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In this paper we have analyzed the κ-deformed Minkowski spacetime through the light of the
interference phenomena in quantum field theory where two opposite chiral fields are put together in the
same multiplet and its consequences are discussed. The chiral models analyzed here are the chiral
Schwinger model, its generalized version, and its gauge invariant version, where a Wess-Zumino term was
added. We will see that the final actions obtained here are, in fact, related to the original ones via duality
transformations.
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I. INTRODUCTION

The fermion-boson mapping has been one of the most
investigated topics in theoretical physics during the past
three decades due to its importance in the quantization of
strings and also the Hall quantum effect. The possibility of
mapping a complicated fermionic model into a scalar
bosonic one was really attractive. This mapping is called
bosonization, and the chiral bosons can be obtained from
the restriction of a scalar field to move in one direction only,
as done by Siegel [1], or by a first-order Lagrangian theory,
as proposed by Floreanini and Jackiw [2]. A few years
later, Tseytlin [3] implemented the Floreanini-Jackiw (FJ)
construction on the world sheet.
In two dimensions (2D), scalar fields can be viewed as

bosonized versions of Dirac fermions, and chiral bosons
can be seen to correspond to two-dimensional versions of
Weyl fermions. As a generalization, in supergravity mod-
els, the extension of the chiral boson to higher dimensions
has naturally introduced the concept of chiral p-forms.
Harada [4] investigated the chiral Schwinger model via
chiral bosonization and analyzed its spectrum. He has
shown how to obtain a consistent coupling of FJ chiral
bosons with a U(1) gauge field, starting from the chiral
Schwinger model and discarding the right-handed degrees
of freedom by means of a restriction in the phase space
implemented by imposing the chiral constraint π ¼ ϕ0.
In [5], Bellucci, Golterman, and Petcher have introduced an
O(N) generalization of Siegel’s model for chiral bosons
coupled with Abelian and non-Abelian gauge fields. The
physical spectrum of the resulting Abelian theory is that of
a (massless) chiral boson and a free massive scalar field.

Initially, several models were suggested for chiral
bosons, but later it was shown that there are some relations
between these models [6]. For instance, the FJ model is the
chiral dynamical sector of the more general model pro-
posed by Siegel. The Siegel modes (rightons and leftons)
carry not only chiral dynamics but also symmetry infor-
mation. The symmetry content of the theory can be
described by the Siegel algebra, a truncate diffeomorphism,
that disappears at the quantum level. As another applica-
tion, chiral bosons appear in the analysis of the quantum
Hall effect [7]. The introduction of a soliton field as a
charge-creating field obeying one additional equation of
motion leads to a bosonization rule [8].
The direct sum of two chiral fermions in 2D gives rise to

a full Dirac fermion; however, this is not true for their
bosonized versions as noticed in [9] (see also [10]).
Besides, the fermionic determinant of a Dirac fermion
interacting with a vector gauge field in D ¼ 1þ 1 factor-
izes into the product of two chiral determinants but the full
bosonic effective action is not the naive direct sum of both
chiral effective actions as discussed in [11]. Stated differ-
ently, the action of a bosonized Dirac fermion is not simply
the sum of the actions of both bosonized Weyl fermions or
chiral bosons. Physically, this is connected to the necessity
to abandon the separated right and left symmetries, and to
accept that the vector gauge symmetry should be preserved
at all times. This restriction will force both independent
chiral bosons to belong to the same multiplet, effectively
soldering them together. In both cases it turns out that an
interference term between the opposite chiral bosonic
actions is needed to achieve the expected result; such a
term is provided by the so-called soldering procedure.
The concept of soldering has proved extremely useful in

different contexts [12,13]. This formalism essentially
combines two distinct Lagrangians carrying dual aspects
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of some symmetry to yield a new Lagrangian which is
exposed of, or rather hides, that symmetry. These so-called
quantum interference effects, whether constructive or
destructive, among the dual aspects of symmetry, are thereby
captured through this mechanism [11]. The formalism
introduced by Stone [9] could actually be interpreted as a
newmethod of dynamical mass generation through the result
obtained in [11]. This is possible by considering the
interference of right and left gauged FJ chiral bosons.
The result of the chiral interference shows the presence of
a massive vectorial mode for the special case where the Bose
symmetry fixed the Jackiw-Rajaraman regularization param-
eter as a ¼ 1 [14], which is the value where the chiral
theories have only one massless excitation in their spectra.
This clearly shows that the massive vector mode results from
the interference between two massless modes.
It was shown recently [15] that in the soldering process

of two opposite chiral fields, a lefton and a righton, coupled
with a gauge field, the gauge field decouples from the
physical field. The final action describes a nonmover field
(a noton) at the classical level. The noton acquires
dynamics upon quantization. This field was introduced
by Hull [16] to cancel out the Siegel anomaly. It carries a
representation of the full diffeomorphism group, while its
chiral components carry the representation of the chiral
diffeomorphism.
The same procedure works in D ¼ 2þ 1 if we substitute

chirality by helicity. For instance, by fusing together two
topologically massive modes generated by the bosonization
of two massive Thirring models with opposite mass sig-
natures in the long wavelength limit. The bosonized modes,
which are described by self- and anti-self-dual Chern-
Simons models [17,18], were then soldered into two massive
modes of the three-dimensional (3D) Proca model [19].
More generally, the �1 helicity modes may have different
masses that lead after soldering to a Maxwell-Chern-
Simons-Proca theory. In this case, technical problems [20]
regarding a full off-shell soldering can be resolved by
defining a generalized soldering procedure [21].
The basic idea of the generalized soldering is the

introduction of a free parameter α with a freedom sign
which plays this role whenever interactions are present. In
the soldering of two chiral Schwinger models that results
either in an axial (α ¼ −1) or in a vector (α ¼ þ1)
Schwinger model, which are dual do each other. In the case
of two Maxwell-Chern-Simons theories, the choice of the α
parameter with opposite sign leads to dual interaction terms.
We can have either a derivative coupling or a minimal
coupling plus a Thirring term. After integration over the
soldering field the dependence on the sign of α disappears,
which proves that it corresponds to dual forms of the same
interacting theory. Recently, a new idea concerning the
construction of the so-called Noether vector, the concept
of which can be directly analyzed from an initial master
action [22]. We will discuss this issue here in the future.

