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We present a gauged twistor model of a free massive spinning particle in four-dimensional Minkowski
space. This model is governed by an action, referred to here as the gauged generalized Shirafuji (GGS)
action, that consists of twistor variables, auxiliary variables, and U(1) and SU(2) gauge fields on the one-
dimensional parameter space of a particle’s worldline. The GGS action remains invariant under
reparametrization and the local U(1) and SU(2) transformations of the relevant variables, although the
SU(2) symmetry is nonlinearly realized. We consider the canonical Hamiltonian formalism based on the
GGS action in the unitary gauge by following Dirac’s recipe for constrained Hamiltonian systems. It is
shown that just sufficient constraints for the twistor variables are consistently derived by virtue of the gauge
symmetries of the GGS action. In the subsequent quantization procedure, these constraints turn into
simultaneous differential equations for a twistor function. We perform the Penrose transform of this twistor
function to define a massive spinor field of arbitrary rank, demonstrating that the spinor field satisfies
generalized Dirac-Fierz-Pauli equations with SU(2) indices. We also investigate the rank-one spinor fields

in detail to clarify the physical meanings of the U(1) and SU(2) symmetries.
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I. INTRODUCTION

Twistor theory is basically appropriate for describing
massless systems with conformal symmetry [I-3].
Nevertheless, there have been some approaches to formulat-
ing massive particle systems in terms of twistors [4—17]. For
describing a massive particle, it is common to use two or
more independent twistors. In fact, introducing two twistors
has been considered until recently [9-17], and introducing
more than two twistors was considered in some earlier
studies [4-8]. By virtue of using two or more independent
twistors, an extra symmetry between the twistors occurs
naturally in the system. Penrose, Perjés, and Hughston
proposed the idea of identifying this symmetry with an
internal symmetry in particle physics, such as weak isospin
or flavor, toward explaining internal symmetries of elemen-
tary particles on the basis of twistor theory [4-8]. Although
this idea is quite interesting, it seems that its detailed
investigations have been made from neither a mechanical
point of view nor a dynamical point of view. Therefore we
would have to say that the idea is still poorly understood.

Lagrangian mechanics of a massive spinning particle
formulated in terms of two twistors has been studied in
Refs. [9—17]. Most of these papers begin with generalization
of the Shirafuji action that describes a free massless spinning
particle in four dimensions in terms of a twistor [18]. In fact,
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various generalizations of the Shirafuji action have been
presented to specify twistorial models of massive spinning
particles. The generalized Shirafuji actions are constructed
by incorporating a mass-shell condition of a particle and
certain other conditions for the twistor variables. The
canonical formalism based on each generalized Shirafuji
action and its subsequent quantization were also studied in
Refs. [9,11,12,14—-17]. It was shown that the canonical
quantization of each twistorial model leads to generalized
Dirac equations or the Dirac-Fierz-Pauli (DFP) equations for
massive spinor fields of arbitrary rank [19-21]. (The super-
symmetric Shirafuji action [18] that is written in terms of a
supertwistor and describes a massless superparticle in four
dimensions has been generalized to the twistorial actions for
massive superparticles in four dimensions [13,14,17]. In this
paper, however, we are not concerned with the supersym-
metric cases.)

In this paper, we consider an alternative generalization of
the Shirafuji action to define a new twistor model of a free
massive spinning particle in four dimensions by using two
twistors. Our formulation is precisely a non-Abelian exten-
sion of the gauged twistor formulation of a free massless
spinning particle in four dimensions [22-24]. In the gauged
twistor formulation, the Shirafuji action is modified in
accordance with the gauge principle so that it can become
invariant under the local U(1) (phase) transformation of
twistor variables. Here “local” means that the transformation
parameter depends on a worldline parameter along the
particle’s worldline. This modification is accomplished by
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gauging the Shirafuji action with the aid of a U (1) gauge field
on the one-dimensional (1D) parameter space of the world-
line and by adding the 1D Chern-Simons term consisting of
the U(1) gauge field. The modified action, named the gauged
Shirafuju action, includes a helicity constraint term due to the
modification. Hence it follows that this action describes a free
massless spinning particle with a fixed value of helicity.
Remarkably, the gauged Shirafuji action is equivalent to the
action for a massless particle with rigidity, at least at the
classical mechanical level [25]. The Shirafuji action can
furthermore be modified so as to be invariant under the local
scale transformation of twistor variables with the aid of
another gauge field on the 1D parameter space. From the
point of view of twistor theory, it is desirable that the
modified action remains invariant under the combination
of the local U(1) and local scale transformations, which is
referred to in Refs. [23,24] as the complexified local scale
transformation. In actuality, the gauge field for the local scale
transformation can be gauged away by a scaling of the twistor
variables. Therefore it turns out that only the local U(1)
transformation is essential and one does not need to consider
the local scale transformation in practice.

In the next section, we begin with setting up a gener-
alized Shirafuji action that consists of two twistors and
involves a mass-shell condition. Here, for convenience, we
exploit the mass-shell condition with a complexified mass
parameter introduced in Refs. [15,16]. The generalized
Shirafuji action remains invariant under the global U(1)
transformation of twistor variables supplemented with that
of auxiliary fields on the 1D parameter space. In addition,
the generalized Shirafuji action remains invariant under the
global SU(2) transformation defined for a doublet of
twistors. In accordance with the gauge principle, we modify
the generalized Shirafuji action in such a way that the
modified action remains invariant under the local U(1) and
SU(2) transformations of twistor variables. The modifica-
tion is performed by gauging the generalized Shirafuji
action with the aid of U(1) and SU(2) gauge fields on the
1D parameter space and by adding the 1D U(1) and SU(2)
Chern-Simons terms. The 1D SU(2) Chern-Simons term,
however, vanishes owing to the traceless property of the
SU(2) gauge field. For this reason, the variation of the
modified action with respect to the SU(2) gauge field
yields too strong constraints that, after quantizing the
model, permit us to have only massive spinless fields in
four dimensions. A similar consequence has been found by
Fedoruk and Lukierski in their twistorial model of a
massive particle [15]. To overcome such an undesirable
situation, they modified the model by incorporating the
Souriau-Wess-Zumino term, following the successful argu-
ment for a twistorial model of a massive spinning particle in
three dimensions [14]. In the present paper, we consider an
alternative approach based on a nonlinear realization of
SU(2) to eventually obtain massive spinor fields of
arbitrary rank. This approach makes it possible to define
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the 1D U(1) Chern-Simons term consisting of the third (or
diagonal) component of the SU(2) gauge field in a particular
gauge. In addition, this approach can provide a novel gauge-
invariant term consisting of the first and second (or off-
diagonal) components of the same SU(2) gauge field. With
the new terms, we furthermore modify the generalized
Shirafuji action by adding these terms to the modified action
mentioned above. The completely modified action is thus the
sum of the gauged twistorial part, the two 1D U(1) Chern-
Simons terms, and the novel term. This action, hereafter
referred to as the gauged generalized Shirafuji (GGS) action,
remains invariant under reparametrization of the worldline
parameter and under the local U(1) and SU(2) transforma-
tions. The GGS action yields just sufficient constraints for the
twistor variables in a systematic and consistent manner. All
the constraints except for the mass-shell condition are
derived on the basis of the gauge symmetry. This is an
advantage of our gauged twistor model.

Having obtained the GGS action, we study the canonical
Hamiltonian formalism based on it by completely following
the Dirac algorithm for Hamiltonian systems with constraints
[31-33]. We see that most of the Dirac brackets between the
twistor variables take on complicated forms. Fortunately,
these Dirac brackets can be reduced to simple Dirac brackets
for new twistor variables that are in one-to-one correspon-
dence with the old ones. Also, all the constraints for the (old)
twistor variables can be written completely in terms of the
new twistor variables. The canonical quantization of the
twistor model governed by the GGS action is performed with
the commutation relations between the operators that corre-
spond to the new twistor variables or the other canonical
variables. Some of the first-class constraints eventually turn
into simultaneous differential equations for a holomorphic
function of half the new twistor variables. Each solution of
the simultaneous differential equations, referred to here as a
twistor function, is characterized by the three quantum
numbers that originate from the U(1) and SU(2) symmetries
inherent in the GGS action.

We also consider the Penrose transform of the twistor
function to define a four-dimensional spinor field of
arbitrary rank. The spinor field defined in this manner
has extra upper and lower SU(2) indices in addition to
dotted and undotted spinor indices. Because of the structure
of the Penrose transform, the number of upper (lower)
SU(2) indices is equal to the number of undotted (dotted)
spinor indices. We demonstrate that the present spinor field
satisfies generalized DFP equations with SU(2) indices. In
the simplest case, the generalized DFP equations reduce to
the ordinary Dirac equations for particle and antiparticle
spinor fields. Investigating properties of these fields, we
clarify the physical meanings of the U(1) and SU(2)
symmetries; ultimately, we see that the U(1) symmetry
is a gauge symmetry concerning the chiralities of the
particle and antiparticle spinor fields, while the SU(2)
symmetry is a gauge symmetry realized in a doublet
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consisting of the particle and antiparticle spinor fields.
Therefore it turns out that the idea proposed by Penrose,
Perjés, and Hughston, in which the SU(2) symmetry is
identified with the weak isospin symmetry, is not valid in
our gauged twistor formulation.

This paper is organized as follows. In Sec. II, we
elaborate the GGS action, after making some preliminary
arrangements. The canonical Hamiltonian formalism based
on the GGS action is studied in Sec. III, and the subsequent
canonical quantization is performed in Sec. IV. In Sec. V,
we define a massive spinor field of arbitrary rank by the
Penrose transform of a twistor function and demonstrate
that this spinor field satisfies the generalized DFP equa-
tions. In Sec. VI, we particularly investigate the rank-one
spinor fields to clarify the physical meanings of the U(1)
and SU(2) symmetries. Section VII is devoted to a
summary and discussion. In the Appendix, we treat the
Pauli-Lubanski pseudovector written in terms of the twistor
variables.

II. CONSTRUCTION OF THE GGS ACTION

In this section, we construct the GGS action for
a free massive spinning particle in four-dimensional
Minkowski space.

