SYMMETRIES

In this section, we investigate the rank-one spinor fields
in detail to clarify the physical meanings of the Uð1Þa,
Uð1Þb, and SUð2Þ symmetries as well as those of the
constants s and t.
Now we particularly consider Eq. (5.10a) in the case

ðp; qÞ ¼ ð0; 1Þ and Eq. (5.10b) in the case ðp; qÞ ¼ ð1; 0Þ,
which respectively read

i
ffiffiffi
2

p ∂
∂zα _β Ψ

_β
i ðzÞ −mϵijΨ

j
αðzÞ ¼ 0; ð6:1aÞ

i
ffiffiffi
2

p ∂
∂zβ _αΨ

i
βðzÞ þmϵijΨ _α

j ðzÞ ¼ 0; ð6:1bÞ

with Ψ
_β
i ≔ ϵ_β _γΨi_γ . Equation (6.1a) with i ¼ 1 and

Eq. (6.1b) with i ¼ 2 can be combined in the form of
the ordinary Dirac equation

Dψ1ðzÞ ¼ 0; ψ1ðzÞ ≔
 
Ψ2

βðzÞ
Ψ

_β
1ðzÞ

!
; ð6:2Þ

while Eq. (6.1a) with i ¼ 2 and Eq. (6.1b) with i ¼ 1 can
be combined, after replacing zα _α by −zα _α, as

Dψ2ðzÞ ¼ 0; ψ2ðzÞ ≔
 
Ψ1

βð−zÞ
Ψ

_β
2ð−zÞ

!
: ð6:3Þ

In Eqs. (6.2) and (6.3), D denotes the Dirac operator

D ≔

 −mδβα i
ffiffiffi
2

p ∂
∂zα_β

i
ffiffiffi
2

p ∂
∂zβ _α −mδ _α_β

!
: ð6:4Þ

The charge conjugate of ψ1ðzÞ is found to be

ψ c
1ðzÞ ≔

�
0 −ϵβγ

ϵ _β _γ 0

�
ψ1ðzÞ

¼
�

0 −ϵβγ

ϵ_β _γ 0

��
Ψ2_γðzÞ
Ψ1γðzÞ

�
¼
 
Ψ1

βðzÞ
Ψ

_β
2ðzÞ

!
; ð6:5Þ

where the arguments of ψ1, namely zα _α, have been replaced

by their complex conjugates zα _α ≔ zα _α so that ψ c
1 can be a

holomorphic function of zα _α. Using the complex conjugates
of Eqs. (6.1a) and (6.1b), we can show that Dψ c

1ðzÞ ¼ 0.
Since ψ2 and ψ c

1 satisfy the same Dirac equation and have
the same spinor and SUð2Þ indices, they can be identified
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with each other up to an overall constant.7 (This identi-
fication may be confirmed by the CPT symmetry.) If ψ1ðzÞ
is a spinor field of a particle with four-momentum ðE; pÞ,
then ψ c

1ðzÞð≃ψ2ðzÞÞ is regarded as a spinor field of a
corresponding antiparticle with four-momentum ð−E;−pÞ.
Accordingly, ψ2ð−zÞ ¼ ðΨ1

αðzÞ;Ψ _α
2ðzÞÞT is considered a

spinor field of the antiparticle with four-momentum ðE; pÞ.
In the light of this fact, it is clear that Ψ2

αðzÞ and Ψ1
αðzÞ

represent a left-handed particle and a corresponding left-
handed antiparticle, respectively, while Ψ _α

1ðzÞ and Ψ _α
2ðzÞ

represent a right-handed particle and a corresponding right-
handed antiparticle, respectively, as summarized in Table I.
We thus see that the index i of Ψi

αðzÞ and Ψ _α
i ðzÞ distin-

guishes between a particle and its antiparticle.
Using Eq. (5.5), we can obtain the possible values of s

and t for each of the rank-one spinor fields as in Table II.
We observe that the left-handed spinor fields Ψi

αðzÞ (i ¼ 1,
2) have s ¼ −1=2, while the right-handed spinor fields
Ψ _α

i ðzÞ (i ¼ 1, 2) have s ¼ 1=2. Hence, s turns out to be a
quantum number specifying the chirality of a spinor field.