Recently, the soldering formalism was used to inves-
tigate the self-dual theories with spin s ≥ 2 and opposite
helicities. In [23,24] the authors have demonstrated that the
linearized Fierz-Pauli action, which describes a doublet of
massive spin-2 particles can be obtained via the soldering
procedure of two second order self-dual models of opposite
helicities. Besides, one can recover the new massive gravity
[25,26] (also at the linearized level) by soldering two self-
dual models of opposite helicities of either third or fourth
order in derivatives.
Usually the noncommutativity of spacetime coordinates

can be implemented by using the Weyl operators or, for the
sake of practical applications, through the way of normal
functions with a suitable definition of star products [27].
Generally the noncommutativity of spacetime may be
encoded through ordinary products in the noncommutative
(NC) ⋆ algebra of Weyl operators. Or equivalently through
the deformation of the product of the commutative ⋆
algebra of functions to a NC star product. For instance,
in the canonical NC spacetime the star product is simply the
Moyal product [28], while on the κ-deformed Minkowski
spacetime the star product requires a more complicated
expression [29].
To treat the κ-deformed Minkowski spacetime in a very

similar way to the usual Minkowski spacetime, the authors
in [30,31] have proposed a quite different approach to the
implementation of noncommutativity. To this aim a well-
defined proper time from the κ-deformed Minkowski space-
time has been defined in such a way that it corresponds to the
standard basis. Therefore we encode enough information of
noncommutativity of the κ-Minkowski spacetime to a com-
mutative spacetime in this new parameter, and then we set up
a NC extension of the Minkowski spacetime. This extended
Minkowski spacetime is as commutative as the Minkowski
spacetime, but it contains noncommutativity already.
Therefore, one can somehow investigate the NC field theories
defined on the κ-deformed Minkowski spacetime by follow-
ing the way of the ordinary (commutative) field theories on
the NC extension of the Minkowski spacetime, and thus
depict the noncommutativity within the framework of this
commutative spacetime. With this simplified treatment of the
noncommutativity of the κ-Minkowski spacetime, we unveil
the fuzziness in the temporal dimension and build NC chiral
boson models in [30].
The organization of the issues through this paper obeys

the following sequence: in Sec. II, we have written a review
of the κ-Minkowski noncommutativity, and in Sec. III, we
have provided a review of the essentials of the soldering
formalism. In Sec. IV, we have analyzed the soldering of
the NC chiral Schwinger model (CSM), and in Sec. V, we
have presented the NC version of the generalized CSM.
In Sec. VI, we have discussed the gauge invariant CSM.
The (anti-)self-dual model in D ¼ 2þ 1 was analyzed in
Sec. VII. As usual, the conclusions and perspectives are
described in the last section.
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II. THE NC EXTENSION OF MINKOWSKI
SPACETIME

We have talked so far about the noncommutativity
that appears naturally through the Moyal-Weyl product
which introduces the NC parameter that deforms the
Heisenberg algebra. However, there are other generaliza-
tions of noncommutativity beyond the Moyal space [32].
The κ-deformed space is one of theses formulations that
will be analyzed here. The κ-deformed space, which is
the simplest case of a deformation of the Poincaré group,
is described by the coordinates satisfying Lie algebra
type commutation relations [33–38], which are Lie
algebra type

½X̂μ; X̂ ν� ¼ iðaμX̂ ν − aνX̂μÞ; ð1Þ

where κ is a mass dimensional parameter. We can
classify this κ-deformed noncommutativity as timelike
if aμaμ < 0, spacelike if aμaμ > 0, as well as a light-cone
κ-commutation relation if aμaμ ¼ 0 [39].
The unitarity property of quantum theories with Lie

algebra type noncommutativity was studied in [40]. In [41]
the authors discussed the violation of the basics concerning
causality and unitarity of NC theories. They have claimed
that it occurs at energies higher than the inverse scale of the
NC parameter. The obvious conclusion would be that, for a
NC theory, an upper bound on possible values of energy
would free the theory from these problems concerning the
violation of the basic physical concepts. In [42], dealing
with a Lie-algebraic theory, it was demonstrated that the
spacetime quantization leads to an energy spectrum con-
fined in an interval E ∈ ½0; π=λ�, where λ is the NC
parameter. This interval for the energy shows an ultraviolet
behavior of the field theory on a specific NC Lie-algebraic
space. Namely, even planar diagrams in this specific case
have been shown to be convergent, which is an opposite
behavior occurring in the flat NC Minkowski space.
Back to Eq. (1), in this work we have that aμ

ðμ ¼ 0; 1; 2;…; n − 1Þ are real and dimensionful constants
parametrizing the deformation of the Minkowski space
[43]. As is well known, in (1), the κ space is defined by the
values ai ¼ 0 i ¼ 1; 2;…; n − 1; a0 ¼ a ¼ 1=κ. With
these values, the commutation relations concerning the
coordinates of κ space (Lie-algebraic type) are given by

½X̂ i; X̂ ȷ� ¼ 0; ½X̂0; X̂ ȷ� ¼ i
κ
X̂ j; i; j ¼ 1; 2; 3; ð2Þ

and using the Minkowski metric ημν ¼ diagð−1; 1; 1;…; 1Þ,
we can define X̂μ ¼ ημνX̂ ν. Realizations of the NC coor-
dinates in terms of the commuting coordinates X̂μ and the
correspondent derivative operators ∂μ can be reviewed
in [43].
In other words, we can say that the spacetime

noncommutativity can be differentiated following the

Hopf-algebraic classification by the three kinds, namely,
the canonical, Lie-algebraic, and quadratic noncommuta-
tivity. The κ-deformed Minkowski spacetime is a specific
case of the Lie-algebraic type [30]. The interest in this
specific algebraic formulation has grown recently thanks
to its connection to the basics of the doubly special
relativity [44].
Following the ideas in [35], the concept of quantum

deformations applied to the D ¼ 4 Poincaré algebra and
D ¼ 4 Poincaré group (see [35] and references within)
leads us to the modification of relativistic symmetries but,
at the same time, not changing the D ¼ 3 Eð3Þ subalgebra.
The deformation parameter κ depicts the underlying mass
in the theory. The limit κ → ∞ is relative to the unde-
formed case.
Hence, the so-called noncommutativity is closely con-

nected to a NC spacetime like the κ-deformed Minkowski
spacetime. It has no connection to a commutative spacetime,
such as the Minkowski spacetime. Consequently, the NC
field theories constructed in κ-deformed Minkowski space-
time can be discussed by the way of the ordinary field
theories in the NC formulation (extension) of the Minkowski
spacetime. The noncommutativity may be described using
the framework of this commutative spacetime.
Let us describe from now on the relations that will be used

in the paper concerning the κ algebra. The commutative
spacetime is characterized by the canonical Heisenberg
commutation relations

½X̂μ; X̂ ν� ¼ 0; ½X̂μ; P̂ν� ¼ iδμν ; ½P̂μ; P̂ν� ¼ 0; ð3Þ

where μ, ν ¼ 0, 1, 2, 3. To introduce the κ-deformed
Minkowski spacetime we have, following the algebraic
details of [30,35], the relations that can be chosen are

x̂0 ¼ X̂0 − 1

k
½X̂ i; P̂j�þ;

x̂i ¼ X̂ i þ AηijP̂j exp

�
2

k
P̂0

�
; ð4Þ

where ½Ô1; Ô2�þ ≡ 1
2
ðÔ1Ô2 þ Ô2Ô1Þ, ημν ≡ diagð1;−1;

−1;−1Þ, i; j ¼ 1, 2, 3, and A is an arbitrary constant
[30,35]. The NC parameter κ has mass dimension, and it
is real and positive. The Casimir operator related to the
κ-deformed Poincaré algebra is

Ĉ1 ¼
�
2k sinh

p̂0

2k

�
2 − p̂2

i ; ð5Þ

and the momentum operators connected with the commu-
tative spacetime and the κ-Minkowski spacetime can be
written as
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p̂0 ¼ 2ksinh−1 P̂0