In order to describe a massive particle in terms of
twistors, we introduce two twistors Z4 = (0%, m;3) (A =
0,1,2,3;a=0,1;&=0,1) distinguished by the extra
index i (z = 1,2) and their dual twistors Z\, = (7, @'%).
Here, 7, and @' denote the complex conjugates of 7
and w?, respectively: 7, = 75, @ = . It is assumed
that Z{ and Z2 are not proportional to each other: Z{ #
cZ4 (c € C), so that Z!, # ¢Z3. The 2-component spinors
¢ and 7, are related by

aa

¢ = iz%my, (2.1)
where 7% are coordinates of a point in complexified
Minkowski space, CM, with the metric tensor
N = diag(1,—1,—1,—1). As can be seen in the literature
on twistor theory [4—16], the four-momentum of a massive
particle is expressed as po; = Tomt14 + Talyy = Tty (For
this reason, r;;, and 7, are named as momentum spinors.)
The squared norm of p,, remains nonvanishing even after
using the formula ﬂ,aﬂa =¢€ ﬁﬂ'mﬂ' = =0 (no sum with

respect to i) and its complex conjugate, ! because the cross

"The two-dimensional LeVi-Civita symbols €7, €., €/, €, e
e, and ¢;; are defined as €”' = ¢ = "' = ¢5j =2 = =1
and conform to the rules e”ﬁ = e"ﬂ, €op = eaﬁ, = €} and

€ = = €. The contravariant spinors n and 7'* are defined by

né = =eibr. ; and 7% = V7l 7y, respectively. These relations can be

expressed as 7, = nﬁ €jq and 7, = 7Py,
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terms provided from different twistors still survive:

PuaP™ = nanmﬂ’” = 2|7 475>, Thus the mass-shell
condition p,,p® = m? with a mass parameter m can be
written as

T n = m?. (2.2)

It is easy to see that this condition is equivalent to

e'imin’ — V2me* =0, (2.3a)

€T = 2me™ = 0, (2.3b)

where ¢ is a real parameter. These equations have
been incorporated in twistorial models of massive
spinning particles [15,16], in which me//2 is called
a complexified mass parameter. In this paper, we also
adopt the equation pair Eqs. (2.3a) and (2.3b) as the
mass-shell condition because of the convenience for our
formulation.

The Shirafuji action of a free massless spinning
particle2 can be generalized to describe a free spinning
particle of mass m propagating in four-dimensional
Minkowski space M. A generalized Shirafuji action is
indeed given by

Sy = / d‘r[ (Zi74 — 707}
7o
+ h(emn? — V2me')

+ h(e,ma" — \/ime"'"’)} , (2.4)

where Z# =Z4(r) and Zi =Zi(z) are understood
as complex scalar fields on the one-dimensional
parameter space 7 := {7ty <t <7} of a particle’s
worldline, and & = h(r) is treated as a complex scalar-
density field of weight 1 on 7. [That is, & transforms
as h(r) - W (7') = (dz/d7')h(z) under the proper repar-
ametrization 7 — 7/ = 7/(7) (d7’/dr > 0).] The exponent ¢
is now considered a real scalar field on 7 and hence is
treated as a real function ¢ = ¢(7). This setting is different
from that in Refs. [15,16], in which the complexified
mass parameter is regarded as a constant. A dot over a
variable denotes its derivative with respect to 7.

*With a twistor Z* and its dual twistor Z, 41» the Shirafuji action
is defined by [18]

Sy = / drz (Z\ZM = 707,).
7o
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The variation of S,, with respect to / and £ yields the mass-
shell condition (2.3).”

The generalized Shirafuji action §,, remains invariant
under the reparametrization 7 — 7 = 7/(r). In addition, S,
remains invariant under the global U(1) transformation

74— 7ZIA = 074, Zi -7 =97, (2.5a)
h— W =eh,  h—h =e*h, (2.5b)

with a real constant parameter 6 and under the global SU(2)
transformation

Zt > ZA = UJZ4, Zi - Zi =Z,U', (2.6)
h— W =h, h—H=h, (2.6b)
Q- ¢ =0, (2.6C)

with a constant matrix U belonging to SU(2). The SU(2)
invariance of §,, can be verified using e/U U, = e
and e;;U",'U")/ = ¢y, together with the unitarity property
of U. We thus see that S,, possesses two global internal
symmetries specified by U(1) and SU(2). We also see that

the two terms Z,,Z% and Z/Z, in Eq. (2.4) are invariant
under the global SU(2,2) transformation (or more
simply, the global conformal transformation) Z4 — Z/A =
UrpZB,Z! — ZII = Zi,U™,, with a constant matrix U
belonging to SU(2,2). In contrast, the two terms
e'imn? and ;7,7 in Eq. (2.4) are invariant only under
the global SL(2, C) x R'-3 transformation (or more simply,
the global Poincaré transformation). Hence it turns out that
the symmetry reduction from SU(2,2) to SL(2,C) x R!?3
occurs in S, as a result of adding the term proportional to &
and its complex conjugate term.

Now, we perform a gauging of the global U(1) and
SU(2) symmetries in such a way that the gauged action
remains invariant under the local U(1) and SU(2) trans-
formations that depend on 7. That is, we consider a U(1) x
SU(2) gauge theory on the parameter space 7 . To this end,
in accordance with the gauge principle, we introduce a
U(1) gauge field, a = a(r), and an SU(2) gauge field,
b = b(z). The field a is assumed to be a real scalar-density

3Instead of the action S,,, we can consider an alternative action

T | .. =i 1 . . .
Sn = / dr E (Z\Zi =21 Zy) + gf(ﬁ&”iaﬁja”’f -m?)|,
To

where f = f(z) is a real scalar-density field of weight 1 on 7.
The variation of S, with respect to f yields the mass-shell
condition (2.2).

PHYSICAL REVIEW D 93, 045016 (2016)

field of weight 1 on 7, while b is assumed to be a 2 x 2
traceless Hermitian matrix that behaves as a scalar-density
field of weight 1 on 7. The field b can be represented as
(b;/) with its matrix elements b;/ and can be expanded in
terms of the Pauli matrices o, (r =1, 2, 3), satisfying
[6,,0,] = 2i€,0,, as b = b"c,. Here, b" = b"(z) are real
scalar-density fields of weight 1 on 7. The (primitive)
gauged action, S,,,, can be obtained by replacing d/dz in
S,, with a covariant derivative operator as follows:

T i . —.
Sme —/ ' dr [5 (ZiDZA — ZADZ})
To

+ h(emn? — V2me)

+ h(e;ma® — \/Eme“'"’)} , (2.7)

where
DZ{ = 7} — iaZ} — ibZ}, (2.8a)
DZi, =7y + iaZi, + iZ,b;. (2.8b)

We see that the action S,,, is reparametrization invariant. It
can easily be verified that S,,, remains invariant under the
local U(1) transformation

ZA = ZIA = (00 74, (2.9a)
Zi - 7 = ¢ *OZi, (2.9b)
h— W = e 200, (2.9¢)
B T = 200, (2.9d)
9= ¢ =p+20(), (2.9¢)
iod =atd, (2.9f)
b—b =b, (2.92)

with a real gauge function @ = 0(z) and under the local
SU(2) transformation

Z4 -7 = U,-j(T)Z?, (2.10a)
Zi - Zi = Z,U' (1), (2.10b)
h— W =h, (2.10c)
h—T =h (2.10d)
90— o =0o, (2.10e)
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(2.10f)

a—d =a,

b— b =UbU" —iUU", (2.10g)
with a gauge function U = U(r) taking its value in SU(2).
Because each of @ and b is a single-component gauge field
associated with d/dr, we cannot define their field strengths.
For this reason, there exists neither the Maxwell action for
a nor the Yang-Mills action for b. As for a, it is possible to
define the (nonvanishing) 1D U(1) Chern-Simons term

S, = —2s / " dra,
To

where s is a real constant. The 1D SU(2) Chern-Simons
term for b, i.e., S, = —2¢ ffol d7Trb vanishes by the reason

(2.11)

of Trb = 0. Since « is a scalar-density field of weight 1, S,
is reparametrization invariant. Also, S, remains invariant
under the gauge transformation (2.9f), provided that 6
satisfies an appropriate boundary condition such as
0(z,) = 0(zy). The SU(2) invariance of S, is evident from
Eq. (2.10f). Therefore we can consider the reparametriza-

tion-invariant and gauge-invariant action S‘mg =S + Sa.4
However, S’mg eventually turns out to govern only massive
spinless fields in four dimensions owing to the too strong
constraints Zy0,/Z} =0 (r = 1, 2, 3) that are derived by
varying S‘mg with respect to b". [Here, o,;X denotes the
(j, k) entry of the Pauli matrix o,.] To avoid such an
undesirable situation, next we perform a modification of

S’mg with the aid of a nonlinear realization of SU(2).

*The action S’mg is a simple and natural generalization of the
gauged Shirafuji action (without invariance under the local scale
transformation of Z4 and Z,)

S()g = / 1 dT |:% (ZADZA —ZADZA) - Zsa N
70

where D :=d/dr —ia. This action describes a free massless
spinning particle of helicity s [22-24] and is equivalent to the
action for a massless particle with rigidity at least at the classical
mechanical level [25]. '

From the action Sng» the Pauli-Lubanski spin vector W is
found to be

Wei = T,0, 7%, T, = %z;g,/z;\
(see Appendix). Using the mass-shell condition (2.3), we can
show that W, W = —m?T,T,. Obviously, T, = 0 (r = 1, 2, 3)
leads to W,,W* = 0. Hence, it follows that only massive
spinless particles are admissible in the model defined by Smg.
Accordingly, it turns out that only massive spinless fields are
provided after quantizing the model.

