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The theory of very special relativity (VSR) proposed by Cohen and Glashow contains an intrinsic
preferred direction. Starting from the irreducible unitary representation of the inhomogeneous VSR group
ISIMð2Þ, we present a rigorous construction of quantum field theory with a preferred direction. We find
that although the particles and their quantum fields between the VSR and Lorentz sectors are physically
different, they share many similarities. The massive spin-half and spin-one vector fields are local and satisfy
the Dirac and Proca equations, respectively. This result can be generalized to higher-spin field theories. By
studying the Yukawa and standard gauge interactions, we obtain a qualitative understanding on the effects
of the preferred direction. Its effect is manifest for polarized processes but are otherwise absent.
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I. INTRODUCTION

One of the important features of special relativity is that
it provides an explanation to the null result of the
Michelson-Morley experiment. Since its proposal by
Einstein, special relativity and the underlying symmetry
described by the Lorentz group has become one of the most
important concepts in modern physics.
The theory of VSR proposed by Cohen and Glashow

provides a new perspective to the standard paradigm [1].
The theory, whose underlying symmetry group is a proper
subgroup of the Lorentz group, is able to explain the null
result of the Michelson-Morley experiment and reproduces
many of the predictions of special relativity such as time
dilation and length contraction. Therefore, there is a
possibility that in the low-energy limit, the symmetry of
nature is described by VSR.
This hypothesis opens up a new direction to explore

possible signatures of Lorentz violation. An advantage of
this framework is that while Lorentz symmetry is violated,
there remains a well-defined symmetry in which the theory
must satisfy. There have been many works exploring
extensions and modifications to quantum field theories
and the Standard Model of particle physics (SM) by
introducing Lorentz-violating but VSR-invariant inter-
actions [2–11]. In some of theseworks, it has been proposed
thatVSR-invariant fields havedifferent kinematics than their
Lorentz-invariant counterparts. The main motivation for
most of these works is the fact that the VSR symmetry
contains an intrinsic preferred direction which is charac-
terized by the existence of an invariant null vector. By
studying interactions involving the null vector, one can
obtain information on the effects of the preferred direction
and signatures of Lorentz violation.

In this paper, we take a different approach. An important
point to note is that the kinematics of the Lorentz-invariant
theory does not require any modifications. One is free to
introduce additional VSR-invariant interactions, but we
will not consider this possibility here.
Starting from the irreducible unitary representation of

ISIMð2Þ, we provide a rigorous construction of VSR-
invariant quantum fields. The solutions to the free fields are
completely determined, up to a global constant. For the
fermionic and vector field, it is shown that they are local
and satisfy the Dirac and Proca equations, respectively.
This result can be generalized to higher spin, where the
locality and field equations between the VSR and Lorentz
sector are identical.
We propose the possibility that particles and their

quantum fields with VSR symmetry are physically distinct
from the SM particles. Therefore, their existence would
constitute new physics beyond the SM. This proposal
seems quite obvious as particles with VSR symmetry must
furnish the irreducible unitary representation of ISIMð2Þ
and not ISOð3; 1Þ.
Although quantum fields with VSR and Lorentz sym-

metry have many similarities, as we will show in Sec. IV,
there remain important qualitative differences. Restricting
ourselves to the Yukawa and standard gauge interactions,
we show that for unpolarized processes, the resulting
observables are identical to their Lorentz-invariant counter-
parts. The processes in which the results between the two
sectors differ and where the effect of the preferred direction
is manifest, are the polarized processes.
The paper is organized as follows. Section II offers a

brief review on the VSR groups and their transformations.
In Sec. III, we derive the particle states and their trans-
formations from the irreducible unitary representations of
ISIMð2Þ. The subsequent section provides a rigorous
construction of VSR-invariant quantum field theory. The*cylee@ime.unicamp.br
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massive fermionic and vector fields are constructed as
examples.