2k
; p̂i ¼ P̂i: ð6Þ

With these last results we can construct our NC phase
space ðx̂μ; p̂νÞ,

½x̂0; x̂j� ¼ i
k
x̂j; ½x̂i; x̂j� ¼ 0;

½p̂μ; p̂ν� ¼ 0; ½x̂i; p̂j� ¼ iδij; ð7Þ

½x̂0; p̂0� ¼ i

�
cosh

p̂0

2k

�−1
; ½x̂0; p̂i� ¼ − i

k
p̂i;

½x̂i; p̂0� ¼ 0; ð8Þ

which satisfies the Jacobi identity. It is easy to see that
when k → ∞ we recover the commutative phase space
in Eq. (3).
The Casimir operator described above in Eq. (5) can now

be written in a standard way,

Ĉ1 ¼ P̂2
0 − P̂2

i ; ð9Þ

where it is easy to see that this selection coincides with the
ones in Eq. (3). In the case that p̂μ has standard forms like

p̂0 ¼ −i ∂∂t and p̂i ¼ −i ∂
∂xi ; ð10Þ

the operator P̂0 then reads

P̂0 ¼ −2ik
�
sin

1

2k
∂
∂t
�
: ð11Þ

In [30] the author has introduced a proper time τ through
the operator

P̂0 ≡−i ∂∂τ ; ð12Þ

and using Eqs. (11) and (12) we have that

2k

�
sin

1

2k
d
dt

�
τ ¼ 1; ð13Þ

where the solution is

τ ¼ tþ
Xþ∞

n¼0

c−n expð−2knπtÞ; ð14Þ

where n ≥ 0, n ∈ N. The coefficients c−n are arbitrary real
constants. This property implies a kind of temporal
fuzziness coherent concerning the κ-Minkowski spacetime.
Notice that as k → ∞, the proper time turns back to the
ordinary time variable.

To construct a NC extension of Minkowski spacetime
ðτ; xiÞ (where the NC feature is inside the proper time), let
us define a twisted t coordinate, such that the metric is

g00 ¼ _τ2 ¼
�
1 − 2kπ

Xþ∞

n¼0

nc−n expð−2knπtÞ
�
2

;

g11 ¼ g22 ¼ g33 ¼ −1: ð15Þ
So, we can use Eq. (15) to construct NC models in the

commutative framework. Namely, we can construct a
Lagrangian theory for the NC model in the extended
framework of the Minkowski spacetime.

III. THE CANONICAL SOLDERING
FORMALISM

The basic idea about the soldering procedure is to raise a
global Noether symmetry of the self- and anti-self-dual
constituents into a local one, but for an effective composite
system, with dual components and an interference term.
The objective in [45] is to systematize the procedure like an
algorithm and consequently to define the soldered action.
The physics considerations will be taken based on the
resulting action. For example, in [6], one of us has obtained
a mass generation method, which was the final result of
the soldering process.
An iterative Noether procedure was adopted to lift the

global symmetries into local ones. Therefore, we will
assume that the symmetries in question are being described
by the local actions S�ðϕη

�Þ, invariant under a global
multiparametric transformation

δϕη
� ¼ αη; ð16Þ

where η represents the tensorial character of the basic fields
in the dual actions S� and, for notational simplicity, it
will be dropped out from now on. Here the � subscript
refers to the opposite/complementary aspects of two
models at hand. For instance, ϕþ may refer to a left chiral
field and ϕ− to a field with right chirality. As it is well
known, we can write

δS� ¼ J�∂�α; ð17Þ
where J� are the Noether currents.
Now, under local transformations these actions will not

remain invariant, and Noether counterterms become nec-
essary to reestablish the invariance, along with appropriate
auxiliary fields BðNÞ, the so-called soldering fields which
have no dynamics where the N superscript is referring to
the level of the iteration. This makes a wider range of
gauge-fixing conditions available. In this way, the N action
can be written as

S�ðϕ�Þð0Þ → S�ðϕ�ÞðNÞ ¼ S�ðϕ�ÞðN−1Þ − BðNÞJðNÞ
� :

ð18Þ
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Here JðNÞ
� are the N-iteration Noether currents. For the

self- and anti-self-dual systems we have in mind that this
iterative gauging procedure is (intentionally) constructed
not to produce invariant actions for any finite number of
steps. However, if after N repetitions, the noninvariant
piece ends up being only dependent on the gauging
parameters, but not on the original fields, there will exist
the possibility of mutual cancellation if both gauged
versions of self- and anti-self-dual systems are put together.
Then, suppose that after N repetitions we arrive at the
following simultaneous conditions:

δS�ðϕ�ÞðNÞ ≠ 0;

δSBðϕ�Þ ¼ 0; ð19Þ

with SB being the so-called soldered action

SBðϕ�Þ ¼ SðNÞ
þ ðϕþÞ þ SðNÞ− ðϕ−Þ þ contact terms; ð20Þ

and the “contact terms” being generally quadratic functions
of the soldering fields. Then we can immediately identify
the (soldering) interference term as

Sint ¼ contact terms −X
N

BðNÞJðNÞ
� : ð21Þ

Incidentally, these auxiliary fieldsBðNÞ may be eliminated,
for instance, through their equations of motion, from the
resulting effective action, in favor of the physically relevant
degrees of freedom. It is important to notice that after the
elimination of the soldering fields, the resulting effective
action will not depend on either self- or anti-self-dual fields
ϕ� but only in some collective field, say Φ, defined in terms
of the original ones in a (Noether) invariant way

SBðϕ�Þ → SeffðΦÞ: ð22Þ
Analyzing in terms of the classical degrees of freedom, it

is obvious that we have now a theory with bigger symmetry
groups. Once such effective action has been established,
and the physical consequences of the soldering are readily
obtained by simple inspection.

IV. SOLDERING OF NC BOSONIZED CHIRAL
SCHWINGER MODEL

The CSM is a 2D (1 spatial dimensionþ 1 time
dimension) Euclidean quantum electrodynamics for a
Dirac fermion. This model exhibits a spontaneous sym-
metry breaking of the U(1) group due to a chiral condensate
from a pool of instantons [46]. The photon in this model
becomes a massive particle at low temperatures. This model
can be solved exactly, and it is used as a toy model for other
complex theories. The bosonization of this theory can be
done in several ways that apparently lead to different
bosonized models. But these (apparently) inequivalent

models are related by some gauge transformations [4].
Here we shall not enter into the details of this equivalence.
We will discuss the application of the soldering mechanism
in the different forms concerning these chiral models.
The CSM is described by the Lagrangian density

Lch ¼ _ϕϕ0 − ðϕ0Þ2 þ 2eϕ0ðA0 − A1Þ − 1

2
e2ðA0 − A1Þ2

þ 1

2
e2aAμAμ; ð23Þ

where the last term is the CSM mass term for the gauge
field Aμ. In fact, this Lagrangian is the gauged version of
the FJ’s Lagrangian, L0 ¼ _ϕϕ0 − ðϕ0Þ2 [2]. On the 2D
extended Minkowski spacetime ðτ; xÞ the Lagrangian (23)
takes the following action form:

