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We analyze the impact of the carrier envelope phase on the differential cross sections of the Breit-
Wheeler and the generalized Compton scattering in the interaction of a charged electron (positron) with an
intensive ultrashort electromagnetic (laser) pulse. The differential cross sections as a function of the
azimuthal angle of the outgoing electron have a clear bump structure, where the bump position coincides
with the value of the carrier phase. This effect can be used for the carrier envelope phase determination.
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I. INTRODUCTION

The rapid progress in laser technology [1] offers novel
and unprecedented opportunities to investigate quantum
systems with intense laser beams [2]. A laser intensity IL of
∼2 × 1022 W=cm2 has been already achieved [3].
Intensities of the order of IL ∼ 1023…1025 W=cm2 are
envisaged in the near future, e.g. at CLF [4], ELI [5], or
HiPER [6]. Further facilities are in the planning or con-
struction stages, e.g. the PEARL laser facility [7] at Sarov/
Nizhny Novgorod, Russia. The high intensities are pro-
vided in short pulses on a femtosecond pulse duration level
[2,8,9], with only a few oscillations of the electromagnetic
(e.m.) field or even subcycle pulses. (The tight connection
of high intensity and short pulse duration is further
emphasized in [10]. The attosecond regime will become
accessible at shorter wavelengths [11,12].)
The new laser facilities utilize short and ultrashort pulses in

“one-cycle” or “few-cycle” regimes. In this case, a determi-
nation of the pulse fine structure is very important and, in
particular, tasking the phase difference between the electric
field and pulse envelope, i.e. the carrier envelope phase (CEP).
In the past, in the case of low beam intensity, the CEP
determination has been achieved by averaging over a large
number of phase-stabilized laser pulses. Later on, some
methods for a determination of CEP were elaborated, for
example, by studying above-threshold ion ionization [13,14],
a direct measurement of the light waves of visible, ultraviolet,
and/or infrared light using an electron attosecond probe [15].
As another possibility for CEP measurement it has been
established to convert the light to the terahertz (THz) fre-
quency range in a plasma, with subsequent analysis of the
spatial charge asymmetry associated with THz emission [16].

However, such methods cannot be applied for high
intensity laser pulses [17]. Therefore, another tool for
the CEP determination for pulses with intensity I ≥
1019 W=cm2 needs to be developed. One avenue for getting
access to the CEP is to search for observables which are
both sensitive to the CEP variations and experimentally
controllable. In Ref. [17], the effect of CEP is demonstrated
in the angular distribution of the photons emitted by a
relativistic electron via multiphoton Compton scattering off
an intense linearly polarized short pulse. The asymmetries
of azimuthal photon distributions in nonlinear Compton
scattering were analyzed in [18]. The impact of the CEP on
eþe− pair production with linearly polarized laser pulses is
discussed in Ref. [19]. The importance of the CEP in
Schwinger pair production in subcycle pulses is shown in
[20]. Some other aspects of the effect of CEP in eþe− pair
productions were discussed recently in [21–24].
Our present work may be considered as a further

development of approaches to determine CEP for short
and ultrashort circularly polarized laser pulses. We con-
sider here both the generalized Breit-Wheeler process
(eþe− pair production) and generalized Compton scattering
(single photon emission off a relativistic electron). We limit
our discussion to circularly polarized pulses: first, because
the case of linear laser polarization has been already
analyzed in [17,19,20]. And second, the methods elabo-
rated in [25,26] for quantum processes with circularly
polarized finite laser pulses (by utilizing the generalized
Bessel functions) allow us to show the effect of the CEP on
a transparent, almost qualitative level, which may be used
as a powerful method for the CEP determination. Thus, we
show that the azimuthal angle distributions of the emitted
electron (positron) in the first case, and the recoil electron
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(emitted photon) in the second case are in fact very
sensitive to a CEP variation and can be used to fix the
CEP value.
Our paper is organized as follows. In Sec. II we discuss

the effect of the CEP in the case of the generalized Breit-
Wheeler process. The impact of CEP on the generalized
Compton scattering is analyzed in Sec. III. Our summary is
given in Sec. IV.

