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I. INTRODUCTION

The three-dimensional field theory models represent
themselves as a convenient laboratory for the study of
many sophisticated aspects of quantum field theory. The
main reasons for this are, first, the simplicity of the
formulation of these theories, and second, their one-loop
finiteness. For the three-dimensional supersymmetric field
theories, the most convenient description is the superfield
one [1] which essentially simplifies the perturbative cal-
culations. The superfield approach allowed one to obtain
many interesting results for quantum corrections in these
theories. The most important ones among them are the
explicit calculation of the one- and two-loop effective
potential in a general scalar superfield model [2] and in
other superfield models [3], proof of the explicit all-loop
finiteness of the three-dimensional superfield QED [4], and
the explicit calculation of the gauge sector of the one-loop
effective action in theories with extended (N ¼ 2, N ¼ 3

and N ¼ 4) supersymmetry [5].
At the same time, an interesting problem related to these

theories is the problem of an effective (emergent) dynam-
ics. Following this idea, the known field theory models
emerge as effective theories, whereas the role of the
fundamental theory is played by some simple model
involving the coupling of some matter (which is further
integrated out thus being unobserved) with the physically
interesting fields. For the gauge theories (including the
supersymmetric ones), the paradigmatic example of the
emergent dynamics is the arising of the Abelian Maxwell
term in the CPN−1 theory (see for example Ref. [6]). The
concept of the emergent gravity, discussed for example in
Ref. [7], plays an important role within this concept since it
can allow for solving the problem of a consistent descrip-
tion of quantum gravity. In this paper, we apply this
methodology to generate the non-Abelian Chern-Simons
term. While this has been done in the three-dimensional

nonsupersymmetric case in Refs. [8,9], and in the four-
dimensional Lorentz-breaking case in Ref. [10], it has not
been done in superfield theories up to now.
The structure of the paper looks like follows. In the

Sec. II, we describe the derivative expansion methodology
for supersymmetric gauge theories. In Sec. III, we explic-
itly generate the non-Abelian Chern-Simons term. The
Summary is devoted to discussing results and perspectives.

II. DERIVATIVE-EXPANSION SCHEME

Let us start with the following three-dimensional matter
action:

S½Φ; Φ̄; Aα� ¼
Z

d5zΦ̄ð∇2 þmÞΦ; ð1Þ

where the massive complex scalar superfield Φ interacts
with the background non-Abelian Lie-algebra-valued
gauge superfield Aα ¼ Aa

αTa (where Ta are Lie algebra
generators) through the minimally coupled gauge-covariant
derivative ∇α ≡Dα − iAα. Here we are using the scaled
gauge superfield gAα → Aα, where g is the coupling
constant.
From S½Φ; Φ̄; Aα�, we can compute the one-loop effective

action Γeff ½Aα� by formally integrating out the complex
scalar superfields. Therefore, we arrive at the following
equation:

Γeff ½Aα� ¼ −Tr lnð∇2 þmÞ

¼ −Tr ln
�
D2 − i

2
½2AαDα þ ðDαAαÞ

− iAαAα� þm

�
: ð2Þ

Here, we use the usual definition of the trace operation for
functional operators, namely

Tr ln Ô ¼ tr
Z

d5z lnOδ5ðz − z0Þjz¼z0 ; ð3Þ
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where “tr” means a trace over group indices,
while δ5ðz − z0Þ≡ δ3ðx − x0Þδ2ðθ − θ0Þ.
It is convenient to split the effective action into two

parts according to their parity under the transformation
m → −m,

Γeff ½Aα�≡ Γeven½Aα� þ Γodd½Aα�; ð4Þ

Γeven½Aα�≡ −
1

2
Tr½lnð∇2 þmÞ þ lnð∇2 −mÞ�

¼ − 1

2
Tr lnð□A − iWα∇α −m2Þ; ð5Þ

Γodd½Aα�≡ −
1

2
Tr½lnð∇2 þmÞ − lnð∇2 −mÞ�: ð6Þ

In a low-energy approximation or, equivalently, in an
approximation of slowly varying background superfields,
the even-parity part (4) corresponds to the Euler-
Heisenberg effective action and the odd-parity part (5)
corresponds to the Chern-Simons action [11]. In Ref. [12],
the one-loop effective action was calculated in three-
dimensional Minkowski space. The supersymmetric gen-
eralization of these results was studied in Ref. [5], in the
Abelian case, to the N ¼ 2 and N ¼ 4 superspaces.
In Ref. [8], the authors applied the derivative-expansion

scheme proposed in Ref. [13] to compute the induced
Chern-Simons term at zero and finite temperatures. The
main goal of the present paper is to provide a systematic
method to compute the non-Abelian Chern-Simons term
induced by radiative corrections in N ¼ 1, d ¼ 3 super-
space via a derivative-expansion scheme so that, our results
can be seen as a supersymmetric generalization of the
result obtained in Ref. [8] at zero temperature. In particular,
we will show explicitly that, at low energies, the odd-
parity part (5) corresponds to the Chern-Simons action,
namely [1]