Since s is an eigenvalue of T
̬

0 up to the additive constant 2,

as can be seen from (4.13e), T
̬

0 can be interpreted as the
operator of chirality. Accordingly, Uð1Þa can be identified
as the gauge group of chirality, and the Uð1Þa symmetry is
physically understood as a gauge symmetry leading to
chirality conservation. We also observe that the particle
spinor fields Ψ2

αðzÞ and Ψ _α
1ðzÞ have t ¼ 1=2, while the

antiparticle spinor fields Ψ1
αðzÞ and Ψ _α

2ðzÞ have t ¼ −1=2.
Hence, t turns out to be a quantum number distinguishing
between a particle and its antiparticle. Then it follows that t
is proportional to the electric charge of the particle/

antiparticle. Since t is an eigenvalue of T
̬

3 as can be seen

from (4.13f), T
̬

3 can be interpreted as the operator of
electric charge up to a constant of proportionality.
Accordingly, Uð1Þb can be identified with the gauge group
of electric charge, and the Uð1Þb symmetry is physically
understood as a gauge symmetry leading to electric charge
conservation.
Now we recall that our study has been performed in the

unitary gauge in which the GGS action takes the form of
Eq. (2.20) or Eq. (2.24). In the unitary gauge, the local
SUð2Þ symmetry is hidden and the Uð1Þb symmetry is
linearly realized in accordance with Eq. (2.12). The
manifestly SUð2Þ covariant formulation can be developed
on the basis of the action (2.23). The rank-one spinor fields
found in this formulation, denoted by Ω _α

i and Ωi
α, are

related to Ψ _α
i and Ψi

α by8

Ω _α
i ðzÞ ¼ Vi

jΨ _α
j ðzÞ; Ωi

αðzÞ ¼ Ψj
αðzÞV†

j
i: ð6:6Þ

Because V is independent of zα _α, we can readily verify by
using Eqs. (6.1a) and (6.1b) that

i
ffiffiffi
2

p ∂
∂zα _β Ω

_β
i ðzÞ −mϵijΩ

j
αðzÞ ¼ 0; ð6:7aÞ

i
ffiffiffi
2

p ∂
∂zβ _αΩ

i
βðzÞ þmϵijΩ _α

j ðzÞ ¼ 0: ð6:7bÞ

Following the above consideration forΨ _α
i ðzÞ andΨi

αðzÞ, we
see thatΩ2

αðzÞ andΩ1
αðzÞ constitute a doublet of left-handed

particle and antiparticle spinor fields, while Ω _α
1ðzÞ and

Ω _α
2ðzÞ constitute a doublet of right-handed particle and

antiparticle spinor fields. Under the SUð2Þ transformation,
Ω _α

i and Ωi
α transform linearly as

Ω _α
i → Ω0 _α

i ¼ Ui
jΩ _α

j ; Ωi
α → Ω0i

α ¼ Ωj
αU

†
j
i; ð6:8Þ

whereas Ψ _α
i and Ψi

α transform according to the Uð1Þb
transformation

TABLE I. A classification of the rank-one spinor fields.