II. EFFECT OF CEP IN BREIT-WHEELER eþe−
PAIR PRODUCTION

A. The laser pulse

As we mentioned above, here we consider the general-
ized Breit-Wheeler process, i.e. the interaction of a probe
photon X with a laser beam L in the reaction
X þ L → eþ þ e−, where a multitude of laser photons
can participate simultaneously in the eþe− pair creation.
The emphasis here is on short and intensive laser pulses.
Long and weak laser pulses are dealt with in the standard
textbook Breit-Wheeler process (cf. the review paper [27]).
The different aspect of eþe− pair creation in finite pulses
was also analyzed in Refs. [25,28–30]. Below, we will
concentrate mainly on the effect of CEP, using the
definitions of our Ref. [25].
In the following we use the widely employed e.m. four-

potential for a circularly polarized laser field in the axial
gauge Aμ ¼ ð0;AðϕÞÞ with

AðϕÞ ¼ fðϕÞða1 cosðϕþ ~ϕÞ þ a2 sinðϕþ ~ϕÞÞ; ð1Þ

where ~ϕ is the CEP. The quantity ϕ ¼ k · x is the invariant
phase with four-wave vector k ¼ ðω;kÞ, obeying the null
field property k2 ¼ k · k ¼ 0 (a dot between four-vectors
indicates the Lorentz scalar product) implying ω ¼ jkj,
að1;2Þ ≡ aðx;yÞ; jaxj2 ¼ jayj2 ¼ a2, axay ¼ 0; and transver-
sality means kax;y ¼ 0 in the present gauge. The envelope
function fðϕÞ with limϕ→�∞fðϕÞ ¼ 0 accounts for the
finite pulse duration. For simplicity and for the sake of
numerical examples we use fðϕÞ in the form of a hyper-
bolic secant

fðϕÞ ¼ 1

cosh ϕ
Δ

; ð2Þ

where the dimensionless quantity Δ is related to the pulse
duration 2Δ ¼ 2πN, where N has the meaning of a number
of cycles in the pulse and it is related to the time duration of
the pulse τ ¼ 2N=ω. The carrier envelope phase ~ϕ is the
main subject of our present discussion and, as wewill show,
its impact is particularly strong for short pulse duration Δ.

B. Cross section

The cross section of eþe− pair production is determined
by the transition matrix MfiðlÞ as

dσ
dϕe

¼ α2υζ

8m4ξ2N0

Z∞

ζ

dl
Z1

−1
d cos θejMfiðl; uÞj2; ðE1Þ

ð3Þ
where m is the electron mass, θe is the polar angle of
outgoing electron, and v is the electron velocity in the
c.m.s. In Eq. (3) the averaging and sum over the spin
variables in the initial and the final states is assumed; the
azimuthal angle of the outgoing electron ϕe is defined as
cosϕe ¼ axpe=ajpej. The azimuthal angle of the positron
momentum is ϕeþ ¼ ϕe þ π. The variable ξ is the reduced
field intensity ξ2 ¼ e2a2=m2. We use natural units with
c ¼ ℏ ¼ 1, e2=4π ¼ α ≈ 1=137.036. The lower limit of the
integral is the threshold parameter ζ ¼ 4m2=s, where s is
the square of the total energy in the c.m.s. The region of
ζ < 1 corresponds to the above-threshold eþe− pair
production, while the region of ζ > 1 matches the sub-
threshold pair production. Denoting four-vectors kðω;kÞ,
k0ðω0;k0Þ, pðE;pÞ and p0ðE0;p0Þ as the four-momenta of
the background (laser) field (1), incoming probe photon,
outgoing positron and electron, respectively, the variables
s, v and u are determined as s ¼ 2k · k0 ¼ 2ðω0ω − k0kÞ,
v2¼ðls−4m2Þ=ls, and u≡ ðk0 · kÞ2=ð4ðk · pÞðk · p0ÞÞ ¼
1=ð1 − v2 cos2 θeÞ. The factor N0 reads N0 ¼
1=2π

R∞
−∞ dϕðf2ðϕÞ þ f02ðϕÞÞ and determines the photon

flux in the case of the finite pulse [26]. The variable l saves
continuous values and the product lω has the meaning of
the laser energy involved into the process (see also [21] for
recent discussion).
The transition matrixMfiðlÞ in (3) consists of four terms

MfiðlÞ ¼
X3
i¼0

MðiÞCðiÞðlÞ; ð4Þ

where the transition operators MðiÞ read

MðiÞ ¼ ūp0M̂BWðiÞvp ð5Þ

with

M̂BWð0Þ ¼ ε0;