Γodd½Aα� ¼ Ctr
Z

d5z

�
AαWα þ

i
6
fAα; AβgDβAα

þ 1

12
fAα; AβgfAα; Aβg

�
; ð7Þ

where C is a dimensionless constant to be determined, and

Wα ¼
1

2
DβDαAβ − i

2
½Aβ; DβAα� − 1

6
½Aβ; fAβ; Aαg�: ð8Þ

In order to apply the method of derivative expansion, let
us substitute Eq. (2) into Eq. (6), so that we can rewrite the
result as

Γodd½Aα�

¼ − 1

2
Tr

�
ln

�
1 − i

2
ð2AαDα þ ðDαAαÞ − iAαAαÞ

D2 −m
□ −m2

�

− ln

�
1 − i

2
ð2AαDα þ ðDαAαÞ − iAαAαÞ

D2 þm
□ −m2

��

þ Γodd½Aα ¼ 0�: ð9Þ

Since the inverse of the Aα propagator, namely
Γodd½Aα ¼ 0�, does not depend on the background super-
field, it follows that we can drop it out by means of the
normalization of the effective action.
Expanding the logarithmic terms of Eq. (9), we get

Γodd½Aα� ¼
X∞
n¼1

�
i
2

�
n SðnÞ

n
; ð10Þ

where

SðnÞ ≡ 1

2
Tr

��
ð2AαDα þ ðDαAαÞ − iAαAαÞ

D2 −m
□ −m2

�
n

−
�
ð2AαDα þ ðDαAαÞ − iAαAαÞ

D2 þm
□ −m2

�
n
�
: ð11Þ

Notice that the derivatives Dα and ∂αβ act on all functions
on their right side, including the delta function (3). For the
purpose of calculating the functional trace in Eq. (11), we
need to move all derivatives Dα and ∂αβ to the right and all
functions of Aα and their derivatives to the left so that, at the
end of the calculation, we can calculate the functional trace
by using the Fourier representation of the delta function. In
order to perform this task, we need to use the following
identities:

½Dα; fðzÞg ¼ ðDαfÞ⇔DαfðzÞ ¼ ðDαfÞ þ ð−ÞϵffDα;

ð12Þ

1

□ −m2
fðzÞ ¼ f

1

□ −m2
− ½□; f� 1

ð□ −m2Þ2

þ ½□; ½□; f�� 1

ð□ −m2Þ3 þ � � � ; ð13Þ

where ½; g is the graded commutator, while fðzÞ is a
function of the background superfield and their derivatives.
Notice that Eq. (12) is the graded Leibniz rule.
Our calculation is also based on an extensive use of

the following identities satisfied by the covariant deriva-
tives Dα:

DαDβ ¼ i∂αβ þ CβαD2; fD2; Dαg ¼ 0;

½Dα; Dβ� ¼ −2CαβD2; ðD2Þ2 ¼ □: ð14Þ
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Now, let us calculate the terms SðnÞ in Eq. (11). However,
taking into account that Eq. (7) is a functional which
depends only on quadratic, cubic, and quartic terms in the
background superfield, it follows that we only need to
calculate the lowest-order terms in the expansion of Γodd in
Eq. (10), namely

Γodd½Aα� ¼
i
2
Sð1ÞAA − 1

8
ðSð2ÞAA þ Sð2ÞAAA þ Sð2ÞAAAAÞ

− i
24

ðSð3ÞAAA þ Sð3ÞAAAAÞ þ
1

64
Sð4ÞAAAA: ð15Þ

In the next section, we perform explicit calculations of all
the terms in the expansion above.

