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We numerically study the head-on scattering of a ’t Hooft-Polyakov magnetic monopole and
antimonopole for a wide range of parameters. In contrast to the scattering of a λϕ4 kink and antikink
in 1þ 1 dimensions, we find that the monopole and antimonopole annihilate even when scattered at
relativistic velocities. If the monopole and antimonopole have a relative twist, there is a repulsive force
between them and they can initially be reflected. However, in every case we have examined, the reflected
monopoles remain bound and eventually annihilate. We also calculate the magnetic helicity in the aftermath
of monopole-antimonopole annihilation and confirm the conversion of relative twist to magnetic helicity as
discussed earlier in the electroweak case.
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I. INTRODUCTION

Beautiful results have been obtained on the scattering of
monopoles on monopoles [1–3]. For example, analytical
techniques show that head-on collision leads to 90°
scattering for a certain value of the coupling constant (in
the so-called Bogomolny-Prasad-Sommerfield (BPS) limit)
[2]. Monopole- antimonopole scattering, though, has
received less attention, perhaps because the process is less
amenable to analysis.
A general expectation is that monopole-antimonopole

(MM̄) scattering will lead to their annihilation and the
energy will be dissipated in the form of radiation. However
this is not the result obtained in the analogous process of Z2

kink-antikink scattering in 1þ 1 dimensions. Numerical
studies of kink-antikink scattering show annihilation at low
kinetic energy, reflection at higher incoming energy,
followed by annihilation at yet higher energies, etc.,
yielding a band structure reminiscent of solutions of the
Mathieu equation [4,5]. One motivation for the present
paper is to check for chaotic behavior in MM̄ scattering.
A second motivation for studying MM̄ scattering comes

from the recent interest in the possible existence and detection
of a helical intergalactic magnetic field [6]. Early work had
speculated on the production of magnetic fields during
monopole-antimonopole annihilation [7,8]. The connection
to baryogenesis was made when the electroweak sphaleron
solution that mediates baryon number violation was inter-
preted in terms of electroweak MM̄ pairs [9,10]. It is crucial
for this connection that monopole-antimonopole pairs can
have a relative “twist” and the (unstable) electroweak
sphaleron solution is really an MM̄ pair that is prevented
from annihilating by the presence of a twist. In sphaleron
decay, the twist is believed to be the reason that the resultant
magnetic field has nonzero helicity, h, defined by

h ¼
Z

d3xA · B; ð1Þ

where A is the electromagnetic gauge potential and B is the
magnetic field. In this paper, we will also study the scattering
of twisted MM̄ pairs and confirm that magnetic field helicity
originates in the relative twist of the MM̄.
The results of our investigations are easily summarized:

numerical evolution for a wide range of MM̄ initial
conditions show that untwisted MM̄ scattering always
leads to annihilation. Thus we do not see any evidence
for chaotic behavior similar to that seen in 1þ 1 dimen-
sions. However, when the monopoles are initially twisted,
there is a repulsive force between the monopoles. At low
velocities, the monopoles slow down or may even reflect
back. Yet this reflection is temporary and soon reversed,
and the MM̄ then annihilate. Further, the annihilation of
twisted MM̄ results in the production of a helical magnetic
field.
We start out in Sec. II by defining the field theory,

describing the magnetic monopoles and the twisted MM̄
ansatz in which the monopoles are also Lorentz boosted.
The MM̄ field ansatz will form the initial conditions for the
numerical evolution described in Sec. III, where we also
show sample plots of the scattering, the trajectories of the
MM̄, and the magnetic helicity generated during annihila-
tion. We conclude in Sec. IV.

II. SO(3) MODEL, MONOPOLES,
AND MM̄ ANSATZ

A. SO(3) model

The model we study contains an SO(3) adjoint scalar and
gauge field, fϕa;Wa

μg (a ¼ 1, 2, 3) with the Lagrangian

L ¼ 1

2
ðDμϕÞaðDμϕÞa − 1

4
Wa

μνWaμν −
λ

4
ðϕaϕa − η2Þ2;

ð2Þ

where
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ðDμϕÞa ¼ ∂μϕ
a − igWc

μðTcÞabϕb ð3Þ

and the SO(3) generators are ðTaÞbc ¼ −iϵabc. The gauge
field strengths are defined by