II. THE VSR GROUP AND THEIR
TRANSFORMATIONS

In this section, we provide a brief review of the VSR
transformations. The VSR groups are generated from the
algebras summarized in Table I, where

T1 ¼ K1 þ J2; T2 ¼ K2 − J1: ð1Þ
They are proper Lorentz subgroups and their transforma-
tions satisfy the postulates of special relativity, namely the
existence of a maximal velocity invariant in all inertial
frames [12].
There are two properties of VSR that are important.

Firstly, the inclusion of any of the following discrete
symmetries P, T, CP or CT will yield the full Lorentz
group. This suggests that the VSR-invariant quantum fields
may violate the mentioned discrete symmetries. But as long
as the fields are local, CPT should be conserved. Secondly,
all the VSR algebras have a preferred direction. In this
paper, we chose the preferred direction to coincide with the
3-axis. After reviewing the SIMð2Þ transformations, we
will derive the transformations of the particle states and
quantum fields with VSR symmetry.
The VSR transformations are generated by simð2Þ

where the finite-dimensional generators are obtained using
Eq. (1) in the vector representation. They consist of
rotations and boosts. The former is identical to the rotation
in the Lorentz group along the 3-axis, and the latter is
defined as a product of all three group elements,

LðpÞ ¼ T1ðβ1ÞT2ðβ2ÞL3ðςÞ
¼ eiβ1T

1

eiβ2T
2

eiK
3ς; ð2Þ

where T i, K3 are the VSR generators in the vector
representations and the parameters are given by

β1 ¼
p1

p0 − p3
; ð3Þ

β2 ¼
p2

p0 − p3
; ð4Þ

ς ¼ − ln

�
p0 − p3

m

�
: ð5Þ

The boost is defined such that it takes kμ ¼ ðm; 0Þ
to arbitrary momentum pμ ¼ ðp0;pÞ where p0 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jpj2 þm2

p
.

III. PARTICLE STATES

An important feature of the Poincaré algebra is that the
eigenvalues of the Casimir operators have the physical
interpretation of mass and spin. Similarly, the particle states
of VSR are also defined as simultaneous eigenstates of the
Casimir invariants of isimð2Þ [[13], Table VII, row 7]

C1 ¼ PμPμ; C2 ¼ J3 −
P2

P0 − P3
T1 þ P1

P0 − P3
T2:

ð6Þ
Mass remains a valid description of VSR particles but the
notion of spin is different. To see this, consider the one-
particle state jk; σi where kμ is the momentum vector given
in tab. II and σ represents all other continuous or discrete
degrees of freedom. Since ½P2; T1� ¼ ½P1; T2� ¼ 0, the
second and third terms of C2 identically vanish upon acting
on jk; σi. Therefore, the spectrum of C2 are the eigenvalues
of J3 [14].
Let Λ be an element of SIMð2Þ and UðΛÞ be its linear

and unitary representation. Since isimð2Þ is a subalgebra
of the Poincaré algebra, Pμ still transforms as

UðΛÞPμU−1ðΛÞ ¼ Λν
μPν: ð7Þ

Therefore, the one-particle has the following
transformation:

UðΛÞjp; σi ¼
X
σ0
Cσ0σðΛ; pÞjΛp; σ0i: ð8Þ

Since UðΛÞ is unitary, depending on the definition of the
inner-product of the particle state, Cσ0σðΛ; pÞ must furnish
finite-dimensional unitary representation of SIMð2Þ up to a
normalization factor. In the following sections, we will
determine Cσ0σðΛ; pÞ.

A. Massive particle state

The rotation and boost generators of SIMð2Þ along
the 3-axis are identical to their Lorentz counterparts while

TABLE I. The four VSR algebras.

Algebra Generators

tð2Þ T1, T2

eð2Þ T1, T2, J3

homð2Þ T1, T2, K3

simð2Þ T2, T1, J3, K3

TABLE II. The little groups.

