
Quantization of charged fields in the presence of critical potential steps

S. P. Gavrilov1,3,* and D. M. Gitman1,2,4,†
1Department of Physics, Tomsk State University, 634050 Tomsk, Russia

2P.N. Lebedev Physical Institute, 53 Leninskiy prospect, 119991 Moscow, Russia
3Department of General and Experimental Physics, Herzen State Pedagogical University of Russia,

Moyka embankment 48, 191186 St. Petersburg, Russia
4Institute of Physics, University of São Paulo, CP 66318, CEP 05315-970 São Paulo, SP, Brazil

(Received 8 September 2015; published 2 February 2016)

QED with strong external backgrounds that can create particles from the vacuum is well developed for
the so-called t-electric potential steps, which are time-dependent external electric fields that are switched on
and off at some time instants. However, there exist many physically interesting situations where external
backgrounds do not switch off at the time infinity. E.g., these are time-independent nonuniform electric
fields that are concentrated in restricted space areas. The latter backgrounds represent a kind of spatial
x-electric potential steps for charged particles. They can also create particles from the vacuum, the Klein
paradox being closely related to this process. Approaches elaborated for treating quantum effects in the
t-electric potential steps are not directly applicable to the x-electric potential steps and their generalization
for x-electric potential steps was not sufficiently developed. We believe that the present work represents a
consistent solution of the latter problem. We have considered a canonical quantization of the Dirac and
scalar fields with x-electric potential step and have found in- and out-creation and annihilation operators
that allow one to have particle interpretation of the physical system under consideration. To identify in- and
out-operators we have performed a detailed mathematical and physical analysis of solutions of the
relativistic wave equations with an x-electric potential step with subsequent QFT analysis of correctness of
such an identification. We elaborated a nonperturbative (in the external field) technique that allows one to
calculate all characteristics of zero-order processes, such, for example, scattering, reflection, and electron-
positron pair creation, without radiation corrections, and also to calculate Feynman diagrams that describe
all characteristics of processes with interaction between the in-, out-particles and photons. These diagrams
have formally the usual form, but contain special propagators. Expressions for these propagators in terms of
in- and out-solutions are presented. We apply the elaborated approach to two popular exactly solvable cases
of x-electric potential steps, namely, to the Sauter potential and to the Klein step.
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I. INTRODUCTION

The effect of particle creation by strong electromagnetic
and gravitational fields has been attracting attention already
for a long time. The effect has a pure quantum nature and
was first considered in the framework of the relativistic
quantum mechanics with understanding that all the ques-
tions can be answered only in the framework of quantum
field theory (QFT). QFT with external background is to a
certain extent an appropriate model for such calculations. In
the framework of such a model, the particle creation is
closely related to a violation of the vacuum stability with
time. Backgrounds (external fields) that violate the vacuum
stability are to be electriclike fields that are able to produce
nonzero work when interacting with charged particles.
Depending on the structure of such backgrounds, different
approaches for calculating the effect were proposed and
realized. Initially, the effect of particle creation was

considered for time-dependent external electric fields that
are switched on and off at the initial and the final time
instants, respectively. In what follows, we call such kind of
external fields the t-electric potential steps. Scattering,
particle creation from the vacuum and particle annihilation
by the t-electric potential steps were considered in the
framework of the relativistic quantum mechanics, see
Refs. [1–4]; a more complete list of relevant publications
can be found in [4]. A general formulation of quantum
electrodynamics (QED) and QFT with t-electric potential
steps was developed in Refs. [5]. However, there exist
many physically interesting situations where external
backgrounds formally are not switched off at the time
infinity, the corresponding backgrounds formally being not
t-electric potential steps. As an example, we may point out
time-independent nonuniform electric fields that are
concentrated in restricted space areas. The latter fields
represent a kind of spatial or, as we call them conditionally,
x-electric potential steps for charged particles. The
x-electric potential steps can also create particles from
the vacuum, the Klein paradox being closely related to this
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process [6–8]. We recall that Klein considered the reflec-
tion and transmission of relativistic electrons incident on a
sufficiently high rectangular potential step (the Klein step)
and he had found that there exists a range of energy where
the transmission coefficient is negative and the reflection
coefficient is greater than one. There would apparently be
more reflected fermions than incoming. This is called the
Klein paradox. One can find a broader interpretation of
what should be called the Klein paradox, e.g., see [9–11].
These authors propose to speak about the Klein paradox
when one encounters a special behavior of stationary
solutions both for fermions and bosons, unusual for the
nonrelativistic quantum mechanics. For example, if the
electron kinetic energy belongs to the so-called Klein zone,
which is situated just below the range of obvious total
reflection, the stationary solutions penetrate through the
step, the sign of the kinetic energy being, however,
reversed. Just after the original Klein’s paper the problem
was studied by Sauter, who considered both the Klein step
[7] and a more realistic smoothed potential step,
−αE tanh ðx=αÞ, which is called the Sauter potential [8].
To avoid confusion, the Klein paradox should be distin-
guished from the Klein tunneling through the square
barrier, e.g., see [12] and references therein. This tunneling
without an exponential suppression occurs when an elec-
tron is incident on a high barrier, even when it is not high
enough to create particles. Approaches elaborated for
treating quantum effects in the t-electric potential steps
are not directly applicable to the x-electric potential steps.
Some heuristic calculations of the particle creation by x-
electric potential steps in the framework of the relativistic
quantum mechanics were presented by Nikishov in
Refs. [2,13] and later developed by Hansen and Ravndal
in Ref. [14]. One should also mention the Damour work
[15], that contributed significantly in applying semiclass-
ical methods for treating strong field problems in astro-
physics. In fact, this work presents a first step to bridge the
gap between approaches to quantum effects in potential
steps developed within relativistic quantum mechanics and
QFT. Using the Damour’s approach, mean numbers of pairs
created by a strong uniform electric field confined between
two capacitor plates separated by a finite distance was
calculated in Ref. [16]. A detailed historical review can be
found in Refs. [12,14]. Nikishov had tested his way of
calculation using the special case of a constant and uniform
electric field, which is possible both for the t-electric
potential steps and the x-electric potential steps, see
[2,13,17]). At that time, however, no justification for such
calculations from the QFT point of view was known.
Thus, we face a situation when a material that is

commonly treated as a part of an introductory discussion
to the relativistic quantum mechanics, see, e.g., [18], is not
studied completely and has not an unique interpretation in
the research literature. For example, Nikishov [17] has
pointed out an inconsistency in the interpretation given by

Hansen and Ravndal [14]. In spite of the recognized
achievements of this author in this area, there was no
response to his observation. For the first time numerical
simulations on space-time resolved data for the Klein
paradox in a three-particle problem were reported in
[10]. It was shown how electron-positron pairs are created
and found that the results contradict to conclusions made in
several works where the incoming electron was noted to
“knock out” electrons from the step [3] or to “stimulate”
[19] pair production. A clear reduction was shown instead
of the suggested enhancement of the pair-production rate at
those time instances, when the incoming electron wave
packet overlaps spatially with the potential step. Recently,
quantum simulations for the evolution of the Dirac spinor
in the presence of linear potential with trapped ions were
interpreted again as an electron transition to the negative
energy branch, see Ref. [11].
Although the attempts to formulate a consistent QFT

with potential steps as a background field [2,13–15,17]
have not been completed, a general understanding was
achieved that the Klein paradox is absent from a future
consistent QFT. In the recent years the main attention of
researchers was drawn to improving calculation technics, as
well as to special calculations and applications. Though our
present work is devoted to the formulation of such con-
sistent QFTand contains some applications only in order to
illustrate the general construction, we overview briefly, for
completeness, some recent results obtained after the review
[12] had appeared. We restrict this brief review only to
works, where the particle creation effect by potential steps
is considered, leaving the works devoted to quantum
relativistic motion in potential barriers or well potentials,
where the problem of bound states is principal, aside. The
main motivation for applications is due to a close con-
nection between particle creation by strong electrostatic
potentials, in particular, by the steps, and the Unruh effect,
the phenomenon of particle emission from black holes and
cosmological horizons, e.g., see reviews [4,20,21]. Recent
progress in laser physics allows one to hope that particle
creation effect will be experimentally observed in labo-
ratory conditions in the near future (see Refs. [22] for a
review). In achieving extreme field strengths, the inhomo-
geneity of the realistic field becomes important. There
appears an interest to study the effect in realistic inhomo-
geneous fields, in the main by using semiclassical and
numerical methods. The recent experimental demonstration
of the dynamic Casimir effect, and a soon expected
verification of an analog of the Hawking radiation by
using superconducting circuit devices, associates these two
academic problems with possible applications to condensed
matter physics [23]. In the recent years, in what concerns
applications to condensed matter physics, particle creation
by external fields became an observable effect in physics of
graphene and similar nanostructures, say, in topological
insulators and Weyl semimetals, this area being currently
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under intense development [24–27]. This is explained by
the fact that although the physics that gives rise to the
massless Dirac fermions in each of the above-mentioned
materials is different, the low-energy properties are gov-
erned by the same Dirac kinematics. The gap between the
upper and lower branches in the corresponding Dirac
particle spectra is very small, so that the particle creation
effect turns out to be dominant (under certain conditions) as
a response to the external electriclike field action on such
materials. In particular, the particle creation effect is crucial
for understanding the conductivity of graphene, especially
in the so-called nonlinear regime. Electron-hole pair
creation (which is an analog of the electron-positron pair
creation from the vacuum) was recently observed in
graphene by its indirect influence on the graphene con-
ductivity [28]. The conductivity of graphene modified by
the particle creation was calculated in the framework of
QED with t-electric potential steps in [29]. It should be
noted that the proof of the masslessness of charge carriers
in graphene was obtained in studying the Klein tunneling
through special potential barriers there. Soon after its
theoretical prediction [30], the Klein tunneling in graphene,
where the role of potential steps is played by p-n junctions,
was observed by several experimental groups [31] (For a
colloquium-style introduction to this subject see [32] and
recent review [25]). Numerical modeling of the Klein
tunneling through potential barriers in n-p-n and n-n’
junctions are in good agreement with theoretical predic-
tions [33]. Note that a sharp n-n’ junction can be described
by the step potential. However, electron’s kinetic energies
considered in that work do not allow one to speak about
particle creation effect. Possible experimental configura-
tions for testing the pair creation by a linear step of finite
length were proposed in [34]. Observation of the Klein
paradox in the context of so-called quantum quenches,
which can nowadays be performed in experiments with
ultracold atoms, is proposed in [35]. In achieving extreme
field strengths, the inhomogeneity of the field becomes
important. A number of works have been done to estimate
the pair production rate for electric fields, whose direction
is fixed and whose magnitude varies in one spatial
dimension [36,37]. These approaches are semiclassical,
essentially WKB. A Monte Carlo world line loop method
has been developed and applied to the vacuum pair
production problem in Ref. [38]. The world line instanton
method, in which the Monte Carlo sum is effectively
dominated by a single instanton loop, was extended to
one-dimensional inhomogeneous fields in Refs. [39]. The
agreement between these results is excellent. The world
line instanton technique was extended in Ref. [40] to
compute the vacuum pair production rate for spatially
inhomogeneous electric background fields, with the spatial
inhomogeneity being genuinely two or three dimensional.
A mathematical analysis of pair production rate by the
Sauter potential was presented in Refs. [41,42]. Loop

corrections to two-point correlation functions in the case
of the time-independent electric field given by a linear
potential step were studied in Ref. [43].
In the present article, we consider a canonical quantiza-

tion of the Dirac and scalar (Klein-Gordon) fields in the
presence of the x-electric potential step as a background
[quantization of the action (2.7)] in terms of adequate in-
and out-particles and develop a calculation technique of
different quantum processes, such as scattering, reflection,
and electron-positron pair creation. At the first stage of the
quantization, a Dirac Heisenberg operator Ψ̂ðXÞ that
satisfies equal-time anticommutation relations and the
Dirac equation, as well, is assigned to the Dirac field
ψðXÞ, see Sec. IV. However, the complete program of
quantization includes also the second stage. At that stage
we have to construct a Hilbert space of state vectors, where
anticommutation relations are realized, and construct oper-
ators of all physical quantities of the system under con-
sideration. For the free Dirac field this second stage of the
quantization program is well known, see e.g., [44]. The
result is formulated in terms of a Fock space constructed on
the base of creation and annihilation operators of free Dirac
particles. For the Dirac field interacting with any external
background, the first stage of the canonical quantization of
the action (2.7) gives the same above-mentioned result. But
the second stage of the program has no universal solution
suitable for any background. Each specific background, or
a class of backgrounds, has to be analyzed separately. Here
it is desirable to find in- and out-creation and annihilation
operators that allow one to have particle interpretation of
the quantized Dirac field, as it was done in the case of t-
electric potential steps in [5]. In the case under consid-
eration, the corresponding construction is possible, but it is
more complicated (probably, not any background allows
such interpretation of the quantized Dirac field). Another
problem is related to the time-independence of the back-
ground under consideration. Whereas when considering
t-electric potential steps that vanish at the time infinity one
can naturally introduce certain in- and out-creation and
annihilation operators starting first with the Schrödinger
representation and then passing to the Heisenberg picture,
this way of action is not possible in time-independent
backgrounds. Now one must quantize in the Heisenberg
picture from the very beginning. Then a new problem
appears: how to identify in- and out-operators. When doing
this, we believe that the time independent x-electric
potential steps, as well as any constant electromagnetic
field, is an idealization. In fact, any external field was
switched on at a remote time instant tin, then it was acting
during a very large period of time T, and finally it was
switched off at another remote time instant tout ¼ tin þ T.
We also believe that if T is large enough one can ignore
effects of switching the external field on and off. Besides, to
identify in- and out-operators it is important to perform a
detailed mathematical and physical analysis of solutions of
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the Dirac and Klein-Gordon equations with an x-electric
potential step. Such an analysis is presented below in
Secs. II and III, where we introduce special in- and out-
solutions of the Dirac and Klein-Gordon equations that are
used in the quantization program. It is here that we give
their physical interpretation to be confirmed further after
the quantization has been fulfilled in Secs. V, VI, and VII.
In the latter sections we present a calculation of different
quantum processes such as scattering, reflection, and
electron-positron pair creation. In Sec. VIII we discuss
quantum processes in complete QED and construct effec-
tive particle propagators in terms of the in- and out-
solutions introduced. In Sec. IX the developed theory is
applied to exactly solvable cases of x-electric potential
steps, namely, to the Sauter potential, and to the Klein step.
Finally, we present a consistent QFT treatment of processes
where a naive one-particle consideration may lead to the
Klein paradox. In Appendix A we consider some peculi-
arities of the quantization of the scalar field in the Klein
zone. In Appendix B we have studied the orthogonality
relations on the hyperplane t ¼ const for the different
ranges of quantum numbers. In Appendix C we have
studied one-particle mean values of the charge, the kinetic
energy, the number of particles, the current, and the energy
flux through the surfaces x ¼ xL and x ¼ xR. In
Appendix D we show that stable electron wave packets
in the Klein zone can exist only in the left asymptotic
region, whereas stable positron wave packets can exist only
in the right asymptotic region. The main contributions to
the particle creation processes in a slowly alternating Sauter
field are found in Appendix E.

II. DIRAC EQUATION WITH x-ELECTRIC
POTENTIAL STEP AS AN EXTERNAL

BACKGROUND

First, we describe a typical x-electric potential step, for
which our construction is elaborated.
Potentials of an external electromagnetic field AμðXÞ in

d ¼ Dþ 1 dimensional Minkowski space-time parame-
trized by coordinates X,

X ¼ ðXμ; μ ¼ 0; 1;…; DÞ ¼ ðt; rÞ;
X0 ¼ t; r ¼ ðX1;…; XDÞ ð2:1Þ

that correspond to an x-electric potential step are chosen
to be

AμðXÞ¼ ðA0ðxÞ;Aj ¼ 0;j¼ 1;2;…;DÞ; x¼X1; ð2:2Þ

so that the magnetic field B is zero and the electric field E
reads

EðXÞ ¼ EðxÞ ¼ ðExðxÞ; 0;…; 0Þ;
ExðxÞ ¼ −A0

0ðxÞ ¼ EðxÞ: ð2:3Þ

The electric field (2.3) is directed along the axis x1 ¼ x,
it is inhomogeneous in the x-direction, and does not depend
on time t [EðxÞ is a constant field]. The main property of
any x-electric potential step is

A0ðxÞ ⟶
x→�∞

A0ð�∞Þ; EðxÞ ⟶
jxj→∞

0; ð2:4Þ

where A0ð�∞Þ are some constant quantities, which means
that the electric field under consideration is switched off at
spatial infinity. In addition, we suppose1 that the first
derivative of the scalar potential A0ðxÞ does not change
its sign for any x ∈ R. For definiteness sake, we suppose
that

A0
0ðxÞ ≤ 0 ⇒

�
EðxÞ ¼ −A0

0ðxÞ ≥ 0

A0ð−∞Þ > A0ðþ∞Þ ; ð2:5Þ

and that there exist points xL and xR (xR > xL) such that for
x ∈ SL ¼ ð−∞; xL� and for x ∈ SR ¼ ½xR;∞Þ) the electric
field is already switched off,

A0ðxÞjx∈SL ¼ A0ð−∞Þ; EðxÞjx∈SL ¼ 0;

A0ðxÞjx∈SR ¼ A0ðþ∞Þ; EðxÞjx∈SR ¼ 0; ð2:6Þ

whereas the electric field is not zero in the region
Sint ¼ ðxL; xRÞ. It accelerates positrons along the axis x
in positive direction, and electrons in the negative direction.
As an example of the x-electric potential step, we refer to

the Sauter potential [8] given by Eq. (9.1).
Both the scalar potential A0ðxÞ and the corresponding

electric field EðxÞ are shown on the same figure Fig. 1.
Then in the d ¼ Dþ 1 dimensional (dim.) Minkowski

space-time, we consider a classical Dirac field ψðXÞ
interacting with an external electromagnetic field AμðXÞ
(external background) representing an x-electric potential
step. The action of this system has the form2

S ¼
Z

ψ̄ðXÞ½γμPμ −m�ψðXÞdX;

Pμ ¼ i∂μ − qAμðXÞ; ð2:7Þ

where ψ̄ ¼ ψ†γ0, and dX ¼ dtdr.
The classical Dirac field describes particles of a mass m

and with a charge q. The corresponding quantum theory is
already charge symmetric, and contains particles of the

1That means that we do not consider external electric fields
that can create bound states for charged particles.