Particle Antiparticle

Left-handed Ψ2
α Ψ1

α

Right-handed Ψ _α
1 Ψ _α

2

TABLE II. The values of s and t of the rank-one spinor fields.

s t s t

Ψ2
α − 1

2
1
2

Ψ1
α − 1

2
− 1

2

Ψ _α
1

1
2

1
2

Ψ _α
2

1
2

− 1
2

7The plane wave solution of Eq. (6.1) given by

Ψi
αðzÞ ¼ −Ceiφ=2ϖ̄i

α exp ð−izγ _γϖ̄k
γϖk_γÞ;

Ψ _α
i ðzÞ ¼ Ce−iφ=2ϖ _α

i exp ð−izγ _γϖ̄k
γϖk_γÞ

fulfills the conditions Ψi
αð−zÞ ¼ −ðC=C̄ÞΨ̄i

αðzÞ and Ψ _α
i ð−zÞ ¼

−ðC=C̄ÞΨ̄ _α
i ðzÞ. Here, C is a complex constant and φ is given in

Eq. (3.26e). These conditions lead to ψ2ðzÞ ¼ −ðC=C̄Þψc
1ðzÞ, and

hence, in this case, ψ2 and ψc
1 can indeed be identified with each

other. For verifying that the plane wave solution satisfies
Eq. (6.1), it is convenient to use the classical counterparts of
Eqs. (4.16a) and (4.16b),

ϖi _αϖ
_α
j ¼

mffiffiffi
2

p ϵijeiφ; ϖ̄i
αϖ̄

jα ¼ mffiffiffi
2

p ϵije−iφ:

8The rank-ðpþ qÞ spinor field in the manifestly SUð2Þ
covariant formulation is given by

Ωi1…ip
α1…αp ;j1…jq; _α1… _αq

ðzÞ ¼ 1

ð2πiÞ4
I
Σ
eipφ

̬

πj1 _α1 � � � πjq _αq

×
∂

∂μα1i1
� � � ∂

∂μαpip
FI;s1;s2ðμ; πÞd4π;

where μαi is a spinor related to ωα
i by the weak equality μαi ≈ ωα

i .
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Ψ _α
i → Ψ0 _α

i ¼ Θi
jΨ _α

j ; Ψi
α → Ψ0i

α ¼ Ψj
αΘ†

j
i: ð6:9Þ

As seen from Eq. (6.8), the SUð2Þ transformation causes a
continuous transformation between the particle spinor field
Ω2

α ðΩ _α
1Þ and the antiparticle spinor fieldΩ1

α ðΩ _α
2Þ. TheSUð2Þ

symmetry therefore turns out to be a gauge symmetry
realized in the particle-antiparticle doublets ðΩ2

α;Ω1
αÞ and

ðΩ _α
1;Ω _α

2Þ. Such a symmetry, however, is not observed in
nature; hence, it should be considered that the SUð2Þ
symmetry is hidden or broken. The formulation in the unitary
gauge is appropriate for this situation, because, in the unitary
gauge, the SUð2Þ symmetry is hidden and the Uð1Þb
symmetry is manifestly exhibited instead.

VII. SUMMARY AND DISCUSSION

We have presented a gauged twistor model of a free
massive spinning particle in four dimensions. This model is
a non-Abelian extension of the gauged twistor model of a
free massless spinning particle in four dimensions, pre-
sented in Refs. [22–24]. The extended model is governed
by the GGS action that was elaborated by adding the 1D
Chen-Simons terms Sa and Sb3 and the novel term Sbe to
the gauged twistorial action Smg [see Eq. (2.20)]. The GGS
action remains invariant under the reparametrization and
the Uð1Þa and local SUð2Þ transformations, although the
SUð2Þ symmetry is nonlinearly realized in the action. In the
unitary gauge, the Uð1Þb symmetry is manifestly exhibited,
while the SUð2Þ symmetry is hidden.
We have studied the canonical Hamiltonian formalism

based on the GGS action in the unitary gauge by following
Dirac’s recipe for constrained Hamiltonian systems. The
classification of the constraints into first and second classes
was carried out strictly, and the Dirac brackets between the
canonical variables were obtained concretely. It was dem-
onstrated that just sufficient constraints for the twistor
variables are consistently derived as the secondary first-
class constraints [see Eqs. (3.28e)–(3.28i)].
The subsequent canonical quantization of the system was