III. INDUCED CHERN-SIMONS TERM

Let us start the calculation of the contributions SðnÞ in
Eq. (15). At first order, n ¼ 1, it is only necessary to

calculate Sð1ÞAA. Hence, it follows from Eq. (11) that

Sð1ÞAA ¼ imTr

�
AαAα

1

□ −m2

�

¼ im tr
Z

d5z

�
AαAα

1

□ −m2

�
δ5ðz − z0Þjz¼z0 : ð16Þ

There is no covariant derivative Dα in Eq. (16) and the
Grassmann delta function satisfies the following identities:

δ2ðθ − θ0Þjθ¼θ0 ¼ 0; Dαδ
2ðθ − θ0Þjθ¼θ0 ¼ 0;

D2δ2ðθ − θ0Þjθ¼θ0 ¼ 1: ð17Þ

It follows that Eq. (16) vanishes identically:

Sð1ÞAA ¼ 0: ð18Þ

Let us move on and calculate the second-order contribu-

tions in Eq. (15), namely Sð2ÞAA, S
ð2Þ
AAA, and S

ð2Þ
AAAA. First, let us

begin with the quadratic contribution in the background
superfield:

Sð2ÞAA ¼ −mTr

�
XA

D2

□ −m2
XA

1

□ −m2

þ XA
1

□ −m2
XA

D2

□ −m2

�
; ð19Þ

XA ≡ 2AαDα þ ðDαAαÞ; ð20Þ

where again we have used Eq. (11). By assuming that the
background superfield varies slowly in superspace, we can
discard terms involving spinor derivatives higher than the
second order acting on Aα in the calculation of Eq. (19).
Moreover, in this approximation, we can move the operator

ð□ −m2Þ−1 to the right using the identity (13), so that only
the first two terms on the right of Eq. (13) need be retained.
Therefore, it follows from Eq. (13) that

1

□ −m2
XA ≈ XA

1

□ −m2
− ½4ðD2AαÞD2Dα

− 2ðDλDγAαÞDλDγDα�
1

ð□ −m2Þ2 ; ð21Þ

where we have used the commutators

½□; XA� ¼ ½ðD2Þ2; XA� ≈ 4ðD2AαÞD2Dα

− 2ðDλDγAαÞDλDγDα; ð22Þ

½□; ½□; XA�� ¼ ½ðD2Þ2; ½ðD2Þ2; XA�� ≈ 0: ð23Þ

Moreover, neglecting terms involving derivatives higher
than the second, we notice that

fD2; 4ðD2AαÞD2Dα − 2ðDλDγAαÞDλDγDαg ≈ 0: ð24Þ

Substituting Eq. (21) into Eq. (19) and using Eq. (24), we
obtain

Sð2ÞAA ¼ −mTr

�
ðXAD2XA þ XAXAD2Þ 1

ð□ −m2Þ2
�
: ð25Þ

As a next step, we need to push all derivatives Dα to the
right by means of Eq. (12). This task can be carried out by
using the expressions

XAD2XA ≈ −½4AαðD2AαÞ þ 4AαðDαDβAβÞ
þ ðDαAαÞðDβAβÞ − 4AαAβi∂αβ�D2; ð26Þ

XAXAD2 ≈ ½2AαðDαDβAβÞ þ ðDαAαÞðDβAβÞ
− 4AαAβi∂αβ�D2 ð27Þ

where we have kept only terms which give a nonvanishing
contribution [see Eq. (17)].
Substituting Eqs. (26) and (27) into Eq. (25), and

noticing that

D2

ð□ −m2Þ2 δ
5ðz − z0Þjz¼z0

¼ 1

ð□ −m2Þ2 δ
3ðx − x0Þjx¼x0 ¼

1

8πjmj ; ð28Þ

we obtain

Sð2ÞAA ¼ 2m
8πjmj tr

Z
d5zAαðDβDαAβÞ; ð29Þ

where we have used the Fourier representation of the delta
function in Eq. (28) and the identities (14). It is worth
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noting that the expression (29) is, in its functional structure,
similar to the quadratic term in Eq. (7). In particular, if Aα is
an Abelian superfield, then Eq. (29) is invariant under the
gauge transformation δAα ¼ DαK. Hence, in this particular
case, if we substituted Eqs. (18) and (29) into Eq. (15), we
should obtain the induced Abelian Chern-Simons action.
Next, let us calculate the cubic contribution in the

background superfield, namely Sð2ÞAAA. Due to the low-
energy approximation, the terms involving spinor deriva-
tives higher than the first order acting on Aα can be
neglected. It follows that, at this approximation,

½□; XA� ¼ ½ðD2Þ2; XA� ≈ 0;

½□; AαAα� ¼ ½ðD2Þ2; AαAα� ≈ 0: ð30Þ

Therefore, it follows from Eq. (11) that

Sð2ÞAAA ¼ imTr

�
ðXAAβAβD2 þ AαAαXAD2

þ XAD2AβAβ þ AαAαD2XAÞ
1

ð□ −m2Þ2
�
; ð31Þ

where we have pushed the operator ð□ −m2Þ−1 to the right
by using Eqs. (13) and (30). Again, each term in Eq. (31)
can be calculated by moving all derivatives Dα to the right
by means of Eq. (12). Hence, the terms that give a
nonvanishing contribution are