2Here we are using the natural system of units ℏ ¼ c ¼ 1.
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both signs of charges �jqj. We suppose that3 q ¼ −e,
which means that we consider electrons as basic particles
and positrons as their antiparticles.
In d dimensions, the Dirac field ψðXÞ is a column with

2½d=2� components (we call it just a spinor in what follows),
and γμ are 2½d=2� × 2½d=2� gamma-matrices, see, e.g., [45],

½γμ; γν�þ ¼ 2ημν; ημν ¼ diagð1;−1;…;−1|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
d

Þ;

μ; ν ¼ 0; 1;…; D:

The Dirac field ψðXÞ satisfies the Dirac equation
ðγμPμ−mÞψ¼0, which, when written in the Hamiltonian
form, reads (we have taken into account that A ¼ 0 for
x-electric potential steps),

i∂0ψðXÞ ¼ ĤψðXÞ;
Ĥ ¼ γ0ð−iγj∂j þmÞ þ UðxÞ; ð2:8Þ

where Ĥ is the one-particle Dirac Hamiltonian and

UðxÞ ¼ qA0ðxÞ ¼ −eA0ðxÞ ð2:9Þ

is the potential energy of the electron in the x-electric
potential step. It should be noted that Ĥ does not depend on
the time t in the background under consideration.

III. STATIONARY STATES WITH GIVEN LEFT
AND RIGHT ASYMPTOTICS

A. General

Let us consider stationary solutions of Dirac equa-
tion (2.8), having the following form

ψðXÞ¼ expð−ip0tþ ip⊥r⊥Þψp0;p⊥ðxÞ; X¼ðt;x;r⊥Þ;
ψp0;p⊥ðxÞ¼fγ0½p0−UðxÞ�−γ1p̂x−γ⊥p⊥þmgϕp0;p⊥ðxÞ;

r⊥¼ðX2;…;XDÞ; p⊥¼ðp2;…;pDÞ;
γ⊥¼ðγ2;…;γDÞ; p̂x¼−i∂x; ð3:1Þ

where ψp0;p⊥ðxÞ and ϕp0;p⊥ðxÞ are spinors that depend on x
alone. In fact these are stationary states with the energy p0

and with definite momenta p⊥ in the perpendicular to the
axis x directions. Substituting (3.1) into Dirac equation (2.8)
(i.e., partially squaring the Dirac equation), we obtain a
second-order differential equation for the spinor ϕp0;p⊥ðxÞ,

fp̂2
x − iγ0γ1U0ðxÞ− ½p0−UðxÞ�2þp2⊥þm2gϕp0;p⊥ðxÞ ¼ 0:

ð3:2Þ

We can separate spinning variables by the substitution
ϕp0;p⊥ðxÞ ¼ φðxÞv, where ν is a constant spinor that is an
eigenvector for the operator γ0γ1, and φðxÞ are some scalar
functions. The latter operator has two eigenvalues χ ¼ �1,
such that γ0γ1vχ ¼ χvχ . In addition, in d > 3, equation (3.2)
allows one to subject the constant spinors vχ to some
supplementary conditions that, for example, can be chosen
in the form

iγ2sγ2sþ1vχ;σ ¼ σsvχ;σ for evend;

iγ2sþ1γ2sþ2vχ;σ ¼ σsvχ;σ for odd d;

σ ¼ ðσs ¼ �1; s ¼ 1; 2;…; ½d=2� − 1ÞÞ; ð3:3Þ

where the quantum numbers σs describe spinning degrees
of freedom (in (1þ 1) and (2þ 1) dimensions (d ¼ 2, 3)
there are no spinning degrees of freedom described by the
quantum numbers σ). In what follows we choose the
spinors vχ;σ orthonormalized, v†χ;σvχ0;σ ¼ δχ;χ0δσ;σ0 . Taking
all the said into account, we use the following substitution
in Eq. (3.2):

ϕp0;p⊥ðxÞ ¼ φðχÞ
n ðxÞvχ;σ; n ¼ ðp0;p⊥; σÞ: ð3:4Þ

Then scalar functions φðχÞ
n ðxÞ have to obey the second order

differential equation

fp̂2
x − iχU0ðxÞ − ½p0 − UðxÞ�2 þ p2⊥ þm2gφðχÞ

n ðxÞ ¼ 0:

ð3:5Þ

Thus, we are going to deal with solutions (3.1) of the
form

ψ ðχÞ
n ðXÞ ¼ expð−ip0tþ ip⊥r⊥ÞϱðχÞn ðxÞ; Ĥψ ðχÞ

n ¼ p0ψ
ðχÞ
n ;

ϱðχÞn ðxÞ ¼ fγ0½p0 −UðxÞ�− γ1p̂x− γ⊥p⊥þmgφðχÞ
n ðxÞvχ;σ:

ð3:6Þ

One can easily verify (this is a well-known property
related to the specific structure of the projection operator in

the brackets f…g) that solutions ψ ðχÞ
n ðXÞ and ψ ðχ0Þ

n ðXÞ
(3.6), which only differ by values of χ are linearly
dependent. Because of this, it suffices to work with

E x

A0 x

FIG. 1. x-electric potential step.

3e > 0 is the magnitude of the electron charge.
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solutions corresponding to one of the possible two values of
χ. That is why, we sometimes omit the subscript χ in the
solutions, in such cases it is supposed that the spin quantum
number χ is fixed in a certain way. Due to the same reason,
there exists, in fact, only JðdÞ ¼ 2½d=2�−1 different spin states
(labeled by the quantum numbers σ) for a given set p0, p⊥.
Special examples of solutions (3.6) are given in Sec. IX.
A formal transition to the case of scalar field can be done

by setting χ ¼ 0 in Eq. (3.5), φnðxÞ ¼ φð0Þ
n ðxÞ. Then one

can find a complete set of solutions of the Klein-Gordon
equation in the following form

ψnðXÞ ¼ exp ð−ip0tþ ip⊥r⊥ÞφnðxÞ;
n ¼ ðp0;p⊥Þ: ð3:7Þ

In what follows, we are going to use solutions (3.6) and
(3.7) with special left and right asymptotics. Let us describe
these solutions. In such solutions the functions φnðxÞ (with
the omitted index χ) are denoted as ζφn

ðxÞ or ζφnðxÞ,
respectively, and satisfy the following asymptotic condi-
tions [we recall that A0

0ðxÞ ¼ 0 and the scalar potential
A0ðxÞ takes constant values in the regions SL and SR, see
Eqs. (2.6).]

ζφn
ðxÞ ¼ φL

n;ζ
ðxÞ; x ∈ SL ¼ ð−∞; xL�;

fp̂2
x − ½π0ðLÞ�2 þ π2⊥gφL

nðxÞ ¼ 0; ð3:8Þ
ζφnðxÞ ¼ φR

n;ζðxÞ; x ∈ SR ¼ ½xR;∞Þ;
fp̂2

x − ½π0ðRÞ�2 þ π2⊥gφR
n ðxÞ ¼ 0: ð3:9Þ

Here we have introduced the quantities π0ðL=RÞ,

π0ðRÞ¼p0−UR; π0ðLÞ¼p0−UL; π⊥¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2⊥þm2

q
;

UL ¼Uð−∞Þ; UR ¼Uðþ∞Þ; ð3:10Þ

Since p0 is the total energy of a particle, we interpret π0ðRÞ
and π0ðLÞ as its asymptotic kinetic energies in the regions
SR and SL respectively. We call the quantity π⊥ the total
transversal energy or, for simplicity, the transversal energy
(in spite of the fact that it includes the rest energy as well).
The introduced kinetic energies satisfy the relation

π0ðLÞ ¼ π0ðRÞ þ U > π0ðRÞ; ð3:11Þ

where U is the magnitude of the electric step,

U ¼ UR −UL > 0: ð3:12Þ

At the same time one can see that in the asymptotic
regions SL and SR solutions of the Dirac equation ψnðXÞ
are eigenfunctions of the operator Ĥ −UðxÞ with the
eigenvalues π0ðLÞ and π0ðRÞ, respectively. Thus, it is

natural to call this operator the kinetic energy operator
Ĥkin,

Ĥkin ¼ Ĥ −UðxÞ;
ĤkinψnðXÞjx→�∞ ¼ π0ðR=LÞψnðXÞjx→�∞: ð3:13Þ

One-particle kinetic energy operator Ĥkin of the scalar
field [this field satisfies the Klein-Gordon equation written
in the Hamiltonian form (4.2)] has the same asymptotic
properties.
Equation (3.8) has a complete set of solutions (right

asymptotics) in the form of plane waves,

φR
n;ζðxÞ ¼ ζN exp ðipRxÞ; ð3:14Þ

with real momenta pR along the axis x,

pR ¼ ζ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½π0ðRÞ�2 − π2⊥

q
; ζ ¼ sgnðpRÞ ¼ �: ð3:15Þ

The corresponding solutions (3.6) of the Dirac equation are
denoted as ζψnðXÞ. They satisfy the condition

p̂x
ζψnðXÞ ¼ pRζψnðXÞ; x → þ∞; ð3:16Þ

i.e., these are states with definite momenta pR as x → þ∞.
Nontrivial solutions ζψnðXÞ exist only for quantum

numbers n that obey the following relation

½π0ðRÞ�2 > π2⊥ ⇔

�
π0ðRÞ > π⊥
π0ðRÞ < −π⊥

: ð3:17Þ

Equation (3.9) has a complete set of solutions (left
asymptotics) φL

nðxÞ in the form of plane waves,

φL
n;ζðxÞ ¼ ζN exp ðipLxÞ; ð3:18Þ

with real momenta pL along the axis x,

pL ¼ ζ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½π0ðLÞ�2 − π2⊥

q
; ζ ¼ sgnðpLÞ ¼ �: ð3:19Þ

The corresponding solutions (3.6) and (3.7) are denoted as

ζψn
ðXÞ. They satisfy the condition

p̂xζψn
ðXÞ ¼ pL

ζψn
ðXÞ; x → −∞; ð3:20Þ

i.e., these are states with definite momenta pL as x → −∞.
The normalization factors N are determined in the next

section.
There exists a useful relation between absolute values of

the momenta pR and pL,
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jpLj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jpRj2 þ 2ηRU

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jpRj2 þ π2⊥

q
þ U2

r
;

jpRj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jpLj2 − 2ηLU

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jpLj2 þ π2⊥

q
þ U2

r
; ð3:21Þ

where ηL ¼ sgnπ0ðLÞ, ηR ¼ sgnπ0ðRÞ.
Nontrivial solutions ζψn

ðXÞ exist only for quantum
numbers n that obey the following relation

½π0ðLÞ�2 > π2⊥ ⇔

�
π0ðLÞ > π⊥
π0ðLÞ < −π⊥

: ð3:22Þ

In what follows we distinguish two types of electric
steps, noncritical and critical, by their magnitudes as
follows:

U ¼
�
U < Uc ¼ 2m; noncritical steps

U > Uc; critical steps
: ð3:23Þ

B. Ranges of quantum numbers

There exist some ranges of quantum numbers n where
solutions φL=R

n ðxÞ have similar forms. These ranges and the
corresponding solutions are described below.
In the case of the critical steps, which is of the main

interest for us in the present article, there exist five ranges
Ωk, k ¼ 1;…; 5. We denote the corresponding quantum
numbers by nk, so that nk ∈ Ωk, see Fig. 2.
It should be noted that the curve plotted on Fig. 2 is the

potential energy UðxÞ (2.9) of an electron in the x-electric
step, such that electrons are accelerated to the left and
positrons to the right by the electric field (2.3).
In the case of critical steps U > Uc, the range Ω3 does

exist for the quantum numbers p⊥ restricted by the
inequality,

2π⊥ ≤ U: ð3:24Þ

Note that the range Ω3 often referred to as the Klein zone.
In the case of noncritical stepsU < Uc, there exist only four
ranges, the range Ω3 is absent.
The manifold of all the quantum numbers n is denoted by

Ω, so that Ω ¼ Ω1 ∪ � � � ∪ Ω5.
Below, we describe all the ranges in detail. In this

connection, it should be noted that the rangesΩ4 andΩ5 are
similar to the ranges Ω2 and Ω1 under the change of
electrons by positrons.

1. Ranges Ω1 and Ω5

The ranges Ω1 and Ω5 exist for any U and includes the
quantum numbers n1 and n5, respectively, that obey the
inequalities

p0 ≥ UR þ π⊥ ⇔ π0ðRÞ ≥ π⊥ if n ∈ Ω1;

p0 ≤ UL − π⊥ ⇔ −π0ðLÞ ≥ π⊥ if n ∈ Ω5 ð3:25Þ

for a given π⊥, see Fig. 2. Note that the inequalities (3.25)
imply the inequalities (3.22) for n1 and (3.17) for n5. Then
it follows from Eqs. (3.25) that in the ranges Ω1 and Ω5

there exist solutions ζψnðXÞ and ζψn
ðXÞ. ζψnðXÞ can be

interpreted as either a wave function of electron for n1 or a
wave function of positron for n5 with momenta pR along
the axis x, given by Eq. (3.15), whereas ζψn

ðXÞ can be
interpreted as either a wave function of electron for n1 or a
wave function of positron for n5 with momenta pL along
the axis x, given by Eq. (3.19). The further analysis of these
solutions in the framework of QED, given in the Sec. IV
confirms this interpretation.
We believe that each pair of solutions ζψn

ðXÞ, ζ ¼ �,
forms a complete set for any given n ∈ Ω1 ∪ Ω5, the same
is true for each pair of solutions ζψnðXÞ. This means that
any given solution ζψnðXÞ can be decomposed in terms of
two solutions −ψnðXÞ and þψnðXÞ, whereas any given
solution ζψn

ðXÞ can be decomposed in terms of two
solutions þψnðXÞ and −ψnðXÞ in the ranges Ω1 and Ω5.

2. Ranges Ω2 and Ω4

The ranges Ω2 and Ω4 exist for any U and include the
quantum numbers n2 that obey the inequalities

FIG. 2. Potential energy UðxÞ of electrons in an x-electric step.
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UR − π⊥ < p0 < UR þ π⊥; π0ðLÞ > π⊥ if 2π⊥ ≤ U;

UL þ π⊥ < p0 < UR þ π⊥ if 2π⊥ > U; ð3:26Þ

and the quantum numbers n4 that obey the inequalities

UL − π⊥ < p0 <UL þ π⊥; π0ðRÞ< −π⊥ if 2π⊥ ≤U;

UL − π⊥ < p0 <UR − π⊥ if 2π⊥ >U: ð3:27Þ

As a consequence of Eqs. (3.26) and (3.27) there exist
solutions ζψn2

ðXÞ with definite left asymptotics and
ζψn4ðXÞ with definite right asymptotics. ζψn2

ðXÞ and
ζψn4ðXÞ can be interpreted as a wave function of electron
and positron, respectively. Nontrivial solutions ζψn2ðXÞ and
ζψn4

ðXÞ do not exist, since Eq. (3.26) contradicts Eq. (3.17)
and Eq. (3.27) contradicts Eq. (3.22).
The fact that any solution with quantum numbers n2 has

zero right asymptotic and any solution with quantum
numbers n4 has zero left asymptotic imposes restrictions
on the form of the solutions ζψn2

ðXÞ and ζψn4ðXÞ. In

particular, they cannot be independent for different ζ. For
example, because the set ζψn2

ðXÞ is complete, any solution

ψn2ðXÞ can be represented as

ψn2ðXÞ ¼ þψn2
ðXÞcþ þ −ψn2ðXÞc−: ð3:28Þ

In the region SR the superposition ψn2ðXÞ has zero
asymptotics and therefore the corresponding Dirac current
in x-direction is zero. Using this consideration one can
easily find that jcþj ¼ jc−j, such that Eq. (3.28) can be
written as

ψn2ðXÞ ¼ þψn2
ðXÞeþiθn2 þ −ψn2ðXÞe−iθn2 : ð3:29Þ

Following by the same logic, one sees that in the region SL
the only allowed superposition of þψn4ðXÞ and −ψn4ðXÞ
has zero asymptotics and therefore any solution ψn2ðXÞ can
be written as

ψn4ðXÞ ¼ þψn4ðXÞeþiθn4 þ −ψn4ðXÞe−iθn4 : ð3:30Þ

In fact, ψn2ðXÞ are wave functions that describe an
unbounded motion in x → −∞ direction while ψn4ðXÞ are
wave functions that describe an unbounded motion toward
x ¼ þ∞. Equations (3.29) and (3.30) provide asymptotic
forms for these wave functions. These forms are sums of
two waves traveling in opposite directions, with equal
in magnitude currents, which means that we deal with
standing waves.