PHYSICAL REVIEW D 93, 045016 (2016)

Let us now consider the coset space SU(2)/U(1)
(~CP') and representative elements, V(&,&) (V € SU(2),
£ € C), that are chosen one by one from each left coset of
U(1) in SU(2). Here, & labels the cosets in a way of one-to-
one correspondence and can be regarded as an inhomo-
geneous coordinate of a point on SU(2)/U(1). [To
completely coordinatize SU(2)/U(1), it is necessary to
use &' in addition to £.] The representative elements
V(& &) are assumed to constitute a smooth function of &
and & so that we can simply treat V(&, &) as an SU(2)-
valued smooth function. We consider ¢ to be a complex
scalar field & = &(z) on 7. The left action of U on V/(¢, &)
generates a nonlinear transformation & — & = ¢&'(£) in
accordance with

V(£.E) - V(£.8) = U)V(£.9)07 (1),

where O(7) = exp{i9(r)o3}, and 9 = I(z) is a real gauge
function [26-28]. Note here that 9 is determined depending
on (& &) as well as U. Using V = V(& &), we define the
following new fields on 7:

(2.12)

Z‘:‘ = VTijZ?, 2}14 = 75\‘/1'1" (2133.)

b:=VbV —iV'V. (2.13b)
The field b can be expanded as b = b’s,, where b” = b”(7)
are real fields. Clearly, b” behave as scalar-density fields of
weight 1 on 7. With the new fields, the local U(1)
transformation (2.9) reads

Z - ZA = 0074, (2.14a)
Z, - Zi = e 007, (2.14b)
h— I = e 200, (2.14c)
h—h = X0, (2.14d)
@ — ¢ =¢+20(7), (2.14e)
a—d=a+0, (2.14f)
b— b =h. (2.14g)

On the other hand, from Egs. (2.10) and (2.12), we have

Z) - 74 = 0/(r)Z4, (2.15a)
Z, - Zi =Z,0'}(2), (2.15b)
h— W =h, (2.15¢)
R W =T, (2.15d)

045016-5



SHINICHI DEGUCHI and SATOSHI OKANO

»—=9 =09, (2.15¢)
a—d =a, (2.15f)
b — b = GbO' + Jos. (2.15¢9)

Equation (2.15) is precisely a local U(1) transformation.
Hereafter, we refer to the local U(1) transformation
specified by Eq. (2.9), or Eq. (2.14), as the U(1), trans-
formation and refer to that specified by Eq. (2.15) as the
U(1), transformation. Their corresponding gauge groups
are simply denoted as U(1), and U(1),. The local SU(2)
transformation is not manifestly seen in Eq. (2.15); instead,
it is realized as a nonlinear transformation of £. We may say
that the function V converts the local SU(2) transformation
into the U(1), transformation while ¢ undergoes a non-
linear transformation. Equation (2.15g) defines the trans-
formation rules of the fields b”,

b! - b"' =b' cos29 + b?sin 24, (2.16a)
b? - b? = —b'sin29 + b?cos29,  (2.16b)
b3 - b? = b’ + 9. (2.16¢)

We see that b’ (i = 1,2) transform homogeneously, obey-
ing together an SO(2) rotation, while b3 transforms
inhomogeneously as a U(1) gauge field.

Now, we can provide the following two terms:

Sp1 = —k / " drv/oio, (2.17)
with b'b := (b') + (b2)2, and
Sps = —21 / " deb?, (2.18)

Here, k is a positive constant and ¢ is a real constant. Since
b" are scalar-density fields of weight 1 on 7, both Sy, and
Sps are reparametrization invariant. It is obvious that Sp;,
remains invariant under the SO(2) rotation defined by
Egs. (2.16a) and (2.16b). Also, Sp3, which is the 1D Chern-
Simons term for b3, remains invariant under the gauge
transformation (2.16c), provided that J satisfies an appro-
priate boundary condition such as 9(z;) = 9(z;). We thus
see that both Sp;, and Sp3 possess the U(1), symmetry. The
U(1), invariance of Sp;, and Sp; is evident from
Eq. (2.14g). For our investigation, it is convenient to
express Spo as

o Lo K
Sbe——lo dT(Ebb +3€)

with the aid of e = e(r) being a positive scalar-density
field of weight 1 on 7. It is assumed that € does not change

(2.19)
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under the U(1), and U(1), transformations. (At this stage,
we should include the transformation rule € - € = e in
each of Egs. (2.14) and (2.15).) The action S,,, can be
rewritten in terms of Z?, Z;;, h, h, ¢, a, and b. The resulting
rewritten expression of S,,, is precisely what is obtained by
replacing Z%, Z, and b in Eq. (2.7) with Z4, Z,
and b, respectively. With this expression, we modify Smg =
Simg + S, by adding Spe and Sp; to it. That is, we consider
the modified action §:=S,,, + S, + Spe + Sp3, or more
precisely,

S = / dT|: (Z,DZ4 - Z/DZ},) — 2sa — 2tb?
To

- 21—e bib? — %26 + h(elww — V2me?)
+ h(e; @@ — V2me™#) |, (2.20)
with
DZ} =7 - iaZ} - ib/Z}, (2.21a)
DZ, =27 + iaZ\ + iZ}b;'. (2.21b)

Here, w;, and @', are momentum-spinor components of the
twistors Z¢ = (0%, w;,) and Z, = (&, 0'%), respectively.
We refer to S as the GGS action. From Eq. (2.13a), it
follows that @ = V'/z;, and @) =7,V,. The other
components are given by ¢ = V' /% and g = @/*V ;. It
is now obvious that @, = @, and ¢¢ = g'*. In terms of Z¢,
Eq. (2.1) can be written as

0F = iz%w . (2.22)
It is clear from (2.20) that the GGS action S remains
invariant under the reparametrization and the U(1), and
U(1), transformations. However, in actuality, S remains
invariant under the reparametrization and the U(1), and
local SU(2) transformations, because the U(1), trans-
formation is induced by the local SU(2) transformation
in accordance with Eq. (2.12). In fact, we can express S in a
manifestly SU(2) invariant form as follows:

5= / df[ (Z.DZ} - /D7)
To
—2sa = 2t(b"V,} — Ee;® — 26—3)

K>
DEDE — e+h( eUnamt — V2me™)

o Je

+ h(e;mm/™ — \/Eme_i‘/’)] , (2.23)
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with gz = e e, D& =&~ b'K,%, and DE = E—bK .
is a metric on SU(2)/U(1), (K5 K,%) (r=
1,2,3) are the SU(2) Killing vectors on this coset space,
and e/ and e;" (r=13) are deﬁni:d by e/o, =
—iVi(0V/0¢) and es'c, = —iVI(9V/DE), respectively.
Also, V,? is defined according to Ve,V =V,l6, +
V,365. Using the transformation rule (2.12), we can show
that V, = K,fes' + K ,5653. In addition, it can be verified
that K, == K,50/0¢ + K,50/ ¢ satisfy the SU(2) com-
mutation relations. In the expression (2.20), we should
understand that the local SU(2) symmetry of S is hidden
rather than is broken, because no symmetry breaking
mechanisms are incorporated in the model. The action
(2.20) can be regarded as the action (2.23) in a particular
gauge &(7) =&, where & is a constant such that
V(). &) = 1. We term this gauge the unitary gauge,
because it corresponds to the so-called unitary gauge in
massive Yang-Mills theory [29,30]. Then b can be said to

be the SU(2) gauge field in the unitary gauge. The action
(2.20) can be written as

Here, 9

s:/ d‘L'|: (Z\2) - Z8Z) + a(Z 22 - 25)

+b%(Z}6342} - 21) + b'Z0,/} 2

\/_me”/’)

1. Kk
——bb'——e+h(e ”w,aw

2e 2
+ h(e; @@ — V2me™#) |

(2.24)

III. CANONICAL FORMALISM

In this section, we study the canonical Hamiltonian
formalism of the model governed by the GGS action in the
unitary gauge.

Let L be the Lagrangian defined in Eq. (2.24) as the
integrand of the GGS action S. We treat the variables
(Z?,Z‘,a,b’,e,h,ﬁ, @) as canonical coordinates. Their
canonical conjugate momenta are found to be

X OL i
2::8?2522, (318.)
_ L '
P = ;zi - —%z;*, (3.1b)
A
P@) .= g_é' =0, (3.1¢)
PP = ger =0, (3.1d)
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oL

pe .=~ — 1
oe (3.1¢)
P(h) = a—L = 07 (31f)
Oh
oh
OL
@) .= = = .
PW = 5o =0 (3.1h)

The canonical Hamiltonian corresponding to L is defined
by the Legendre transform of L,

He = Z'Pi, +ZAPA +aP@ 4+ b’ PP
+86P© 4+ jipt) L M) 4 pp@) L

= —a(Z\Z} - 25) = b*(Z)03,2Z¢ - 21)
=i 1 .. 2
- blZIJAUiij}? + % blbl + ?e
— h(ewm? - V2me?)
V2me™#).

The equal-time Poisson brackets between the canonical
variables are given by

Z0 Py =dloh  {Z PP} =85,

{a.P9} =1, {b PP} =4,
{e,P®} =1, {h,PM} =1,
(RPDYy =1,  {p. PV} =1,

all others = 0, (3.3)
which can be used for calculating the Poisson bracket
between two arbitrary analytic functions of the canonical
variables.

Equations (3.1a)—(3.1h) are read as the primary con-
straints

: R -
¢ =P, — EZA ~ 0, (3.4a)
$h=PA 4 %z;‘ ~0, (3.4b)
H\@ = Pl@) ~ 0, (3.4c)
o =P ~o0, (3.4d)
$®© = PO ~ 0, (3.4e)
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¢(h) = ph) 0, (34f)
¢ = P » 0, (3.4g)
P9 = P ~ 0, (3.4h)

where the symbol “~” denotes the weak equality. Now, we
follow the Dirac algorithm for constrained Hamiltonian
systems [31-33] to establish the canonical formalism of the
present model. We see that the Poisson brackets between
the primary constraint functions ¢’s are summarized in

{¢}, @7} = —i66%  allothers =0.  (3.5)
The Poisson brackets between Hc and the primary con-
straint functions are found to be

{¢}.Hc} = aZy +b'0,;Z). (3.6a)

{(§ He) = aZt + b'o, /22, (3.6b)
{p\9 H} =2Z,Z8 - 2s, (3.6¢)
19 He) = Zho, 2}~ b, (3.64)
(¢P) He) = Zioyf 20 21, (3.6€)
(49, Ho) = % (bib — K2e?), (3.6f)
{pW. He} = elmm’ — V2me'?, (3.6g)
(¢ He) = e;/mim® —V2me ., (3.6h)
{p) Hc} = —iv2m(he —he ). (3.6i)

With H¢ and the primary constraint functions, we define
the total Hamiltonian

i i a P
Hy:=H-+ M?(bA + qub? + u(“)¢< ) T u(b)(ﬁs )

+ ¢ + up ™ + ugd® +ugd®,  (3.7)
where M'lf‘, ﬁg, I/t(a), I/tzb), u(e), ”(h)’ u(ﬁ), and M<(p> are
Lagrange multipliers. The time evolution of a function f of
the canonical variables is governed by the canonical
equation

f=1{f Hr}.