XAAβAβD2 ≈ ½2AαðDαAβÞAβ − 2AαAβðDαAβÞ
þ ðDαAαÞAβAβ�D2; ð32Þ

AαAαXAD2 ≈ AαAαðDβAβÞD2;

XAD2AβAβ ≈ ðDαAαÞAβAβD2; ð33Þ

AαAαD2XA ≈ −AαAαðDβAβÞD2: ð34Þ

Substituting Eqs. (32)–(34) into Eq. (31), and calculating
the functional trace, we get

Sð2ÞAAA ¼ 2im
8πjmj tr

Z
d5z½ðDαAαÞAβAβ þ AαðDαAβÞAβ

− AαAβðDαAβÞ�: ð35Þ

Notice that Eq. (35) is a surface term, which for present
purposes, we may neglect. Therefore,

Sð2ÞAAA ¼ 0: ð36Þ

Finally, regarding the second-order contributions, let us

move on and calculate Sð2ÞAAAA. In this case, we discard
terms involving covariant derivatives Dα of any order
acting on the background superfield. Hence, it follows
from Eq. (11) that

Sð2ÞAAAA ¼ mTr

�
AαAα

D2

□ −m2
AβAβ

1

□ −m2

þ AαAα
1

□ −m2
AβAβ

D2

□ −m2

�

¼ 2mTr

�
AαAαAβAβ

D2

ð□ −m2Þ2
�
: ð37Þ

Therefore, using Eqs. (3) and (28), we obtain

Sð2ÞAAAA ¼ 2m
8πjmj tr

Z
d5zAαAαAβAβ: ð38Þ

Let us now consider the calculation of the third-order

contributions in Eq. (15): Sð3ÞAAA and Sð3ÞAAAA. First, let us start
with the cubic contribution in the background superfield

Sð3ÞAAA. In particular, by means of the same reasoning used to

obtain Eq. (31), we can use Eq. (11) and write Sð3ÞAAA as

Sð3ÞAAA ¼ −mTr

�
ðXAD2XAXAD2 þ XAXAD2XAD2

þ XAD2XAD2XA þm2XAXAXAÞ
1

ð□ −m2Þ3
�
:

ð39Þ

As previously described, we need to push all derivativesDα

to the right using the identity (12) and keep only terms
which give a nonvanishing contribution. After some tedious
algebraic work, we find that

XAD2XAXAD2 ≈ 8½AαðDβAγÞAλ − AαAγðDβAλÞ�ð−∂αβ∂γλ þ CβαCλγ□ÞD2

þ 4½2fAα; AβgðDβAαÞ − 2AαðDαAβÞAβ þ AαAαðDβAβÞ
þ AαðDβAβÞAα − ðDαAαÞAβAβ�□D2; ð40Þ

XAXAD2XAD2 ≈ 8AαAβðDγAλÞð−∂αβ∂γλ þ CβαCλγ□ÞD2 þ 4½2AαðDαAβÞAβ

þ 2½Aα; Aβ�ðDβAαÞ − AαAαðDβAβÞ þ AαðDβAβÞAα

þ ðDαAαÞAβAβ�□D2; ð41Þ
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XAD2XAD2XA ≈ −8½AαðDβAγÞAλ þ AαAβðDγAλÞ − AαAγðDβAλÞ�ð−∂αβ∂γλ

þ CβαCλγ□ÞD2 þ 4½2AαðDαAβÞAβ − 2fAα; AβgðDβAαÞ
þ AαAαðDβAβÞ − AαðDβAβÞAα þ ðDαAαÞAβAβ�□D2; ð42Þ

XAXAXA ≈ −4½2AαðDαAβÞAβ þ 2½Aα; Aβ�ðDβAαÞ þ AαAαðDβAβÞ
þ AαðDβAβÞAα þ ðDαAαÞAβAβ�D2: ð43Þ

Hence, by inserting Eqs. (40)–(43) into Eq. (39) and carrying out some algebraic manipulation, we obtain a very simple
result:

Sð3ÞAAA ¼ − 4m
8πjmj tr

Z
d5zfAα; AβgðDβAαÞ: ð44Þ

Next, let us calculate the quartic contribution in the background superfield, namely Sð3ÞAAAA. In an approximation of slowly
varying background superfields, we neglect terms involving derivatives acting on the background superfield, just as was
done in Eq. (37). Therefore, from Eq. (11), we obtain