3. Range Ω3

In theΩ3-range (in the Klein zone) the quantum numbers
p⊥ are restricted by the inequality (3.24) and for any of

such π⊥ quantum numbers p0 obey the double inequality,
see Fig. 2,

UL þ π⊥ ≤ p0 ≤ UR − π⊥: ð3:31Þ

Inequality (3.31) implies also that π0ðLÞ ≥ π⊥ and
π0ðRÞ ≤ −π⊥. It follows from this inequality that there
exist solutions ζψn3ðXÞ [see condition (3.17)]. On the other
hand, since the inequality (3.31) implies π0ðLÞ > π⊥ and
(3.22), there exist solutions ζψn3

ðXÞ as well. Thus, in the

range Ω3 there exist the following sets of solutions

fζψn3
ðXÞg; fζψn3ðXÞg; ζ ¼ �: ð3:32Þ

However, the one-particle interpretation of these solu-
tions based on energy spectrum in a similar way as has been
done in the ranges Ω1 and Ω5 becomes inconsistent.
Indeed, it is enough to see the following contradiction:
from the point of view of the left asymptotic area, only
electron states are possible in the range Ω3, whereas from
the point of view of the right asymptotic area, only positron
states are possible in this range. Detailed consideration in
the framework of QED shows (see Sec. VII) that in a certain
sense the solutions ζψn3ðXÞ describe electrons, whereas the
solutions ζψn3

ðXÞ describe positrons.

C. Orthogonality, normalization and completeness

In this subsection we study orthonormalization, mutual
decompositions and completeness of the solutions intro-
duced above. To this end it is convenient to use two types of
inner products in the Hilbert space of Dirac spinors. One of
them is defined on the hyperplane x ¼ const, and the other
on the hyperplane t ¼ const.

1. Using inner product on x-constant hyperplane

Let us start with the inner product on the hyperplane
x ¼ const. For any two Dirac spinors ψðXÞ and ψ 0ðXÞ it has
the form

ðψ ;ψ 0Þx ¼
Z

ψ†ðXÞγ0γ1ψ 0ðXÞdtdr⊥: ð3:33Þ

Due to the t-independence of the external field that
corresponds to the x-electric potential steps, we can provide
x-independence of the inner product (3.33) for two sol-
utions of the Dirac equation by imposing periodic boundary
conditions in the variables t and Xj, j ¼ 2;…; D. Thus, we
consider our theory in a large space-time box that has a
spatial volume V⊥ ¼ Q

D
j¼2Kj and the time dimension T,

where all Kj and T are macroscopically large. It is
supposed that all the solutions ψðXÞ are periodic under
transitions from one box to another. Then the integration in
(3.33) over the transverse coordinates is fulfilled from
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−Kj=2 to þKj=2, and over the time t from −T=2 to þT=2.
Under these suppositions, the inner product (3.33) does not
depend on x. The limits Kj → ∞ and T → ∞ are assumed
in final expressions.
It should be noted that usually QFT deals with physical

quantities that are presented by volume integrals on the
hyperplane t ¼ const. However, if we wish to extract
results of the one-particle scattering theory from a classical
field theory, all the constituent quantities, such as reflection
and transmission coefficients etc., have to be represented
with the help of the inner product (3.33) on the hyperplane
x ¼ const. Indeed, in such a theory we observe, for
example, electric current, energy flux, or other types of
currents flowing through surfaces x ¼ const situated in
asymptotic regions. In addition, we suppose that all the
measurements are performed during a macroscopic time
(say, the time T) when the external field can be considered
as constant. Then the currents under consideration can be
represented by integral of the form T−1 R

T dt….
We note that for ψ 0 ¼ ψ the inner product (3.33) divided

by T represents the current of the Dirac field ψðXÞ across
the hyperplane x ¼ const. For nondecaying wave functions
this current differs from zero.
For two different solutions of the form (3.6) the integral

in the right-hand side of Eq. (3.33) can be easily calculated
to be

ðψn;ψ 0
n0 Þx ¼ V⊥Tδn;n0I ; I ¼ ϱ†nðxÞγ0γ1ϱ0nðxÞ: ð3:34Þ

Using the structure of spinors vσ , one can represent the
current density I as follows

I ¼ φ�
nðxÞði∂⃖x − i~∂xÞ½p0 − UðxÞ þ χi∂x�φ0

nðxÞ: ð3:35Þ

Let us consider solutions fζψn
ðXÞg and fζψnðXÞg with

left and right plane-wave asymptotics, respectively. They
are orthogonal for different n and can be subjected to the
following orthonormality conditions

ðζψn
; ζ0ψn0

Þ
x
¼ ζηLδζ;ζ0δn;n0 ; ηL ¼ sgnπ0ðLÞ;
n ∈ Ω1 ∪ Ω2 ∪ Ω3 ∪ Ω5;

ðζψn; ζ
0
ψn0 Þx ¼ ζηRδζ;ζ0δn;n0 ; ηR ¼ sgnπ0ðRÞ;

n ∈ Ω1 ∪ Ω3 ∪ Ω4 ∪ Ω5: ð3:36Þ

In justification of (3.36) one has to take into account that for
these states the relations

jπ0ðLÞj > jpLj; jπ0ðRÞj > jpRj

hold. This fact explains why the sign of the inner products,
which coincides with the sign of I is due to the sign of the
quantity π0ðL=RÞ.
Then the normalization factors [with respect to the

inner product (3.33)] in solutions of the Dirac equation

that have plane-wave asymptotics (3.14) and (3.18) have
the form

ζN¼ζCY;
ζN ¼ ζCY; Y ¼ ðV⊥TÞ−1=2;

ζC ¼ ½2jpLjjπ0ðLÞ − χpLj�−1=2;
ζC ¼ ½2jpRjjπ0ðRÞ − χpRj�−1=2: ð3:37Þ

In the Kj → ∞ and T → ∞ limit one has to replace δn;n0
in normalization conditions (3.36) by δσ;σ0δðp0 − p0

0Þ×
δðp⊥ − p0⊥Þ and to set Y ¼ ð2πÞ−ðd−1Þ=2 in Eqs. (3.37).
As was assumed, see subsection III B, each pair of

solutions ζψn
ðXÞ and ζψnðXÞ with given quantum numbers

n ∈ Ω1 ∪ Ω3 ∪ Ω5 is complete in the space of solutions
with each n. Due to (3.36) the corresponding mutual
decompositions of such solutions have the form

ηL
ζψnðXÞ ¼ þψnðXÞgðþjζÞ − −ψnðXÞgð−jζÞ;

ηRζψn
ðXÞ ¼ þψnðXÞgðþjζÞ − −ψnðXÞgð−jζÞ; ð3:38Þ

where decomposition coefficients g are given by the
relations:

ðζψn
; ζ

0
ψn0 Þx ¼ δn;n0gðζjζ

0 Þ; gðζ0 jζÞ ¼ gðζjζ
0 Þ�;

n ∈ Ω1 ∪ Ω3 ∪ Ω5: ð3:39Þ

Substituting (3.38) into orthonormality conditions
(3.36), we derive the following unitary relations for the
decomposition coefficients4:

gðζ0 jþÞgðþjζÞ − gðζ0 j−Þgð−jζÞ ¼ ζηLηRδζ;ζ0 ;

gðζ0 jþÞgðþjζÞ − gðζ0 j−Þgð−jζÞ ¼ ζηLηRδζ;ζ0 : ð3:40Þ

In particular, these relations imply that

jgð−jþÞj2 ¼ jgðþj−Þj2; jgðþjþÞj2 ¼ jgð−j−Þj2;
gðþj−Þ
gð−j−Þ

¼ gðþj−Þ
gðþjþÞ

: ð3:41Þ

One can see that all the coefficients g can be expressed via
only two of them, e.g., via gðþjþÞ and gðþj−Þ. However,
even the latter coefficients are not completely independent,
they are related as follows:

jgðþj−Þj2 − jgðþjþÞj2 ¼ −ηLηR: ð3:42Þ

Nevertheless, in what follows, we will use both coefficients
gðþj−Þ and gðþjþÞ in our consideration. This maintains a
certain symmetry in writing formulas and, moreover,
allows one to generalize the consideration to the cases

4Similar relations are known in the t-electric potential steps,
see [5].
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when the inner potential may depend on several space
coordinates and to the case when solutions fζψn

ðXÞg and
fζψmðXÞg are characterized by different sets of quantum
numbers, i.e., the sets n and m do not coincide.
For any two solutions ψðXÞ and ψ 0ðXÞ of the Klein-

Gordon equation, the inner product on the hyperplane
x ¼ const has the form

ðψ ;ψ 0Þx ¼
Z

ψ�ðXÞði∂⃖x − i~∂xÞψ 0ðXÞdtdr⊥: ð3:43Þ

Orthonormality conditions for solutions of the Klein-
Gordon equation can be presented in form (3.36) where
ηL ¼ ηR ¼ 1. The normalization factors with respect to
inner product (3.43) are

ζN ¼ ζCY;
ζN ¼ ζCY;

ζC ¼ j2pLj−1=2; ζC ¼ j2pRj−1=2; ð3:44Þ

where the factor Y is given by (3.37). In the Klein-Gordon
case all the relations presented above and that include
coefficients g hold true with the setting ηL ¼ ηR ¼ 1.

2. Using inner product on t-constant hyperplane

We recall that usually the inner product between two
solutions ψðXÞ and ψ 0ðXÞ of the Dirac equation is defined
on t-const. hyperplane as follows:

ðψ ;ψ 0Þ ¼
Z

ψ†ðXÞψ 0ðXÞdr: ð3:45Þ

Such an inner product does not depend on the choice of the
hyperplane (does not depend on t) if the solutions obey
certain boundary conditions that allow one to integrate by
parts in (3.45) neglecting boundary terms. Since physical
states are wave packets that vanish on the remote bounda-
ries, the inner product (3.45) is time-independent for such
states. However, considering solutions that are generalized
states, which do not vanish at the spatial infinity, one should
take some additional steps to keep the inner product (3.45)
time independent. Sometimes to do this it is enough to
impose periodic boundary conditions (in all spatial direc-
tions) on Dirac wave functions and on the corresponding
external field. However, in the case under consideration, the
external field A0ðxÞ of x-electric potential steps with
different asymptotics at x → �∞ cannot be subjected to
any periodic boundary conditions in x-direction without
changing its physical meaning. That is why, to provide the
time independence of the inner product, one has to extend
the definition of the inner product. Under the assumption
that solutions with quantum numbers n form a complete set
of function in the corresponding Hilbert space at each time
instant t, it is enough to make such an extension for a pair

ψnðXÞ and ψ 0
n0 ðXÞ with all possible n and n0. Such an inner

product is described below.
Let ψnðXÞ and ψ 0

n0 ðXÞ be solutions of the Dirac equation
that were described in the previous subsections III A and
III B. They allow one to impose periodic conditions in the
coordinates Xj, j ¼ 2;…; D with periodicity Kj (of course
it implies quantization of the corresponding transverse
momenta). Then the inner product for the pair ψnðXÞ
and ψ 0

n0 ðXÞ is defined as follows:

ðψn;ψ 0
n0 Þ ¼

Z
V⊥

dr⊥
Z

KðRÞ

−KðLÞ
ψ†
nðXÞψ 0

n0 ðXÞdx; V⊥¼
YD
j¼2

Kj;

ð3:46Þ

and the limits KðL=RÞ → ∞ are assumed in final expres-
sions. As it is demonstrated in Appendix B, the so-defined
inner product is time-independent. In what follows the
improper integral over x in the right-hand side of Eq. (3.46)
is reduced to its special principal value to provide a certain
additional property important for us.
Finally, we obtain the following orthonormality rela-

tions, see details in Appendix B,

ðζψn
;ζψn0 Þ¼ðζψn;ζψn0 Þ¼δn;n0Mn; n∈Ω1∪Ω3∪Ω5;

ðψn;ψn0 Þ¼δn;n0Mn; n;n0∈Ω2∪Ω4;

Mn¼2
KðRÞ

T

����π0ðRÞpR

����jgðþjþÞj2þOð1Þ; n∈Ω1∪Ω5;

Mn¼2
KðRÞ

T

����π0ðRÞpR

����jgðþj−Þj2þOð1Þ; n∈Ω3;

ð3:47Þ

where Mn for n ∈ Ω2 ∪ Ω4 are given by Eqs. (B6). It
follows from Eqs. (3.47) that densities (in the x-direction)
of the wave functions ζψni

; i ¼ 1, 3, 5 are dominating in the

region SR, whereas the densities of the wave functions
ζψni ; i ¼ 1, 3, 5 are dominating in the region SL.
In the limit KðL=RÞ → ∞, with the account of condition

(B15), we obtain solutions normalized to the δ-function,

ðζψn
;ζψn0 Þ¼ ðζψn;ζψn0 Þ ¼ δσ;σ0δðp0−p0

0Þδðp⊥−p0⊥ÞMn;

n;n0∈Ω1∪Ω3∪Ω5;

ðψn;ψn0 Þ ¼ δσ;σ0δðp0−p0
0Þδðp⊥−p0⊥Þ; n;n0∈Ω2∪Ω4;

Mn¼jgðþjþÞj2; n∈Ω1∪Ω5;

Mn¼jgðþj−Þj2; n∈Ω3: ð3:48Þ

We recall that the inner product between two solutions
ψðXÞ and ψ 0ðXÞ of the Klein-Gordon equation is defined on
t-const. hyperplane as follows as a charge,
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ðψ ;ψ 0Þ ¼
Z

Φ†ðXÞ
�
0 1

1 0

�
ΦðXÞdr;

ΦðXÞ ¼
� ½i∂t −UðxÞ�ψðXÞ

ψðXÞ

�
: ð3:49Þ

It is proportional to the field charge if ψ ¼ ψ 0. It is assumed
that the improper integral over x in the right-hand side of
Eq. (3.49) is treated as its special principal value, in the
same spirit as in the Dirac case. One can verify that with this
inner product the following orthonormality relations hold

ðψn;ψ 0
n0 Þ ¼ 0; n ≠ n0;∀ n; n0; ðψn2 ;ψn0

2
Þ ¼ δn2;n02Mn2 ; ðψn4 ;ψn0

4
Þ ¼ −δn4;n04Mn4 ;

ðζψn
; −ζψnÞ ¼ 0; ðζψn; ζψn0 Þ ¼ ðζψn

; ζψn0 Þ ¼ sgnπ0ðLÞδn;n0Mn; n ∈ Ω1 ∪ Ω5;

ðζψn
; ζψnÞ ¼ 0; ðζψn; ζψn0 Þ ¼ −ðζψn

; ζψn0 Þ ¼ δn;n0Mn; n ∈ Ω3; ð3:50Þ

where Mn are given by Eqs. (3.47). Unlike the Dirac case,
there are � signs in the right-hand side of Eq. (3.50). Then
it is natural to suppose that the solutions ζψn3

, ψn4 , ζψn5
,

and ζψn5 describe positron states.
Thus, both for the Dirac and the Klein-Gordon equa-

tions, for each set of quantum numbers n, there exist one or
two complete sets of solutions
(a) For ∀ n ∈ Ω1 ∪ Ω5 we have two ðζ ¼ �Þ sets:

fζψn
ðXÞ; −ζψnðXÞg.

(b) For ∀ n ∈ Ω3 we have two ðζ ¼ �Þ sets:
fζψn

ðXÞ; ζψnðXÞg.
(c) For ∀ n ∈ Ω2 ∪ Ω4 we have the set fψnðXÞg.