Using this equation together with Eqs. (3.4)—(3.7), we can
evaluate the time evolution of the primary constraint
functions. Because the primary constraints (3.4a)—(3.4h)

(3.8)
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are valid at any time, they must be preserved in time. This
fact leads to the consistency conditions

dh = {¢\, Hr} = aZ) + 0’6,/ Z) —iw, ~0,  (3.9a)
& = {F) Hr} ~ aZ) + 176,070 + iud %0, (3.9b)
P = {9 Hy} Z4Z4 - 25 % 0, (3.9¢)
. . 1
$” = {p° Hy} ~ Zhoi 2 - S0~ 0, (3.94)
@ = (¢ H} » Zhos 2t =21 % 0, (3.9¢)
. 1
# = {99, Hr} ~ o5 (b0 - K6?) %0, (3.9f)
¢ = {p"), Hr} % it —V2me %0, (3.9g)
¢ = {¢®, Hy} ~ e,/ —V2me " ~ 0, (3.9h)
P = {9 Hy} ~ —ivV2m(he' —he™ ) 2 0. (3.9i)

Equations (3.9a) and (3.9b) determine %!, and u?, respec-
tively, as follows:

W, = —iaZy - ib’e,;'Z), (3.10a)
u} = iaZ} + ib’e,/Z7. (3.10b)

In contrast, Egs. (3.9¢)—(3.91) give rise to the secondary
constraints

7= ZWZ8 - 25 0, (3.11a)
) = Zho k78— éb; ~ 0, (3.11b)
2 =203} 2} - 21 % 0, (3.11c)
e % (bib — K2€?) ~ 0, (3.11d)
2" = el — V2me ~ 0, (3.11e)
AW = e @@t = 2me i %0, (3.11f)
79 = i(he' — he™ ) x 0. (3.11g)

All the Poisson brackets between H- and the secondary
constraint functions y’s vanish. The Poisson brackets
between the primary and secondary constraint functions
are found to be
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9.6y =2y, {99! =2
b) i _ _ iFi b) ZAy _ j
W ¢y =02 P} =002,
b b 1 b 1
{r! )’45; )}2—5%’ {r: ),(j)(e)}:?bi,

b
FOp7  =b. (9.4} = ke,
{I<h>’¢id} — Delig? {Z”’), ¢(w>} = —iv2me?,

] 9,
UM 90} =26, W, 0} = ivV2me,
{Z((/')’ ¢(E)} — —ie_l‘(ﬂ,

{){((ﬂ),¢(h)} — iei‘/”
{X((/’)’ ¢(w)} - _(hei(ﬂ + Ee""/’),

all others = 0. (3.12)

All the Poisson brackets between the secondary constraint
functions vanish.

Next we investigate the time evolution of the secondary
constraint functions using Eqgs. (3.8) and (3.12). The time
evolution of (@ is evaluated as

79 = {9 Hy} = ulZ 4w Z2 (3.13)

The condition () = 0 is identically fulfilled with the aid of

Egs. (3.10a) and (3.10b), and hence no new constraints are

obtained from 7@ ~ 0. The time evolution of )(&b) is

evaluated as

7 = Ha}
~ uf‘a,j"z[{l + ﬁl’;‘orijZ?
+ ufy, 0P + wie) (. 4®)}
= —2¢,,0°Z}0,*Z}

s 1 (b) (b b
+ ”(b){JA ),(bg )} + “(e){)(£ )v¢(e)}
2 .
~ —Eersjbsb’ — 4te,3b°

+ ity 00+ ue (0@ (3.14)

by using Egs. (3.10a), (3.10b), (3.11b), and (3.11c). Then

we see that the condition )'(fb>

~ : 7
. ~ 0 determines Ui as

follows:
ul = 2eb (b - 2te) + lbiu (3.15)
(b) — j e e .

while 7
7'® is calculated as

~ 0 is identically satisfied. The time evolution of

PHYSICAL REVIEW D 93, 045016 (2016)
79 = {1®), Hy}

. 2
~ by — kPeue) = = 2@ ~ 0 (3.16)
by using Egs. (3.15) and (3.11d). Hence 7'® ~ 0 is identi-
cally satisfied. The time evolution of y(") is evaluated as

7" = {W Hy)

~ 26V — i ip
~ 2 u; ] iv2me Uy)

i) a_ s i
= 2iae" w;;w] — iv2me “u(y)

~ iV2me'” (2a — ug,) (3.17)
by wusing Egs. (3.10b), (3.1le) and the formula
o€l = o,7eM. (Its associated formula o,/f¢e;; = o, €y
is also valid.) From the condition ") ~ 0, the Lagrange

multiplier u,) is determined to be u(,) = 2a. Similarly,

M ~ —iv2me " (2a — U(y)) = 0 leads to u(,) = 2a. The
time evolution of ¥(?) is found to be

)'((1/7) — {X(’P),HT}

~ i(ugy = ug) = 2a(he' + he™?), (3.18)

so that the condition % ~0 gives Uipy = Uy =

—2ia(he' + he™™). From the above analysis, we see that
no further constraints can be derived; thus, the procedure for
deriving constraints is now completed. We also see that u,
ﬁj;, ui(b), U(p) = Uy and U, are determined to be what are
written in terms of other variables such as the canonical
coordinates, while u ), u?b), Uy, and u,) + Uy still remain
as arbitrary functions of z.

We have obtained all the Poisson brackets between the
constraint functions, as in Egs. (3.5) and (3.12). However, it
is difficult to classify the constraints in Egs. (3.4) and (3.11)
into first and second classes on the basis of Egs. (3.5) and
(3.12) together with the vanishing Poisson brackets
between the secondary constraint functions. To find simpler
forms of the relevant Poisson brackets, we first define

- 1.,
3@ = p© 1 ébz(pgb), (3.19a)
PP = @) — ing" + ihp™), (3.19b)
F = )+ iZ4 g — i 28, (3.19¢)
~(b D) | Fi _ kFA i b
7= n + iZho il — iho 7 — 2reed)”.

(3.19d)

~(b b) | S kFA _ i) ipP
)((3 ) = )(:(5 ) + lZ]A63jk¢1]? - l¢{463jkz‘lé + 2€i]b ¢JA( )’
(3.19)
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71® = y(©) 4 ebi(;?i(b) - 2tee;j¢j(b))’ (3.19f) It can readily be seen that the set of all the constraints given
in Egs. (3.4) and (3.11), i.e.,
)?(h) = )((h) + 2i€jk$j(‘l'w]i(’ (3.19¢) (¢i"—?’¢(a)’¢£b)’¢(e)7¢(h)’¢(ﬁ)’¢((p)’x(a)’
)?(h) = )((h) - 2i€jk¢£zﬁk , (3.1%h) ){;(b),)(gb),)((e),)(<h>,)(<ﬁ>,)(<‘/’)) ~ 0, (3.21)
s i : TJA _ (ra
where ¢ ia and qﬁaﬂare Spior f:omponents of ¢; *_( i Pia) is equivalent to the new set of constraints
and ¢!, = (Pl, ¢'*), respectively. Furthermore, it is con- B B
venient to define (¢, ¢, 9, d)gb), . ), p) o) v,
70 20) Z(e) Z(+) 7(-) @) ~0 320
o) = ) <g,<¢) il);w), (3.20a) A 522
2v/2m 2 We can show that except for
1 . I
P =~ (e70p) 4 eirgp(), (3.20b) - - b) ~(b)y 1
2 {hdtt=—ioieh. "5} = 5o,
1 . -
P = 52 (e — v, (320c)  {oM 7 =1, {0} =1, (3.23)
S 1 s () s () all other Poisson brackets between the constraint functions
X 5( 7 ey, (3.20d) Eq. (3.22) vanish. In this way, the relevant Poisson
brackets are simplified with the aid of the new constraint
7 = l.(e""/’;}(h) _ e;[p)?(ﬁ)). (3.20¢) funct%ons. The Poissgn br.ackets bt?tween the constraint
2i functions are summarized in a matrix form as
|
/ s a b b) 7 - ) =) ~(b) = ~ ~(_
bl P 9@ ¢JS ) ¢g> P pH) P ) ) J< ) )(g> PO O OR0
A 0 —iéj.&f; 0 0 0 0 0 0 0 0o 0 0 o0 0 0 0
ot i6{5§ 0 0 0 0 0 0 0 0 0O 0 0 ©0 0 0 o0
H 0 0 0 0 o 0 o o0 O O O O 0O 0 0 0
(b)
&, 0 0 0 0 0 0 0 0 0 0 éé;j 0 o0 0 0 0
®l o o o o o0 0 0O 0O 0O 0 O O O O 0 0
$® 0 0 o o o O o o0 O O O O O 0 0 O
P 0 0 0 0 0 0 0 0 0 0o 0 0 O 0 0 0
41 o o o o o0 0O O O O 0 0 0 0 0 0 —I (3.24)
ol®) 0 0 o o o o o o0 O O O O O 0 1 o0
ol 0 0 o o o o o o0 O O O O O 0 0 O
1 o o 0o - 0o 0o 0 0 0 0O O O O 0 0 0
A2 o o 0 0 O 0O O O O O 0O 0O 0O 0 0 0
7 0 0 o o o o o o0 O O O O O 0 0 O
7 0 0 0 0 o 0 o o O O O O O 0 0 o0
2/ o o o o o0 O O O -1 O O O O O 0 O
7\ 0 0 0 0 o 0 o 1 o 0 0 O o0 0 0 0
We can immediately see from this matrix that ¢(®) ~ 0, )~ 0, (;5 ~0, ¢~ 0,0 ~0, ;?gb) ~0, 7® ~ 0, and
7' &~ 0 are first-class constraints, while ¢, ~0, ¢t =0, ¢§ )~ 0, p7) =0, 0+ x 0, ;(l( ) ~ 0,77 =0, and ¥ ~ 0 are

second-class constraints. Following Dirac’s approach to second-class constraints, we define the Dirac bracket by using the largest
invertible submatrix of the matrix (3.24). For arbitrary smooth functions f and g of the canonical variables, the Dirac bracket is

defined by
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{f’ Q}D

= {f.g} +i{f. o Hd?, g} — i{f. ¢ Hbl. g}
—e{f. 2" Ho gt +elf. 0" HE . g}
+{f a9 g} = {f. ¢TI HA. g}
+{f 0 F g} = {7 H ), g}