Standard kμ Little group

pμpμ ¼ m2, p0 > 0 ðm; 0; 0; 0Þ SOð2Þ
pμpμ ¼ 0, p0 > 0 ðκ; 0; 0; κÞ Eð2Þ
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T1 and T2 can be obtained from Eq. (1). From these
generators, the only nontrivial unitary representation of
SIMð2Þ is the rotation about the 3-axis. Therefore, the
solutions to Cσ0σðΛ; pÞ are given by

Cσ0σðLðpÞÞ ¼ NðpÞδσ0σ; ð9Þ

Cσ0σðR3ðϕÞÞ ¼ expðiJ3σ0σϕÞ ð10Þ

where NðpÞ is a normalization factor to be determined. The
unitary finite-dimensional representation of J3 is chosen to
be ðJ3Þσ0σ ¼ σδσ0σ with σ ¼ −j;…; j where j takes either
integer or half-integer. For a general one-particle state
jp; σi, we define the following orthogonal inner-product

hp0; σ0jp; σi ¼ δσ0σδ
3ðp0 − pÞ: ð11Þ

The normalization factor is then fixed to NðpÞ ¼
ðp0=mÞ1=2 [15]. Therefore, the effect of a boost on the
massive particle state is

jp; σi ¼
ffiffiffiffiffi
m
p0

r
UðLðpÞÞjk; σi: ð12Þ

From Eq. (12), we may then use the method of induced
representation [16] to obtain the VSR transformation of the
one-particle state:

UðΛÞjp; σi ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
ðΛpÞ0
p0

s X
σ0
Dσ0σðWðΛ; pÞÞjΛp; σ0i: ð13Þ

This equation takes the same form as the Lorentz
transformation of a massive one-particle state, except the
little group element WðΛ; pÞ is defined as

WðΛ; pÞ ¼ L−1ðΛpÞΛLðpÞ ð14Þ

where Λ ∈ SIMð2Þ is an arbitrary VSR transformation. In
VSR, the elements of the little group for massive particle
are elements of SOð2Þ. In this paper, this corresponds to
rotations about the 3-axis.
The group is infinitely connected SOð2Þ ∼ R=Z∞ and its

universal covering group is R, the group of real numbers
under addition [[17], Sec. 16.24]. Its multivalued unitary
irreducible representations are [18]

Dσ0σðRðϕÞÞ ¼ eiσϕδσ0σ; ð15Þ

where σ is a real number that labels the representation. The
irreducible representations are one-dimensional since
SOð2Þ is an Abelian group. Therefore, the transformation
of the massive one-particle state is

UðΛÞjp; σi ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
ðΛpÞ0
p0

s
eiσϕðΛ;pÞjΛp; σi: ð16Þ

B. Massless particle state

The little group for massless VSR particles is the
Euclidean group Eð2Þ which is also the little group of
massless particles in the Lorentz group. Here, a problem of
concern is the kinematics of the massless particles. In the
vector representation, the transformation expðiβiT iÞ,
leaves kμ ¼ ðκ; 0; 0; κÞ invariant so the boost is

Lμ
νðpÞkν ¼ ðeiK3ςÞμνkν

¼ ðp; 0; 0; pÞ ð17Þ

where the second line is obtained using the parameter
ln ς ¼ p=κ. This is obviously undesirable as the motion of
massless particles are restricted to the spatial dimension
coinciding with the preferred direction. From this simple
observation, we conclude that VSR does not admit a
physical description of massless particle.
In the literature, there has been works studying the

VSR-invariant electrodynamics where the starting point
is a Lorentz-violating but manifestly VSR-invariant
Lagrangian. Working under the hypothesis that the space-
time symmetry is VSR, we are certainly allowed to
introduce VSR-invariant interactions as long as they are
gauge-invariant. However, one should not modify the
underlying Lorentz-invariant kinematics since this implic-
itly implies that the photons furnish the irreducible unitary
representation of ISIMð2Þ. But since VSR does not admit a
physical description of massless particles, such constructs
do not seem to be plausible.