Wa
μν ¼ ∂μWa

ν − ∂νWa
μ þ gϵabcWb

μWc
ν: ð4Þ

The scalar field equations of motion are

∂2
tϕ

a ¼ ∂i∂iϕ
a þ igWμcðTcÞab∂μϕ

b

þ igWμcðTcÞabðDμϕÞb − λðϕbϕb − η2Þϕa: ð5Þ

We will work in the Lorenz gauge given by the equation

∂tWa
0 ¼ ∂iWa

i ð6Þ

and then the gauge field equations are

∂2
t Wa

μ ¼ ∂i∂iWa
μ − gϵabcWνb∂νWc

μ − gϵabcWb
νWνc

μ

− gϵabcϕbðDμϕÞc: ð7Þ

By rescaling the coordinates and the fields, as we shall do
from now on, we can set g ¼ 1 and η ¼ 1. Then λ is the
only free parameter left in the model. The BPS case is when
λ ¼ 0. We will numerically evolve the 15 second order
partial differential equations (PDE) in (5) and (7).
The energy density for the model is given by

E ¼ 1

2
ðDtϕÞaðDtϕÞa þ

1

2
ðDiϕÞaðDiϕÞa

þ 1

2
ðWa

0iW
a
0i þWa

ijW
a
ijÞ þ

λ

4
ðϕaϕa − 1Þ2 ð8Þ

where the sum over the repeated index j is restricted
to j > i.
Once ϕa acquires its vacuum expectation value, the

model contains two massive gauge fields and one massless
gauge field. The massless gauge field is

Aμ ¼ naWa
μ; ð9Þ

where na ≡ ϕa=
ffiffiffiffiffiffiffiffiffiffiffi
ϕbϕb

p
is a unit vector at all spatial points.

The field strength corresponding to the gauge field Aμ is
defined as [11]

Aμν ¼ naWa
μν − ϵabcnaðDμnÞbðDνnÞc

¼ ∂μAν − ∂νAμ − ϵabcna∂μnb∂νnc: ð10Þ

These definitions are strictly only valid when the magni-
tude jϕj is constant. We shall apply them at late times after
the monopoles have annihilated and when jϕj is approx-
imately constant and nonzero everywhere.

B. Monopoles

The monopole solution takes the form

ϕa ¼ PðrÞx̂a ð11Þ

Wa
i ¼

ð1 − KðrÞÞ
r

ϵaijx̂j; ð12Þ

where x̂ ¼ x=r and r is the (rescaled) spherical radial
distance centered on the monopole. The profile functions
PðrÞ, KðrÞ are not known in closed form except in the BPS
(λ ¼ 0) case [12,13]

PBPSðrÞ ¼
1

tanhðrÞ −
1

r
; ð13Þ

KBPSðrÞ ¼
r

sinhðrÞ : ð14Þ

Wewill be studying the evolution of monopoles for a range
of λ. A functional form that reduces to the BPS profile
functions for λ ¼ 0 and has the correct asymptotic proper-
ties is

PðrÞ ¼ 1

tanhðrÞ − ð1þmrÞ e
−mr

r
ð15Þ

KðrÞ ¼ r
sinhðrÞ ; ð16Þ

where m ¼ ffiffiffiffiffi
2λ

p
is the scalar particle mass (in η ¼ 1 units).

Next we will need to patch together a monopole and an
antimonopole, with a relative twist, and also boost the
monopole and antimonopole towards each other.

C. MM̄ ansatz

A twisted monopole-antimonopole ansatz is known in
the context of the electroweak model where the scalar field
is an SU(2) doublet [9]. The form is

Φ ¼
�

sinðθ=2Þ sinðθ̄=2Þeiγ þ cosðθ=2Þ cosðθ̄=2Þ
sinðθ=2Þ cosðθ̄=2Þeiφ − cosðθ=2Þ sinðθ̄=2Þeiðφ−γÞ

�
;