M̂BWð1Þ ¼ −
e2a2ðε0 · kÞk
2ðk · pÞðk · p0Þ ;

M̂BWð2;3Þ ¼ eað1;2Þkε0

2ðk · p0Þ −
eε0kað1;2Þ
2ðk · pÞ ; ð6Þ

where up0 and vp are the Dirac spinors of the electron and
positron, respectively, and ε0 is the polarization four-vector
of the probe photon. The functions CiðlÞ can be written in
terms of the basic functions Yl and Xl which may be
considered as the generalized Bessel functions for the finite
e.m. pulse
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YlðzÞ ¼
1

2π
e−ilðϕ0− ~ϕÞ

Z
∞

−∞
dϕfðϕÞeilϕ−iPðϕÞ;

XlðzÞ ¼
1

2π
e−ilðϕ0− ~ϕÞ

Z
∞

−∞
dϕf2ðϕÞeilϕ−iPðϕÞ ð7Þ

with

PðϕÞ ¼ z
Z

ϕ

−∞
dϕ0 cosðϕ0 − ϕ0 þ ~ϕÞfðϕ0Þ

− ξ2ζu
Z

ϕ

−∞
dϕ0f2ðϕ0Þ ð8Þ

in the following form,

Cð0ÞðlÞ ¼ ~YlðzÞeilðϕ0− ~ϕÞ;

~YlðzÞ ¼
z
2l

ðYlþ1ðzÞ þ Yl−1ðzÞÞ − ξ2
u
ul

XlðzÞ;

Cð1ÞðlÞ ¼ XlðzÞeilðϕ0− ~ϕÞ;

Cð2ÞðlÞ ¼ 1

2
ðYlþ1eiðlþ1Þϕ0 þ Yl−1eiðl−1Þϕ0Þe−il ~ϕ;

Cð3ÞðlÞ ¼ 1

2i
ðYlþ1eiðlþ1Þϕ0 − Yl−1eiðl−1Þϕ0Þe−il ~ϕ; ð9Þ

where the argument z of the generalized Bessel functions is
related to ξ, l, and u via z ¼ 2lξ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u=ulð1 − u=ulÞ

p
with

ul ≡ l=ζ and ϕ0 is the azimuthal angle of outgoing
electron ϕ0 ¼ ϕe. Equation (9) allows us to express the
differential cross section in terms of the partial probabilities
wðlÞ,

dσ
dϕe

¼ α2vζ
4m2ξ2N0

Z
∞

ζ
dl

Z
1

−1
d cos θewðlÞ ð10Þ

with

wðlÞ ¼ 2j ~YlðzÞj2 þ ξ2ð2u − 1Þ
× ðjYl−1ðzÞj2 þ jYlþ1ðzÞj2 − 2Reð ~YlðzÞX�

lðzÞÞÞ;
ð11Þ

which resembles the known expression for the partial
probability in the case of the infinitely long e.m. pulse [27]

wn ¼ 2J2nðz0Þ þ ξ2ð2u − 1ÞðJ2n−1ðz0Þ þ J2nþ1ðz0Þ − 2J2nðz0ÞÞ

with the substitutions l → n, j ~YlðzÞj2 → J2nðz0Þ,
jYl�1ðzÞj2 → J2n�1ðz0Þ, Reð ~YlðzÞX�

lðzÞÞ → J2nðz0Þ, and
z0 ¼ ð2nξÞ=ð1þ ξ2Þ1=2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u=unð1 − u=unÞ
p

with un ≡ n=ζ.

C. Numerical results

It is natural to expect that the effect of the finite carrier
phase essentially appears in the azimuthal angle

distribution of the outgoing electron (positron) because
the carrier phase is included in the expressions for the basic
functions (7) in the combination ϕe − ~ϕ. As an example, in
Fig. 1 (left panels) we show the differential cross section
dσ=dϕe of eþe− pair production as a function of the
azimuthal angle ϕe for different values of the carrier
envelope phase ~ϕ and for different pulse durations
Δ ¼ Nπ with N ¼ 0.5, 1, 1.5 and 2, and for ξ2 ¼ 0.5.
The calculation is done for the essentially multiphoton
region with ζ ¼ 4.
One can see a clear bumplike structure of the cross