IV. MASSIVE QUANTUM FIELDS

Because of the problem with massless particles in VSR,
we will only focus on the construction of massive quantum
fields with VSR symmetry. Let ψ ðσÞðxÞ be a quantum field
describing a massive particle state jp; σi

ψ ðσÞðxÞ ¼ ð2πÞ−3=2
Z

d3pffiffiffiffiffiffiffiffi
2p0

p ½e−ip·xuðp; σÞaðp; σÞ

þ eip·xvðp; σÞb†ðp; σÞ�: ð18Þ

The field defined in Eq. (18) is manifestly covariant under
spacetime translations. The demand of VSR-covariance
means that it must transform as

UðΛÞψ ðσÞ
l ðxÞU−1ðΛÞ ¼ Dll̄ðΛ−1Þψ ðσÞ

l̄
ðΛxÞ ð19Þ

where DðΛÞ is the finite-dimensional representation of
SIMð2Þ. Equation (19) and the transformations of the
massive particle states given by Eq. (16) are sufficient
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for us to determine the coefficients and how they transform.
Following the same derivation given in [[16], Sec. 5.1] the
coefficients of arbitrary momentum are given by

uðp; σÞ ¼ DðLðpÞÞuð0; σÞ; ð20Þ

vðp; σÞ ¼ DðLðpÞÞvð0; σÞ ð21Þ

and the coefficients at rest are determined by the demand of
rotation symmetryX

σ̄

Dσσ̄ðRÞulð0; σ̄Þ ¼
X
l̄

Dll̄ðRÞul̄ð0; σÞ; ð22Þ

X
σ̄

D�
σσ̄ðRÞvlð0; σ̄Þ ¼

X
l̄

Dll̄ðRÞvl̄ð0; σÞ: ð23Þ

Expanding the matrices about the identity with DðRÞ ¼
1þ iJ 3ϕ and Dσσ̄ðRÞ ¼ δσσ̄ð1þ iσϕÞ, we find that the
coefficients at rest are eigenvectors of J 3

J 3uð0; σÞ ¼ σuð0; σÞ; ð24Þ

J 3vð0; σÞ ¼ −σvð0; σÞ: ð25Þ

The demand of locality requires the quantum fields to
commute or anticommute with its adjoint at spacelike
separation. The field ψ ðσÞðxÞ given by Eq. (18) does not
satisfy this criteria. This problem can be resolved starting
with the observation that the rotation generator J 3 has a
spectrum of −j;…; j. Therefore, there exist 2jþ 1 fields
ψ ð−jÞðxÞ;…;ψ ðjÞðxÞ that transform according to the same
finite-dimensional representation even though each fields
formally correspond to a different particle specie.
Therefore, given a finite-dimensional representation
DðΛÞ of dimension 2jþ 1, we can construct a new
VSR-invariant field ψðxÞ as the sum of all fields from
ψ ð−jÞðxÞ to ψ ðjÞðxÞ

ψðxÞ ¼
Xj

σ¼−j
ψ ðσÞðxÞ: ð26Þ

One could consider a more general linear combinationP
σfσψ

ðσÞðxÞ. But at the end, fσ must be fixed by the
demand of locality and a positive-definite Hamiltonian. In
the subsequent sections, we construct the spin-half and
spin-one vector fields and show that they are both local
(provided that fσ ¼ 1) and satisfy the Dirac and Proca
equations, respectively.
By construction, the field ψðxÞ is similar to a quantum

field of spin-j representation of the Lorentz group with the
same rotation generator along the 3-axis. They have the
same number of degrees of freedom and their coefficients at
rest take the same form. In the subsequent sections, this

correspondence allow us to compare the VSR and Lorentz-
invariant theories.

A. Spin-half representation

In the Lorentz group, given the rotation generators J, we
can always find two solutions to the boost generators given
byK� ¼ �iJ such that the Lorentz algebra is satisfied. The
spin-half generators of the Lorentz group are J ¼ 1

2
σ,

K� ¼ � 1
2
iσ where σ ¼ ðσ1; σ2; σ3Þ are the Pauli matrices.