Ŝ ¼
Z

dτdx

�∂ϕ
∂τ

∂ϕ
∂x −

�∂ϕ
∂x

�
2

þ 2e
∂ϕ
∂x ðA0 − A1Þ

− 1

2
e2ðA0 − A1Þ2 þ

1

2
e2aημνAμAν − 1

4
FμνFμν

�
; ð24Þ

where ημν ¼ diagð1;−1Þ is the flat metric of the extended
Minkowski spacetime ðτ; xÞ and a is a real parameter
ða > 1Þ.
By the coordinate transformation (14) we can rewrite

the above action in terms of ðt; xÞ with explicit non-
commutativity,

Ŝ ¼
Z

dtdx
ffiffiffiffiffiffi−gp �

1

_τ

∂ϕ
∂t

∂ϕ
∂x −

�∂ϕ
∂x

�
2

þ 2e
∂ϕ
∂x ðA0 − A1Þ

− 1

2
e2ðA0 − A1Þ2 þ

1

2
e2aημνAμAν

þ 1

2

�
1

_τ

∂A1

∂t − ∂A0

∂x
�

2
�
; ð25Þ

where
ffiffiffiffiffiffi−gp

is the Jacobian of the transformation and also
the nontrivial measure of the κ-deformed Minkowski
spacetime. Note that always

ffiffiffiffiffiffi−gp ¼ j_τj but here we only
focus on the case _τ > 0.
Until now we have considered only the left chiral

Schwinger model, but the bosonization process gives us
both the left and right chiral bosons which depend on
the “chiral constraint” that we have imposed on it.
The corresponding Lagrangians for these chiral models
in the extended Minkowski spacetime are given by

L̂þ ¼ _ϕϕ0 − ffiffiffiffiffiffi−gp ðϕ0Þ2

þ ffiffiffiffiffiffi−gp �
2eϕ0ðA0 − A1Þ − 1

2
e2ðA0 − A1Þ2

þ 1

2
e2a½ðA0Þ2 − ðA1Þ2�

�

þ 1

2
ffiffiffiffiffiffi−gp ð _A1 − ffiffiffiffiffiffi−gp

A0
0Þ2; ð26Þ
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L̂− ¼ −_ρρ0 − ffiffiffiffiffiffi−gp ðρ0Þ2

þ ffiffiffiffiffiffi−gp �
2eρ0ðA0 − A1Þ − 1

2
e2ðA0 − A1Þ2

þ 1

2
e2b½ðA0Þ2 − ðA1Þ2�

�

þ 1

2
ffiffiffiffiffiffi−gp ð _A1 − ffiffiffiffiffiffi−gp

A0
0Þ2: ð27Þ

Notice that þ and − signs are associated with the
left and right moving chiral bosons, respectively. These
models contain noncommutativity through the proper
time τ with the finite NC parameter k. In the limit
k → þ∞;

ffiffiffiffiffiffi−gp ¼ _τ ¼ 1, these Lagrangians turn back to
their ordinary forms on the Minkowski spacetime.
Now we are ready to solder these two chiral

Lagrangians. To accomplish the task we calculate the
variations of Eqs. (26) and (27) under the following local
variations:

δϕ ¼ ηðt; xÞ ¼ δρ: ð28Þ

In fact, we are imposing this local symmetry into
these models in order to obtain a gauge invariant
Lagrangian. Under this variation we have, after some
algebra, that

δðL̂þ þ L̂−Þ ¼ ðJþ þ J−ÞδB1; ð29Þ

where

Jþ ¼ 2 _ϕ − 2
ffiffiffiffiffiffi−gp

ϕ0 þ 2e
ffiffiffiffiffiffi−gp ðA0 − A1Þ ð30Þ

and

J− ¼ −2_ρ − 2
ffiffiffiffiffiffi−gp

ρ0 þ 2e
ffiffiffiffiffiffi−gp ðA0 − A1Þ; ð31Þ

where B1 (mentioned in the previous section) and B2

(which will be necessary) are auxiliary fields where
variations can be defined as

δB1 ¼ ∂xη and δB2 ¼ ∂tη; ð32Þ

and we can see, obviously from Eq. (29), that
δðLþ þ L−Þ ≠ 0.
So, following the method, we must add a counterterm to

both original Lagrangians (26) and (27) to cover the above
extra terms. Hence,

L̂þ1 ¼ L̂þ − JþB1; ð33Þ

L̂−1 ¼ L̂− − J−B1: ð34Þ

Now let us check the variation of the above
Lagrangians,

δL̂þ1 ¼ −ðδJþÞB1 ¼ −ð2_η − 2
ffiffiffiffiffiffi−gp

η0ÞB1

¼ −2B1ðδB2Þ þ 2
ffiffiffiffiffiffi−gp

B1ðδB1Þ; ð35Þ

δL̂−1 ¼ −ðδJ−ÞB1 ¼ ð2_η − 2
ffiffiffiffiffiffi−gp

η0ÞB1

¼ 2B1ðδB2Þ þ 2
ffiffiffiffiffiffi−gp

B1ðδB1Þ: ð36Þ

As we can see, it is not zero, but the extra terms
are independent of the original fields. Therefore, the
iteration will finish in this second step by adding another
counterterm.
Finally we can solder these two Lagrangians in order to

construct an invariant one,

Ŵ ¼ L̂þ þ L̂− − ðJþ þ J−ÞB1 − 2
ffiffiffiffiffiffi−gp ðB1Þ2; ð37Þ

where the B2 field was eliminated algebraically. On the
other hand, we can eliminate the auxiliary field B1 by its
equation of motion

δW
δB1

¼ 0 ⇒ −ðJþ þ J−Þ − 4
ffiffiffiffiffiffi−gp

B1 ¼ 0 ⇒ B1

¼ −1
4

ffiffiffiffiffiffi−gp ðJþ þ J−Þ: ð38Þ

By substituting Eq. (38) into W we find

Ŵ ¼ L̂þ þ L̂− þ 1

8
ffiffiffiffiffiffi−gp ðJþ þ J−Þ2: ð39Þ

Here we define a new field, the soldering field
Ψ ¼ ϕ − ρ. By this definition we can rewrite W in a
compact and nice form,

Ŵ ¼ −
ffiffiffiffiffiffi−gp
2

Ψ02 þ 1

2
ffiffiffiffiffiffi−gp _Ψ2 þ 2e _ΨðA0 − A1Þ þ 2ξ;

ð40Þ

where ξ is given by

ξ ¼ ffiffiffiffiffiffi−gp �
1

2
e2ðA0 − A1Þ2 þ

1

4
e2ðaþ bÞ½ðA0Þ2 − ðA1Þ2�

�

þ 1

2
ffiffiffiffiffiffi−gp ð _A1 − ffiffiffiffiffiffi−gp

A0
0Þ2: ð41Þ

We can see that the final result, action (40), is not a
“chiral” theory anymore. It also has a symmetry group that
is bigger than both initial models. Hence, we have soldered
both chiral models, and as a consequence we have gained
an additional term in the final Lagrangian that did not exist
initially. One of the peculiar consequences of this action
is that the electromagnetic field interacts just with the
temporal derivative of the soldered field. This peculiarity
has its origin in the noncovariant initial Jackiw-Floreanini
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Lagrangian. In fact, one can decompose the above action
into two distinct ones using the dual projection approach
[15]. The result is a self-dual and a free massive scalar field.
This mechanism, in some sense, is analogous to adding a

mass term into the Dirac action. Without this mass term, the
Dirac equation describes two chiral electrons, and by
adding the mass, we have merged these two chiral electrons
to obtain the real electron.