Sð3ÞAAAA ¼ 4imTr

�
ðAαDαD2AβDβAγAγD2 þ AαDαD2AβAβAγDγD2 þ AαAαD2

× AβDβAγDγD2 þ AαDαAβDβD2AγAγD2 þ AαDαAβAβD2AγDγD2

þ AαAαAβDβD2AγDγD2 þ AαDαD2AβDβD2AγAγ þ AαDαD2AβAβD2

× AγDγ þ AαAαD2AβDβD2AγDγ þm2AαDαAβDβAγAγ þm2AαDαAβAβ

× AγDγ þm2AαAαAβDβAγDγÞ
1

ð□ −m2Þ3
�

¼ 12imTr

�
AαAαAβAβ

D2

ð□ −m2Þ2
�
: ð45Þ

Hence, by calculating the trace of Eq. (45), we get

Sð3ÞAAAA ¼ 12im
8πjmj tr

Z
d5zAαAαAβAβ: ð46Þ

The last contribution which needs to be calculated is Sð4ÞAAAA.

However, we will not calculate explicitly Sð4ÞAAAA, because
the calculation proceeds in the same way as the results
obtained in Eqs. (38) and (46). Therefore, it is given by

Sð4ÞAAAA ¼ 0: ð47Þ

Finally, by substituting Eqs. (18), (29), (36), (38), (44), (46)
and (47) into Eq. (15), we obtain the induced non-Abelian
Chern-Simons term in its most simple form

Γodd½Aα� ¼ − 1

8πjmj tr
Z

d5z
m
2

�
1

2
AαðDβDαAβÞ

− i
3
fAα; AβgðDβAαÞ − 1

2
AαAαAβAβ

�
: ð48Þ

In order to put Eq. (48) into the functional form of Eq. (7),
we note that, on the one hand, the trace over the generators

Ta of the Lie algebra is invariant under cyclic permutations.
Therefore, by using this property, we are able to prove that

trðfAα; AβgDβAαÞ

¼ tr

�
3

2
Aα½Aβ; DβAα� − 1

2
fAα; AβgDβAα

�
; ð49Þ

1

3
trðAαAβAαAβ þ AαAαAβAβÞ

¼ tr

�
1

3
Aα½Aβ; fAβ; Aαg� − 1

6
fAα; AβgfAα; Aβg

�
: ð50Þ

On the other hand, in three dimensions, any object
with three spinor indices satisfies the identity O½αβγ� ¼ 0,
due to the fact that spinor indices can take only two values
α ¼ 1, 2. Therefore, by contracting A½αAβAγ� ¼ 0 with Cβγ ,
we are able to show that

AβAαAβ ¼ AαAβAβ þ AβAβAα

⇒ trðAαAβAαAβÞ ¼ 2trðAαAαAβAβÞ: ð51Þ
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By means of the identities (49)–(51), it is trivial to rewrite
Eq. (48) as

Γodd½Aα� ¼ − g2

8πjmj tr
Z

d5z
m
2g2

×

�
AαWα þ

i
6
fAα; AβgDβAα

þ 1

12
fAα; AβgfAα; Aβg

�
; ð52Þ

where the Yang-Mills field strength superfield Wα is given
by Eq. (8). Of course, Eq. (52) is the non-Abelian Chern-

Simons action [1], up to the constant factor − g2

8πjmj. As a
result, the gauge superfield Aα being nondynamical on the
classical level acquires a nontrivial dynamics due to
quantum corrections. It is worth pointing out that the
methodology presented here can be easily adapted and
applied to the noncommutative and Lorentz-breaking
aether superspaces [14].

IV. SUMMARY

We succeeded in generating the non-Abelian supersym-
metric Chern-Simons term. Within our calculations we
(i) used the superfield formalism at all steps, and (ii) did not
impose any restrictions on structure of the gauge group,

which makes our results universal, and applicable to an
arbitrary Lie algebra. As a consequence, we generalized the
results of Refs. [8,9], where the non-Abelian Chern-Simons
term has been generated from the fermionic determinant, in
a nonsupersymmetric theory. The finiteness (and hence
independence of any renormalization scheme) of our result
is natural due to the well-known one-loop finiteness of
three-dimensional field theory models.
The most important consequence of our result is its

natural interpretation within the context of the concept of
the emergent dynamics. Essentially, we have showed that
the integration over scalar matter coupled to the external
non-Abelian gauge superfield will yield the correct form of
the non-Abelian supersymmetric Chern-Simons term.
Therefore, we hope, that the approach we use in this paper
can serve for more sophisticated supersymmetric field
theory models, in particular, to generate the complete
non-Abelian super-Yang-Mills action whose expression
will involve Feynman supergraphs up to sixth order.
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