Therefore, we can construct two sets of generators that
satisfy the simð2Þ algebra

K3
� ¼ �iJ3; T1

� ¼ K1
� þ J2; T2

� ¼ K2
� − J1:

ð27Þ

which then allows us to construct the following four-
dimensional representation [19]

J 3 ¼
�
J3 O

O J3

�
; K3 ¼

�
K3

− O

O K3þ

�
ð28Þ

T 1 ¼
�
T1
− O

O T1þ

�
; T 2 ¼

�
T2
− O

O T2þ

�
: ð29Þ

The field that transforms according to the above repre-
sentation is given by Eq. (18) with σ ¼ � 1

2
. By the demand

of VSR-covariance, the coefficients at rest must be eigen-
vectors of J 3 whose solutions can be taken to be

u

�
0;
1

2

�
¼ ffiffiffiffiffiffiffi

mψ
p

0
BBB@

1

0

1

0

1
CCCA;

u

�
0;−

1

2

�
¼ ffiffiffiffiffiffiffi

mψ
p

0
BBB@

0

1

0

1

1
CCCA; ð30Þ

v

�
0;
1

2

�
¼ ffiffiffiffiffiffiffi

mψ
p

0
BBB@

0

1

0

−1

1
CCCA;

v

�
0;−

1

2

�
¼ ffiffiffiffiffiffiffi

mψ
p

0
BBB@

−1
0

1

0

1
CCCA: ð31Þ

These solutions, up to a normalization factor are in agree-
ment with the Dirac spinors at rest for a Lorentz-invariant
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spin-half field. But for arbitrary momentum, the coefficients
uðp; σÞ and vðp; σÞ are different from the Dirac spinors.
This is best characterized by the following VSR-invariant
equation in which they satisfy [2]

�
γμpμ −

m2
ψ

2

n
p · n

�
P∓u

�
p;� 1

2

�
¼ 0; ð32Þ

�
γμpμ −

m2
ψ

2

n
p · n

�
P�v

�
p;� 1

2

�
¼ 0 ð33Þ

where nμ ¼ ð1; 0; 0; 1Þ is the VSR-invariant null vector and
P� ¼ ðI � γ5Þ is the projection operator. In the representa-
tion we are working with, the γμ is given by

γ0 ¼
�
O I

I O

�
; γi ¼

�
O −σi

σi O

�
;

γ5 ¼
�
I 0

0 −I

�
: ð34Þ

Since these equations are not polynomials in momentum,
they cannot provide a local kinematics to the theory.
Additionally, because both uðp; σÞ and vðp; σÞ have the
same mass term, it is impossible to write down a field
equation in the configuration space. Fortunately, this turns
out to be inconsequential. Explicit computation shows
that uðp; σÞ and vðp; σÞ satisfy the Dirac equation in the
momentum space

ðγμpμ −mψ IÞuðp; σÞ ¼ 0; ð35Þ

ðγμpμ þmψIÞvðp; σÞ ¼ 0: ð36Þ

They also have the spin-sumsX
σ

uðp; σÞūðp; σÞðpÞ ¼ ðγμpμ −mψIÞ; ð37Þ

X
σ

vðp; σÞv̄ðp; σÞðpÞ ¼ ðγμpμ þmψIÞ ð38Þ

which are identical to their Lorentz-covariant counterparts
where ūðp; σÞ ¼ u†ðp; σÞγ0 and likewise for v̄ðp; σÞ.
Therefore, from the field equations and spin sums, we
obtain a local VSR-invariant field of spin-half