We believe that all these solutions allow one to construct
two complete (at any time instant t) systems both in the
Hilbert space of Dirac spinors and in the Hilbert space of
scalar fields. In the Dirac case, this assumption is equivalent
to the existence of the propagation function GðX;X0Þ
in the space of solutions, which satisfies the boundary
condition

GðX;X0Þjt¼t0 ¼ δðr − r0Þ; ð3:51Þ

and has the following form

GðX;X0Þ ¼
X5
i¼1

GiðX;X0Þ;

GiðX;X0Þ ¼
X
ni

M−1
ni ψniðXÞψ†

niðX0Þ; i ¼ 2; 4;

GiðX;X0Þ ¼
X
ni

M−1
ni ½þψni

ðXÞþψ†
ni
ðX0Þ þ −ψniðXÞ−ψ†

niðX0Þ�

¼
X
ni

M−1
ni ½−ψniðXÞ−ψ†

niðX0Þ þ þψniðXÞþψ†
niðX0Þ�; i ¼ 1; 5;

G3ðX;X0Þ ¼
X
n3

M−1
n3 ½þψn3

ðXÞþψ†
n3
ðX0Þ þ þψn3ðXÞþψ†

n3ðX0Þ�

¼
X
n3

M−1
n3 ½−ψn3ðXÞ−ψ†

n3ðX0Þ þ −ψn3ðXÞ−ψ†
n3ðX0Þ�: ð3:52Þ

The propagation function GðX;X0Þ in the space of scalar
fields satisfies the boundary condition

GðX;X0Þjt¼t0 ¼ 0; ½i∂t −UðxÞ�GðX;X0Þjt¼t0 ¼ δðr− r0Þ;
ð3:53Þ

and can be presented as

GðX;X0Þ ¼
X3
i¼1

GiðX;X0Þ −
X5
i¼4

GiðX;X0Þ; ð3:54Þ

where GiðX;X0Þ, i ¼ 1, 2, 4, 5, have the form given by
Eq. (3.52) with clear understanding that ψniðXÞ are scalar
fields. The only G3ðX;X0Þ component has distinct form

G3ðX;X0Þ ¼
X
n3

M−1
n3 ½−þψn3

ðXÞþψ�
n3
ðX0Þ

þ þψn3ðXÞþψ�
n3ðX0Þ�

¼
X
n3

M−1
n3 ½−−ψn3ðXÞ−ψ�

n3ðX0Þ

þ −ψn3ðXÞ−ψ�
n3ðX0Þ�: ð3:55Þ
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It should be stressed that there are two equivalent
representations for each propagation function GiðX;X0Þ;
i ¼ 1, 3, 5. In addition, our further construction is based on
the assumption that Dirac spinors (a) and (b) are divided in
the in-and out-solutions as follows:

in-solutions∶ þψn1
;−ψn1 ; −ψn5 ;

þψn5 ; −ψn3 ;
−ψn3 ;

out-solutions∶ −ψn1 ;
þψn1 ; þψn5

;−ψn5 ; þψn3
;þψn3 ;

ð3:56Þ

while for scalar fields, the classification in the range Ω3

differs from the one given by Eq. (3.56) due to positions of
the left superscripts and subscripts �,

in-solutions∶ þψn1
;−ψn1 ; −ψn5 ;

þψn5 ; þψn3
;þψn3 ;

out-solutions∶ −ψn1 ;
þψn1 ; þψn5

;−ψn5 ; −ψn3 ;
−ψn3 :

ð3:57Þ

There exist difficulties in interpreting the states ζψn3
ðXÞ

and ζψn3ðXÞ in the framework of the one-particle theory.
There existed different point of view on such an interpre-
tation, see [2,17] and [14]. A consistent interpretation can
be obtained in the framework of QED and is presented in
Sec. VII.

IV. QUANTIZATION IN TERMS OF PARTICLES

In this and in the following sections, we treat the Dirac
and the scalar fields in terms of adequate in- and out-
particles. On the base of results of Sec. III, we decompose
quantum field operators in complete sets of the correspond-
ing solutions introducing some annihilation and creation
operators. Then using the well-known equal time (anti)
commutation relations for the quantum fields we establish
(anti)commutation relations for the introduced operators.
The problem of an identification of these operators as in
and out annihilation and creation operators is considered in
Secs. V–VII.
The Dirac Heisenberg operator Ψ̂ðXÞ is assigned to the

Dirac field ψðXÞ. This operator satisfies the Dirac equa-
tion (2.8) and the anticommutation relations

½Ψ̂ðXÞ; Ψ̂ðX0Þ�þjt¼t0 ¼ 0;

½Ψ̂ðXÞ; Ψ̂†ðX0Þ�þjt¼t0 ¼ δðr − r0Þ; ð4:1Þ

e.g., see [44,46].
The Klein-Gordon Heisenberg operator Ψ̂ðXÞ is

assigned to the scalar field ψðXÞ. In terms of the canonical
pair

Φ̂ðXÞ ¼
�
iΠ̂†ðXÞ
Ψ̂ðXÞ

�
;

it satisfies the Klein-Gordon equation,

½i∂t −UðxÞ�Φ̂ðXÞ ¼ ĤkinΦ̂ðXÞ;

Ĥkin ¼
�
0 −ð∂jÞ2 þm2

1 0

�
; ð4:2Þ

and the commutation relations

½Φ̂ðXÞ; Φ̂ðX0Þ�−jt¼t0 ¼ 0;

½Φ̂ðXÞ; Φ̂†ðX0Þ�−jt¼t0 ¼ δðr − r0Þ
�
0 1

1 0

�
; ð4:3Þ

e.g., see [44,46]. Here Ĥkin is the one-particle kinetic
energy operator Ĥkin. It follows from Eq. (4.2) that

iΠ̂†ðXÞ ¼ ½i∂t −UðxÞ�Ψ̂ðXÞ:

The further quantization of the scalar field can be done in
the same manner as the quantization for Dirac field. That is
why, in what follows up to Sec. VIII, we consider only the
quantization of Dirac field in detail, adding some com-
ments about the scalar field when necessary, see
Appendix A for some peculiarities of the quantization in
the range Ω3.

A. Introducing creation and annihilation operators

We consider the most interesting case U > 2m of the
critical steps. In this case we decompose the Heisenberg
operator of Dirac field Ψ̂ðXÞ in two sets of solutions
fζψn

ðXÞg and fζψnðXÞg of the Dirac equation (2.8)
complete on the hyperplane t ¼ const. Operator-valued
coefficients in such decompositions do not depend on
coordinates because both Ψ̂ðXÞ and the complete sets
satisfy the same Dirac equation (2.8). Our division of
the quantum numbers n in five ranges, implies the
representation for Ψ̂ðXÞ as a sum of five operators
Ψ̂iðXÞ, i ¼ 1, 2, 3, 4, 5,

Ψ̂ðXÞ ¼
X5
i¼1

Ψ̂iðXÞ: ð4:4Þ

For each of three operators Ψ̂iðXÞ,i ¼ 1, 3, 5, there exist
two possible decompositions according to the existence of
two different complete sets of solutions with the same
quantum numbers n in the ranges Ω1, Ω3, and Ω5, see
completeness relation (3.52). Thus, we have:
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Ψ̂1ðXÞ ¼
X
n1

M−1=2
n1 ½þan1ðinÞþψn1

ðXÞ þ −an1ðinÞ−ψn1ðXÞ�

¼
X
n1

M−1=2
n1 ½þan1ðoutÞþψn1ðXÞ þ −an1ðoutÞ−ψn1ðXÞ�;

Ψ̂3ðXÞ ¼
X
n3

M−1=2
n3 ½−an3ðinÞ−ψn3ðXÞ þ −b

†
n3ðinÞ−ψn3ðXÞ�

¼
X
n3

M−1=2
n3 ½þan3ðoutÞþψn3ðXÞ þ þb†n3ðoutÞþψn3

ðXÞ�;

Ψ̂5ðXÞ ¼
X
n5

M−1=2
n5 ½þb†n5ðinÞþψn5ðXÞ þ −b

†
n5ðinÞ−ψn5ðXÞ�

¼
X
n5

M−1=2
n5 ½þb†n5ðoutÞþψn5

ðXÞ þ −b†n5ðoutÞ−ψn5ðXÞ�: ð4:5Þ

There may exist only one complete set of solutions with
the same quantum numbers n2 and n4. Therefore, we have
only one possible decomposition for each of the two
operators Ψ̂iðXÞ, i ¼ 2, 4,

Ψ̂2ðXÞ ¼
X
n2

M−1=2
n2 an2ψn2ðXÞ;

Ψ̂4ðXÞ ¼
X
n4

M−1=2
n4 b†n4ψn4ðXÞ: ð4:6Þ

We interpret all a and b as annihilation and all a† and b†

as creation operators; all a and a† are interpreted as
describing electrons and all b and b† as describing
positrons; all the operators labeled by the argument in
are interpreted as in-operators, whereas all the operators
labeled by the argument out as out-operators.
In this connection, we reiterate that the time-independ-

ence of the external field under consideration is an
idealization. In fact, it is supposed that the external field
was switched on at a time instant tin, then it was acting as a
constant field during a large time T, and finally it was
switched off at a time instant tout ¼ tin þ T, and that one
can ignore effects of its switching on and off. Then we
suppose that in the Schrödinger picture one can introduce
creation and annihilation operators of particles at the initial
and final time instants. In the Heisenberg representation,
these operators when being developed to zero time instant
are called in-operators and out-operators. It is the well-
known procedure in QFT with t-electric potential steps.
Technical realization of this construction was presented in
Refs. [5]. In QED with constant fields, in particular, with
the x-electric potential steps, we quantize directly in the
Heisenberg representation. And here we encounter the
problem of identification of in-operators and out-operators.
Its final solution is presented in Secs. V, VI, and VII.
Taking into account the orthonormalization relations

(3.47) and the completeness relations (3.52), we find that
the anticommutation relations (4.1) for the Heisenberg

operator (4.4) yield the following anticommutation rules
for the introduced creation and annihilation in- or out-
operators (here we do not discuss commutation relations
between sets of in and out-operators):
All creation (annihilation) operators with different quan-

tum numbers n anticommute between themselves; all the
operators from different ranges Ωi anticommute between
themselves; all anticommutators in each range Ωi; i ¼ 1, 2,
3, 4, 5 have the form:

½þan1ðinÞ;þa†n01ðinÞ�þ ¼ ½−an1ðinÞ;−a†n0
1
ðinÞ�þ

¼ ½þan1ðoutÞ;þa†n01ðoutÞ�þ
¼ ½−an1ðoutÞ;−a†n01ðoutÞ�þ ¼ δn1;n01 ;

½an2 ; a†n0
2
�þ ¼ δn2;n02 ; ½bn4 ; b†n0

4
�þ ¼ δn4;n04 ;

½−an3ðinÞ;−a†n0
3
ðinÞ�þ ¼ ½þan3ðoutÞ;þa†n0

3
ðoutÞ�þ

¼ ½−bn3ðinÞ;−b†n0
3
ðinÞ�þ

¼ ½þbn3ðoutÞ;þb†n03ðoutÞ�þ ¼ δn3;n03 ;

½þbn5ðinÞ;þb†n0
5

ðinÞ�þ ¼ ½−bn5ðinÞ;−b†n0
5

ðinÞ�þ
¼ ½þbn5ðoutÞ;þb†n05ðoutÞ�þ
¼ ½−bn5ðoutÞ;−b†n0

5

ðoutÞ�þ ¼ δn5;n05 :

ð4:7Þ

Some preliminary remarks about the division of creation
and annihilation operators into in- and out-type are in
order. Usually, when quantizing a field theory with a
time-dependent external background, we work in the
Schrödinger picture, where we have to define initial and
final asymptotic states. Even if the external field is switched
off at the time infinity, its potentials may be different from
zero there. Thus, the Schrödinger initial and final asymp-
totic states are different as it occurs in QED with t-electric
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potential steps. Then the Schrödinger initial and final
asymptotic states give rise to in- and out-states (the
corresponding operators) in the Heisenberg picture. In
the case under consideration, where we formally deal with
time-independent backgrounds, and quantize directly in the
Heisenberg picture, there appears the problem of identify-
ing in- and out-operators. In the case of x-electric potential
steps, we will be guided by the following physical con-
siderations: All the in-particles (created by the in-creation
operators from the vacuum) are moving from the asymp-
totic region SL or SR to the step, whereas all the out-
particles (created by the out-creation operators from the
vacuum) are moving from the step to the asymptotic region
SL or SR.
Below, after analyzing properties of one-particle states

created by the introduced operators, we confirm the
consistence of their division into in- and out-types.

B. Physical quantities

1. Classical physical quantities

Energy H of the classical Dirac field has the form

H ¼
Z

ψ†ðXÞĤψðXÞdr; ð4:8Þ

where one-particle Hamiltonian Ĥ is given by
Eq. (2.8). The energy (4.8) is a gauge dependent quantity.
Substituting the one-particle kinetic energy operator Ĥkin,
given by Eq. (3.13), for Ĥ in the right-hand side (RHS) of
Eq. (4.8) we obtain a gauge invariant quantity Hkin, which
we call the kinetic energy of the classical Dirac field ψðXÞ,

Hkin ¼
Z

ψ†ðXÞĤkinψðXÞdr;

Ĥkin ¼ Ĥ −UðxÞ: ð4:9Þ

Decomposing the field ψðXÞ over the complete set
ψnðXÞ, and dividing integral (4.9) in three integrals within
the regions SL, Sint, and SR, as was done for the quantityR
in Eq. (B2), we reduce calculating the quantity (4.9) to
calculating the following matrix elements

Hkin
nl ¼ HL

nl þHint
nl þHR

nl;

HL
nl ¼

Z
xL

−KðLÞ
hnldx; Hint

nl ¼
Z

xR

xL

hnldx;

HR
nl ¼

Z
KðRÞ

xR

hnldx;

hnl ¼
Z

ψ†
nðXÞĤkinψ lðXÞdr⊥: ð4:10Þ

The matrix elements Hint
nl are finite for any n and l, and

the terms HL
nl and HR

nl dominate in the limit KðL=RÞ → ∞.

In the asymptotic regions SL and SR solutions ψnðXÞ with
any n are eigenfunctions of the operator Ĥkin with the
eigenvalues π0ðLÞ and π0ðRÞ, respectively. That is why
only diagonal matrix elementsHL

nl andH
R
nl differ from zero

in the limit KðL=RÞ → ∞. Thus, the stationary states
introduced in Sec. III A diagonalize the introduced kinetic
energy (4.9). This is an important necessary condition in
the quantization procedure which provides in what follows
an interpretation in terms of particles.
The kinetic energy of a stationary state ψnðXÞ reads

En ¼ M−1
n

Z
ψ†
nðXÞ½p0 −UðxÞ�ψnðXÞdr: ð4:11Þ

The kinetic energy of a wave packet ψðXÞ composed of
stationary states ψnðXÞ is a sum of the partial ener-
gies (4.11).
One can easily see that stationary states with quantum

numbers n from the regions Ω2 and Ω4 have the following
kinetic energies

En2 ¼ π0ðLÞ; En4 ¼ π0ðRÞ: ð4:12Þ

Let us consider stationary states fζψn
ðXÞg and fζψnðXÞg

with quantum numbers n from the ranges Ω1;Ω3, and Ω5.
Their kinetic energies are denoted as ζEn

and ζEn, respec-
tively. In the same manner, which was used in finding the
orthonormality relations of the corresponding solutions,
and retaining only the leading terms in the limit
KðL=RÞ → ∞, we obtain

ζEn
¼V⊥M−1

n ðζEL
n
þ ζE

R
n
Þ; ζEn ¼ V⊥M−1

n ðζEL
n þ ζER

n Þ;
ζE

L
n
¼ π0ðLÞζRL

; ζE
R
n
¼ π0ðRÞζRR

;
ζEL

n ¼ π0ðLÞζRL; ζER
n ¼ π0ðRÞζRR; ð4:13Þ

where n ∈ Ω1 ∪ Ω3 ∪ Ω5, and the quantities ζRL=R and

ζRL=R
are given by Eqs. (B5) and (B7); in fact, they depend

also on the index n. Then, using Eqs. (B5), (B7), (3.40),
and Eq. (B15), we find

ζEn
¼ π0ðRÞ þ

U
2
jgðþjþÞj−2;

ζEn ¼ π0ðLÞ −
U
2
jgðþjþÞj−2; n ∈ Ω1 ∪ Ω5; ð4:14Þ

ζEn
¼ π0ðRÞ þ

U
2
jgðþj−Þj−2;

ζEn ¼ π0ðLÞ −
U
2
jgðþj−Þj−2; n ∈ Ω3: ð4:15Þ

The energies Eni ; i ¼ 1, 2 are positive, and the corre-
sponding solutions in Eq. (4.11) are electron states,
whereas all the energies Eni ; i ¼ 4, 5 are negative, and
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the corresponding solutions in Eq. (4.11) are positron
states,

En > 0; ∀ n ∈ Ω1 ∪ Ω2; En < 0; ∀ n ∈ Ω4 ∪ Ω5:

ð4:16Þ

To estimate signs of energies (4.15), we note that they
contain two terms with opposite signs. It follows from
Eq. (3.42) that jgðþj−Þj−2 ≤ 1. Then Eqs. (4.15) imply

ζEn3 − ζEn3
¼ Uð1 − jgðþj−Þj−2Þ ≥ 0: ð4:17Þ

It has to be stressed that the latter condition is enough to
provide the existing of a vacuum in the further quantum
field theory.
Note that energies Eni , i ¼ 1, 2, 4, 5 for the stationary

states of bosons have the same form as for fermions in
(4.12) and (4.14). However, the corresponding relations for
bosons

ζEn
¼ π0ðRÞ −

U
2
jgðþj−Þj−2;

ζEn ¼ π0ðLÞ þ
U
2
jgðþj−Þj−2; n ∈ Ω3: ð4:18Þ

differ from their fermionic versions (4.15).
Equations (4.18) imply the inequalities

ζEn3 > 0; ζEn3
< 0; ð4:19Þ

which provide the positiveness of any boson excitations
over the vacuum.