performed in terms of the new twistor variables WA
i and

Wi
A, because they satisfy the simple Dirac brackets given in

Eq. (3.33). We have shown that the Chern-Simons coef-
ficients 2s and 2t are quantized to be arbitrary integer
values as a result of the canonical quantization based on the
commutation relations (4.2a)–(4.2e). In general, the quan-
tization of Chern-Simons coefficient is a common conse-
quence in certain theories in which the Chern-Simons terms
play crucial roles (see e.g. Refs. [36–39]). Our gauged
twistor model can be regarded as a specific example of such
theories. Intriguingly, the coefficient k of Sb12 is also
quantized via solving the eigenvalue problem of the
SUð2Þ Lie algebra. We found that the twistor functions
in our model are eigenfunctions of the relevant differential
operators governed by the Uð1Þa × SUð2Þ Lie algebra [see
Eqs. (4.13e)–(4.13g)]. Each twistor function F is then

labeled by a set of three quantum numbers associated with
the Uð1Þa × SUð2Þ Lie algebra.
We have carried out the Penrose transform of the twistor

function F to obtain a massive spinor field of arbitrary rank
defined on complexified Minkowski space [see Eq. (5.1)].
As emphasized earlier, this spinor field has the upper and
lower SUð2Þ indices in addition to the dotted and undotted
spinor indices. In fact, we observed that the number of
upper (lower) SUð2Þ indices is equal to the number of
undotted (dotted) spinor indices. We also demonstrated that
the spinor field satisfies the generalized DFP equations with
SUð2Þ indices, given in Eq. (5.10).
We have investigated the rank-one spinor fields in detail to

clarify the physical meanings of the gauge symmetries as
well as those of the constants s and t. It turned out that s is a
quantumnumber specifying the chirality of a spinor field and
that the Uð1Þa symmetry is a gauge symmetry leading to
chirality conservation. It also turned out that t is a quantum
number proportional to the electric charge of a spinor field
and that theUð1Þb symmetry is a gauge symmetry leading to
electric charge conservation. The SUð2Þ symmetry was
shown to be a gauge symmetry realized in the particle-
antiparticle doublets. Such a symmetry, however, is not
observed in nature, so that it should be considered to be
hidden or broken. Fortunately our twistor formulation in the
unitary gauge is appropriate for describing this situation.
Since the SUð2Þ symmetry is a symmetry realized in the
particle-antiparticle doublets, it cannot be identified with the
weak isospin symmetry. We thus conclude that the idea
proposed by Penrose, Perjés, andHughston [4–8] is not valid
in our gauged twistor model.
The observation that s is a quantum number specifying

the chirality of a spinor field is supported for the following
reason: The gauged Shirafuji action for a massless spinning
particle enjoys the Uð1Þa symmetry and contains its
associated constant s [22–24]. This constant is indeed
shown to be the helicity of a massless spinning particle. As
is well known, the chirality is an analog of the helicity,
while the chirality is a Lorentz invariant quantity valid for
massive particles as well as massless particles. (For mass-
less particles, chirality is the same as helicity.) For this
reason, in the present twistor model, it is quite natural to
identify the Lorentz invariant quantity s as the chirality
quantum number.
We have seen that each eigenstate of T

̬

3 corresponds (via
the Penrose transform) to a particle or antiparticle state
represented by its own spinor field. Remarkably, we
encounter a similar situation in studying the rigid body
model [40,41]. In this model, the rigid body rotation leads
to an intrinsic SUð2Þ symmetry in addition to the spin
SUð2Þ symmetry. Hara et al. showed that the eigenstates of
the third generator of the intrinsic SUð2Þ group are
assigned to particle and antiparticle spinor fields. They
also pointed out that this generator cannot be identified
with the third component of the isospin generators.
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(Accordingly, it turns out that the intrinsic SUð2Þ symmetry
cannot be regarded as the isospin symmetry. This result
contradicts the earlier idea concerning isospin proposed in
Refs. [42,43].) We thus see that the gauged twistor model
and the rigid body model share common aspects.
Now we recall that the secondary first-class constraints