sections, in particular for very short pulses with N ≤ 1,
where the bump position coincides with the corresponding
value of the carrier phase. In these cases the height of the
bumps can reach orders of magnitude. The reason for such
behavior is the following: The basic functions Yl and Xl
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FIG. 1. Left column: The differential cross section as a function
of the azimuthal angle of the direction of flight of the outgoing
electron ϕe, for different values of the carrier phase ~ϕ and for
different pulse durationΔ ¼ Nπ with N ¼ 0.5, 1, 1.5 and 2 (from
the bottom panels). The solid, dash-dash-dotted, dashed and
dash-dotted curves are for the CEP equal to 0, 90, 180 and
270 degrees, respectively. Right column: The anisotropy (14) for
different values of ~ϕ and N, as in the left column. ξ2 ¼ 0.5 and
ζ ¼ 4.
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are determined by the integral over dϕ with a rapidly
oscillating exponential function exp½iΨ� with

Ψ ¼ lϕ − z

�
cosðϕe − ~ϕÞ

Z
ϕ

−∞
dϕ0fðϕ0Þ cosϕ0

þ sinðϕe − ~ϕÞ
Z

ϕ

−∞
dϕ0fðϕ0Þ sinϕ0

�
: ð12Þ

Then, taking into account the inequality for ϕ > 0

Z
ϕ

−∞
dϕ0fðϕ0Þ cosϕ0 ≫

Z
ϕ

−∞
dϕ0fðϕ0Þ sinϕ0; ð13Þ

which is valid for the smooth subcycle pulse shapes (e.g.
for the hyperbolic secant shape), one can conclude that the
main contribution to the probability comes from the region
ϕe ≃ ~ϕ, which is confirmed by the result of our full
calculation shown in Fig. 1 (left panels). The effect of
the carrier phase decreases with increasing pulse duration
and for N ≥ 2 it becomes negligibly small.
The corresponding anisotropies of the electron (positron)

emission defined as

A ¼ dσðϕeÞ − dσðϕe þ πÞ
dσðϕeÞ þ dσðϕe þ πÞ ; ð14Þ

are exhibited in Fig. 1 (right panels). One can see a strong
dependence of the anisotropy on CEP, especially for the
subcycle pulses with N ¼ 0.5, 1 which is a consequence of
the “bump” structure of the differential cross sections
shown in the left panels. In these cases the anisotropy
takes a maximum value A≃ 1 at ϕe ¼ ~ϕ and jAj < 1 at
ϕe ≠ ~ϕ. It takes a minimum valueA≃ −1 at ϕe − ~ϕ ¼ �π.
The increase of the pulse duration leads to a decrease of the
absolute value of A.
Since the basic functions in (11) depend on the CEP

through PðϕÞ [cf. (8)] solely in combination ϕe − ~ϕ, then
the cross sections and anisotropies depend on the scale
variable Φ ¼ ϕe − ~ϕ. This means that the dependence of
observables as a function of the rescaled azimuthal angle Φ
are independent of the CE phase ~ϕ and they coincide with
the dependence of these observables on ϕe at ~ϕ ¼ 0.
In Fig. 2 (left panel) we show the cross sections of eþe−

pair production as a function of Φ for the subcycle pulse
with N ¼ 0.5 at different values of field intensity ξ2 ¼ 0.1,
1, and 10. One can see that qualitatively the shape of the
cross section is not sensitive to the value of ξ2. However the
height of the bumps in the cross section slightly decreases
with increasing ξ2.
Finally we note that the total cross section (integrated

over ϕe) is not sensitive to the CEP. Thus, Fig. 2 (right
panel) exhibits the total cross section of the eþe− pair
production for the subcycle pulse with N ¼ 0.5 and ζ ¼ 4
as a function of ξ2. The solid curve and crosses correspond

to ~ϕ ¼ 0 and π, respectively. One can see in fact that the
total cross section is independent of CEP.