2. Quantum physical quantities

After the second quantization, physical quantities of the
classical Dirac field turn out to be operators. In what
follows, we are going to consider some of them. The first
one is kinetic energy operator Ĥkin, which, just from the
beginning, we write in a renormalized form,

Ĥkin ¼
Z

Ψ̂†ðXÞĤkinΨ̂ðXÞdr − H0; ð4:20Þ

where the constant (in general, infinite) term H0 corre-
sponds to the energy of vacuum fluctuations. Its explicit
expression will be given below.
Inserting decompositions (4.4), (4.5), and (4.6) in the

right-hand side of Eq. (4.20), we obtain a representation of
the kinetic energy in terms of the introduced creation and
annihilation operators,

Ĥkin¼
X5
i¼1

X
ni

Ĥni ;

H0 ¼
X
n3

þEn3
þ
X
n4

π0ðRÞþ
X
n5

ðþEn5
þ−En5Þ;

Ĥn1 ¼þEn1þa
†
n1
ðinÞþan1ðinÞþ−En1

−a†n1ðinÞ−an1ðinÞ
¼ −En1−a

†
n1ðoutÞ−an1ðoutÞþþEn1

þa†n1ðoutÞþan1ðoutÞ;
Ĥn2 ¼ π0ðLÞa†n2an2 ; Ĥn4 ¼−π0ðRÞb†n4bn4 ;
Ĥn3 ¼þEn3

þa†n3ðoutÞþan3ðoutÞ−þEn3þb
†
n3
ðoutÞþbn3ðoutÞ

¼ −En3
−a†n3ðinÞ−an3ðinÞ−−En3−b

†
n3ðinÞ−bn3ðinÞ;

Ĥn5 ¼−þEn5þb
†
n5
ðoutÞþbn5ðoutÞ−−En5

−b†n5ðoutÞ−bn5ðoutÞ
¼−−En5−b

†
n5ðinÞ−bn5ðinÞ−þEn5

þb†n5ðinÞþbn5ðinÞ:
ð4:21Þ

We stress that the existence of two different representa-
tions for physical observables in the ranges Ω1, Ω3, and Ω5

corresponds to the existence of two different complete sets
of solutions in these ranges. According to Eqs. (4.14) and
(4.15), we have

þEn3
¼ −En3 ; −En5 þ þEn5 ¼ þEn5

þ −En5 ;

that is why the constant H0 has the same value for any
possible choice of Ĥni , i ¼ 1, 3, 5 in representation (4.21).
The formal expression of the charge operator Q̂ is

Q̂ ¼ q
2

Z
½Ψ̂†ðXÞ; Ψ̂ðXÞ�−dr: ð4:22Þ

Its decomposition in the creation and annihilation operators
introduced reads

Q̂ ¼
X5
i¼1

X
ni

Q̂ni ;

Q̂n1 ¼ −e½þa†n1ðinÞþan1ðinÞ þ −a†n1ðinÞ−an1ðinÞ�
¼ −e½−a†n1ðoutÞ−an1ðoutÞ þ þa†n1ðoutÞþan1ðoutÞ�;

Q̂n2 ¼ −ea†n2an2 ; Q̂n4 ¼ eb†n4bn4 ;

Q̂n3 ¼ −e½þa†n3ðoutÞþan3ðoutÞ − þb†n3ðoutÞþbn3ðoutÞ�
¼ −e½−a†n3ðinÞ−an3ðinÞ − −b†n3ðinÞ−bn3ðinÞ�;

Q̂n5 ¼ e½þb†n5ðoutÞþbn5ðoutÞ þ −b†n5ðoutÞ−bn5ðoutÞ�
¼ e½−b†n5ðinÞ−bn5ðinÞ þ þb†n5ðinÞþbn5ðinÞ�: ð4:23Þ

We also will consider the energy flux of the Dirac field
through the surface x ¼ const. Its QFT operator has the
form
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F̂ðxÞ ¼ 1

T

Z
T̂10dtdr⊥; ð4:24Þ

where T̂10 is the component of the operator of the energy
momentum tensor T̂μν, and the integral over dr⊥ is defined
in Eq. (3.33). For our purposes, it is enough to work with
the canonical energy momentum tensor

Tμν ¼
1

2
fψ̄ðxÞγμPνψðxÞ þ ½P�

νψ̄ðxÞ�γμψðxÞg:

Then the QFT operator F̂ðxÞ reads

F̂ðxÞ ¼ 1

T

Z
Ψ̂†ðXÞγ0γ1ĤkinΨ̂ðXÞdtdr⊥: ð4:25Þ

Another physical quantity useful for the further analysis
is the electric current of the Dirac field through the surface
x ¼ const. The corresponding QFT operator has the form

Ĵ ¼ −
e
T

Z
Ψ̂†ðXÞγ0γ1Ψ̂ðXÞdtdr⊥: ð4:26Þ

Inserting decompositions (4.4), (4.5), and (4.6) in the
right-hand part of the quantities (4.25) and (4.26), we can
obtain their representations in terms of the introduced
creation and annihilation operators. Then we can see that
the right-hand part of (4.25) is diagonal with respect to the
quantum numbers n for x ∈ SL and for x ∈ SR, whereas the
right-hand part of (4.26) does not depend on x and is
diagonal with respect to the quantum numbers n for any x.

C. Partial and total vacuum states

Let us define two vacuum vectors j0; ini and j0; outi, one
of which is the zero-vector for all in-annihilation operators
and the other is zero-vector for all out-annihilation oper-
ators. Besides, the both vacua are zero-vectors for the
annihilation operators an2 and bn4 , which is consistent with
the anticommutation relations (4.7). Thus, we have

þan1ðinÞj0; ini ¼ −an1ðinÞj0; ini ¼ 0;

−bn5ðinÞj0; ini ¼ þbn5ðinÞj0; ini ¼ 0;
−an3ðinÞj0; ini ¼ −bn3ðinÞj0; ini ¼ 0;

an2 j0; ini ¼ bn4 j0; ini ¼ 0; ð4:27Þ

and

−an1ðoutÞj0; outi ¼ þan1ðoutÞj0; outi ¼ 0;

þbn5ðoutÞj0; outi ¼ −bn5ðoutÞj0; outi ¼ 0;

þbn3ðoutÞj0; outi ¼ þan3ðoutj0; outi ¼ 0;

an2 j0; outi ¼ bn4 j0; outi ¼ 0: ð4:28Þ

Then we postulate that the state space of the system
under consideration is the Fock space constructed, say, with
the help of the vacuum j0; ini and the corresponding
creation operators. One can verify (see Sec. V) that this
Fock space is unitary equivalent to the other Fock space
constructed with the help of the vacuum j0; outi and the
corresponding creation operators.
In this case, one can see that vacuum mean values of the

operator Ĥkin (4.21) and of the charge operator Q̂ are zero in
the both Fock spaces,

h0; injĤkinj0; ini ¼ h0; outjĤkinj0; outi
¼ h0; injQ̂j0; ini ¼ h0; outjQ̂j0; outi ¼ 0:

Thus, according to Eqs. (4.14), (4.16), and (4.17), these are
uncharged states with minimal kinetic energy and the
operator Ĥkin is positively-defined in the ranges Ωi,
i ¼ 1, 2, 4, 5. One can verify that the introduced vacua
have minimum energy with respect to any uncharged
quasistationary states in the range Ω3. Indeed, in our
construction it is assumed that electrons and positrons
with quantum numbers in this range being in one of
corresponding asymptotic regions occupy quasistationary
states, i.e., they are described by wave packets that maintain
their forms sufficiently long in these regions. Only such
electron and positron wave packets have a physical mean-
ing. As we demonstrate in Secs. VII C and D in the range
Ω3, any electron wave packets that really have a physical
meaning can be localized only in the asymptotic region SL
(as in the range Ω2), whereas any positron wave packets
that really have a physical meaning can be localized only in
the asymptotic regions SR (as in the range Ω4). Kinetic
energies of these wave packets are formed for electrons by
contributions of π0ðLÞ, for positrons by contribution
jπ0ðRÞj and are, therefore, always positive.
Because any annihilation operators with quantum

numbers ni corresponding to different i anticommute
between themselves, we can represent the introduced vacua
as tensor products of the corresponding vacua in the five
ranges,

j0; ini ¼
Y5
i¼1

⊗j0; iniðiÞ;

j0; outi ¼
Y5
i¼1

⊗j0; outiðiÞ; ð4:29Þ
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where the partial vacua j0; iniðiÞ and j0; outiðiÞ obey
relations (4.27) and (4.28) for any ni and ζ.
It follows from relations (4.27) and (4.28) that

j0; iniðiÞ ¼ j0; outiðiÞ; i ¼ 2; 4: ð4:30Þ

Let us rewrite relations (3.38) for solutions with quantum
numbers n1 as follows

þψnðXÞ¼gðþjþÞ−1½ηLþψnðXÞþ−ψnðXÞgð−jþÞ�;
−ψnðXÞ¼gð−j−Þ−1½−ηL−ψnðXÞþþψnðXÞgðþj−Þ�;
þψnðXÞ¼gðþjþÞ−1½ηRþψnðXÞþ−ψnðXÞgð−jþÞ�;
−ψnðXÞ¼gð−j−Þ−1½−ηR−ψnðXÞþþψnðXÞgðþj−Þ�; ð4:31Þ

where pairs of solutions in the RHS of Eqs. (4.31) are
orthogonal due to relations (3.47) at any fixed t. We recall
that the relation

jgðþjþÞj2 ¼ jgðþj−Þj2 þ 1 ð4:32Þ

holds as a consequence of Eqs. (3.42). Using these relations
and two possible representations (4.5) for the operator
Ψ̂1ðXÞ, one can find direct and inverse canonical trans-
formations between the initial and final pairs of annihila-
tion operators of electrons:

þanðoutÞ¼ηRgðþjþÞ−1þanðinÞþgð−j−Þ−1gðþj−Þ−anðinÞ;
−anðoutÞ¼gðþjþÞ−1gð−jþÞþanðinÞ−ηLgð−j−Þ−1−anðinÞ;
þanðinÞ¼gð−j−Þ−1gðþj−Þ−anðoutÞþηLgðþjþÞ−1þanðoutÞ;
−anðinÞ¼−ηRgð−j−Þ−1−anðoutÞ

þgðþjþÞ−1gð−jþÞþanðoutÞ: ð4:33Þ

Canonical transformations between the initial and final
pairs of creation operators of electrons can be derived from
relations (4.33).
In the same manner, using relations (3.38) for solutions

with quantum numbers n ∈ Ω5, and two possible repre-
sentations for the operator Ψ̂5ðXÞ given by (4.5), one can
find canonical transformations between the initial and final
pairs of positron creation operators. They can be obtained
from relations (4.33) by the substitution þan1ðinÞ →
þb†n5ðoutÞ, −an1ðinÞ → −b†n5ðoutÞ, þan1ðoutÞ → þb†n5ðinÞ,
and −an1ðoutÞ → −b†n5ðinÞ.
Since the canonical transformations (4.33) do not mix

creation and annihilation operators, we can choose

j0; iniðiÞ ¼ j0; outiðiÞ; i ¼ 1; 5: ð4:34Þ

Together with their adjoint relations Eqs. (4.33) define an
unitary transformation VΩ1

between in- and out-operators
in the range Ω1,

fþa†ðinÞ; −a†ðinÞ; þaðinÞ; −aðinÞ; g
¼ VΩ1

fþa†ðoutÞ; −a†ðoutÞ; þaðoutÞ; −aðoutÞgV†
Ω1
:

The unitary operator VΩ1
has the form

VΩ1
¼ exp

�X
n∈Ω1

þa†nðoutÞgð−jþÞ−1−anðoutÞ
�

×exp

�
−
X
n∈Ω1

−a†nðoutÞ ln ½gð−j−Þgð−jþÞ−1�−anðoutÞ
�

×exp

�X
n∈Ω1

þa†nðoutÞ ln ½gðþjþÞgð−jþÞ−1�þanðoutÞ
�

×exp

�
−
X
n∈Ω1

−a†nðoutÞgð−jþÞ−1þanðoutÞ
�
: ð4:35Þ

Similar results take place in the range Ω5:

f−b†ðinÞ;þb†ðinÞ;−bðinÞ;þbðinÞg
¼ VΩ5

f−b†ðoutÞ;þb†ðoutÞ;−bðoutÞ;þbðoutÞgV†
Ω5
;

VΩ5
¼ exp

�
−
X
n∈Ω5

þb†ðoutÞgðþj−Þ−1−bðoutÞ
�

× exp

�
−
X
n∈Ω5

−b†ðoutÞ ln ½gð−j−Þgðþj−Þ−1�−bðoutÞ
�

× exp

�X
n∈Ω5

þb†ðoutÞ ln ½gðþjþÞgðþj−Þ−1�þbðoutÞ
�

× exp

�X
n∈Ω5

−b†ðoutÞgðþj−Þ−1þbðoutÞ
�
: ð4:36Þ

We recall, that the similar result (4.30) takes place in the
regions Ωi, i ¼ 2, 4. Both relations (4.30) and (4.34) mean
that the partial vacua j0; iniðiÞ, i ¼ 1, 2, 4, 5 are stable under
the action of the external field. In what follows, we denote
the tensor product of these partial vacua by j0i,

j0i¼
Y

i¼1;2;4;5
⊗j0; iniðiÞ ¼

Y
i¼1;2;4;5

⊗j0;outiðiÞ: ð4:37Þ

Below, we are going to consider one-particle states
a†nðin=outÞj0; in=outi and b†nðin=outÞj0; in=outi created
by the introduced creation operators from the vacuum.
The physical meaning of these states will be discussed

separately for each range of the quantum numbers n.

V. ONE-PARTICLE STATES IN THE
RANGES Ω1 AND Ω5

A. General

We believe that according to the structure of the Dirac
energy spectra in the asymptotic regions SL and SR, there
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exist only one-electron states in the range Ω1, whereas in
the range Ω5 there exist only one-positron states.
We recall that condition ðζψn

; −ζψnÞ ¼ 0 (B14) for
n ∈ Ω1 ∪ Ω5 means that the sets of solution s fζψn

ðXÞg
and f−ζψnðXÞg with opposite ζ represent independent
physical states.
We associate the independent pair fþψn1

ðXÞ; −ψn1ðXÞg
with electron in-solutions and the independent pair
f−ψn1ðXÞg and fþψn1ðXÞg with electron out-solutions.
Correspondingly, in the range Ω1, one-electron states are

þa†n1ðinÞj0i; −a†n1ðinÞj0i;
−a†n1ðoutÞj0i; þa†n1ðoutÞj0i: ð5:1Þ

We associate the independent pair f−ψn5ðXÞg and
fþψn5ðXÞg with positron in-solutions and the independent
pair fþψn5

ðXÞg and f−ψn5ðXÞg with positron out-
solutions. Correspondingly, in the range Ω5, one-positron
states are

þb†n5ðoutÞj0i; −b†n5ðoutÞj0i;
−b†n5ðinÞj0i; þb†n5ðinÞj0i: ð5:2Þ

B. Interpretation of states in Ω1 and Ω5

To give an interpretation of states in Ω1 and Ω5 we have
studied one-particle mean values of the charge, the kinetic
energy, the number of particles, the current, and the energy
flux through the surfaces x ¼ xL and x ¼ xR. The corre-
sponding calculations are placed in the Appendix C 1.
Based on results of such calculations, we can finally
conclude:
(1) The states (5.1) are states with the charge −e. The

states (5.2) are states with the charge þe.
(2) All these states have positive energies and therefore

they can be treated as physical particle states,
namely states (5.1) represent electrons, whereas
states (5.2) represent positrons. Their currents
(C7) and (C8) also confirm this interpretation.

(3) Mean energy fluxes (C10) and (C11) of states
under consideration through the surfaces x ¼ xL
and x ¼ xR together with expressions for their
currents allow us to believe that:
(a) electrons þa†n1ðinÞj0i and þa†n1ðoutÞj0i are

moving to the right,
(b) electrons −a†n1ðoutÞj0i and −a†n1ðinÞj0i are

moving to the left;
(c) positrons −b†n5ðinÞj0i−b†n5ðoutÞj0i are moving to

the right,
(d) positrons þb†n5ðoutÞj0i and þb†n5ðinÞj0i are mov-

ing to the left.

Thus, we see that the asymptotic longitudinal physical
momenta of electrons are pL

ph ¼ pL and pR
ph ¼ pR,

whereas for positrons they are pL
ph ¼ −pL and pR

ph ¼ −pR.
(4) We classify electron states þa†n1ðinÞj0i and

−a†n1ðinÞj0i as in- states, because they are moving
to the step from the asymptotic regions SL and SR,
respectively, with definite asymptotic behavior there.
We classify electron states −a†n1ðoutÞj0i and
þa†n1ðoutÞj0i as out- states because they are moving
from the step to the asymptotic regions SL and SR,
respectively, having there definite asymptotics.