ψðxÞ ¼
X

σ¼�1=2

ψ ðσÞðxÞ ð39Þ

which satisfies the Dirac equation. The Lagrangian for ψðxÞ
is simply

Lψ ¼ ψ̄ðiγμ∂μ −mψ IÞψ : ð40Þ

It is instructive to note that one could try to construct a theory
forψ ðσÞðxÞ using theDirac Lagrangian.However, this theory
would not be physical. The main reason being that the field
ψ ðσÞðxÞ is nonlocal. Therefore, the resulting S-matrix is not
VSR-invariant.
Although the VSR spin-half fields are physically

different from the Dirac field, they have the same field
equations and locality structure. Repeating the same
construction for higher spin fields, we have shown that
up to spin-two, the field equations and locality structure of
VSR and Lorentz-invariant fields are identical. This
suggests these relations hold for arbitrary spin represen-
tation. Consequently, the coefficients at rest of a massive
spin-j quantum field with VSR symmetry can always be
chosen such that the field is local and satisfies the same
field equation as their Lorentz counterpart of the
ðj; 0Þ⊕ð0; jÞ representation.
In hindsight, this result is expected. By examining the

proof for the existence of tμ1μ2���μ2j [20], we see that since
SIMð2Þ transformations are also Lorentz transformations,
it follows that there must exist a symmetric traceless rank
2j tensor in which DðLðpÞÞD†ðLðpÞÞ may be expressed as
for arbitrary spin. However, we did not prove the VSR
tensor must be identical to tμ1μ2���μ2j .

B. Vector representation

Now we consider the real massive vector field. Here the
coefficients at rest are eigenvectors of the rotation generator
along the 3-axis in the vector representation so there are
four solutions and they can be chosen to be

ϕμð0; 0Þ ¼

0
BBB@

−i
0

0

0

1
CCCA; eμð0; 1Þ ¼ 1ffiffiffi

2
p

0
BBB@

0

−1
−i
0

1
CCCA; ð41Þ

eμð0; 0Þ ¼

0
BBB@

0

0

0

1

1
CCCA; eμð0;−1Þ ¼ 1ffiffiffi

2
p

0
BBB@

0

1

−i
0

1
CCCA: ð42Þ

The first solution at finite momentum is equal to −ipμ so
that the associated field is simply the derivative of a real
scalar field ∂μϕðxÞ. The remaining solutions are identical to
the polarization vectors at rest for a Lorentz-invariant vector
field. We associate them with

Aμ
σðxÞ ¼ ð2πÞ−3=2

Z
d3pffiffiffiffiffiffiffiffi
2p0

p ½e−ip·xeμðp; σÞcðp; σÞ

þ eip·xeμ�ðp; σÞc†ðp; σÞ�: ð43Þ
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At finite momentum, these vectors satisfy the familiar
relation pμeμðp; σÞ ¼ 0 which translates to ∂μA

μ
σðxÞ ¼ 0 in

the configuration space. The contraction nμeμðp; σÞ only
vanishes for σ ¼ �1. The vectors eμðp;�1Þ have well-
defined massless limit but the field constructed from a sum
of Aμ

�1ðxÞ is nonlocal. A local vector is constructed by
summing over all fields:

AμðxÞ ¼
X

σ¼�1;0

Aμ
σðxÞ: ð44Þ

One can verify that the field commutes with its adjoint at
spacelike separation using the following spin-sum

X
σ

eμðp; σÞeν�ðp; σÞ ¼ −ημν þ pμpν

m2
A

: ð45Þ

It should not come as a surprise that this is identical to its
Lorentz-invariant counterpart. Given these results, the
Lagrangian for the VSR-invariant vector field is

LA ¼ −
1

4
FμνFμν þ

1

2
m2

AA
μAμ; ð46Þ

where Fμν ¼ ∂μAν − ∂νAμ is the field strength tensor.

C. Discrete symmetries

An important difference between VSR and Lorentz-
invariant quantum fields is the discrete symmetries. The
VSR algebras cannot accommodate discrete symmetry
operators P, T, CP and CT. Including any one of them
would yield the full Lorentz algebra. Therefore, it is
expected that the VSR-invariant fields would violate these
symmetries but preserve charge conjugation.
Here we consider the discrete symmetries of the massive

spin-half and vector fields constructed in the previous
section. Although VSR algebra does not admit P and T
generators, it does not prevent us from studying their
discrete transformations. The actions of P and T on the
creation and annihilation operators are given by