The Dirac bracket between f and each of the constraint
functions ¢, 2, ¢, p), v, 7, 7). and @) vanishes

l
identically. For this reason, the second-class constraints can be
set strongly equal to zero and may be expressed as ¢, = 0,
EA_O o =0, ¢ =0, 0 =0, 7¥ =0, 70 =0,
and (%) = 0, as long as the Dirac bracket {f, g}, is adopted.
We see that the second-class constraints lead to

(3.25)

=17, Pr=-1Z0 (3.260)
b, = eZoifzt, PP =o, (3.26b)
h = he i, P = iop(h) (3.26¢)
7l = hei, P — =iv p(h), (3.26d)
o=—tin C:Zi“wﬁi) pl) = -% 7@, (3.26e)

where h = h(7) is a real scalar-density field of weight 1 on 7,
and PM its associated momentum variable. At this stage, Pg,
P4, b, Pi(b>, h, P, h, P, @, and P9 are treated as
dependent variables specified by Eq. (3 26), while the other
canonical variables 24, Z),, a, P(),b%, Py” e, P(®) h,and P("
are treated as independent variables. By Vu“[ue of the strong

equalities of the second-class constraints, the set of all the first-
class constraints, i.e,

@@, ¢ $© ) o) FP 7O 5N x0,  (3.27)

turns out to be equivalent to the set consisting of
P ~ 0, (3.28a)
P ~0, (3.28b)
$© ~0, (3.28¢)
P = PN ~ 0, (3.28d)
79 %0, (3.28e)
Igb> ~0, (3.28f)
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7® =0, (3.28g)
PLORNY() (3.28h)
7" ~0 (3.281)

Here we have taken into account both Egs. (3.28h) and (3.281)
for later convenience, although it is sufficient to consider one of
them in actuality.

The Dirac brackets between the spinor components of Z4

and Z, are found from Eq. (3.25) to be

Q/ €lkw

{et.d}, =

l(/}
Qz ]kw

4f
{Q?, wjﬁ}D =

{wi&’ w]ﬂ}D = 0’

ei‘/’e,kwk“wjﬁ

[
4\/§m

{of. 0"} = 4\/% (eey g + e‘i"’g?ejkwf),
m
. . i

{of. Ty}, = —ia;(s;; +4 \/Eme 0 e T T,
{wi&’ Ejﬂ}D = \/—m _l(pwidejkw/]zv
{wi('lv W}D -

{@i&vajﬂ}D — 4\/_m —l(/](glae_]kw/ Q]ﬂe' k)7

{aid, ’(D’J} 4\/_ —l(/)elkaﬁ‘é’

{ﬁav w;}}D =0. (329)

Using Eq. (3.29) and taking into account Egs. (3.28h) and
(3.281), we can show that

i

i
EQ?’ {)((a)?wid}n = Ewidv

{9, et}p =

i —ia i —ia
{)(<u)’w(l}D - 7—21’ {)((a)’ Ql( }D = _EQ . (330)
Many of the Dirac brackets in Eq. (3.29) are rather
complicated. Fortunately, however, Eq. (3.29) can be
expressed in the form of simple canonical brackets as

{wid’ﬁjﬁ}D — sl

iYa

{p(ix’ ﬁJ/}}D = _i5{6;;’

all others = 0, (3.31)
in terms of w,;, @, and
pe = 0% + ee; @iy (@), (3.32a)
i i 2\/§m J
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1
e
2\/§m

In showing this fact, it is convenient to use Egs. (3.28e)
and (3.30). Note here that the weak equalities p§ = ¢f,
p'% ~ 9'* hold owing to Eq. (3.28¢). Now we define the
new twistors W4 = (p?, w;;) and W := (@, p'%), with

which Eq. (3.31) can concisely be written as

P =g + (3.32b)

—l(/'el]w?)((“) .

(W Wy} = —i653,

{wi, W8, =0, (Wi, Wi , =0.  (3.33)

Using Egs. (3.28h), (3.28i), and the formulas given under
Eq. (3.17), we can show for

= WiWa — 2, (3.34a)
7 = Wios Wi — 21 (3.34b)
that
79 =2, (3.35a)
i =y (3.35b)

Accordingly, the first-class constraints (3.28e) and (3.28f)
read

(3.36a)

(3.36b)

With Eq. (3.35a), Egs. (3.32a) and (3.32b) can be solved
inversely as

1 . .
of =pf — 42m ee; @), (3.37a)
ai(l — pi& _ 4\/§m e_i(r”eijw?)?(a)‘ (337b)

Hence it follows that there is a one-to-one correspondence
between (Z4,Z)) and (W%, W},). Taking into account this
fact, we hereafter adopt W% and W/, as canonical variables
instead of Z4 and Zi,. The first equation in Eq. (3.26b) can
be written as b, = eW/)q;;*W{. Substituting this into
Eq. (3.11d), we see that the first-class constraint ;((e) ~0
can be expressed as

1
7@ =TT, - Zkz ~0, (3.38)

where T; (1 =1,2) are defined in

PHYSICAL REVIEW D 93, 045016 (2016)

T, = %Wgw;a T, = %Wga WA,

rj (3.39)
Using Eq. (3.33), we can readily verify that T, and T,
constitute a bases of the U(1), x SU(2) Lie algebra in the
following sense:
{TO’ Tr}D = O? {Tr’ TS}D = erstTt- (340)
The canonical variables that we need to consider at the
present stage are W4, WY, a, P(9), b3, Pgb), e, P® h, and
PM_ All the Dirac brackets between these variables are
given in Eq. (3.33) and

a b
{a,P@)y, =1,  {p° PP}, =1,

1
{h,PM}, ==

e’P(e) =1, ,
{e. P}, .

all others = 0. (3.41)
We also need to consider the first class constraints (3.28a)—
(3.28d), (3.36a), (3.36b), (3.38), (3.28h), and (3.281).

IV. CANONICAL QUANTIZATION

In this section, we perform the canonical quantization of
the Hamiltonian system studied in Sec. III. To this end, in
accordance with Dirac’s method of quantization, we
introduce the operators f and § corresponding to the
functions f and g, respectively, and set the commutation
relation
in units such that 2 = 1. Here, {f, g} denotes the operator
corresponding to the Dirac bracket {f,g}p. From

Egs. (3.33), (3.41), and (4.1), we have the canonical
commutation relations

W W) = /53, (4.22)
WA WE =0, W, Wy =0,  (42b)
@, P9y =i B PP =i (4.2¢)
6,P® =i,  [hPM] = % (4.2d)
all others = 0. (4.2¢)

The commutation relations (4.2a) and (4.2b) govern
together so-called twistor quantization [1,2].

In the procedure of canonical quantization, the first-class
constraints are treated as conditions imposed on the
physical states, after the replacement of the first-class
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constraint functions by the corresponding operators. In
the present model, the physical state conditions are found
from Egs. (3.28a)—(3.28d), (3.36a), (3.36b), (3.38), (3.28h),
and (3.281) to be

P|F) = PY|F) =0, (4.3a)
3 |F) = PY|F) =0, (4.3b)
P |F) = PE|F) =0, (4.3¢)
M|F) = PM|F) =0, (4.3d)
(a 1 2 4 AL
PP = |3 (W W) 25 )
=2(Ty—s=2)|F) =0, (4.3¢)
s(b) 1 r 2
3 |F) = §<WA63/ Wi+ Wios FWY) — 2t |F)
=2(T, - 1)|F) =0, (4.3f)
s eg 1,
poim) = (18- )i =o. (4.3¢)
F|F) = (€785 = V2mei?)|F) = 0, (4.3h)
M|F) = (@@ — V2me™®)|F) = 0. (4.31)
Here, |F) denotes a physical state, To and T, (r = 1,3) are
defined by
o | P ~ P
T = EW?WA, T, =20, WiW), (4.4

and ¢ is defined according to the first equation in
Eq. (3.26¢) as

A

Q= 2 [11‘1 (6 wa,w ) (45)

In(e; @, @)].

In defining the operators )O((“), )G(gm, and ;°(<e), we have

obeyed the Weyl ordering rule and have used the commu-
tation relation (4.2a) to simplify the Weyl ordered oper-
ators. Using Eqs. (4.2a) and (4.2b), we can easily show that

To.T)=0.  [T.T]=ieyT. (4.6)
which is precisely the quantum mechanical counterpart of
Eq. (3.40). It is evident that T, is the generator of U(1),, and
T, (r=1,2,3) are the generators of SU(2). In particular,

T, is the generator of U(1),.
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Now we introduce the bra-vector

(W,a,b?, e, h|:= (0 exp( WAWA +iaP@ + i3 P
+ ieP® +2ihPM) (4.7)
with a reference bra-vector (0| satisfying
(0|W# = (0]a = (0|b* = (0]& = (O[h = 0. (4.8)

Using the commutation relations (4.2a)—(4.2e), we can
show that

(W, a,b’ e, h|\W! = WA(W, a,b3, e, h|, (4.9a)
(W,a,b’ e hla=a (4.9b)
(W, a,b* e h|b® =b3*(W,a,b’ e hl| (4.9¢)
(W,a,b’ e ,h|é =e(W,a,b’ e h| (4.9d)
(W, a,b* e hlh =h(W,a,b* e h| (4.9¢)

Equation (4.9a) can be decomposed into two parts,

(W, a,b? e, h|p? = p*(W,a,b’ e, hl (4.10a)
(W,a,b’ e, h|tr, =w;;,(W, a,b’enh|. (4.10Db)
Also, it is easy to see that
3 W' 9 3
<W,a,b ,e,h|WA=—W<W,a,b‘,e,h|, (41]3.)
3 p(a) .0 3
(W,a,b’ e h|P¥ = —l%<W,a,b ,e,h|, (4.11b)
3 p(0) 9 3
(W,a,b’, e h|Py’ = —1w<W,a,b ,e,h|, (4.11c¢)
3 p(e) .0 3
(W,a,b’ e h|P® = —z%<W,a,b ,e,h|, (4.11d)
3 ph) _ i 9 3
(W,a,b’ e h|P —§%<W a,b’,e,h|. (4.11e)