ð17Þ

where θ and θ̄ are the spherical angles centered on the
monopole and antimonopole respectively (see Fig. 1), φ is
the azimuthal angle, and γ is the twist. A little algebra
shows that Φ†Φ ¼ 1.
From Φ, we construct the corresponding unit vector field

na using

na ¼ Φ†σaΦ; ð18Þ
where σa are the Pauli spin matrices. The result, with the
replacement φ → φ − γ=2 to make the expressions more
symmetrical, is
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n1 ¼ ðsin θ cos θ̄ cos γ − sin θ̄ cos θÞ cosðφ − γ=2Þ
− sin θ sin γ sinðφ − γ=2Þ ð19Þ

n2 ¼ ðsin θ cos θ̄ cos γ − sin θ̄ cos θÞ sinðφ − γ=2Þ
þ sin θ sin γ cosðφ − γ=2Þ ð20Þ

n3 ¼ cos θ cos θ̄ þ sin θ sin θ̄ cos γ: ð21Þ

Close to the monopole, we have θ̄ → 0 and then

n1 → sin θ cosðφþ γ=2Þ ð22Þ

n2 → sin θ sinðφþ γ=2Þ ð23Þ

n3 → cos θ ð24Þ

as we would expect around a monopole. Close to the
antimonopole, we have θ → π and then

n1 → sin θ̄ cosðφ − γ=2Þ ð25Þ

n2 → sin θ̄ sinðφ − γ=2Þ ð26Þ

n3 → − cos θ̄ ð27Þ

which corresponds to an antimonopole (because of the
minus sign in n3). Also note the relative twist along φ of the
monopole and antimonopole.
Our ansatz has the nice feature that n̂ ∝ ẑ far away from

the MM̄ in all directions when the twist vanishes. To check
this we set γ ¼ 0, θ̄ → θ and obtain n̂ ¼ ð0; 0; 1Þ.
Now we are ready to write down the scalar field for a

twisted monopole-antimonopole pair:

ϕaðx; y; zÞ ¼ PðrmÞPðrm̄Þna; ð28Þ

where PðrÞ is the profile function in Eq. (15) and rm, rm̄ are
the distances of the spatial point ðx; y; zÞ from the monop-
ole and antimonopole respectively.
At this stage the monopole-antimonopole are at rest.

To boost the monopole along the −z direction and the
antimonopole along the þz direction we first reexpress rm,
rm̄ and na in Cartesian coordinates,

rm ¼ jx − xmj; rm̄ ¼ jx − xm̄j; ð29Þ

where xm ¼ ð0; 0; z0Þ and xm̄ ¼ ð0; 0;−z0Þ are the locations
of themonopole and the antimonopole respectively. The unit
vector na is also expressed in Cartesian coordinates,

rmrm̄n1 ¼ ðcxþ syÞ½ðzþ z0Þ cos γ − ðz − z0Þ�
− ðcy − sxÞrm̄ sin γ ð30Þ

rmrm̄n2 ¼ ðcy − sxÞ½ðzþ z0Þ cos γ − ðz − z0Þ�
− ðcxþ syÞrm̄ sin γ ð31Þ

rmrm̄n3 ¼ ðz − z0Þðzþ z0Þ þ ðx2 þ y2Þ cos γ; ð32Þ

where c≡ cosðγ=2Þ, s≡ sinðγ=2Þ. Here we have been
careful to distinguish the ðz� z0Þ factors coming from
themonopole and antimonopole, since thesewill be boosted
differently,

ðz� z0Þ → ðz� z0ÞðbÞ ¼ γLððz� z0Þ∓vztÞ; ð33Þ

where γL ¼ ð1 − v2zÞ−1=2. Note that these boosts also have to
be included in rm and rm̄. [Wewill denote boosted quantities
by a ðbÞ superscript.] Then the scalar fields at t ¼ 0 for a
boosted, twisted monopole-antimonopole pair are

ϕaðx; y; zÞ ¼ ½PðrðbÞm ÞPðrðbÞm̄ ÞnðbÞa�t¼0: ð34Þ

We also need the first time derivative (denoted by an
overdot) of the scalar field at t ¼ 0 and this is given by

_ϕaðx; y; zÞ ¼ ½∂tðPðrðbÞm ÞPðrðbÞm̄ ÞnðbÞaÞ�t¼0: ð35Þ

The partial time derivative can be expressed in terms of
spatial derivatives as discussed below.
Now that we have the initial scalar fields, we move on to

specify the initial gauge fields. This is most simply done
numerically using the following scheme. We fix the internal
space orientation of the gauge fields by minimizing the
covariant derivative. The vacuum solution of Dμn̂ ¼ 0 is

Wa
μjvacuum ¼ −ϵabcn̂b∂μn̂c: ð36Þ

To this we attach profile functions so that the gauge fields
are well defined at the locations of the monopole and
antimonopole. So