Paðp; σÞP−1 ¼ η�að−p; σÞ; ð47Þ

Pbðp; σÞP−1 ¼ η̄�bð−p; σÞ; ð48Þ

Taðp; σÞT−1 ¼ ϱ�ð−1Þj−σað−p;−σÞ; ð49Þ

Tbðp; σÞT−1 ¼ ϱ̄�ð−1Þj−σbð−p;−σÞ; ð50Þ

where η and ϱ are the parity and time-reversal phases for
particles and η̄ and ϱ̄ are the parity and time-reversal phases
for antiparticles. Under charge conjugation,

Caðp; σÞC−1 ¼ ς�bðp; σÞ; ð51Þ

Cbðp; σÞC−1 ¼ ς̄�aðp; σÞ; ð52Þ

where ς and ς̄ are the charge-conjugation phases.
Table III provides the discrete symmetry transformations

for ψðxÞ and AμðxÞ. It shows that charge conjugation is a
symmetry. When the fields are restricted to the preferred
direction, parity and time reversal which are otherwise
violated, are conserved. This is in agreement with the
original observation of Cohen and Glashow that VSR
violates P, T, CP. If we consider the action of CPT, we
find that it is a symmetry of the theory

ðCPTÞψðxÞðCPTÞ−1 ¼ −ðηψϱψςψÞ�γ5ψ�ð−xÞ; ð53Þ

ðCPTÞAμðxÞðCPTÞ−1 ¼ −ðηAϱAςAÞAμð−xÞ: ð54Þ

D. Interactions and the preferred direction

A qualitative understanding of the effect of the preferred
direction can be obtained by computing observables for
physical processes. If we restrict ourselves to local inter-
actions such as the standard gauge and Yukawa inter-
actions, because the spin sums between the Lorentz and
VSR sectors are identical, all the unpolarized processes,
apart from the coupling constants and the masses are the
same. Therefore, the only difference are the polarized
processes.
One of the simplest processes is the decay of a scalar

boson into a pair of fermion antifermion pair described by
the Yukawa interaction. In VSR, the differential decay rates
for this process are given by

TABLE III. Discrete symmetries for ψðxÞ and AμðxÞ where Pμ
ν ¼ −Tμ

ν ¼ diagð1;−1;−1;−1Þ. Parity and time reversal are
symmetries of the fields only when both the momentum of the expansion coefficients and the spacetime coordinates are restricted to the
preferred direction.

Fermionic field Vector field

Cψðt;xÞC−1 ¼ iςψγ2ψ�ðt;xÞ ς�ψ ¼ ς̄ψ CAμðt;xÞC−1 ¼ ςAAμðt; xÞ ς�A ¼ ςA
Pψðt; x3ÞP−1 ¼ η�ψγ0ψðt;−x3Þ η�ψ ¼ −η̄ψ PAμðt; x3ÞP−1 ¼ −ηAPμ

νAνðt;−x3Þ ηA ¼ η�A
Tψðt; x3ÞT−1 ¼ ϱ�iγ0γ2γ5ψð−t; x3Þ ϱ�ψ ¼ ϱ̄ψ TAμðt; x3ÞT−1 ¼ −ϱATμ

νAνð−t; x3Þ ϱA ¼ ϱ�A
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dΓVSR

dΩ
ðϕ → ψσψ̄σÞ ¼

mϕg2sin2θ

64π2

�
1 −

4m2
ψ

m2
ϕ

�
3=2�ðp0

ψÞ2 − ðp3
ψÞ2

ðp0
ψ Þ2

�−1

¼ mϕg2sin2θ

64π2

�
1 −

4m2
ψ

m2
ϕ

�
3=2�

1 −
�
1 −

4m2
ψ

m2
ϕ

�
cos2θ

�−1
; ð55Þ

dΓVSR

dΩ
ðϕ → ψσψ̄−σÞ ¼

mϕg2cos2θ

64π2

�
1 −

4m2
ψ

m2
ϕ

�
3=2�ðp0

ψ Þ2 − ðp3
ψÞ2

m2
ψ

�−1

¼ mϕg2cos2θ

64π2

�
1 −

4m2
ψ

m2
ϕ

�
3=2� m2

ϕ

4m2
ψ

�
1 −

�
1 −

4m2
ψ

m2
ϕ

�
cos2θ

��−1

: ð56Þ

Comparing the above results to the same process with the
VSR fermions replaced by the Dirac fermions, the differ-
ence are represented by the last terms of the respective
equations which is the effects of the preferred direction.
From Fig. 1, we see that as mψ=mϕ → 1