We classify positrons states −b†n5ðinÞj0i and þb†n5ðinÞj0i
as in- states because they are moving to the step from
the asymptotic regions SL and SR, respectively, having
their definite asymptotics. We classify positron states

þb†n5ðoutÞj0i and −b†n5ðoutÞj0i as out- states because they
are moving from the step to the asymptotic regions SL and
SR, respectively, having their definite asymptotics.
In Fig. 3 we show in- and out-electron states in the range

Ω1 and in- and out-positron states in the range Ω5. Here
electrons are drawn by circles with the sign minus inside
and positrons with the sign plus inside. The associated
arrows show the energy flux directions given by Eqs. (C10)
and (C11). Thus, these arrows show the directions of
motion.
To justify completely our interpretation of the in- and

out-states, we first recall that it is impossible to refer (even
in the nonrelativistic quantum mechanics) to a direction of
motion of plane waves, which has no physical meaning,
since they are not localized. The scattering problem is
formulated for particles that are represented by wave
packets localized in some space areas. What do we demand

FIG. 3. in and out-particles near an x-potential step.
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from such localized packets? First of all, the localization
areas have to belong to one of the asymptotic regions SL or
SR. Each of the localized wave packets must be composed
of states with asymptotic physical momenta pL

ph or pR
ph,

respectively, that have the same directions and belong to
one and the same range Ωi. We call these packets
quasilocalized, because of not very rigid requirements
for their localization. Such wave packets are moving in
the same direction as their constituent waves. In the
scattering problem under consideration, we consider four
types of wave packets in each range Ω1 and Ω5, two of
them being quasilocalized in the asymptotic region SL and
two of them in the asymptotic region SR. All the packets
quasilocalized in SL are formed of solutions ζψn

ðXÞ,
whereas all the packets quasilocalized in SR are formed
of solutions ζψnðXÞ. Indeed, in the asymptotic region SL
and SR solutions ζψn

ðXÞ and ζψnðXÞ, respectively, are
reduced to waves with definite asymptotic physical
momenta pL

ph and p
R
ph, respectively. That is why directions

of motion of the wave packets in these regions are well
defined.
The electron wave packets in the range Ω1, composed of

solutions þψnðXÞ or −ψnðXÞ, are moving to the region Sint
(in the QM scattering theory they are called incoming
waves), whereas the electron wave packets composed of
solutions −ψnðXÞ or þψnðXÞ are moving away from the
region Sint (in the QM scattering theory they are called
outgoing waves). Thus, we believe that the first type of the
wave packets describe in-electron states with asymptotic
behavior formed before they meet the external field, and the
second type of wave packets describe out-electrons that
have asymptotic behavior observed after they have left the
region where the external field is present. That is the reason
for our definitions of in- and out- creation and annihilation
operators with quantum numbers n1 in the decomposition
of the quantized Dirac field (4.5). It is not difficult to give
similar interpretation for positron wave packets in the
range Ω5.
According to these definitions, we introduce absolute ~R

and relative R amplitudes of an electron reflection, and
absolute ~T and relative T amplitudes of an electron trans-
mission in the range Ω1 as

~Rþ;n1 ¼ cvRþ;n1 ; Rþ;n1 ¼ h0j−an1ðoutÞþa†n1ðinÞj0i;
~Tþ;n1 ¼ cvTþ;n1 ; Tþ;n1 ¼ h0jþan1ðoutÞþa†n1ðinÞj0i;
~R−;n1 ¼ cvR−;n1 ; R−;n1 ¼ h0jþan1ðoutÞ−a†n1ðinÞj0i;
~T−;n1 ¼ cvT−;n1 ; T−;n1 ¼ h0j−an1ðoutÞ−a†n1ðinÞj0i;

ð5:3Þ

and similar quantities for a positron in the range Ω5 as

~Rþ;n5 ¼ cvRþ;n5 ; Rþ;n5 ¼ h0j−bn5ðoutÞþb†n5ðinÞj0i;
~Tþ;n5 ¼ cvTþ;n5 ; Tþ;n5 ¼ h0jþbn5ðoutÞþb†n5ðinÞj0i;
~R−;n5 ¼ cvR−;n5 ; R−;n5 ¼ h0jþbn5ðoutÞ−b†n5ðinÞj0i;
~T−;n5 ¼ cvT−;n5 ; T−;n5 ¼ h0j−bn1ðoutÞ−b†n5ðinÞj0i;

ð5:4Þ

where R and T are the corresponding relative amplitudes,
and cv ¼ h0; outj0; ini, see Sec. VII D.
Using canonical transformations (4.33) one can calculate

the relative electron amplitudes,

Rþ;n ¼ gðþjþÞ−1gð−jþÞ; Tþ;n ¼ ηLgðþjþÞ−1;
R−;n ¼ gð−j−Þ−1gðþj−Þ; T−;n ¼ −ηRgð−j−Þ−1: ð5:5Þ

Similar expressions can be obtained for the corresponding
positron amplitudes. They differ from Eqs. (5.5) only by
phases.
As it follows from Eqs. (3.41) and (3.42) the corre-

sponding probabilities satisfy the following relations

jRþ;nj2 ¼ jR−;nj2; jTþ;nj2 ¼ jT−;nj2;
jRζ;nj2 þ jTζ;nj2 ¼ 1; n ∈ Ω1; Ω5: ð5:6Þ

Equation (5.6) is just the condition of the probability
conservation, written in terms of relative probabilities of
reflection and transmission, under the condition that in all
other states with quantum numbers m ≠ n partial vacua
remain vacua.
Now we see that according to Eqs. (C4) the relative

probabilities coincide with the corresponding mean
values,

NðaÞ
ζ;nðn;−ζÞ ¼ jRζ;nj2;
NðaÞ

ζ;nðn; ζÞ ¼ jTζ;nj2; n ∈ Ω1;Ω5: ð5:7Þ

This nontrivial result may be interpreted as QFT justi-
fication of rules of time-independent potential scattering
theory, see Ref. [47], in the ranges Ω1 and Ω5. To clarify
this point of view, let us consider one specific process in the
range Ω1, namely, the evolution of the in-state þa†n1ðinÞj0i.
From the point of view of causal evolution this state can be
reflected, i.e., to pass to the out-state −a†n1ðoutÞj0i with the
probability jRþ;nj2 and can be transmitted, i.e., to pass to
the out-state þa†n1ðoutÞj0i with the probability jTþ;nj2. Let
us try to apply the potential scattering theory to the same
problem, using our QFT picture. Then, we have to calculate
two mean currents in our in-state, one JR related to the out-
particles −a†n1ðoutÞj0i and another one JT related to the out-
particles þa†n1ðoutÞj0i. Both currents are proportional to the
mean numbers of the corresponding out-particles in our
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in-state and can be represented by these numbers in the
example under consideration. Then

JR ¼ h0jþan1ðinÞ½−a†n1ðoutÞ−an1ðoutÞ�þa†n1ðinÞj0i
¼ jgðþjþÞj−2jgð−jþÞj2 ¼ jRþ;nj2;

JT ¼ h0jþan1ðinÞ½þa†n1ðoutÞþan1ðoutÞ�þa†n1ðinÞj0i
¼ jgðþjþÞj−2 ¼ jTþ;nj2:

Thus, we see that in the range Ω1 realization of
rules of the potential scattering theory in the framework
of QFTallows one to obtain the correct result JR þ JT ¼ 1.

VI. ONE-PARTICLE STATES IN THE
RANGES Ω2 AND Ω4

In the range Ω2 there exist only one-electron states
a†n2 j0i, whereas in the range Ω4 there exist only one-
positron states b†n4 j0i,

a†n2 j0i; b†n4 j0i: ð6:1Þ

Below, we study their interpretations and properties.
Using Eqs. (3.36) we see that the renormalized QFT

currents, given by the operator Ĵ (C6) is zero in the states
under consideration,

Jn2 ¼ h0jan2 Ĵa†n2 j0i ¼ Jn4 ¼ h0jbn4 Ĵb†n4 j0i ¼ 0: ð6:2Þ

We interpret the QFT states (6.1) as standing waves
(stationary waves) that present a result of interference
between two waves traveling in opposite directions, see
Eqs. (3.29) and (3.30). In Fig. 3, we show these standing
waves in the ranges Ω2 and Ω4. Here electron standing
waves are drawn as circles with the minus inside and
positrons with the plus inside.
It should be stressed that the case of the ranges Ω2;4 can

be considered as a degenerate one with respect to the case
of the ranges Ω1;5. This case could formally by extracted
from relation (5.5) by considering the limit Tn;þ¼
ηLgðþjþÞ−1→0, which implies that jgðþjþÞj2¼jTnj−2→∞
for the potential step under consideration. Then it follows
from the relation jRnj2þjTnj2¼1 that jRnj2→1, which
corresponds to the almost total reflection, when the currents
of incoming and outgoing waves with a given n almost
cancel each other. According to the definition of the charge
operator (4.22), the space distributions of the charge are
given by the densities jζψnðXÞj2 and jζψn

ðXÞj2. In turn this
means that linear charge density in the asymptotic regions
SL and SR are given by the quantities ζRL=R=KðRÞ and

ζRL=R
=KðRÞ which were obtained in (B5) and (B7). We

note that jgðþj−Þj2 ≃ jgðþjþÞj2 in the case jgðþjþÞj2 ≫ 1

such that distributions for the charge density in the ranges
Ω1;5 become similar to the distributions in the ranges Ω2;4.

It is natural to expect that such a case is realized when
quantum numbers n1 are close to the upper bound of the
range Ω2, and the quantum numbers n5 are close to the
lower bound of the range Ω4.
Finally, in the ranges Ω2;4 only the total reflection takes

place. This process can be well described in the framework
of one-particle quantum mechanics, see [48]. Its rigorous
description in the framework of QFT as a time-dependent
process leads to the same results confirming heuristic one-
particle quantum-mechanical interpretation.
One can, in principle, define in- and out-states related to

these opposite waves. It should be noted that, on the one
hand, this is not a trivial task, and, on the other hand, this
problem is the scope of our main goal, which is the
consideration of particle creation processes. The latter
processes are specific for the Ω3 range, as it will be clear
in what follows. However, we represent below a brief
discussion of in- and out-states in the Ω2;4 ranges.
We believe that physical state vectors that correspond to

localized in- and out-electrons or positrons are some wave
packets composed of formal solutions introduced in the
ranges Ω2 and Ω4. In the region SR the constituent waves
ψn2ðXÞ have zero asymptotic values which implies that any
wave packet describing an electron is quasilocalized in the
region SL. In the region SL the constituent waves ψn4ðXÞ
have zero asymptotic values, which implies that any wave
packet describing a positron state is quasilocalized in the
region SR.

VII. ONE-PARTICLE STATES IN THE
RANGE Ω3

A. General

First we recall (see Sec. III B 3) that according to the
structure of the Dirac energy spectra in the asymptotic
regions SL and SR, there exist two sets fζψn3

ðXÞg and
fζψn3ðXÞg of solutions in the range Ω3 that obey the
orthogonality relations ðζψn3

; ζψn3Þ ¼ 0, see (B16). Thus,

in this range we have two pairs f−ψn3ðXÞ; −ψn3ðXÞg and
fþψn3

ðXÞ; þψn3ðXÞg of independent solutions. Each pair
forms a complete set of solutions in the range Ω3.
According to Eqs. (3.38), there exist relations between

solutions fζψn3
ðXÞg and fζψn3ðXÞg,

þψnðXÞ ¼ gðþj−Þ−1½−ψnðXÞgð−j−Þ þ −ψnðXÞ�;
−ψnðXÞ ¼ gð−jþÞ−1½þψnðXÞgðþjþÞ − þψnðXÞ�;
þψnðXÞ ¼ gðþj−Þ−1½−ψnðXÞgð−j−Þ − −ψnðXÞ�;
−ψnðXÞ ¼ gð−jþÞ−1½þψnðXÞgðþjþÞ þ þψnðXÞ�: ð7:1Þ

As it follows from Eqs. (3.42), in the range under
consideration the coefficients g satisfy the following
relation
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jgðþj−Þj2 ¼ jgðþjþÞj2 þ 1; ð7:2Þ

which differs from similar relation (4.32) in the range Ω1.
We associate the first independent pair

f−ψn3ðXÞ; −ψn3ðXÞg with in-solutions and the second
independent pair fþψn3

ðXÞ; þψn3ðXÞg with out-solutions.
Thus, solutions f−ψn3ðXÞ; þψn3ðXÞg are associated
with in- and out-electron states, whereas solutions
f−ψn3ðXÞ; þψn3

ðXÞg are associated with in- and out-
positron states. Correspondingly, in the range Ω3 there
exist four types of one-particle QFT states,

−a†n3ðinÞj0; ini; þa†n3ðoutÞj0; outi;
−b†n3ðinÞj0; ini; þb†n3ðoutÞj0; outi: ð7:3Þ

Since no other ranges are considered in this section, the
quantum numbers n3 are sometimes denoted by n for
simplicity.
Using both alternative decompositions (4.5) for Ψ3ðXÞ

and relations (7.1), we find the following linear canonical
transformations between the introduced in- and out- cre-
ation and annihilation operators

þanðoutÞ ¼ −gð−jþÞ−1−b†nðinÞ þ gð−jþÞ−1gðþjþÞ−anðinÞ;
þb†nðoutÞ ¼ gð−jþÞ−1gðþjþÞ−b†nðinÞ þ gð−jþÞ−1−anðinÞ;
−b†nðinÞ ¼ gðþj−Þ−1gð−j−Þþb†nðoutÞ − gðþj−Þ−1þanðoutÞ;
−anðinÞ ¼ gðþj−Þ−1þb†nðoutÞ

þ gðþj−Þ−1gð−j−ÞþanðoutÞ: ð7:4Þ

Because these transformations entangle annihilation and
creation operators, the partial vacua j0; inið3Þ and j0; outið3Þ
are essentially different. That is why, the total vacua j0; ini
and j0; outi are different as well, see Eqs. (4.29) and (4.37).

B. Interpretation of states in Ω3

To give an interpretation of states in Ω3 we have studied
one-particle mean values of the charge, the kinetic energy,
the number of particles, the current, and the energy flux
through the surfaces x ¼ xL and x ¼ xR. The correspond-
ing calculations are placed in the Appendix C 2. Based on
results of such calculations, we can finally conclude:
(1) The states

−a†n3ðinÞj0; ini; þa†n3ðoutÞj0; outi ð7:5Þ

are states with the charge −e. The states

−b†n3ðinÞj0; ini; þb†n3ðoutÞj0; outi ð7:6Þ

are states with the charge þe. Equations (C17)
confirm these conclusions.

(2) Each of these states belongs to one of the physical
wave packets that have positive energies as is
demonstrated in Sec. VII C, and, therefore, they
can be treated as physical particle states, namely,
states (7.5) represent electrons, whereas states (7.6)
represent positrons. Their currents (C17) also con-
firm this interpretation.

(3) Mean energy fluxes (C19) of states (7.3) through the
surfaces x ¼ xL and x ¼ xR together with expres-
sions (C17) for their currents allow us to con-
clude that:
(a) electrons −a†n3ðinÞj0; ini and positrons

þb†n3ðoutÞj0; outi are moving to the right;
(b) electrons þa†n3ðoutÞj0; outi and positrons

−b†n3ðinÞj0; ini are traveling to the left.
We stress that in contrast to the rangesΩ1 andΩ5, in
the range Ω3 signs of the energy fluxes of the
electrons are determined by signs of the quantum
number pR whereas signs of the energy fluxes of the
positrons are determined by signs of the quantum
number pL. This correlation follows from the fact
that in the region SR the directions of the positron
motion coincides with the directions of positron
current and in the region SL the directions of the
electron motion is opposite to the directions of the
electron current.

(4) We classify electron states −a†n3ðinÞj0; ini as in-
states, because they can move to the step only from
the asymptotic region SL. The latter statement is
based on our belief that the structure of the Dirac
spectrum in the region SR forbids electrons to be
present in this region.

We classify electron states þa†n3ðoutÞj0; outi as out-
states, because they can move from the step only to the
asymptotic regions SL. The latter statement is based on our
belief that the structure of the Dirac spectrum in the region
SR forbids electrons to be present in this region.
We classify positrons states −b†n3ðinÞj0; ini as in- states,

because they can move to the step only from the asymptotic
region SR. The latter statement is based on our belief that
the structure of the Dirac spectrum in the region SL forbids
positrons to be present in this region.
We classify positrons states þb†n3ðoutÞj0; outi as out-

states, because they can move to the step only from the
asymptotic region SR. The latter statement is based on our
belief that the structure of the Dirac spectrum in the region
SL forbids positrons to be present in this region.
In Fig. 3 we show in- and out-states in the range Ω3.