III. IMPACT OF CEP ON THE GENERALIZED
COMPTON SCATTERING

A. The cross section

The Compton scattering process, symbolically e− þ
L → e−0 þ γ0 is considered here as the spontaneous emis-
sion of one photon off an electron in an external e.m. field
(1). Some important aspects of generalized Compton
scattering were discussed elsewhere; see, for instance
[18,31–36], and more recently [37]. Below we use the
notations and definitions of Ref. [26].
We denote the four-momenta of the incoming electron,

background (laser) field (1), outgoing electron and photon
as pðE;pÞ, kðω;kÞ, p0ðE0;p0Þ, k0ðω0;k0Þ, respectively.
The cross section of the Compton scattering is deter-

mined by the transition matrix MfiðlÞ as

dσ
dω0dϕe0

¼ α2

N0ξ
2ðs −m2Þm2

Z
∞

δl
dl

jMfiðlÞj2
∥pj − lωj ; ð15Þ

where the averaging and sum over the spin variable in the
initial and the final states is assumed. The lower limit δl
may be smaller than 1 and, for instance, it may be
determined by the detector resolution δω0 according to
the relation among the frequency ω0 of the emitted photon,
auxiliary variable l and the polar angle θ0 of the direction of
the momentum k0 thought the conservation laws as

ω0 ¼ lωðEþ jpjÞ
Eþ jpj cos θ0 þ lωð1 − cos θ0Þ : ð16Þ

The frequency ω0 increases with l at fixed θ0 since ω0 is a
function of l at fixed θ0. All quantities are considered in the
laboratory system.
Being a crossing channel to the Breit-Wheeler process,

the main features of the Compton scattering formalism and
the results are very close to those of the Breit-Wheeler
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FIG. 2. Left panel: The cross section of the eþe− production as
a function of scale variable Φ ¼ ϕe − ~ϕ for different values of
e.m. field intensities ξ. The solid, dashed and dash-dotted curves
are for ξ2 ¼ 0.1, 1, and 10, respectively. Right panel: The cross
section of eþe− pair production integrated over ϕe as a function
of ξ2 for ~ϕ ¼ 0 (solid curve) and π (crosses). N ¼ 0.5 and ζ ¼ 4.
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process, although there are some differences. Thus, there is
no evident subthreshold effect because all frequencies ω0
can contribute in (15) (see below, however, where we define
specific subthreshold parameters responsible for the multi-
photon effects).
The transition matrix MðlÞ consists of four terms,

MðlÞ ¼
X3
i¼0

MCðiÞCðiÞðlÞ; ð17Þ

where the transition operators MCðiÞ are related to the
transition operator MBWðiÞ in (6) as MCðiÞðp; p0; k; k0Þ ¼
MBWðiÞð−p; p0; k;−k0Þ. The squared c.m.s. energy reads
s ¼ m2 þ 2k · p. The coefficient functions CðiÞðlÞ are
determined by the basic functions according to Eqs. (9)
but with their own phase function

PðϕÞ ¼ z
Z

ϕ

−∞
dϕ0 cosðϕ0 − ϕe0 þ ~ϕÞfðϕ0Þ

− ξ2
u
u1

Z
ϕ

−∞
dϕ0f2ðϕ0Þ; ð18Þ

where the azimuthal angle of the recoil electron ϕe0

coincides with the angle ϕ0 in Ritus notation [27,38]
and is determined as cosϕe0 ¼ axp0=ajp0j. The azimuthal
angle of the photon momentum is ϕγ0 ¼ ϕe0 þ π. For the
variables in Eq. (18) we use the standard notation: z ¼
2lξððu=ulÞð1 − u=ulÞÞ1=2 with u≡ ðk0 · kÞ=ðk · p0Þ, ul ¼
lu1 and u1 ¼ ðs −m2Þ=m2 ¼ 2k · p=m2. This representa-
tion of functions CðiÞðlÞ allows us to define the differential
cross section through the partial probabilities wðlÞ

dσ
dω0dϕe0

¼ 2α2

N0ξ
2ðs −m2Þ

Z
∞

δl
dl

wðlÞ
∥pj − lωj ð19Þ

with

wðlÞ ¼ −2j ~YlðzÞj þ ξ2
�
1þ u2

2ð1þ uÞ
�

× ðjYl−1ðzÞj2 þ jYlþ1ðzÞj2 − 2Reð ~YlðzÞX�
lðzÞÞÞ:

ð20Þ

Equation (20) resembles the corresponding expression for
the partial probability of photon emission in the case of
the infinitely long pulse [27,38] with the substitutions
l → n, j ~YlðzÞj2 → J2nðz0Þ, jYl�1ðzÞj2 → J2n�1ðz0Þ, and
Reð ~YlðzÞX�

lðzÞÞ → J2nðz0Þ,

wn ¼ −2J2nðz0Þ þ ξ2
�
1þ u2

2ð1þ uÞ
�

× ðJ2n−1ðz0Þ þ J2nþ1ðz0Þ − 2J2nðz0ÞÞ;

where Jnðz0Þ denotes Bessel functions with z0 ¼ 2nξ=
ð1þ ξ2Þ1=2ðu=unð1 − u=unÞÞ1=2 and un ¼ ð2nðk · pÞÞ=
ðm2ð1þ ξ2ÞÞ.
We recall that the internal quantity l is a continuous

variable, implying a continuous distribution of the differ-
ential cross section over the ω0 − θ0 plane. The case of
l ¼ 1with ξ2 ≪ 1 andω0

1 ¼ ω0ðl ¼ 1Þ recovers the Klein-
Nishina cross section, cf. [27]. The quantity lω can be
considered as an energy of the laser beam involved in the
Compton process, which is not a multiple ω. Mindful of
this fact, without loss of generality, we denote the processes
with l > 1 as a multiphoton generalized Compton scatter-
ing, remembering that l is a continuous quantity. We stress
again, the internal variable l cannot be interpreted strictly
as the number of laser photons involved (cf. [39]).
The cross section of the multiphoton Compton scattering

(for l > 1) first increases with increasing θ0 and peaks at a
scattering angle θ0 < 180°, beyond which it rapidly drops to
zero when θ0 approaches 180°, yielding the blind spot in the
high harmonics for back-scattering. For instance, the cross
section peaks at about 170° for the chosen electron energy
of 4 MeV (all quantities are considered in the labora-
tory frame).
Therefore, in our subsequent analysis we choose the

near-backward photon production at θ0 ¼ 170° and an
optical laser with ω ¼ 1.55 eV. Defining one-photon
events by l ¼ n ¼ 1, this kinematics leads via Eq. (16)
to ω1

0 ≡ ω0ðl ¼ 1; θ0 ¼ 170oÞ≃ 0.133 keVwhich we refer
to as a threshold value. Accordingly, ω0 > ω0

1 is enabled by
nonlinear effects which in turn may be related loosely to
multiphoton dynamics.
The ratio κ ¼ ω0=ω0

1 may be considered as a subthresh-
old parameter (as an analog of subthreshold parameter ζ in
the Breit-Wheeler process). Using the value κ ≃ l0ðω0ðl0ÞÞ
we can define the subthreshold part of the total cross
section ~σ explicitly as the integral

~σðω0Þ
dϕe0

¼
Z

∞

ω0
dω̄

dσðω̄Þ
dω̄dϕe0

¼
Z

∞

l0ðκÞ
dl

dσðlÞ
dldϕe0

; ð21Þ

where dσðlÞ=dldϕe0 ¼ ðdσðω0Þ=dω0dϕe0 Þðdω0ðlÞ=dlÞ,
and the minimum value of l0ðκÞ is

l0ðκÞ ¼ κ
Eþ jpj cos θ0

Eþ jpj cos θ0 − ωðκ − 1Þð1 − cos θ0Þ : ð22Þ

The cross section (21) has the meaning of a cumulative
distribution. In this case, the subthreshold, multiphoton
events correspond to frequencies ω0 of the outgoing photon
which exceed the corresponding threshold value ω0

1 ¼
ω0ðl ¼ 1Þ [cf. Eq. (16)].
Similarly to the Breit-Wheeler process, the effect of the

finite CEP essentially appears in the differential cross
sections as a function of the azimuthal angle of the
outgoing electron (photon) momentum because the carrier
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phase is included in the expressions for the basic functions
(7) with (18) in combination ϕe0 − ~ϕ.

B. Numerical results

The differential cross section (19) as a function of the
azimuthal angle ϕe0 for different values of the carrier phase
~ϕ for the pulses with N ¼ 0.5, 1, 1.5 and 2 for the
hyperbolic secant shape with κ ¼ ω0=ω0

1 ¼ 3 and ξ2 ¼
0.5 is exhibited in the left panels of Fig. 3.
One can see a clear bumplike structure of the distribu-

tion, where the bump position coincides with the corre-
sponding value of the carrier phase. The reason for such
behavior is the same as in the case of the Breit-Wheeler
process, explained by the highly oscillating factor in
Eq. (12) with inequality (13) valid for very short pulses.