2
the rates predicted

by the two sectors coincide.
Since the kinematics of VSR fermions are identical to

their Lorentz counterparts, the principles of local gauge

invariance can be applied without any difficulties. The VSR
fermions couple with gauge bosons through the conserved
current Jμ ¼ qψ̄γμψ . We find by explicit computation that
the corresponding charge Q ¼ q

R
d3xJ0 remain the same

but the spatial component of the current JiðxÞ are different.
Therefore, we should expect differences in the polarized
processes. As for the VSR vector bosons, they inherit the
same problem as their Lorentz-invariant counterparts,

FIG. 1. The dotted and solid lines represent the differential polarized decay rate for SR and VSR, respectively. The coupling is taken to
be unity and the particle masses in the two sectors are identical. The bosonic mass is taken to be mϕ ¼ 125 GeV.
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namely unitarity violation at high energy. But in the VSR
framework, since there are no physical massless vector
bosons, the problem cannot be resolved using the Higgs
mechanism.

V. CONCLUSIONS

Quantum field theory with VSR symmetry is an
interesting subject that has received considerable attention
since its conception. But to the best of our knowledge, an
analysis based on the formalism of Wigner and Weinberg,
has thus far not been carried out. In some cases, the starting
point is a VSR-invariant but Lorentz-violating Lagrangian
which modifies the kinematics of a Lorentz-invariant
theory. Such an approach is unsatisfactory and unnecessary.
Since we have knowledge of the underlying symmetry
group and their representations, the field operators as
shown in this paper, up to a global phase, are completely
determined. To this end, we have shown that the VSR and
Lorentz-invariant fields have the same locality structures
and field equations.
If we take the view that the VSR symmetry is a

fundamental symmetry of nature, there is no reason stopping
us from introducing additional VSR-invariant but Lorentz-
violating interactions to the SM Lagrangians. This has been
the main focus in the existing literature. In this paper, we
have taken a different approach. The SMLagrangian should
remain unaltered and theVSRparticles should be interpreted
a new species of particles. Therefore, an important task is to
incorporate them into an extended SM. Thus far, we have
only studied the simplest interactions involving the VSR
fermions.
Confining ourselves to the VSR fermions, an important

point to note is that since they have the same kinematics
and locality structure as their Lorentz-invariant

counterparts, the most natural interactions are the
Yukawa and the standard gauge interactions. For these
interactions, the effects of Lorentz violation are absent for
unpolarized processes since the spin sums between the two
sectors are identical. The only differences are the polarized
processes.
The hypothesis that in the low-energy limit, the sym-

metry of nature is described by VSR presents an intriguing
paradigm due to the existence of a preferred direction. We
have shown that one can obtain a qualitative understanding
of its effect in a localized setting by studying polarized
processes. The really interesting question is whether the
preferred direction extends globally to the galactic or
cosmic scale. If one proposes such an extension, then it
seems to imply that the Universe has a preferred direction
due to some exotic nontrivial topology and there exist
particles that are sensitive to the topology of the Universe.
To address this issue, one possibility is to extend general
relativity by introducing appropriate VSR-invariant terms.
In summary, the VSR framework provides a simple

setting in which we can explore such possibilities. In our
opinion, such a theory brings forward a new perspective on
the notion of spacetime. The advent of special relativity has
taught us that spacetime and simultaneity are relative and
not absolute. The theories built upon the framework of VSR
allow us to go one step further—the spacetime symmetry
according to different particles may also be relative.
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