V. THE SOLDERING OF THE GENERALIZED
BOSONIZED CSM

Bassetto et al. [47] have constructed the generalized
chiral Schwinger model (GCSM), i.e., a vector and axial-
vector theory characterized by a parameter that interpolates
between pure vector and chiral Schwinger models. This 2D
model is given by the action

Ŝ ¼
Z

dtdx

�
1

2
ð∂μϕÞð∂μϕÞ þ eAμðϵμν − rημνÞ∂νϕ

þ 1

2
e2aAμAμ − 1

4
FμνFμν

�
: ð42Þ

The quantity r is a real interpolating parameter between
the vector (r ¼ 0) and the chiral Schwinger models
ðr ¼ �1Þ. This action can be rewritten in the extended
Minkowski spacetime

L̂ ¼ 1

2
ffiffiffiffiffiffi−gp _ϕ2 −

ffiffiffiffiffiffi−gp
2

ϕ02 − k1 _ϕþ k2ϕ0 þ ξ; ð43Þ

where

k1 ¼ eðrA0 þ A1Þ; ð44Þ

k2 ¼ e
ffiffiffiffiffiffi−gp ðA0 þ rA1Þ; ð45Þ

ξ ¼ 1

2
ffiffiffiffiffiffi−gp ð _A1 − ffiffiffiffiffiffi−gp

A0
0Þ2 þ

1

2
e2a

ffiffiffiffiffiffi−gp ½ðA0Þ2 − ðA1Þ2�:

ð46Þ

By defining the value of the parameter r in two extreme
points �1 we obtain two chiral Lagrangians

L̂þ ¼ 1

2
ffiffiffiffiffiffi−gp _ϕ2 −

ffiffiffiffiffiffi−gp
2

ϕ02 − eðA0 þ A1Þ _ϕ

þ e
ffiffiffiffiffiffi−gp ðA0 þ A1Þϕ0 þ 1

2
ffiffiffiffiffiffi−gp ð _A1 − ffiffiffiffiffiffi−gp

A0
0Þ2

þ 1

2
ae2

ffiffiffiffiffiffi−gp ½ðA0Þ2 − ðA1Þ2�; ð47Þ

L̂− ¼ 1

2
ffiffiffiffiffiffi−gp _ρ2 −

ffiffiffiffiffiffi−gp
2

ρ02 − eð−A0 þ A1Þ_ρ

þ e
ffiffiffiffiffiffi−gp ðA0 − A1Þρ0 þ

1

2
ffiffiffiffiffiffi−gp ð _A1 − ffiffiffiffiffiffi−gp

A0
0Þ2

þ 1

2
be2

ffiffiffiffiffiffi−gp ½ðA0Þ2 − ðA1Þ2�; ð48Þ

where a and b are the Jackiw-Rajaraman coefficients for
each chirality, respectively. Here, through the iterative
Noether embedding procedure, we will transform both
Lagrangians (47) and (48) into two embedded Lagrangians
that are invariant under transformations δϕ ¼ ηðxÞ and
δρ ¼ ηðxÞ. After that, we will be able to solder these
new Lagrangians in order to obtain an invariant one that
describes a fermionic system. By varying the Lagrangians
with respect to the variables ∂tΦ and ∂xΦ [Φ ¼ ðϕ; ρÞ],
we obtain the following Noether currents:

J1þ ¼ 1ffiffiffiffiffiffi−gp _ϕ − eðA0 þ A1Þ; ð49Þ

J2þ ¼ −
ffiffiffiffiffiffi−gp ½ϕ0 − eðA0 þ A1Þ�; ð50Þ

J1− ¼ 1ffiffiffiffiffiffi−gp _ρþ eðA0 − A1Þ; ð51Þ

J2− ¼ −
ffiffiffiffiffiffi−gp ½ρ0 − eðA0 − A1Þ�: ð52Þ

After two iterations and by adding the counterterms to
the original Lagrangians, we can find that

L̂ð2Þ
þ ¼ Lþ − J1þB1 − J2þB2 þ

1

2
ffiffiffiffiffiffi−gp ðB1Þ2

−
ffiffiffiffiffiffi−gp
2

ðB2Þ2 þ ξþ; ð53Þ

L̂ð2Þ− ¼ L− − J1−B1 − J2−B2 þ
1

2
ffiffiffiffiffiffi−gp ðB1Þ2

−
ffiffiffiffiffiffi−gp
2

ðB2Þ2 þ ξ−; ð54Þ

where ξ� are the nondynamical terms of L�. The
embedding process ends after these two steps and these
Lagrangians are invariant under the desired transformation
δϕ ¼ ηðxÞδρ. Now we can solder them by adding up two
Lagrangians, Eqs. (53) and (54),

Ŵ ¼ L̂ð2Þ
þ þ L̂ð2Þ−

¼ L̂þ þ L̂− − ðJ1þ þ J1−ÞB1 − ðJ2þ þ J2−ÞB2

þ 1ffiffiffiffiffiffi−gp ðB1Þ2 − ffiffiffiffiffiffi−gp ðB2Þ2: ð55Þ

To express this Lagrangian just in terms of the original
fields, we can eliminate B1 and B2 through their equations
of motions, which read
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B1 ¼
ffiffiffiffiffiffi−gp
2

ðJ1þ þ J1−Þ; ð56Þ

B2 ¼ − 1

2
ffiffiffiffiffiffi−gp ðJ2þ þ J2−Þ: ð57Þ

After substituting these results into W, defining a new
field Ψ ¼ ϕ − ρ, and fixing the Jackiw-Rajaraman coef-
ficients a ¼ b ¼ 1, for simplicity, we can write that

Ŵ ¼ 1

4
ffiffiffiffiffiffi−gp _Ψ2 −

ffiffiffiffiffiffi−gp
4

Ψ02 − eA0
_Ψþ eA1

ffiffiffiffiffiffi−gp
Ψ0

þ 1

2
ffiffiffiffiffiffi−gp ð _A1 − ffiffiffiffiffiffi−gp

A0
0Þ2 þ e2

ffiffiffiffiffiffi−gp ½ðA0Þ2 − ðA1Þ2�:

ð58Þ
This Lagrangian describes a 2D fermionic system and

has a larger symmetry group than the initial Lagrangians
(47) and (48). As the previous case, the soldering process
included an extra noton term in the original Lagrangians to
fuse the chiral states. This nondynamical term can acquire
dynamics upon quantization [45].