(3.28e)–(3.28g), or equivalently, Eqs. (3.36a), (3.36b), and
(3.38), have been derived systematically on the basis of the
Uð1Þa, Uð1Þb, and reparametrization symmetries of the
GGS action. By contrast, the remaining secondary first-
class constraints (3.28h) and (3.28i) have been derived as a
result of incorporating the mass-shell condition (2.3) into
the GGS action by hand. Considering this fact, we can
never say that the present approach for constructing the
GGS action is satisfactory from the gauge-theoretical point
of view. To make our gauged twistor formulation complete,
we need to establish an approach in which the mass-shell
condition (2.3) is supplied as an inevitable outcome of an
extra gauge symmetry.
In this paper, we have not presented precise definitions

of the chirality and charge conjugation for a massive spinor
field of arbitrary rank. The chirality may be defined on the
basis of the type of spinor indices of the field. For
clarifying the definition of charge conjugation and its
associated concept of particle-antiparticle, it is necessary
to examine coupling of a massive spinor field of arbitrary
rank to the electromagnetic field. The precise definitions of
chirality and charge conjugation should confirm our
observation on the physical meanings of the constants s
and t. We hope to address the aforementioned issues in the
near future.
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APPENDIX: POINCARÉ SYMMETRY AND
PAULI-LUBANSKI PSEUDOVECTOR

In this appendix, we consider the Poincaré symmetry and
the Pauli-Lubanski pseudovector within the framework of
the gauged twistor formulation.
We can easily show that the GGS action (2.20) remains

invariant under the infinitesimal Poincaré transformation
[or more accurately, the infinitesimal SLð2;CÞ ⋉ R1;3

transformation],

ϱαi → ϱ0αi ¼ ϱαi − εαβϱ
β
i − iεα _βϖi_β; ðA1aÞ

ϱi _α → ϱ0i _α ¼ ϱi _α − ε _α _βϱ
i_β þ iεβ _αϖi

β; ðA1bÞ

ϖi _α → ϖ0
i _α ¼ ϖi _α þ ε _α

_βϖi _β; ðA1cÞ

ϖi
α → ϖ0i

α ¼ ϖi
α þ εα

βϖi
β: ðA1dÞ

Here, εαβ and ε _α _βð≔ εαβÞ are parameters of the infinitesi-
mal Lorentz transformation [or more accurately, the infini-
tesimal SLð2;CÞ transformation], satisfying the symmetric
properties εαβ ¼ εβα and ε _α _β ¼ ε _β _α, while εα_β is a param-
eter of the infinitesimal translation, satisfying the

Hermiticity εα _β ¼ εβ _α. The fields h, h, a, and br are
assumed to be Poincaré invariant. Since the GGS action
is Poincaré invariant, we can derive conserved quantities by
applying Noether’s theorem. The conserved quantities
corresponding to εαβ, ε _α _β, and εα _β are found to be

μαβ ≔
i
2
ðϱiαϖi

β þ ϱiβϖ
i
αÞ; ðA2aÞ

μ _α _β ≔ −
i
2
ðϱi_αϖi _β þ ϱi_βϖi _αÞ; ðA2bÞ

pα _β ≔ ϖi
αϖi_β: ðA2cÞ

Substituting Eqs. (3.37a) and (3.37b) into Eqs. (A2a) and
(A2b), respectively, we can rewrite μαβ and μ _α _β as

μαβ ¼
i
2
ðρiαϖi

β þ ρiβϖ
i
αÞ; ðA3aÞ

μ _α _β ¼ −
i
2
ðρi_αϖi_β þ ρi_βϖi _αÞ: ðA3bÞ

The angular momentum tensor is given by

Mα _αβ _β ≔ μαβϵ _α _β þ μ _α _βϵαβ; ðA4Þ

and the four-momentum vector is given by Eq. (A2c).
The Pauli-Lubanski pseudovector is defined by [2,44,45]