Equation (4.11a) can be decomposed into two parts,

(W, a,b’ e hlw, = —aia (W, a,b’ e, h|, (4.12a)
(W,a,b% e, hp® = aa (W,a,b’ e ,h|. (4.12b)
Wig

Multiplying each of Egs. (4.3a)—(4.31) by (W,a,b’, e, h|
on the left and using Egs. (4.9)—(4.12), we obtain a set of
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simultaneous differential equations for F(W, a,b?, e, h) =
(W, a,b3 e, h|F) as follows:

d
—F=0, 4.13
% (4.13a)
d
——F =0, 4.13b
ab3 ( )
d
—F =0, 4.13
%6 (4.13c)
d
—F =0, 4.13d
o (4.13d)
ToF = (s +2)F. (4.13¢)
TyF = tF, (4.13f)
- 1
T;T;F = ZkzF, (413g)
el wiF = \2me'F, (4.13h)
€ jeaﬂ%iF = V2me™"F. (4.13i)
Ip; 8//;
Here, Ty and T, (r =1,3) are defined by
. 1 ) . 1 d
To=—-=WA—_— T,=——¢ AWA_—_ (414
o= Wigwr 1= a0 Wiggs: (4149

and ¢ is defined by
1 . . o 0
¢ = —% In (GU’lU[dw}l) —1In (eijeaﬁﬂa—pﬁ?’)} . (415)

Equations (4.13a)—(4.13d) imply that F' is actually inde-
pendent of a, b%, e, and h. Hence it follows that F is a
function of the twistors W2 only. The holomorphic func-
tions of W?, such as F, are often referred to as the twistor
functions. As can be seen immediately, Eqgs. (4.13h) and
(4.131) are respectively equivalent to

. m -
i F = 76,-1-6“”F, (4.16a)
2
o 0 m ...
eP — —F =——_¢llemF. 4.16b
opf o V2 (4.160)
Combining Egs. (4.13e) and (4.13f), we have
w4 _8 F=-2 HF 4.17
CwrF = e DE @)
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0

where
1 1
S :=§(s—|—t), ) :=§(S—t). (4.18)

The pair of Egs. (4.13e) and (4.13f) is equivalent to the pair
of Egs. (4.17a) and (4.17b). Obviously, Egs. (4.17a) and
(4.17b) are simultaneously satisfied by a homogeneous
twistor function of degree —2s, — 2 with respect to W4 and
degree —2s, — 2 with respect to W4 These degrees must be
integers so that F can be a single-valued function of W4. In
this way, the allowed values of s; and s, are restricted to
arbitrary integer or half-integer values, and accordingly s
and ¢ are also restricted to arbitrary integer or half-integer
values. We thus see that the Chern-Simons coefficients 2s
and 2¢, which are coefficients of the one-dimensional
Chern-Simons terms S, and Sp3, respectively, are quantized
to be arbitrary integer values.
The operators T, fulfill the SU(2) commutation relation
[T, T, = ien T, (4.19)
Following the general method for solving the eigenvalue
problem in the SU(2) Lie algebra [34], we can simulta-
neously solve the eigenvalue equation for the Casimir

operator Tr'i', = T;'i'; + T3T3, ie.,

T,T,F = AF, (4.20)
and Eq. (4.13f) to obtain
1 3
A=I1I+1), I=0,-,1,=,..., (4.21a)
272
t=-I,-I1+1,....,1-1,1I. (4.21b)

In deriving Egs. (4.21a) and (4.21b), we assume the
existence of a positive-definite inner product in the function
space consisting of twistor functions. (As for the twistor
formulation of a massless system, a twistor-function space
with a positive-definite inner product has been established
[35].) Since ¢ takes integer or half-integer values as
explained above, I also takes integer or half-integer values
accordingly. From Egs. (4.13f), (4.13g), (4.20), and
(4.21a), the allowed values of the positive constant k are

determined to be
k=2/I1+1)-¢.

In this way, the coefficient of Sy, is also quantized in
addition to the Chern-Simons coefficients. It is now clear

(4.22)
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that the twistor function F is characterized by the set of
three quantum numbers (s,/,7), or equivalently, by
(I,sy,s,); for this reason, it is convenient to label F as
Fs,],t or Fl,sl.xz'

V. PENROSE TRANSFORM AND A MASSIVE
SPINOR FIELD OF ARBITRARY RANK

In this section, we define a spinor field of arbitrary rank
by the Penrose transform of F; ,,. We also demonstrate
that this spinor field satisfies generalized DFP equations
with SU(2) indices.

Let us consider the Penrose transform of Fjg
specified by

(2)
AL Upijre g0y

1 o
e Wf; e p(/}«wj](.ll P /w'jq(.lq
0 0
X o Frsys (W)d'aw (5.1)
apill 3ﬂi,, 1:52
with
d*w = dwyAdw | Adw g Adw,; (5.2)

to define the rank-(p + ¢) spinor field \1121~~~ip

B SR PRI
(occasionally abbreviated as W) on complexified Minkowski
space CM. Here, ¥ denotes a suitable four-dimensional
contour. Equation (5.1) is identified as a nonprojective
form of the Penrose transform in the massive case [2].6 It
should be noted that U has the upper and lower SU(2)
indices in addition to the dotted and undotted spinor
indices. Because of the structure of Eq. (5.1), the number
of upper (lower) SU(2) indices is equal to the number of
undotted (dotted) spinor indices. It is obvious that ¥ has the
symmetric properties

\I’ll R PR I

(LT AL P Y SR P TR

[ ST FERRY SN
[CSRRRTe RPN RPN Y SRR P SRR Pl

(5.3a)

®The two-dimensional projective form of the Penrose trans-
form (5.1) is given by

iy @)
[T PR P T

1 o
= G
0 0
Y 'WF“,,;Z(
1 i

P

X W)wwdwfl.i/\wz}-,dwg,

where I" denotes a suitable two-dimensional contour [3]. We can
also find the three-dimensional projective form of the Penrose
transform (5.1) [8].
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iy

Ay QpifreJaeJpe g0 -0g- o Qp...Qy

iy...ip

Ay Op3j1efpeJa- g0 0p...0q...04"

(5.3b)

Suppose that among iy, ..., i,,, the number of 1’s is p; and
the number of 2’s is p,(= p — p;). Similarly, suppose that
among ji, ..., j,, the number of 1’s is ¢; and the number of
2’s is g(= g — q;). The integral in Eq. (5.1) can remain
nonvanishing if

1 1
S1 :E(Ch - p1)s $2 =§<92—P2)- (5.4)
Combining Egs. (4.18) and (5.4), we have
1
SZE(% - D1+ 4= p2)s (5.5a)
1
tzi(ch —P1— G2+ Pp2)- (5.5b)

Now we can show that

4 4
iF(W) _ %%F(W) — %%F(W)
Oz 0z Opy, 0z, Opy,
8(iz77wk};) 0 . B 0
=~ W T F(W) = iwhefr — F(W).

Here the weak equality p/; = ¢/, Eq. (2.22), and the formula

0/0zy = P2eP 3 /97% have been used. The derivative of
U with respect to Zyj; can be calculated by using Eq. (5.6) as
follows:

i ir...ip S (Z)
azﬂ[} Ao Gy fguy g

1 o
= (27”)4%; e P/’wjl(.l] e qu(-lq
» 0 o 0
a " a, -
apl-l' &01[: 8Zﬂﬁ

FI,S] .89 (W)d4w

i o :

= it é I i DT iy T,
» 0 0 o 0
... € _

Opi;  Bp;r Opy Ipy

Fry,(W)d'm.  (5.7)

Contracting over the indices ﬁ and a; in Eq. (5.7) and using
Eq. (4.16a), we obtain
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0 o
azﬂﬁ aj...

iy

ap;j] "-quﬂQZH-aq

Py, . o ooqm: -
¢ w]zaz w/qaq

= ﬂeﬁye ;}{
- \/5 Jik (27”-)4 s
0 a{z o iarF'I 51,8 (W)d4w
" Op] 0p] dp;,

im iy ...i
= — Pre. 1 P . .
\/§€ €11k\IJyu| Ao Jg Qa0 (Z)

(5.8)

Similarly, contracting over the indices f and a; in Eq. (5.7)
and using Eq. (4.16b), we obtain

0 i, @)
azﬂﬁ Pay...apijie. g0

_ M ik 1 i(p-1)§
TR0 mp KO T

0 0 4
X@"‘@Fl,sl,sz(w)d w

= iﬂeﬁf’eilk (5.9)

iy...ip (Z)
ay...apkjyJg a0y .

In this way, it has been shown that the spinor field ¥
satisfies the generalized DFP equations with SU(2) indices

l\/_aZﬂﬂ ap.. ap./l jqﬂa2 aq
kiy...
+ melyejlk\:[l}’all“ép;/'z“-jq‘dzmdq - 0’ (5103-)
. Ja i
fazﬂﬂ‘llﬁaz Ap3f1eJgh @
+m€ﬁ7€llk\11lz Ao =0. (5.10b)

Uik jgiran-ay

Using Egs. (5.10a) and (5.10b) and noting

o 0 1,0 0
=y, (5.11)
Oz 8% 2 7077 0z,
we can derive the Klein-Gordon equation
o 0 iy
el gttt o =), 5.12
<3zﬂﬂ azﬂﬂ +m > AL Qi1 fgsty e O ( )

This makes it clear that U is a field of mass m. Thus, we
obtain a spinor field of arbitrary rank with mass m by
means of the Penrose transform (5.1).
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VI. RANK-ONE SPINOR FIELDS AND PHYSICAL
MEANINGS OF THE GAUGE SYMMETRIES

In this section, we investigate the rank-one spinor fields
in detail to clarify the physical meanings of the U(1),,
U(1),, and SU(2) symmetries as well as those of the
constants s and .