C. Discussion of the localization properties

Taking into account Eqs. (3.41), one can verify that
all differential mean numbers (C13) are equal. That is
why, we introduce the unique notation Ncr

n for all of
them,
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Ncr
n ¼Nb

nðoutÞ ¼Na
nðoutÞ ¼Nb

nðinÞ ¼Na
nðinÞ ¼ jgðþj−Þj−2:

ð7:7Þ

For the fermions under consideration, it is natural that the
quantity Ncr

n is always less or equal than one, Ncr
n ≤ 1. We

also note that the quantities π0ðLÞ and jπ0ðRÞj achieve their
minimal values on the boundaries of the range Ω3, namely,

min π0ðLÞ ¼ π⊥; min jπ0ðRÞj ¼ π⊥: ð7:8Þ

If Ncr
n tends to zero, Ncr

n → 0, then jgðþj−Þj2 → ∞ and,
at the same time, jgðþjþÞj2 → ∞ in accordance to rela-
tion (7.2).
The quantity Ncr

n can be calculated explicitly in the so-
called exactly solvable cases (see Introduction and Sec. IX).
However, we can derive some additional useful properties
of this quantity in the general case.
Taking into account the fact that no pair creation takes

place in the regions Ω2 and Ω4, we suppose that pair
creation vanishes near the boundaries of the range Ω3,

Ncr
n3 jn3→Ω2

→ 0 ⇔ Ncr
n3 jπ0ðRÞ→−π⊥ → 0;

Ncr
n3 jn3→Ω4

→ 0 ⇔ Ncr
n3 jπ0ðLÞ→π⊥ → 0: ð7:9Þ

Note that in this case kinetic energies of electron or
positron plane waves given by Eqs. (4.15) tend to their
values, ζEn3 → π0ðLÞ and ζEn3

→ π0ðRÞ, near the bounda-
ries of the range Ω3. Therefore, conditions (7.9) provide
that

ζEn3 > 0; ζEn3
< 0 ð7:10Þ

near the boundaries of the range Ω3 and operator Ĥkin

(4.21) is positively-defined in this part of the range Ω3. We
believe that inequality (7.9) takes place for all nonpatho-
logical x-electric steps.
As was already mentioned, Eqs. (7.9) imply that

jgðþj−Þj2 ≃ jgðþjþÞj2 → ∞. Then it follows from
Eqs. (B5) and (B7) that the electron density jζψnðXÞj2 is
concentrated in the region SL, whereas the positron density
jζψnðXÞj2 is concentrated in the region SR,

jζψn3ðXÞj2jπ0ðRÞ→−π⊥ → 0; x ∈ SR;

jζψn3
ðXÞj2j

π0ðLÞ→π⊥
→ 0; x ∈ SL; ð7:11Þ

which means that these densities are continuous near the
boundaries of the range Ω3. We see that conditions (7.9)
and (7.11) are equivalent. Thus we believe that conditions
(7.11) imply (7.9) near the boundaries of the range Ω3.
For arbitrary n ∈ Ω3 some properties of Ncr

n can be
established first in the case of weak external fields (but still
strong enough, U − 2π⊥ > 0, to provide the existence of

the Ω3-range) using a semiclassical approximation. In the
latter case a really strong restriction has to be imposed, that
Ncr

n is exponentially small, Ncr
n ≪ 1. Then it is natural to

expect that for any finite U < ∞ and m ≠ 0 the inequality
jgðþj−Þj−2 < 2π⊥=U holds, such that inequalities (7.10)
hold for arbitrary n ∈ Ω3. The condition Ncr

n ≪ 1 and
Eqs. (B5) and (B7) imply that for arbitrary n ∈ Ω3 the
electron density jζψnðXÞj2 is concentrated in the region SL,
whereas the positron density jζψn

ðXÞj2 is concentrated in
the region SR,

jζψn3ðXÞj2 → 0; x ∈ SR;

jζψn3
ðXÞj2 → 0; x ∈ SL: ð7:12Þ

Thus, the wave functions ζψn3ðXÞ and ζψn3ðXÞ behave
quite similarly to the behavior of the corresponding
functions with n ∈ Ω2, Ω4.
In the general case when the quantities Ncr

n are not small,
it is natural to expect a similar behavior, namely: the region
SR is not available for electrons, a the region SL is not
available for positrons. However, when the quantities Ncr

n
are not small, the latter property may hold only for the
corresponding wave packets, but not for the separate plane
waves. That means that Eq. (7.12) may not hold, that is,
these plane waves may be different from zero in the whole
space. Within our context it is assumed that electrons and
positrons in one of corresponding asymptotic regions may
occupy quasistationary states, i.e. they should be described
by wave packets that pertain their form sufficiently long in
one of corresponding asymptotic regions. In other words,
only such electron and positron wave packets have a
physical meaning in the problem under consideration.
This is what we shall keep in mind when discussing the
wave packets in what follows. We can demonstrate that in
the general case the electron wave packets that really have a
physical meaning can be localized only in the asymptotic
region SL, whereas the positron wave packets that really
have a physical meaning can be localized only in the
asymptotic regions SR. This is a consequence of a specific
structure of plane waves ζψn3ðXÞ and ζψn3

ðXÞ in asymp-

totic regions SL and SR. Indeed, this structure is quite
different from the structure of plane waves in the ranges Ω1

andΩ5. As was mentioned above, electron states with given
quantum numbers n3 are states with a definite quantum
number pR, whereas positron states with given quantum
numbers n3 are states with a definite quantum number pL.
This fact together with relation (7.1) implies, for example,
that a partial wave of an in-electron, −ψn3ðXÞ, in the region
where the electron can really be observed, i.e., in the region
SL, is always a superposition of two waves with opposite
signs of the quantum number pL, þψn3

ðXÞ and −ψn3ðXÞ. In
turn, this implies that in contrast to the ranges Ω1 and Ω5,
the sign of pL is not related to the sign of the mean energy
flux in the region SL. The same holds true for a partial wave
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of an out-electron þψn3ðXÞ. Similarly, one can see that
partial waves of both in- positron −ψn3ðXÞ, and out-
positron þψn3

ðXÞ, in the region SR, are always super-
positions of two waves with quantum number pR of
opposite signs and, therefore, signs of these quantum
numbers are not connected to the sign of the mean energy
flux in the region SR. However, as it was demonstrated
above, these are states with well-defined asymptotic energy
flux, and therefore with the corresponding well-defined
asymptotic field momentum. One can demonstrate that
namely these properties of the constituent plane waves are
responsible for the fact that stable electron wave packets
can exist only in the region SL, whereas stable positron
wave packets can exist only in the region SR, see details in
the Appendix D.
We stress that in the range Ω3, within each pair of

independent states with the same n, the in- particles and
out- particles always move in opposite directions.
Mean values (C14) and (C17) are typical for the total

reflection. Indeed, all the mean particle numbers do not
change in the course of the interaction with the step field,
and the both electron currents are equal in magnitude and
have opposite directions, the same holding for the both
positron currents. We have demonstrated that electron
densities in Ω3 have a behavior similar to that in the Ω2

range, vanishing in the SR region, while positron densities
in Ω3 behave similarly to the Ω4 range, vanishing in the SL
region.
Since the above-described properties of mean values

(C14) and (C17) hold true in the whole range Ω3, we
believe that all the in-states in this range are subjected to the
total reflection. Once this is the case, the wave functions of
the in-states and of the out-states corresponding to them
have to be concentrated in the same regions on the left or on
the right of the x-electric step, similar to the behavior of the
particles in the ranges Ω2 and Ω4, respectively. Note that
kinetic energies of these physical states are sums of the
positive partial energies V⊥M−1

n
ζEL

n for electrons and
−V⊥M−1

n ζE
R
n
for positrons, where the quantities ζEL

n and

ζE
R
n
are given by Eqs. (4.13).

Some additional arguments in favor of the given inter-
pretation are in order.
In the range Ω3 no particles exist that could maintain the

direction of their motion after the interaction with the
external field. This peculiarity allows one to classify these
one-particle states as in- or out-states by using mean
currents (C17). The electric field under consideration
accelerates positrons along the axis x and electrons in
the opposite direction, that is why in the range Ω3

the current of out-electron states coincides with the
electric field direction, whereas the current of in-electron
states is opposite to the electric field direction. Thus,
þa†nðoutÞj0; outi and þb†n3ðoutÞj0; outi are out- states of
electrons and positrons, respectively, whereas

−a†n3ðinÞj0; ini and −b†n3ðinÞj0; ini are in− states of elec-
trons and positrons, respectively. This also implies that
j0; ini is the in− vacuum and j0; outi is the out− vacuum.
Finally, −a†n3ðinÞ, −an3ðinÞ, −b†n3ðinÞ, −bn3ðinÞ are creation
and annihilation operators of in− electrons and positrons
respectively, whereas þa†n3ðoutÞ, þan3ðoutÞ, þb†n3ðoutÞ,
þbn3ðoutÞ are creation and annihilation operators of out-
electrons and out-positrons, respectively.
We come to the same conclusion considering the mean

values (C13). Thus, we see that the quantities Na
nðoutÞ and

Nb
nðoutÞ are differential mean numbers of out-electrons and

out-positrons, respectively, created from the vacuum, since
electric currents composed of the corresponding states
coincide with the direction of the electric field. In this
case we face electron and positron pairs outgoing from the
state where no incoming particles were present. The mean
numbers of created electrons are equal to mean numbers of
created positrons, in full agreement with the charge con-
servation law.
Besides, it follows from Eq. (C13) that Nb

nðinÞ and
Na

nðinÞ are differential mean numbers of electrons and
positrons, respectively, annihilated from the initial neutral
state of an electron-positron pair. The electric current
corresponding to this initial pair is directed opposite to
the electric field, that is why after the annihilation its
electron and positron components are equally reduced by
the quantity eM−1Ncr

n .
Thus, we believe that the wave functions −ψn3ðXÞ and

−ψn3ðXÞ describe initial or incoming states of an electron
and a positron, respectively, whereas the wave functions
þψn3ðXÞ and þψn3

ðXÞ describe final or outgoing states of
an electron and a positron, respectively.
This causal identification coincides with the one pro-

posed by Nikishov in the frame of relativistic quantum
mechanics in Refs. [2,17]. Note that it differs from another
identification in the frame of relativistic quantum mechan-
ics given in Refs. [14] and repeated, for example, in
Refs. [3,12]. In the Sec. VII E we discuss this problem
in more detail.

D. Reflection and creation of particles in Ω3

The total number Ncr
n of pairs created from the vacuum is

the sum over the range Ω3 of the differential mean numbers
Ncr

n ,

N ¼
X
n∈Ω3

Ncr
n ¼

X
n∈Ω3

jgðþj−Þj−2: ð7:13Þ

Here we consider probability amplitudes of some sim-
plest processes in the range Ω3. First of all, this is the
vacuum-to-vacuum transition amplitude which coincides
[due to Eq. (4.37)] with the total vacuum-to-vacuum
transition amplitude cv,
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cð3Þv ¼ ð3Þh0; outj0; inið3Þ ¼ cv ¼ h0; outj0; ini: ð7:14Þ

Among other nonzero amplitudes we have to consider
two relative scattering amplitudes of electrons and
positrons,

wðþjþÞn0n ¼ c−1v h0; outjþan0 ðoutÞ−a†nðinÞj0; ini;
wð−j−Þn0n ¼ c−1v h0; outjþbn0 ðoutÞ−b†nðinÞj0; ini; ð7:15Þ

and two relative amplitudes of a pair creation and a pair
annihilation,

wðþ − j0Þn0n ¼ c−1v h0; outjþan0 ðoutÞþbnðoutÞj0; ini;
wð0j −þÞnn0 ¼ c−1v h0; outj−b†nðinÞ−a†n0 ðinÞj0; ini: ð7:16Þ

As can be derived from relations (7.4), all the amplitudes
(7.15) and (7.16) are diagonal in the quantum numbers n
and can be expressed in terms of the coefficients gðζ0 jζÞ as
follows:

wðþjþÞn0n ¼ δn;n0wnðþjþÞ;
wnðþjþÞ ¼ gðþj−Þgð−j−Þ−1 ¼ gðþj−ÞgðþjþÞ−1;
wð−j−Þnn0 ¼ δn;n0wnð−j−Þ;
wnð−j−Þ ¼ gð−jþÞgð−j−Þ−1 ¼ gð−jþÞgðþjþÞ−1;

wð0j −þÞnn0 ¼ δn;n0wnð0j −þÞ;
wnð0j −þÞ ¼ −gð−j−Þ−1;

wðþ − j0Þn0n ¼ δn;n0wnðþ − j0Þ;
wnðþ − j0Þ ¼ gðþjþÞ−1: ð7:17Þ

Recalling the physical meaning of the one-particle states
(7.3), we conclude that in the rangeΩ3 the total reflection is
the only possible form of particle scattering, with wðþjþÞn
and wð−j−Þn being relative probability amplitudes of a
particle reflection. The relative probability amplitude
wðþ − j0Þn describes creation of an electron-positron pair
of out-particles with given quantum numbers n, and the
relative probability amplitude wð0j −þÞn describes anni-
hilation of an electron-positron pair of in-particles, each of
them having quantum numbers n.
Unitary relations (3.40) and their consequences (3.41)

and (3.42) imply the following connections for the intro-
duced amplitudes w:

jwnðþjþÞj2 ¼ jwnð−j−Þj2;
jwnðþ − j0Þj2 ¼ jwnð0j −þÞj2;

jwnðþjþÞj2 − jwnðþ − j0Þj2 ¼ 1;

wnð−j−Þ�
wnðþjþÞ ¼ −

wnðþ − j0Þ�
wnð0j −þÞ : ð7:18Þ

Referring to Eqs. (7.17), relations (7.4) can be rewritten
as

−anðinÞ ¼ wnðþjþÞ−1½þanðoutÞ þ wnðþ − j0Þþb†nðoutÞ�;
−bnðinÞ ¼ wnð−j−Þ−1½þbnðoutÞ − wnðþ − j0Þþa†nðoutÞ�:

ð7:19Þ
Together with their adjoint relations they determine a
unitary transformation VΩ3

between the in- and out-
operators,

f−a†ðinÞ; −aðinÞ; −b†ðinÞ; −bðinÞg
¼ VΩ3

fþa†ðoutÞ; þaðoutÞ; þb†ðoutÞ; þbðoutÞgV†
Ω3
:

Since Eqs. (7.18) and (7.19) coincide formally with the
corresponding equations for t-electric potential steps, the
unitary operator VΩ3

can be taken from the works [5,49]. It
has the form

VΩ3
¼ exp

�
−
X
n∈Ω3

þa†nðoutÞwnðþ − j0Þþb†nðoutÞ
�

× exp

�
−
X
n∈Ω3

þbnðoutÞ lnwnð−j−Þþb†nðoutÞ
�

× exp

�X
n∈Ω3

þa†nðoutÞ lnwnðþjþÞþanðoutÞ
�

× exp

�
−
X
n∈Ω3

þbnðoutÞwnð0j −þÞþanðoutÞ
�
:

ð7:20Þ
At the same time, the operator VΩ3

relates the in- and
out-vacua, j0; ini ¼ VΩ3

j0; outi and therefore it determines
the vacuum-to-vacuum transition amplitude cv,

cv ¼ h0; outjVΩ3
j0; outi ¼

Y
n

wnð−j−Þ−1: ð7:21Þ

The probabilities of a particle reflection, a pair creation,
and the probability for a vacuum to remain a vacuum can be
expressed via differential mean numbers of created pairs
Ncr

n . By using the relation jwnð−j−Þj2 ¼ ð1 − Ncr
n Þ−1, one

finds

PðþjþÞn0;n ¼ jh0;outjþan0 ðoutÞ−a†nðinÞj0; inij2

¼ δn;n0
1

1−Ncr
n
Pv;

Pðþ− j0Þn0;n ¼ jh0;outjþan0 ðoutÞþbnðoutÞj0; inij2

¼ δn;n0
Ncr

n

1−Ncr
n
Pv;

Pv ¼ jcvj2¼
Y
n

pn
v; pn

v ¼ð1−Ncr
n Þ: ð7:22Þ
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The probabilities for a positron scattering Pð−j−Þn;n0 and
a pair annihilation Pð0j −þÞn;n0 coincide with the expres-
sions PðþjþÞ and Pðþ − j0Þ, respectively.
We finish this section with some important remarks.

Note that pn
v given by Eq. (7.22) is the probability that the

partial vacuum state with given n remains a vacuum. One
can see that in the framework of developed QFT quantiza-
tion the total reflection of a particle off the x-electric
potential step is described by the conditional probability of
reflection of a particle with given quantum numbers n,
under the condition that all other partial vacua remain
vacua. Such a probability has the form jwnðþjþÞj2pn

v.
Consequently, jwnðþjþÞj2pn

v ¼ 1. However, the probabil-
ity PðþjþÞn;n is not equal to one as it follows from
Eq. (7.22). If all Ncr

n ≪ 1 then

1 − Pv ≈ N ¼
X
n∈Ω3

Ncr
n : ð7:23Þ

The vacuum instability is not essential if Ncr
n → 0. Then

Pv → 1, PðþjþÞn;n → 1 and Pðþ − j0Þn;n → Ncr
n .