Wα _α ≔
1

2
ϵα _αβ _βγ _γδ_δpβ _βMγ _γδ_δ; ðA5Þ

which can be written as

Wα _α ¼ −iμαβpβ
_α þ iμ _α _βpα

_β ðA6Þ

by using the formula

ϵα _αβ _βγ _γδ_δ ¼ iðϵαγϵβδϵ _α _δϵ _β _γ − ϵαδϵβγϵ _α _γϵ _β _δÞ: ðA7Þ

Using the identity

ϵαβργi þ ϵβγραi þ ϵγαρβi ¼ 0 ðA8Þ

and its complex conjugate, we can express Eq. (A6) as
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Wα _α ¼ ðρβiϖj
β þϖi_βρ

j _βÞϖiαϖ _α
j

−
1

2
ðρβiϖi

β þϖi _βρ
i_βÞϖjαϖ _α

j ; ðA9Þ

or more concisely,

Wα _α ¼
�
δliδ

j
k −

1

2
δjiδ

l
k

�
Wk

BWB
l ϖ

iαϖ _α
j : ðA10Þ

Here, WB
k and Wk

B are the twistors defined by WB
k ≔

ðρβk;ϖk _βÞ and Wk
B ≔ ðϖk

β; ρ
k _βÞ [see the text above

Eq. (3.33)]. Applying the formula

1

2
σri

jσrk
l ¼ δliδ

j
k −

1

2
δjiδ

l
k ðA11Þ

valid for the Pauli matrices σr to Eq. (A10), we obtain

Wα _α ¼ Trσri
jϖiαϖ _α

j ; ðA12Þ

with

Tr ≔
1

2
Wk

Bσrk
lWB

l ðA13Þ

[see Eq. (3.39)]. Equation (A12) can be written in terms of
the (original) twistors ZB

k and Zk
B as

Wα _α ¼ Trσri
jπiαπ _α

j ; ðA14Þ

with

Tr ≔
1

2
Zk
Bσrk

lZB
l : ðA15Þ

Using the mass-shell constraints

ϖi _αϖ
_α
j ≈

mffiffiffi
2

p ϵijeiφ; ðA16aÞ

ϖi
αϖ

jα ≈
mffiffiffi
2

p ϵije−iφ ðA16bÞ

equivalent, respectively, to Eqs. (3.11e) and (3.11f), and
utilizing the formula σ2σrσ2 ¼ −σTr , we can show for
Eq. (A12) that

Wα _αWα _α ≈ −m2TrTr: ðA17Þ

In our model, twistor quantization is performed with the
commutation relations (4.2a) and (4.2b), or equivalently,

½ρ̂iα; ϖ̂j
β� ¼ −δjiϵαβ; ½ρ̂i_α; ϖ̂j _β� ¼ δijϵ _α _β;

all others ¼ 0: ðA18Þ

The operators corresponding to μαβ and μ _α _β are defined by
replacing the twistor variables in Eq. (A3) with their
corresponding operators and by obeying the Weyl ordering
rule. After using the commutation relations in Eq. (A18),
we have

μ̂αβ ¼
i
2
ðρ̂iαϖ̂i

β þ ρ̂iβϖ̂
i
αÞ; ðA19aÞ

μ̂ _α _β ¼ −
i
2
ðρ̂i_αϖ̂i_β þ ρ̂i_βϖ̂i _αÞ: ðA19bÞ

The operator corresponding to pα_β is found immediately
from Eq. (A2c) to be

p̂α _β ¼ ϖ̂i
αϖ̂i _β: ðA20Þ

Using Eq. (A18), we can calculate the commutation
relations between μ̂αβ, μ̂ _α _β, and p̂α _β to obtain

½μ̂αβ; μ̂γδ� ¼ −
i
2
ðϵαγμ̂βδ þ ϵαδμ̂βγ þ ϵβγμ̂αδ þ ϵβδμ̂αγÞ;