The impact of CEP decreases with increasing pulse
duration (or N) and becomes very small at N > 2 which
is in agreement with the prediction of [17] for the linearly
polarized pulse.
Corresponding anisotropies defined by Eq. (14) with

substitution dσðϕeÞ → dσðϕe0 Þ are exhibited in the right
panels of Fig. 3. One can see a strong dependence of the
anisotropy on the carrier phase for the short pulses which
resembles the pattern of the differential cross sections
shown in the left panels. The maximum effect is expected
for the subcycle pulse with N ¼ 0.5, where similar to the
Breit-Wheeler process, the anisotropy takes a maximum
value A≃ 1 at ϕe0 ¼ ~ϕ and jAj < 1 at ϕe0 ≠ ~ϕ. It takes a
minimum value A≃ −1 at ϕe − ~ϕ ¼ �π. For the short
pulses with N ¼ 2 the absolute value of the anisotropy is
much lower than 1.
The CEP effect is sensitive to the subthreshold parameter

κ ¼ ω0=ω0
1. Our prediction for κ ¼ 2 is exhibited in Fig. 4.

In this case the effect of CEP is smaller. Thus, for N ¼
0.5 the heights of the bumps in the cross sections decrease
by more than a factor of four compared to the case of κ ¼ 3.
The impact of CEP practically disappears for N ≥ 2.
Finally we note that similarly to the Breit-Wheeler

process, the differential cross sections and anisotropies
of the generalized Compton process are the functions of the
scale variable Φ ¼ ϕe0 − ~ϕ which leads to independence of
the corresponding observables from ~ϕ (at fixed Φ), and
independence of cross sections integrated over ϕe0 from
CEP, similarly to the results presented in Fig. 2.

IV. SUMMARY

In summary we have considered the carrier envelope
phase (CEP) effect in a short circularly polarized electro-
magnetic (laser) pulse for eþe− pair production (general-
ized Breit-Wheeler process) and for emission of a single
photon off of a relativistic electron (generalized Compton
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FIG. 3. Left column: The differential cross section (19) as a
function of the azimuthal angle of the outgoing electron mo-
mentum ϕe0 for different values of the carrier phase ~ϕ and
different numbers of cycles in a pulse, N, as depicted in the plots.
The solid, dash-dash-dotted, dashed and dash-dotted curves
correspond to the carrier phases equal to 0, 90, 180 and
270 degrees, respectively. Right column: The anisotropy
as a function of ϕe0 for different ~ϕ, for the hyperbolic secant
shape with N ¼ 0.5. ξ2 ¼ 0.5 and κ ¼ ω0=ω0

1 ¼ 3.

0 90 180 270 36010
-1

10
0

10
1

10
2

dσ
/d

φ e’
(m

b 
ra

d)

φ=0
o~

N=0.5

90
o

180
o

270
o.

κ=2 ξ2
=0.5

0 90 180 270 360

φe’(deg)

-1,0

-0,5

0,0

0,5

1,0

 A

φ=0
o~

90
o

270
o180

o

0 90 180 270 360

φe’(deg)

10
0

10
1

dσ
/d

φ e’
(m

b/
ra

d)

φ=0
o~

N=2

90
o

180
o

270
o

~

0 90 180 270 360

φe’(deg)

-1,0

-0,5

0,0

0,5

1,0

 A

φ=0
o~ 90

o
270

o180
o

φe’(deg)

FIG. 4. The same as in Fig. 3 but for κ ¼ 2 and for two values of
N ¼ 0.5 (top row) and 2 (bottom row).
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scattering) produced in an essentially multiphoton region.
In both cases we found a strong dependence of the
differential cross sections as a function of the azimuthal
angle of the outgoing particle on CEP. In the first case it is
the azimuthal angle of the outgoing electron (positron),
while in the second case it is the azimuthal angle of the
recoil electron (or photon). For very short pulses the
corresponding cross sections have a bumplike structure
where the bump position coincides with the CEP value. The
heights of the bumps for subcycle pulses with N ≤ 1 reach
orders of magnitude. This means that studying the azimu-
thal angle distributions may be used as a unique and

powerful method for the CEP determination in the case of a
circularly polarized laser beam. The CEP effect decreases
quite clearly with increasing pulse duration and becomes
negligible for pulses with number of oscillations N ≥ 3.
Note that this effect becomes relevant in the essentially
multiphoton (cumulative) region.
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