VI. THE SOLDERING OF THE GAUGE
INVARIANT GENERALIZED

BOSONIZED CSM

In [48], the authors have introduced the Wess-Zumino
(WZ) term for the GCSM and constructed its gauge invariant
formulation by adding the WZ term into the Lagrangian of
the model. This gauge invariant model is described by

Ŝ ¼
Z

dtdx

�
1

2
ð∂μϕÞð∂μϕÞ þ eAμðϵμν − rημνÞ∂νϕ

þ 1

2
e2aAμAμ − 1

4
FμνFμνþ 1

2
ða − r2Þð∂μθÞð∂μθÞ

þ eAμ½rϵμν þ ða − r2Þημν�∂νθ

�
; ð59Þ

where θðxÞ is the WZ field. The Lagrangians of left/right
moving bosons are given by defining the parameter r at
its two opposite points �1

L̂þ ¼ 1

2
ffiffiffiffiffiffi−gp ð _ϕÞ2 −

ffiffiffiffiffiffi−gp
2

ðϕ0Þ2 − b1 _ϕþ b1
ffiffiffiffiffiffi−gp

ϕ0

þ b2ffiffiffiffiffiffi−gp ð_θÞ2 − b2
ffiffiffiffiffiffi−gp ðθ0Þ2 þ b3 _θ þ b4θ0 þ ξþ;

L̂− ¼ 1

2
ffiffiffiffiffiffi−gp ð_ρÞ2 −

ffiffiffiffiffiffi−gp
2

ðρ0Þ2 − b5 _ρþ b5
ffiffiffiffiffiffi−gp

ρ0

þ b02ffiffiffiffiffiffi−gp ð_ηÞ2 − b02
ffiffiffiffiffiffi−gp ðη0Þ2 þ b6 _ηþ b7η0 þ ξ−;

ð60Þ
where η is also another WZ field and

b1 ≡ eðA0 þ A1Þ; b2 ≡ a − 1

2
; b02 ≡ b − 1

2
;

b3 ≡ e½A0ða − 1Þ − A1�; b4 ≡ e
ffiffiffiffiffiffi−gp ½A0 − A1ða − 1Þ�;

b5 ≡ eðA0 − A1Þ; b6 ≡ e½A0ðb − 1Þ þ A1�;
b7 ≡ e

ffiffiffiffiffiffi−gp ½−A0 − A1ðb − 1Þ�;

ξð�Þ ≡ 1

2
ffiffiffiffiffiffi−gp ð _A1Þ2 −

ffiffiffiffiffiffi−gp
2

�
ðA0

0Þ2 þ
ffiffiffiffiffiffi−gp
2

e2ðabÞ
�

× ½ðA0Þ2 − ðA1Þ2� − _A1A0
0: ð61Þ

The goal here is to gauge these Lagrangians under the
following transformations:

δϕ ¼ δρ ¼ αðxÞ;
δθ ¼ δη ¼ βðxÞ: ð62Þ

The Noether currents under these transformations are

J1þ ¼ 1ffiffiffiffiffiffi−gp _ϕ− b1; J1− ¼ 1ffiffiffiffiffiffi−gp _ρ− b5;

J2þ ¼ −
ffiffiffiffiffiffi−gp

ϕ0 þ b1
ffiffiffiffiffiffi−gp

; J2− ¼ − ffiffiffiffiffiffi−gp
ρ0 þ b5

ffiffiffiffiffiffi−gp
;

J3þ ¼ 2b2ffiffiffiffiffiffi−gp _θþ b3; J3− ¼ 2b02ffiffiffiffiffiffi−gp _ηþ b6;

J4þ ¼ −2b2
ffiffiffiffiffiffi−gp

θ0 þ b4; J4− ¼ −2b02 ffiffiffiffiffiffi−gp
η0 þ b7:

ð63Þ

The first iteration Lagrangians read

L̂ð1Þ
þ ¼ L̂þ − J1þB1 − J2þB2 − J3þB3 − J4þB4;

L̂ð1Þ− ¼ L̂− − J1−B1 − J2−B2 − J3−B3 − J4−B4; ð64Þ

where B1; B2; B3, and B4 are new auxiliary fields that have
the following variations:

δB1 ¼ ∂tα; δB2 ¼ ∂xα; δB3 ¼ ∂tβ; δB4 ¼ ∂xβ: ð65Þ
The variation of the first iterated Lagrangians are

given by

δL̂ð1Þ
þ ¼ − 1ffiffiffiffiffiffi−gp ðδB1ÞB1 þ

ffiffiffiffiffiffi−gp ðδB2ÞB2

− 2b2ffiffiffiffiffiffi−gp ðδB3ÞB3 þ 2b2
ffiffiffiffiffiffi−gp ðδB4ÞB4; ð66Þ

δL̂ð1Þ− ¼ − 1ffiffiffiffiffiffi−gp ðδB1ÞB1 þ
ffiffiffiffiffiffi−gp ðδB2ÞB2 − 2b2ffiffiffiffiffiffi−gp ðδB3ÞB3

þ 2b2
ffiffiffiffiffiffi−gp ðδB4ÞB4: ð67Þ

As we can see, these variations are completely indepen-
dent of the original fields. Therefore the embedding
process has finished here, and, by adding the counterterms
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associated with these variations, we can obtain our desired
invariant Lagrangian. Now we are ready to fuse both
Lagrangians in Eqs. (64) by adding them up and by
introducing a counterterm,

Ŵ ¼ L̂þ þ L̂− − J1þB1 − J2þB2 − J3þB3 − J4þB4

− J1−B1 − J2−B2 − J3−B3 − J4−B4 þ
1ffiffiffiffiffiffi−gp ðB1Þ2

− ffiffiffiffiffiffi−gp ðB2Þ2 þ
2b2ffiffiffiffiffiffi−gp ðB3Þ2 − 2b2

ffiffiffiffiffiffi−gp ðB4Þ2; ð68Þ

where we have fixed the Jackiw-Rajaraman coefficients
a ¼ b for simplicity. To express the final result only in

terms of the original fields, one can eliminate the auxiliary
fields by using their equations of motions

B1 ¼
ffiffiffiffiffiffi−gp
2

ðJ1þ þ J1−Þ;

B2 ¼
−1

2
ffiffiffiffiffiffi−gp ðJ2þ þ J2−Þ;

B3 ¼
ffiffiffiffiffiffi−gp

4b2
ðJ3þ þ J3−Þ;

B4 ¼
−1

4b2
ffiffiffiffiffiffi−gp ðJ4þ þ J4−Þ: ð69Þ

By substituting these results into Eq. (68) and introduc-
ing two soldering fields Ψ ¼ ϕ − ρ and Ω ¼ θ − η, we
obtain an effective action