½μ̂ _α _β; μ̂_γ _δ� ¼ −
i
2
ðϵ _α _γμ̂ _β _δ þ ϵ _α _δμ̂ _β _γ þ ϵ _β _γμ̂ _α _δ þ ϵ_β _δμ̂ _α _γÞ;

½μ̂αβ; p̂γ _δ� ¼ −
i
2
ðϵαγp̂β_δ þ ϵβγp̂α_δÞ;

½μ̂ _α _β; p̂γ _δ� ¼ −
i
2
ðϵ _α _δp̂γ _β þ ϵ_β _δp̂γ _αÞ;

all others ¼ 0: ðA21Þ

These commutation relations specify together a spinor
representation of the Poincaré algebra. The operators
μ̂αβ, μ̂ _α _β, and p̂α _β are thus established as the generators

of SLð2;CÞ ⋉ R1;3. We can verify that μ̂αβ, μ̂ _α _β, and p̂α _β

commute with the generators T̂0 and T̂r defined in
Eq. (4.4). This implies that the Poincaré symmetry and
the Uð1Þa × SUð2Þ internal symmetry are not combined,
so that the result is consistent with the Coleman-Mandula
theorem [46,47].
The Weyl ordered operator corresponding to the Pauli-

Lubanski pseudovector Wα _α can be simplified as

Ŵα _α ¼ T̂rσri
jϖ̂iαϖ̂ _α

j ðA22Þ

by using the commutation relation

½T̂r; σsijϖ̂
iαϖ̂ _α

j � ¼ iϵrstσtijϖ̂
iαϖ̂ _α

j : ðA23Þ

Then, using the physical state conditions

ϖ̂i _αϖ̂
_α
j jFi ¼

mffiffiffi
2

p ϵijeiφ̂jFi; ðA24aÞ
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ϖ̂i
αϖ̂

jαjFi ¼ mffiffiffi
2

p ϵije−iφ̂jFi ðA24bÞ

equivalent, respectively, to Eqs. (4.3h) and (4.3i), we can
show that

Ŵα _αŴ
α _αjFi ¼ −m2T̂rT̂rjFi: ðA25Þ

This is precisely a quantum mechanical counterpart of
Eq. (A17). The Casimir operators of the Poincaré algebra
are given by p̂α _βp̂

α _β and Ŵα _αŴ
α _α. From Eq. (A24), it

follows that

p̂α _βp̂
α _βjFi ¼ m2jFi: ðA26Þ

Then it can be shown that [44,45]

Ŵα _αŴ
α _αjFi ¼ −m2JðJ þ 1ÞjFi; ðA27Þ

where J denotes the spin quantum number taking the values

J ¼ 0;
1

2
; 1;

3

2
;…: ðA28Þ

Here, jFi is assumed to be a simultaneous eigenvector
of Ŵα _αŴ

α _α and the other relevant operators T̂0, T̂3, T̂ι̂T̂ι̂,

and p̂α _βp̂
α_β [see Eqs. (4.3e), (4.3f), (4.3g), and (A26)].

This assumption holds true, because the generators of
SLð2;CÞ ⋉ R1;3 commute with those of Uð1Þa × SUð2Þ.
The vector jFi turns out to be characterized by the set of
quantum numbers ðs; I; t;m; JÞ. In terms of jFi, Eq. (4.20)
reads

T̂rT̂rjFi ¼ ΛjFi; ðA29Þ
where Λ is determined to be

Λ ¼ IðI þ 1Þ; I ¼ 0;
1

2
; 1;

3

2
;…: ðA30Þ

Applying Eqs. (A27) and (A29) to Eq. (A25), we even-
tually have

I ¼ J: ðA31Þ
This result is consistent with the fact that the number of
SUð2Þ indices of the spinor field Ψ given in Eq. (5.1) is
equal to the number of its spinor indices.
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