FIG. 1. Monopole and antimonopole are chosen to be on the
z-axis with some initial separation 2z0. The spherical angles θ and
θ̄ are defined as shown.
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Wa
μjt¼0 ¼ −½ð1 − KðrðbÞm ÞÞð1 − KðrðbÞm̄ ÞÞ

× ϵabcn̂ðbÞb∂μn̂ðbÞc�t¼0. ð37Þ

Finally we need the initial time derivative of Wa
μ. We shall

treat the spatial and temporal components differently to
enforce the Lorenz gauge condition. For the spatial
components, as in the case of the scalar field, the time
derivative is given by

_Wa
i jt¼0 ¼ −½∂tðð1 − KðrðbÞm ÞÞð1 − KðrðbÞm̄ ÞÞ

× ϵabcn̂ðbÞb∂in̂ðbÞcÞ�t¼0. ð38Þ

For the time component of the gauge field, we use the
Lorenz gauge condition

_Wa
0jt¼0 ¼ ½∂iWa

i �t¼0: ð39Þ

Although the form of the initial conditions is quite
involved, they are not too difficult to implement since
temporal derivatives can be related to spatial derivatives
using

½ðz� z0ÞðbÞ�t¼0 ¼ γLðz� z0Þ ð40Þ

½∂tðz� z0ÞðbÞ�t¼0 ¼ ∓γLvz ð41Þ

and spatial derivatives can be evaluated numerically.

III. EVOLUTION

We discretize the 15 × 2 first-order equations of motion
and evolve the system using the iterated Crank-Nicholson
method with two iterations [14]. Our code has the novelty
that all field theory specific routines are generated sym-
bolically and are then inserted into a PDE integrating
routine. We have also implemented absorbing boundary
conditions by assuming that all fields only depend on t − r
where r is the distance from the center of the lattice. For the
specific problem at hand, all the nontrivial dynamics is well
within the simulation volume and the choice of boundary
conditions is not crucial.
The initial energy of our ansatz for γ ¼ 0 matches the

analytic result for untwisted BPS monopoles. During the
numerical evolution we have checked energy conservation
at the few percent level at early times, before energy can

FIG. 2. Snapshots of a planar slice of annihilating monopole and antimonopole for λ ¼ 1, γ ¼ 0, and vz ¼ 0.5. The colors represent
energy density.
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start leaving the simulation volume. The Lorenz gauge
condition is also approximately satisfied at all times in the
parameter space we have investigated.
The free parameters in the model are the coupling

constant λ, the boost velocity vz, and the twist γ. The
initial separation is taken to be 0.3 times the semilattice size
plus an offset that ensures that the magnitude of ϕ does not
vanish on a lattice point at the initial time. (This simplifies
some of the numerics.) We have also chosen λ ¼ 1 for our
runs, and experimentation with a few other values (includ-
ing λ ¼ 0) showed similar results. The initial boost velocity
vz was varied in the interval (0.1, 0.9), and the twist angle
was chosen to range from 0 to 2π in steps of π=4. The only
runs where we do not explicitly see annihilation until the
end of the simulation is in the case when γ ¼ π and for
some low values of vz. However, even in the cases when the
MM̄ do not annihilate, they form a bound system and do
not escape to infinity. In some cases, we have let the system
evolve much longer and always found that the MM̄
eventually annihilate. In Fig. 2 we show snapshots of
untwisted MM̄ and they simply come together and anni-
hilate. In Fig. 3 we show snapshots of twisted (γ ¼ π) MM̄

at the same times as for the untwisted case and we see that
they have not yet annihilated.
We plot the location of the monopole as a function of

time for a few sample parameters in Figs. 4 and 5. The
monopole location is defined by the location of the
minimum of ϕaϕa over the simulation volume for z > 0

provided min½ ffiffiffiffiffiffiffiffiffiffiffi
ϕaϕa

p � < 0.25. In Fig. 4, we hold the
velocity fixed at 0.5 and vary the twist from 0 to π.
(The dynamics for twist of γ is the same as that for a twist of
2π − γ.) It is clear from the plot that the twist slows down
the monopole and can even cause it to bounce back. In
Fig. 5 we show zðtÞ for the monopole when the twist is held
fixed at π and vz ¼ 0.25, 0.50, 0.75. Here the bounce back
is very apparent. However, the monopoles are still bound
after they bounce back and will eventually annihilate.
The untwisting and annihilation of the MM̄ is expected to

radiate magnetic fields that are helical [15,16]. To test this
expectation, we have calculated the helicity defined in
Eq. (1) using (9) and (10). The plot of the magnetic helicity
as a function of time is shown in Fig. 6 where we hold the
velocity fixed at 0.75 and vary the twist. The plot shows that
the helicity vanishes if there is no twist (γ ¼ 0). Also, we see