Ŵeff ¼
1

4
ffiffiffiffiffiffi−gp ð _ΨÞ2 −

ffiffiffiffiffiffi−gp
4

ðΨ0Þ2 − eA0
_Ψþ e

ffiffiffiffiffiffi−gp
A1Ψ0 þ b2

2
ffiffiffiffiffiffi−gp ð _ΩÞ2 − b2

ffiffiffiffiffiffi−gp
2

ðΩ0Þ2 − eA1
_Ω

þ 1

2
½eA0 þ e

ffiffiffiffiffiffi−gp ðA0 − 2A1b2Þ þ 2eA1b2�Ω0 − 2e2b2
ffiffiffiffiffiffi−gp ðA0Þ2 þ

e2
ffiffiffiffiffiffi−gp

8b2
ðA0 − 2A1b2Þ2 − 2e2A0

8b2
ðA0 − 2A1b2Þ

þ e2

8
ffiffiffiffiffiffi−gp

b2
ðA0Þ2 þ

e2

2
ffiffiffiffiffiffi−gp A0A1 þ

e2b2
2

ffiffiffiffiffiffi−gp ðA1Þ2 − e2

2
A1ðA0 − 2A1b2Þ þ 2ξ; ð70Þ

where ξ ¼ ξ− þ ξþ. The initial Lagrangians were invariant
under a semilocal gauge group, but this effective Lagran-
gian is invariant under the local version of the initial gauge
group; moreover, it is invariant under the gauge trans-
formations (62).
One can ask about the counterpart of this model in the

commutative spacetime. We can find it just by puttingffiffiffiffiffiffi−gp ¼ 1. It reads

Weff ¼
1

4
∂μΨ∂μΨþ eϵμνAμ∂νΨþ ða − 1Þ∂μΩ∂μΩ

− eAμϵ
μν∂νΩþ 1

2
e2aAμAμ − 1

4
FμνFμν; ð71Þ

where ξ0 ¼ ξj ffiffiffiffi−gp ¼1. We have succeeded in the issue
concerning the inclusion of the effects of interference
between rightons and leftons (right/left moving scalar).
Consequently, these components have lost their individu-
ality in favor of a new, gauge invariant, collective field that
does not depend on ϕ or ρ separately.
As it can be seen, this Lagrangian is apparently different

from the initial ones, and the new fields Ψ and Ω are not
chiral anymore. If we fix the Jackiw-Rajaraman coefficients
a ¼ b ¼ 1, the field Ω becomes nondynamical, and it will
just interact with the electromagnetic field. The combina-
tion of the massless modes lead us to a massive vectorial
mode as a consequence of the chiral interference. The noton

field that was defined before propagates neither to the left
nor to the right directions.

VII. THE SOLDERING OF NC (ANTI-)SELF-DUAL
MODELS IN D ¼ 2þ 1

The Thirring model is an exactly solvable QFT that
describes the self-interactions of a Dirac theory in (2þ 1)
dimensions. For the first time, Coleman has discovered an
equivalence between this model and the sine-Gordon one,
which is a bosonic theory [49].
In D ¼ 1þ 1, the starting point is to consider two

distinct fermionic theories with opposite chiralities. The
analogous thing is to take two independent Thirring
models with identical coupling strengths but opposite mass
signatures,

Lþ ¼ ψ̄ði∂ þmÞψ − λ2

2
ðψ̄γμψÞ2;

L− ¼ ξ̄ði∂ −m0Þξ − λ2

2
ðξ̄γμξÞ2; ð72Þ

where the bosonized Lagrangians are, respectively,

Lþ ¼ 1

2M
ϵμνλfμ∂νfλ þ 1

2
fμfμ;

L− ¼ −
1

2M
ϵμνλgμ∂νgλ þ 1

2
gμgμ; ð73Þ
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where fμ and gμ are the distinct bosonic vector fields. The
current bosonization formulas in both cases are given by

jþμ ¼ ψ̄γμψ ¼ λ

4π
ϵμνρ∂νfρ;

j−μ ¼ ξ̄γμξ ¼ − λ

4π
ϵμνρ∂νgρ: ð74Þ

These models are known as the self- and anti-self-dual
models [50–52].
On the extended Minkowski spacetime ðτ; xÞ the

Lagrangian (73) takes the following action form:

Ŝ� ¼
Z

dτd2x

�
1

2
hμhμ �

1

2M

�
ϵμ0λhμ

∂hλ
∂τ þ ϵμiλhμ∂ihλ

��
;

ð75Þ

where hμ ¼ fμ; gμ.
After making the coordinate transformation, we obtain

the action written in terms of the coordinates ðt; xÞ,

Ŝ� ¼
Z

dtd2x
ffiffiffiffiffiffi−gp �

1

2
hμhμ �

1

2M
ϵμiλhμ∂ihλ

�

� 1

2M
ϵμ0λhμ

∂hλ
∂t : ð76Þ

By taking a hint from the two-dimensional case, let us
consider the gauging of the following symmetry:

δfμ ¼ δgμ ¼ ϵμρσ∂ρασ: ð77Þ

Under these transformations the bosonized Lagrangians
change as

δŜ� ¼
Z

dtd2x

� ffiffiffiffiffiffi−gp �
ϵμρσhμ �

1

M
ϵμiλϵ

μρσ∂ihλ
�

� 1

M
ϵμ0λϵ

μρσ∂0hλ
�
∂ρασ: ð78Þ

We can identify the Noether currents

Jρσ� ðhμÞ ¼
ffiffiffiffiffiffi−gp �

ϵμρσhμ �
1

M
ϵμiλϵ

μρσ∂ihλ
�

� 1

M
ϵμ0λϵ

μρσ∂0hλ: ð79Þ

As a comment about the form of the gauge trans-
formation in Eq. (77) we can say that the simpler form,
such as the one we have assumed in the 2D case, will not be
suitable and the variations cannot be combined to give a
single structure like (79). Now we will introduce the
auxiliary field coupled to the antisymmetric currents. In
the two-dimensional case, this field was a vector. In the
three dimensional case, as a natural generalization, we

adopt an antisymmetric second rank Kalb-Ramond tensor
field Bρσ where its transformation is given by

δBρσ ¼ ∂ρασ − ∂σαρ: ð80Þ

It is worthwhile to mention that in the canonical NC
approach, one must include the variation of the current
associated with the NC field/parameter concerning the
transformation of the auxiliary tensor field in order to obtain
an effective Lagrangian after the soldering procedure [53].
To eliminate the nonvanishing change (78), we add a

counterterm into the original Lagrangian. So, the first
iterated Lagrangian is

Lð1Þ
� ¼ L� − 1

2
Jρσ� ðhμÞBρσ; ð81Þ

which transforms as

δLð1Þ
� ¼ − 1

2
δJρσ� Bρσ: ð82Þ

The variation of the currents coupled to the auxiliary
field is given by

δJρσ� Bρσ ¼
ffiffiffiffiffiffi−gp �

δBρσBρσ∓ 1

M
ϵλγθð∂i∂γαθÞBiλ

�

∓ 2

M
ϵλγθð∂0∂γαθÞB0λ: ð83Þ

As we can see, the above Lagrangians also are not
invariant under the transformation (77); hence we must go
further and add another counterterm. As a key point in the
soldering formalism, the invariance of one Lagrangian
alone is not the task. We are looking for a combination
of both Lagrangians that is gauge invariant. To this aim, the
second iteration Lagrangians are defined by

Lð2Þ
� ¼ Lð1Þ

� þ
ffiffiffiffiffiffi−gp
4

BρσBρσ: ð84Þ

By this definition, a straightforward algebra shows that
the following combination is invariant under transforma-
tions (77) and (80). So,

LS ¼ Lð2Þ
þ þ Lð2Þ−

¼ Lþ þ L− − 1

2
BρσðJþρσðfÞ þ J−ρσðgÞÞ þ

ffiffiffiffiffiffi−gp
2

BρσBρσ:

ð85Þ

The gauging procedure of the symmetry is finished now.
But the final result would be more interesting if we
write the above Lagrangian in terms of the original fields.
By using the equation of motion for Bρσ we can eliminate
this auxiliary field,
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Bρσ ¼
1

2
ffiffiffiffiffiffi−gp ðJþρσðfÞ þ J−ρσðgÞÞ: ð86Þ

Including this solution in (85) the final soldered
Lagrangian is expressed only in terms of the original
fields,

LS ¼ Lþ þ L−

− 1

8
ffiffiffiffiffiffi−gp ðJþρσðfÞ þ J−ρσðgÞÞðJþρσðfÞ þ J−ρσðgÞÞ:

ð87Þ

The crucial point of the soldering formalism becomes
clear now. By using the explicit structures for the
currents, the above Lagrangian is no longer a function
of fμ and gμ separately, but it is a function of the
combination

Aμ ¼
1ffiffiffi
2

p
M

ðfμ − gμÞ: ð88Þ

By this field redefinition we can obtain the final effective
action as

LS ¼
M2 ffiffiffiffiffiffi−gp

2
AμAμ þ ∂iA0∂0Ai − 1

2
ffiffiffiffiffiffi−gp ∂0Ai∂0Ai

−
ffiffiffiffiffiffi−gp
2

ð∂iA0∂iA0 þ ∂iAj∂iAj − ∂jAi∂iAjÞ: ð89Þ

In the usual commutative Minkowski spacetime we
obtain the Proca theory by soldering two (anti-)self-
dual theories [52]. As a generalization, we can claim
that the Lagrangian (89) is the NC version of the
Abelian Proca theory in the κ-deformed ð2þ 1ÞD
Minkowski spacetime. To check that our result is correct
we can directly obtain this Lagrangian by applying the
coordinate transformation ðτ; xÞ → ðt; xÞ in Proca theory.
The Abelian Proca model on the extended Minkowski
spacetime ðτ; xÞ is

Ŝ ¼
Z

dτd2x

�
− 1

4
FμνFμν þ

M2

2
AμAμ

�

¼
Z

dτd2x

�
− 1

2

�∂Ai

∂τ
�∂Ai

∂τ − ∂A0

∂xi
�

þ ∂A0

∂xi
�∂A0

∂xi −
∂Ai

∂τ
�
þ ∂Aj

∂xi
�∂Aj

∂xi −
∂Ai

∂xj
��

þM2

2
AμAμ

�
; ð90Þ

where Fμν ¼ ∂μAν − ∂νAμ. By coordinate transformation
(14) we can rewrite the above actions in terms of ðt; xÞ
with explicit noncommutativity,

Ŝ ¼
Z

dtd2x
ffiffiffiffiffiffi−gp �

− 1

2

�
1ffiffiffiffiffiffi−gp ∂Ai

∂t
�

1ffiffiffiffiffiffi−gp ∂Ai

∂t − ∂A0

∂xi
�

þ ∂A0

∂xi
�∂A0

∂xi −
1ffiffiffiffiffiffi−gp ∂Ai

∂t
�

þ ∂Aj

∂xi
�∂Aj

∂xi −
∂Ai

∂xj
��

þM2

2
AμAμ

�
: ð91Þ

Here we have assumed that _τ ¼ ffiffiffiffiffiffi−gp
> 0. After some

straightforward manipulation we find that

Ŝ ¼ 1

2

Z
dtd2x

�
2∂0Ai∂iA0 þ

ffiffiffiffiffiffi−gp ∂iAj∂jAi

− ffiffiffiffiffiffi−gp ∂iAj∂iAj −
ffiffiffiffiffiffi−gp ∂iA0∂iA0

− 1ffiffiffiffiffiffi−gp ∂0Ai∂0Ai þM2 ffiffiffiffiffiffi−gp
AμAμ

�
; ð92Þ

and, as we expected, this action is equal to the model
described by the Lagrangian (89).
Notice that, in this NC version, besides the modification

of the field dynamics in this new spacetime, the mass term
has also changed, and it is not equal to the usual Minkowski
spacetime so the particle associated with this field must
have a different mass term in this spacetime.
It is noteworthy that the transformations (77) are not the

unique ones that lead to this result. We can also use the
transformation

δfμ ¼ −δgμ ¼ ϵμρσ∂ρασ: ð93Þ

By assuming the above transformation and defining the
final soldered field

Aμ ¼
1ffiffiffi
2

p
M

ðfμ − gμÞ; ð94Þ

we can arrive at the same Lagrangian as in (89). This result
led the authors of [21] to the idea of generalizing the
soldering formalism. As it was mentioned before, the
basic idea of soldering is that, adding two independent
dual Lagrangians, it does not give us new information and,
to construct a gauge invariant model, we have to fuse two
Lagrangians via the Noether procedure. This idea was
successfully applied to different models in various dimen-
sions such as the chiral Schwinger model with opposite
chiralities.
Some years after proposing this idea, it was shown that

the usual sum of opposite chiral bosonic models is, in fact,
gauge invariant, and it corresponds to a composite model,
where the component models are the vector and axial
Schwinger models [21]. As a consequence, we can reinter-
pret the soldering formalism as a kind of degree of freedom
reduction mechanism.
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In the case at hand, the two transformations (77) and
(93) result in the same effective action, but in a general
case, we may obtain two apparently different actions.
For example, if we add an interaction term to the
Lagrangians (73), the final result will be different.
This property is the subject of the generalized soldering
formalism [21]. Now this question may arise whether
these two actions are describing two distinct phenom-
ena. However, by calculating the generating functional
of these two Lagrangians we have the same result. This
shows that we are dealing with the same physics but
described by different Lagrangians.

VIII. CONCLUSIONS AND PERSPECTIVES

The idea concerning the construction of a bosonized
version of some fermionic models in order to study the
properties of the target model through a theoretically easier
version, the bosonized one, has dwelled in the theoretical
physicist’s mind during the 1980s and 1990s. In two
spacetime dimensions, the concept of chirality together
with bosonization was discussed after the influence of the
chiral boson version in string theories.
In this way, Stone provided a method in which the

objective is to put together in the same multiplet two chiral
versions of a bosonized model in such a way that an
effective final model was obtained. The target is to analyze
physically the properties of the last resulting one. Another
result obtained in the soldering technique is to discuss the
fact that the final action is connected to the first ones
through duality properties.

There was a relevant production of papers considering
several models but none of them have considered NC
models, which in fact is our objective here. We have
analyzed the κ-Minkowski noncommutativity where some
variations of the CSM were soldered and the soldered
(final) action obtained was discussed in the aftermath.
However, as a perspective, we can provide a constraint

analysis via Dirac and symplectic formalisms, in order to
compare the before-and-after soldering. The comparison
can also be made together with the one concerning the
commutative models; namely, we can see clearly what is
new in the NC parameter introduction. Another path is to
investigate soldering in the light of the canonical non-
commutativity, where the NC parameter is constant.
The conversion of NC second-class constraints into first-

class ones concerning the soldered actions can reveal
interesting properties involving the gauge invariance of
NC models. These ideas are, as a matter of fact, ongoing
research that will be published elsewhere.
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