Now we particularly consider Eq. (5.10a) in the case

(p,q) = (0,1) and Eq. (5.10b) in the case (p,q) = (1,0),
which respectively read
1\[ \Ilﬂ( ) — meij\Ilé(z) =0, (6.1a)
iv32 Wi (z) + me'l Wi (z) = 0, (6.1b)
82/3(1

with U/ = /?W,. Equation (6.la) with i=1 and
Eq. (6.1b) with i =2 can be combined in the form of
the ordinary Dirac equation

W3(z)
Dy(z) =0.  w(2) ==< 5 ) (6.2)
\1’1(1)

while Eq. (6.1a) with i =2 and Eq. (6.1b) with i = 1 can
be combined, after replacing z%¢ by —z%, as

5(2) ) (6.3)

Dyr(z) =0,  ws(z) = ( P
‘1’2(_1)

In Egs. (6.2) and (6.3), D denotes the Dirac operator

—mﬁﬁ i\/§ 0,
Dz
D := .
iv2 -2 —mé;

8zﬁ

(6.4)

The charge conjugate of y(z) is found to be
0 —ep =
i@=( 5 " )n@

(o G- () e

where the arguments of y;, namely 7% have been replaced

by their complex conjugates 7% := 7% so that $ can be a
holomorphic function of z*¢, Using the complex conjugates
of Egs. (6.1a) and (6.1b), we can show that DyS(z) = 0.
Since y, and 7 satisfy the same Dirac equation and have
the same spinor and SU(2) indices, they can be identified
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TABLE I. A classification of the rank-one spinor fields. TABLE II. The values of s and ¢ of the rank-one spinor fields.

Particle Antiparticle K t s t
Left-handed U2 Ul 2 -1 1 ol -1 -1
Right-handed v g v L L v 1 -1

with each other up to an overall constant.” (This identi-
fication may be confirmed by the CPT symmetry.) If v/, (z)
is a spinor field of a particle with four-momentum (E, p),
then wS§(z)(=y,(z)) is regarded as a spinor field of a
corresponding antiparticle with four-momentum (—E, —p).
Accordingly, y,(—z) = (¥k(z), ¥§(z))T is considered a
spinor field of the antiparticle with four-momentum (E, p).
In the light of this fact, it is clear that U2(z) and W) (z)
represent a left-handed particle and a corresponding left-
handed antiparticle, respectively, while ¥¢(z) and W$(z)
represent a right-handed particle and a corresponding right-
handed antiparticle, respectively, as summarized in Table 1.
We thus see that the index i of W/ (z) and W%(z) distin-
guishes between a particle and its antiparticle.

Using Eq. (5.5), we can obtain the possible values of s
and ¢ for each of the rank-one spinor fields as in Table II.
We observe that the left-handed spinor fields Wi,(z) (i = 1,
2) have s = —1/2, while the right-handed spinor fields
Wé(z) (i =1, 2) have s = 1/2. Hence, s turns out to be a
quantum number specifying the chirality of a spinor field.

Since s is an eigenvalue of T, up to the additive constant 2,

as can be seen from (4.13e), TO can be interpreted as the
operator of chirality. Accordingly, U(1), can be identified
as the gauge group of chirality, and the U(1), symmetry is
physically understood as a gauge symmetry leading to
chirality conservation. We also observe that the particle
spinor fields W2(z) and W%(z) have t = 1/2, while the
antiparticle spinor fields W!(z) and W4(z) have t = —1/2.
Hence, ¢ turns out to be a quantum number distinguishing
between a particle and its antiparticle. Then it follows that ¢
is proportional to the electric charge of the particle/

antiparticle. Since ¢ is an eigenvalue of T3 as can be seen

"The plane wave solution of Eq. (6.1) given by

Ui(z) = —Ce/ @i exp (—iz T @hwy,).

Ve (z) = Ce 2w exp (—iz @kwy;)

fulfills the conditions W} (—z) = —(C/C)¥i(z) and ¥¥(—z) =
—(C/C)¥%(z). Here, C is a complex constant and ¢ is given in
Eq. (3.26¢). These conditions lead to y,(z) = —(C/C)yS(z), and
hence, in this case, y, and y{ can indeed be identified with each
other. For verifying that the plane wave solution satisfies

Eq. (6.1), it is convenient to use the classical counterparts of
Egs. (4.16a) and (4.16b),

. m . . m ...
Wi = —=¢;;e'?, W/ = —=€eVe Y.

J \/2’/

from (4.13f), T3 can be interpreted as the operator of
electric charge up to a constant of proportionality.
Accordingly, U(1), can be identified with the gauge group
of electric charge, and the U(1), symmetry is physically
understood as a gauge symmetry leading to electric charge
conservation.

Now we recall that our study has been performed in the
unitary gauge in which the GGS action takes the form of
Eq. (2.20) or Eq. (2.24). In the unitary gauge, the local
SU(2) symmetry is hidden and the U(1), symmetry is
linearly realized in accordance with Eq. (2.12). The
manifestly SU(2) covariant formulation can be developed
on the basis of the action (2.23). The rank-one spinor fields
found in this formulation, denoted by Qf’ and Q/, are
related to W¥ and W/, by®

Q(z) = VITs(z).  Qi(z) =TV (6.6)
Because V is independent of z%¢, we can readily verify by
using Egs. (6.1a) and (6.1b) that

l\/EiQ{}(Z) — me;;Qh(z) =0, (6.7a)
Dz

o . o
iV2——Qi(z) + me'iQi(z) = 0.

52, % (6.7b)

Following the above consideration for ¥%(z) and W’,(z), we
see that Q2(z) and Q,(z) constitute a doublet of left-handed
particle and antiparticle spinor fields, while Q¢(z) and
Q4(z) constitute a doublet of right-handed particle and
antiparticle spinor fields. Under the SU(2) transformation,
Q;-" and Q/, transform linearly as

Q- QF =UJQE QL > QI=QLUY,  (6.8)
whereas W% and W/, transform according to the U(1),
transformation

The rank-(p + ¢) spinor field in the manifestly SU(2)
covariant formulation is given by

R (2) __ ePig. g
(LTRSS R PR SO (27”)4 5 J1y Jq%
0 0
4
X p) a; " a, FI,sl.sz(/'{vﬂ)d ,
Hi, op;

Ip

where u¢ is a spinor related to @{ by the weak equality ¢ ~ of.
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e - e =004, W, - W= WO (6.9)
As seen from Eq. (6.8), the SU(2) transformation causes a
continuous transformation between the particle spinor field
Q2 (Qf) and the antiparticle spinor field QJ, (Q%). The SU(2)
symmetry therefore turns out to be a gauge symmetry
realized in the particle-antiparticle doublets (Q2,Q!) and
(Q‘f’, Qg) Such a symmetry, however, is not observed in
nature; hence, it should be considered that the SU(2)
symmetry is hidden or broken. The formulation in the unitary
gauge is appropriate for this situation, because, in the unitary
gauge, the SU(2) symmetry is hidden and the U(1),
symmetry is manifestly exhibited instead.

VII. SUMMARY AND DISCUSSION

We have presented a gauged twistor model of a free
massive spinning particle in four dimensions. This model is
a non-Abelian extension of the gauged twistor model of a
free massless spinning particle in four dimensions, pre-
sented in Refs. [22-24]. The extended model is governed
by the GGS action that was elaborated by adding the 1D
Chen-Simons terms S, and S,; and the novel term Sy, to
the gauged twistorial action S,,, [see Eq. (2.20)]. The GGS
action remains invariant under the reparametrization and
the U(1), and local SU(2) transformations, although the
SU(2) symmetry is nonlinearly realized in the action. In the
unitary gauge, the U(1), symmetry is manifestly exhibited,
while the SU(2) symmetry is hidden.

We have studied the canonical Hamiltonian formalism
based on the GGS action in the unitary gauge by following
Dirac’s recipe for constrained Hamiltonian systems. The
classification of the constraints into first and second classes
was carried out strictly, and the Dirac brackets between the
canonical variables were obtained concretely. It was dem-
onstrated that just sufficient constraints for the twistor
variables are consistently derived as the secondary first-
class constraints [see Eqs. (3.28e)—(3.281)].

The subsequent canonical quantization of the system was
performed in terms of the new twistor variables W4 and
Wi, because they satisfy the simple Dirac brackets given in
Eq. (3.33). We have shown that the Chern-Simons coef-
ficients 2s and 2¢ are quantized to be arbitrary integer
values as a result of the canonical quantization based on the
commutation relations (4.2a)—(4.2e). In general, the quan-
tization of Chern-Simons coefficient is a common conse-
quence in certain theories in which the Chern-Simons terms
play crucial roles (see e.g. Refs. [36-39]). Our gauged
twistor model can be regarded as a specific example of such
theories. Intriguingly, the coefficient k of Sy, is also
quantized via solving the eigenvalue problem of the
SU(2) Lie algebra. We found that the twistor functions
in our model are eigenfunctions of the relevant differential
operators governed by the U(1), x SU(2) Lie algebra [see
Egs. (4.13e)—(4.13g)]. Each twistor function F' is then
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labeled by a set of three quantum numbers associated with
the U(1), x SU(2) Lie algebra.

We have carried out the Penrose transform of the twistor
function F to obtain a massive spinor field of arbitrary rank
defined on complexified Minkowski space [see Eq. (5.1)].
As emphasized earlier, this spinor field has the upper and
lower SU(2) indices in addition to the dotted and undotted
spinor indices. In fact, we observed that the number of
upper (lower) SU(2) indices is equal to the number of
undotted (dotted) spinor indices. We also demonstrated that
the spinor field satisfies the generalized DFP equations with
SU(2) indices, given in Eq. (5.10).

We have investigated the rank-one spinor fields in detail to
clarify the physical meanings of the gauge symmetries as
well as those of the constants s and 7. It turned out that s is a
quantum number specifying the chirality of a spinor field and
that the U(1), symmetry is a gauge symmetry leading to
chirality conservation. It also turned out that 7 is a quantum
number proportional to the electric charge of a spinor field
and that the U(1),, symmetry is a gauge symmetry leading to
electric charge conservation. The SU(2) symmetry was
shown to be a gauge symmetry realized in the particle-
antiparticle doublets. Such a symmetry, however, is not
observed in nature, so that it should be considered to be
hidden or broken. Fortunately our twistor formulation in the
unitary gauge is appropriate for describing this situation.
Since the SU(2) symmetry is a symmetry realized in the
particle-antiparticle doublets, it cannot be identified with the
weak isospin symmetry. We thus conclude that the idea
proposed by Penrose, Perjés, and Hughston [4-8] is not valid
in our gauged twistor model.