FIG. 3. Snapshots of a planar slice of nonannihilating monopole and antimonopole for λ ¼ 1, γ ¼ π, and vz ¼ 0.5. Except for the
twist, all parameters, including snapshot times, are identical to those in Fig. 2. The colors represent energy density. At yet later times, the
monopoles backscatter but are still bound and return to annihilate as discussed in the text.
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that the hðγÞ ¼ −hð2π − γÞ, and the helicity vanishes in the
case γ ¼ π (though in this case the MM̄ survive until the end
of the simulation). These observations can be understood if
the helicity is due to the untwisting motion of the MM̄. If
γ < π, the MM̄ untwist in one direction and then annihilate,
while if γ > π, the MM̄ untwist in the other direction so
that γ → 2π. The opposite senses of untwisting lead to the
production of magnetic fields with opposite helicity. The
value γ ¼ π is an unstable point where theMM̄ are unable to
decide which way to untwist. Eventually numerical insta-
bilities will cause untwisting in one way or the other. In
Fig. 6 we also observe oscillations in the magnetic helicity,
suggesting that there may be oscillations in the twist.
In Fig. 7 we plot the magnetic helicity for λ ¼ 1, γ ¼

3π=4 and for vz ¼ 0.25, 0.50, 0.75. The plots are similar in
shape but shifted to earlier times for higher velocities. This
can be understood because the MM̄ scatter at earlier times
for higher velocities.

IV. CONCLUSIONS

We have studied MM̄ scattering by numerical methods.
Part of the challenge was to devise initial conditions that are
suitable to describe boosted and twisted MM̄. Our ansatz
for initial conditions are given in Sec. II C but there may be
other choices.
The numerical evolution of MM̄ shows that, unlike the

scattering of kinks in 1þ 1 dimensions, MM̄ scattering is
not chaotic, as the MM̄ are always found to annihilate over
the wide range of parameters we have investigated. A twist
in the initial conditions produces a repulsive force between
the monopole and antimonopole that can have an important
effect on the scattering dynamics. An interpretation of our
results is that, as the MM̄ approach each other, they also
tend to untwist. The untwisting dynamics is damped due to
radiation and eventually the MM̄ can annihilate. However,
damping of the untwisting dynamics leads to the produc-
tion of helical magnetic fields and the sign of the magnetic
helicity is related to the direction of untwisting.

50 100 150 200 250 300
t

1

2

3

4
z

FIG. 5. The z-coordinate of the monopole as a function of time
for λ ¼ 1, γ ¼ π, and vz ¼ 0.25, 0.50, 0.75 (blue, orange and
green curves). The MM̄ have not annihilated until the end of the
simulation.
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FIG. 7. Magnetic helicity in the aftermath of MM̄ annihilation
as a function of time for λ ¼ 1, γ ¼ 3π=4, and vz ¼ 0.25, 0.50,
0.75 (black, blue and green curves).
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FIG. 4. The z-coordinate of the monopole as a function of time
for λ ¼ 1, vz ¼ 0.50 and γ=ðπ=4Þ ¼ 0, 1, 2, 3, 4 (curves from left
to right). The curves terminate once min½ ffiffiffiffiffiffiffiffiffiffiffi

ϕaϕa
p � ≥ 0.25 (a

condition that is met after the MM̄ have annihilated) except in
the γ ¼ π case, when the MM̄ have not annihilated even by the
end of the simulation run (300 time steps with dt ¼ dx=2 ¼ 0.1).
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FIG. 6. Magnetic helicity in the aftermath of MM̄ annihilation
as a function of time for λ ¼ 1, vz ¼ 0.75 and γ=ðπ=4Þ ¼ 0, 1, 2,
3, 4, 5, 6, 7. The curves for γ=ðπ=4Þ ¼ 0, 4 essentially coincide
with h ¼ 0 and are not visible. The dashed curves are for
γ=ðπ=4Þ ¼ 5, 6, 7 (green, blue, black), and mirror the solid
curves for γ=ðπ=4Þ ¼ 3, 2, 1 (green, blue, black). This shows that
hðγÞ ¼ −hð2π − γÞ.
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