The observation that s is a quantum number specifying
the chirality of a spinor field is supported for the following
reason: The gauged Shirafuji action for a massless spinning
particle enjoys the U(1), symmetry and contains its
associated constant s [22-24]. This constant is indeed
shown to be the helicity of a massless spinning particle. As
is well known, the chirality is an analog of the helicity,
while the chirality is a Lorentz invariant quantity valid for
massive particles as well as massless particles. (For mass-
less particles, chirality is the same as helicity.) For this
reason, in the present twistor model, it is quite natural to
identify the Lorentz invariant quantity s as the chirality
quantum number. )

We have seen that each eigenstate of T; corresponds (via
the Penrose transform) to a particle or antiparticle state
represented by its own spinor field. Remarkably, we
encounter a similar situation in studying the rigid body
model [40,41]. In this model, the rigid body rotation leads
to an intrinsic SU(2) symmetry in addition to the spin
SU(2) symmetry. Hara et al. showed that the eigenstates of
the third generator of the intrinsic SU(2) group are
assigned to particle and antiparticle spinor fields. They
also pointed out that this generator cannot be identified
with the third component of the isospin generators.
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(Accordingly, it turns out that the intrinsic SU(2) symmetry
cannot be regarded as the isospin symmetry. This result
contradicts the earlier idea concerning isospin proposed in
Refs. [42,43].) We thus see that the gauged twistor model
and the rigid body model share common aspects.

Now we recall that the secondary first-class constraints
(3.28e)—(3.28g), or equivalently, Egs. (3.36a), (3.36b), and
(3.38), have been derived systematically on the basis of the
U(l),, U(1),, and reparametrization symmetries of the
GGS action. By contrast, the remaining secondary first-
class constraints (3.28h) and (3.281) have been derived as a
result of incorporating the mass-shell condition (2.3) into
the GGS action by hand. Considering this fact, we can
never say that the present approach for constructing the
GGS action is satisfactory from the gauge-theoretical point
of view. To make our gauged twistor formulation complete,
we need to establish an approach in which the mass-shell
condition (2.3) is supplied as an inevitable outcome of an
extra gauge symmetry.

In this paper, we have not presented precise definitions
of the chirality and charge conjugation for a massive spinor
field of arbitrary rank. The chirality may be defined on the
basis of the type of spinor indices of the field. For
clarifying the definition of charge conjugation and its
associated concept of particle-antiparticle, it is necessary
to examine coupling of a massive spinor field of arbitrary
rank to the electromagnetic field. The precise definitions of
chirality and charge conjugation should confirm our
observation on the physical meanings of the constants s
and 7. We hope to address the aforementioned issues in the
near future.
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APPENDIX: POINCARE SYMMETRY AND
PAULI-LUBANSKI PSEUDOVECTOR

In this appendix, we consider the Poincaré symmetry and
the Pauli-Lubanski pseudovector within the framework of
the gauged twistor formulation.

We can easily show that the GGS action (2.20) remains
invariant under the infinitesimal Poincaré transformation
[or more accurately, the infinitesimal SL(2,C) x R!3
transformation],

0f = o = of —eyd} — eV, (Ala)
@ia': N au'a _ Eia _ Eabaiﬁ + ieﬂaﬁ}'} i (Alb)
Wiy = Wy = Wiy —l—?d/}wi/-j, (Alc)
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Wy = Wy = Wy + &,/ (Ald)
Here, ¢ and £/ (:= ¢%) are parameters of the infinitesi-
mal Lorentz transformation [or more accurately, the infini-
tesimal SL(2, C) transformation], satisfying the symmetric
properties ¥ = /% and &%/ = /¢, while ¢ is a param-
eter of the infinitesimal translation, satisfying the
Hermiticity e — ¢Pe The fields h, h, a, and b" are
assumed to be Poincaré invariant. Since the GGS action

is Poincaré invariant, we can derive conserved quantities by
applying Noether’s theorem. The conserved quantities

corresponding to %, €/ and £* are found to be

i
Hap = 5 (Qiaw/lj + 0ip@y), (A2a)
. I . »
Fajp = =5 (@ + 0mia). (A2b)
Pop *= ﬁfx’wi/}. (A2C)

Substituting Eqgs. (3.37a) and (3.37b) into Egs. (A2a) and
(A2D), respectively, we can rewrite p,5 and fi;, j as

i

ﬂa/} = D) (piaﬁ};’ + pi[}ﬁfl)’ (A3a)
_ i —
Hap = =5 Pomp + Pywia). (A3b)
The angular momentum tensor is given by
Madﬂﬁ = /"aﬂe,‘lﬁ + pdﬁeaﬁv (A4)

and the four-momentum vector is given by Eq. (A2c).
The Pauli-Lubanski pseudovector is defined by [2,44,45]

Wi .= % capPriss Py Myy&'s’ (A5)
which can be written as
Wel = —ipP py® 4 il py (A6)
by using the formula
aapprivh — (e Poet BePi _ @dehr et ch 5). (A7)
Using the identity
ePpl + P1p7 + e”‘)‘pff =0 (AB)

and its complex conjugate, we can express Eq. (A6) as
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Wa('l — (pzﬂﬁfi 4 wiﬁﬁjﬁ)ﬁiaw?

s —iff\ o jt
—E(pfwﬂ—f—wibpﬂ)wf @, (A9)

or more concisely,

. o1\ o
Wai — (555;c —55{@) WiWmimt.  (AI0)
Here, W? and W} are the twistors defined by W? :=
(pf:,wk/,) and W5 := (@, p”) [see the text above
Eq. (3.33)]. Applying the formula

1 .

I _ slsi
_O-rijark - 51'51(

1 .
5 — =58l (Al1)

2 1
valid for the Pauli matrices o, to Eq. (A10), we obtain
wee = T,a,ijﬁiawj-’, (A12)

with
I s
T, := EWBa,k W; (A13)

[see Eq. (3.39)]. Equation (A12) can be written in terms of
the (original) twistors Z2 and Z% as

W = T,a,,-jf_riaﬂ?, (A14)
with
1—
Tr = EZIIE,O'rklZf. (AIS)
Using the mass-shell constraints
w,-(;,w? ~ %Gijeilp, (A16a)
Wl x —=e'le™? (A16b)

equivalent, respectively, to Egs. (3.11e) and (3.11f), and
utilizing the formula ¢,0,0, = —c}, we can show for
Eq. (A12) that

W W% ~ —m?T,T,. (A17)

In our model, twistor quantization is performed with the
commutation relations (4.2a) and (4.2b), or equivalently,

[ﬁia’ %;3] = _5{€aﬂ’
all others = 0.

i oA ] i .
i @il = 0j€q

(A18)
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The operators corresponding to 1,5 and g, j are defined by
replacing the twistor variables in Eq. (A3) with their
corresponding operators and by obeying the Weyl ordering
rule. After using the commutation relations in Eq. (A18),
we have

i

ﬁaﬂ = 5 (ﬁmélﬂ + ,bi/)’%il)’ (Al9a)
2~ i 2iA 2i A
Hap = =5 PaB + Pyia). (A19b)

The operator corresponding to Paop is found immediately
from Eq. (A2c) to be

Pop = Wit (A20)
Using Eq. (A18), we can calculate the commutation
relations between fl,4, ﬁa 3 and 150,/'3 to obtain

P i, N . N

[/laﬁ’ ﬂyé] == E (eay,uﬂﬁ + €astpy + €yHas + eﬂé/’tay)ﬂ

A A i A S A ~

o iy 5] = =5 (Caghys + €ashpy + €pibas + €jiHar):
P i, .

[/’lrxﬂ’ py5] = _E (eaypﬂ5 + eﬂypa$)’

A, i R .

Wi Prol = =5 (€asPyjs + €3y

all others = 0. (A21)
These commutation relations specify together a spinor
representation of the Poincaré algebra. The operators
Aaps ﬁa j and i)aﬁ are thus established as the generators

of SL(2,C) x R"3. We can verify that fi, ﬁ&/}” and p,;

commute with the generators T, and T, defined in
Eq. (4.4). This implies that the Poincaré symmetry and
the U(1), x SU(2) internal symmetry are not combined,
so that the result is consistent with the Coleman-Mandula
theorem [46,47].

The Weyl ordered operator corresponding to the Pauli-
Lubanski pseudovector W can be simplified as

Wt = T,0,/ @ 6 (A22)
by using the commutation relation
[Trv Gsij%iaﬁjﬂ = ierslatij%ia{ﬂ;l' (A23)
Then, using the physical state conditions
14| F) = =, |F), (A24a)
J V2
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A

A s m .. N
T @ F) = —c'le™?|F) (A24b)
V2

equivalent, respectively, to Egs. (4.3h) and (4.31), we can
show that

W oW F) = —m*T,T,|F). (A25)

This is precisely a quantum mechanical counterpart of
Eq. (A17). The Casimir operators of the Poincaré algebra

are given by i)a/;i)“/} and W,, W, From Eq. (A24), it
follows that

D™ F) = m*|F). (A26)
Then it can be shown that [44,45]
W oW\ F) = —m2J(J + 1)|F), (A27)

where J denotes the spin quantum number taking the values

3
L—, ... A2
’ ’29 ( 8)
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Here, |F) is assumed to be a simultaneous eigenvector
of W,,W* and the other relevant operators 'T'O, 'T'3, 'i'ﬁ';,
and f)a/;,f)“/} [see Egs. (4.3e), (4.3f), (4.3g), and (A26)].
This assumption holds true, because the generators of
SL(2,C) x R!3 commute with those of U(1), x SU(2).
The vector |F) turns out to be characterized by the set of
quantum numbers (s, I, t;m, J). In terms of |F), Eq. (4.20)
reads

T,7,1F) = AF), (A29)
where A is determined to be
1 3
A=I1(I+1), 1:0,5,1,5,.... (A30)

Applying Egs. (A27) and (A29) to Eq. (A25), we even-
tually have

I=1J. (A31)

This result is consistent with the fact that the number of
SU(2) indices of the spinor field ¥ given in Eq. (5.1) is
equal to the number of its spinor indices.
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