It should be noted that semiclassical approximations can
be used namely under the latter condition. We recall that, by
using the proper-time method, Schwinger calculated the
one-loop effective Lagrangian L in electric field and
assumed that the probability Pv that no actual pair-creation
has occurred in the history of the field during the time T in
the volume V can be presented as Pv ¼ expf−VT2ImLg
[50] (for a subsequent development, see the review [51]).
Schwinger interpreted 2ImL as the probability, per time
unit, and per volume unit, of creating a pair by a
constant electric field. This interpretation remains approx-
imately valid as long as the WKB calculation is applicable,
that is, VT2ImL ≪ 1. Then the total probability of pair-
creation reads as 1 − Pv ≈ VT2ImL. To calculate the
differential probabilities of pair-creation with quantum
numbers m (for instance, momentum and spin polariza-
tion), one can represent the probability Pv as an infinite
product:

Pv ¼
Y
m

e−2ImSm ; ð7:24Þ

where a certain discretization scheme is used, so that the
effective action S ¼ VTL is written as S ¼ P

mSm. The
above-said is possible only if m are selected as integrals of
motion. Then, e−2ImSm is the vacuum-persistence proba-
bility in a cell of the space of quantum numbers m. Using
the WKB approximation in the case 2ImSm ≪ 1, one
obtains for the probability of a single pair-production with
quantum numbersm and for the corresponding mean values
Ncr

m of created pairs the following relation:

Ncr
m ≈ Pðþ − j0Þm;m ≈ 2ImSm: ð7:25Þ

E. Some comments on in- and out- states
in the Klein zone

It should be noted that in the works [2,13] of Nikishov he
gave a consistent (and correct to our mind) resolution of the
Klein’s paradox based on his original approach, which is a
combination of elements of second quantized theory and
relativistic quantum mechanics. In particular, treating the
Klein step, he interpreted solutions ζψnðXÞ and ζψn

ðXÞ in
the way that correspond to our choice of in- and out- states.
After Nikishov’s works there appear a work of Hansen and
Ravndal [14] where they tried to use second quantized
quantum field theory to describe quantum effects near
x-electric potential steps. However, their interpretation of
the solutions ζψnðXÞ and ζψn

ðXÞ was different from
Nikishov’s one. In terms of proposed by us quantization
they interpreted our in-states as out-states and our out-states
as in-states. Nikishov in his work [17] has pointed out that
this is a wrong interpretation. Our detailed analysis con-
firms his opinion. Nevertheless the interpretation of Hansen
and Ravndal was repeated in the textbook [3], in the review
[12], and in some other publications. To our mind Hansen
and Ravndal came to their interpretation treating processed
in the Klein zone by a misleading analogy with the one-
particle scattering, which really takes place in the rangesΩ1

andΩ5. That is why they believed that in the rangeΩ3 signs
of the quantum numbers pL and pR define signs of particle
asymptotic longitudinal kinetic momenta in the regions SL
and SR, respectively. If so, then one has to treat solutions

ζψn
as describing one-electron states and solutions ζψn as

describing one-positron states, such that signs of the
corresponding quantum numbers pL and pR label incoming
and outgoing particles. However, our analysis of states in
the range Ω3, given in Sec. VII, does not confirm such a
correlation between signs of the asymptotical physical
longitudinal energy flux and quantum numbers pL and
pR. We have demonstrated that the wave functions −ψn3ðXÞ
and −ψn3ðXÞ describe incoming states of an electron and a
positron, respectively, whereas the wave functions þψn3ðXÞ
and þψn3

ðXÞ describe outgoing states of an electron and a
positron, respectively. That is why we believe that the
particle-antiparticle and causal identification of wave
functions ζψnðXÞ and ζψn

ðXÞ given in Ref. [14] is erro-
neous. Accepting this identification, one makes a mistake
in defining what are in- and out-vacua, and calculates, e.g.,
the quantity Nb

nðinÞ (C13) instead of the mean number of
created pairs Na

nðoutÞ with all the ensuing consequences.
The correct causal interpretation is extremely important in
all problems where one has to use the causal (in-out)
propagator. Probably, the wrong interpretation did not
attract for a long time an attention since in majority works
devoted to the pair creation due to x-electric potential steps,
the only mean numbers Nb

nðinÞ [instead of Na
nðoutÞ] and

functions of these numbers were calculated. However, in all
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the considered cases the quantities Nb
nðinÞ and Na

nðoutÞ
coincide numerically.

VIII. COMPLETE QED AND MASSIVE
PARTICLE PROPAGATORS

Finally, it should be noted that quantization of the Dirac
field in the presence of an x-electric potential steps
developed in the present article serves as the base for
constructing the Furry picture in the complete QED, which
includes, apart from the matter (Dirac) field, the electro-
magnetic field as well. Formally, this Furry picture can be
formulated in full analogy with the case of the t-electric
potential steps considered in detail in Refs. [5]. Such a
theory allows one to consider all quantum processes with
charged particles moving in external background and
interacting with photons. Processes of zero order with
respect to the radiative interaction in such a theory do not
include the interaction with the photons, their treatment
was already presented above in Secs. IV–VII.
In complete QED with an external background any

possible process is described by the following matrix
element

h0; outjaðoutÞ � � � bðoutÞ � � � c � � � SðΨ̂; Ψ̂†; ÂμÞ � � �
c† � � � b†ðinÞ � � � a†ðinÞj0; ini;

where c and c† are creation and annihilation operators of
photons and SðΨ̂; Ψ̂†; ÂμÞ is the S-matrix in the interaction
representation.
One sees specific terms influenced by vacuum instability

when the initial and final states of charged particles belong
to the range Ω3. In this range, every operator F can be
expressed exclusively in terms of in-annihilating operators
and out-creation operators, using relations (7.19), and then
divided into two parts,

F ¼ Fð−Þ þFðþÞ; Fð−Þj0; ini ¼ 0; 0¼ h0;outjFðþÞ;

Then one can introduce a generalized normal form
N out−inð…Þ in which all Fð−Þ are placed to the right from
all FðþÞ. Wick’s theorem holds with generalized chrono-
logical couplings,

FG|{z} ¼ FG −N out−inðFGÞ ¼ h0; outjFGj0; inic−1v ;

FðXÞGðYÞ
zfflfflfflfflfflffl}|fflfflfflfflfflffl{

¼ T̂FðXÞGðYÞ −N out−in½FðXÞGðYÞ�
¼ h0; outjT̂FðXÞGðYÞj0; inic−1v ;

where T̂ denotes the chronological ordering operation,
see [5].
To reduce any functional of field operators to the

generalized normal form in the range Ω3, we have to
represent the operator Ψ̂3ðXÞ (4.5) with the help of
Eqs. (7.1) and (7.17) in the following form

Ψ̂3ðXÞ ¼
X
n3

M−1=2
n3 ½−an3ðinÞwn3ðþjþÞþψn3ðXÞ

þ þb†n3ðoutÞwn3ð−j−Þ−ψn3ðXÞ�;
Ψ̂†

3ðXÞ ¼
X
n3

M−1=2
n3 ½þa†n3ðoutÞwn3ðþjþÞ−ψ†

n3ðXÞ

þ −bn3ðinÞwn3ð−j−Þþψ†
n3
ðXÞ�: ð8:1Þ

Processes of higher orders are described by the Feynman
diagrams with two kinds of charged particle propagators in
the external field under consideration, namely, the so-called
in-out propagator ScðX;X0Þ, which is just the causal
Feynman propagator, and the so-called in-in propagator
ScinðX;X0Þ,

ScðX;X0Þ ¼ ih0; outjT̂ Ψ̂ðXÞΨ̂†ðX0Þγ0j0; inic−1v ;

ScinðX;X0Þ ¼ ih0; injT̂ Ψ̂ðXÞΨ̂†ðX0Þγ0j0; ini; ð8:2Þ

where T̂ in Eqs. (8.2) denotes the chronological ordering
operation.
Using Eqs. (4.4), (4.5), (4.6), and anticommutation

relations (4.7), we find for the in-in propagator:

ScinðX;X0Þ ¼ θðt − t0ÞS−inðX;X0Þ − θðt0 − tÞSþinðX;X0Þ;

S−inðX;X0Þ ¼ i
X2
j¼1

GjðX;X0Þγ0 þ ~S−inðX;X0Þ;

SþinðX;X0Þ ¼ i
X5
j¼4

GjðX;X0Þγ0 þ ~SþinðX;X0Þ;

~S−inðX;X0Þ ¼ i
X
n3

M−1
n3

−ψn3ðXÞ−ψ̄n3ðX0Þ;

~SþinðX;X0Þ ¼ i
X
n3

M−1
n3 −ψn3ðXÞ−ψ̄n3ðX0Þ; ð8:3Þ

where the functions GjðX;X0Þ are given by Eq. (3.52).
Calculation of the in-out propagator can be done in a

similar manner. Then, taking into account Eq. (7.19), we
obtain

ScðX;X0Þ ¼ θðt− t0ÞS−ðx; x0Þ− θðt0 − tÞSþðx; x0Þ;

S−ðX;X0Þ ¼ i
X2
j¼1

GjðX;X0Þγ0 þ ~S−ðX;X0Þ;

SþðX;X0Þ ¼ i
X5
j¼4

GjðX;X0Þγ0 þ ~SþðX;X0Þ;

~S−ðX;X0Þ ¼ i
X
n3

M−1
n3 ½þψn3ðXÞwn3ðþjþÞ−ψ̄n3ðX0Þ�;

~SþðX;X0Þ ¼ i
X
n3

M−1
n3 ½−ψn3ðXÞwn3ð−j−Þþψ̄n3

ðX0Þ�; ð8:4Þ

Using relations (7.1), we can represent the difference
between both propagators as follows
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SpðX;X0Þ ¼ ScinðX;X0Þ − ScðX;X0Þ
¼ −i

X
n3

M−1
n3 ½−ψn3ðXÞwn3ð0j −þÞ−ψ̄n3ðX0Þ�:

ð8:5Þ

It is formed in the range Ω3 only and vanishes if there is no
pair creation.

IX. SAUTER POTENTIAL

A. Scattering, reflection, and pair creation
on the Sauter potential

Let us consider an x-electric potential step in the form of
the Sauter potential [8]. In this case

A0ðxÞ ¼ −αE tanh ðx=αÞ; α > 0;

EðxÞ ¼ Ecosh−2ðx=αÞ;
UðxÞ ¼ −eA0ðxÞ ¼ eEα tanh ðx=αÞ; ð9:1Þ

see Fig. 1, and the asymptotic quantities introduced in
Sec. II are

UR ¼ −UL ¼ Uðþ∞Þ ¼ eEα; U ¼ 2eEα;

π0ðLÞ ¼ p0 þ eEα; π0ðRÞ ¼ p0 − eEα:

Solutions (3.6) of Dirac equation (2.8) with special
asymptotic behavior at x → �∞ are expressed via the
corresponding solutions of Eq. (3.5). The latter have the form

ζφn
ðxÞ ¼ ζN exp ðiζjpLjxÞ½1þ e2x=α�−iðζjpLjþjpRjÞα=2

ζuðxÞ;
þuðxÞ ¼ Fða; b; c; ξÞ; −uðxÞ ¼ Fðaþ 1 − c; bþ 1 − c; 2 − c; ξÞ;
ζφnðxÞ ¼ ζN exp ðijpLjxÞ½1þ e2x=α�iðζjpRj−jpLjÞα=2ζuðxÞ;
þuðxÞ ¼ Fðc − a; c − b; cþ 1 − a − b; 1 − ξÞ;
−uðxÞ ¼ Fða; b; aþ bþ 1 − c; 1 − ξÞ;

a ¼ iα
2
ðjpLj þ jpRjÞ þ 1

2
þ
�
1

4
− ðeEα2Þ2 þ iχeEα2

�
1=2

;

b ¼ iα
2
ðjpLj þ jpRjÞ þ 1

2
−
�
1

4
− ðeEα2Þ2 þ iχeEα2

�
1=2

;

c ¼ 1þ iαjpLj; ξ ¼ 1

2

�
1þ tanh

x
α

�
; ð9:2Þ

where Fða; b; c; ξÞ is the hypergeometric series of variable
ξ with the normalization Fða; b; c; 0Þ ¼ 1, [52]. As was
already mentioned in Sec. II, the quantity χ can be chosen
to be either χ ¼ þ1 or χ ¼ −1, and ζN and ζN are
normalization factors given by Eq. (3.37).
A formal transition to the Bose case can be done by

setting χ ¼ 0 in Eqs. (9.2). In this case n ¼ ðp0;p⊥Þ, and
ζN and ζN are normalization factors given by Eq. (3.44).

For fermions, using Kummer’s relations and Eq. (3.39),
one can find coefficients gðþj−Þ� to be

gðþj−Þ� ¼ −ηR
þCΓðcÞΓðc − a − bÞ
−CΓðc − aÞΓðc − bÞ ; ð9:3Þ

where þC and −C are constants given by Eq. (3.37). Then

jgðþj−Þj−2 ¼
sinh ðπαjpLjÞ sinh ðπαjpRjÞ

j sinh fπα½eEαþ 1
2
ðjpLj − jpRjÞ�g sinh fπα½eEα − 1

2
ðjpLj − jpRjÞ�gj : ð9:4Þ

In a similar manner we obtain coefficients gðþj−Þ� for
bosons,

gðþj−Þ� ¼ − þCΓðcÞΓðc − a − bÞ
−CΓðc − aÞΓðc − bÞ ; ð9:5Þ

where þC and −C are given by Eqs. (3.44) and parameters
a, b, and c are given by Eq. (9.2) at χ ¼ 0. Then

jgðþj−Þj−2¼
sinhðπαjpLjÞsinhðπαjpRjÞ

cosh2
h
π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðeEα2Þ2−1

4

q i
þsinh2½πα

2
ðjpLj− jpRjÞ�

:

ð9:6Þ

Relations (9.4) and (9.6) for jgðþj−Þj−2 hold in the
ranges Ω1, Ω5, and Ω3. However, their interpretations in
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the range Ω3 and in the ranges Ω1, Ω5 are completely
different.
Using Eqs. (5.5) and (5.6), we find reflection jRζ;nj2 and

transmission jTζ;nj2 probabilities for electrons in the range
Ω1 and for the positrons in the range Ω5, that formally have
the same form in terms of the quantities jgðþj−Þj,

jRζ;nj2 ¼ 1 − jTζ;nj2;
jTζ;nj2 ¼ jgðþjþÞj−2 ¼ ½1þ jgðþj−Þj2�−1: ð9:7Þ

However, the latter quantities are given by Eq. (9.4) for
fermions and by Eq. (9.6) for bosons. As was already noted
in Sec. V B, Eqs. (9.7) imply that jTζ;nj2 ≤ 1.
In the range Ω3, the quantity Ncr

n has the form Ncr
n ¼

jgðþj−Þj−2 (7.7), where jgðþj−Þj−2 are given by Eq. (9.4) for
fermions and by Eq. (9.6) for bosons. As was already
demonstrated, in the general case, for fermions one has
Ncr

n ≤ 1.
According to our interpretation presented in Sec. VII D,

it is known that in the range Ω3, similar to the ranges Ω2

and Ω4, the in-electron or the in-positron are subjected to
the total reflection such that the corresponding transmission
probabilities vanish. In this case, wnðþjþÞ and wnð−j−Þ
represent relative probability amplitudes of the reflection.
In spite of the fact that the transmission probabilities
vanish, the relative probabilities of the reflection are not
equal to unit due to the vacuum instability. The quantities
wnðþ − j0Þ and wnð0j −þÞ are relative probability ampli-
tudes of an electron-positron pair creation and annihilation,
respectively.
Using Eqs. (7.17) and (A13), we can rewrite these

relative probabilities and the probability for a vacuum to
remain a vacuum as follows:

jwnðþ − j0Þj2 ¼ jgðþjþÞj−2 ¼ ½jgðþj−Þj2 − κ�−1
¼ Ncr

n ð1 − κNcr
n Þ−1;

½pn
v�−κ ¼ jwnð−j−Þj2 ¼ jgðþj−Þj2jgðþjþÞj−2

¼ ð1 − κNcr
n Þ−1;

Pv ¼ jcvj2 ¼
Y
n∈Ω3

pn
v ¼

Y
n∈Ω3

ð1 − κNcr
n Þκ;

κ ¼
�þ1; for fermions

−1; for bosons
: ð9:8Þ

For the first time these formulas were obtained by
Nikishov in the framework of one-particle relativistic
quantum mechanics in Refs. [2,13].
Equations (9.4) and (9.6) allow one to verify that for any

π⊥ ≠ 0 one of the following limits holds true:

jgðþj−Þj−2 ∼ jαpRj → 0;

jgðþj−Þj−2 ∼ jαpLj → 0: ð9:9Þ

These limits imply the following properties of the coef-
ficients jgðþj−Þj in the case of the Sauter step:
(a) jgðþj−Þj−2 → 0 in the range Ω1 if n tends to the

boundary with the range Ω2 (jpRj → 0)
(b) jgðþj−Þj−2 → 0 in the range Ω5 if n tends to the

boundary with the range Ω4 (jpLj → 0)
(c) jgðþj−Þj−2 → 0 in the range Ω3 if n tends to the

boundary with the range Ω2 (jpRj → 0)
(d) jgðþj−Þj−2 → 0 in the range Ω3 if n tends to the

boundary with the range Ω4 (jpLj → 0)
Namely these properties are essential for supporting the

interpretation proposed by us in Secs. VI and VII C.

B. Integral quantities

Usually Sauter potential is used for imitating a slowly
alternating electric field or a small-gradient field. To this
end the parameter α is taken to be sufficiently large. Let us
consider just this case, supposing that

eEα2 ≫ 1: ð9:10Þ

Let us consider the total number Ncr of pairs created
from the vacuum by Sauter potential with a large parameter
α. This quantity can be calculated using Eq. (7.13) with
differential numbers Ncr

n given by Eq. (E3) in the
Appendix E. In the case under consideration these numbers
are the same for fermions and bosons and do not depend on
the spin polarization parameters σs. Thus, for fermions, the
probabilities and mean numbers summed over all σs are
JðdÞ ¼ 2½d2�−1 times greater than the corresponding differ-
ential quantities. To get the total number Ncr of fermion
pairs created in all possible states one has to sum over the
spin projections and then over the momenta p⊥ and energy
p0. The latter sum can be easily transformed into an integral
as follows

Ncr ¼
X

p⊥;p0∈Ω3

X
σ

Ncr
n

¼ V⊥TJðdÞ
ð2πÞd−1

Z
Ω3

dp0dp⊥Ncr
n ; ð9:11Þ

where V⊥ is the spatial volume of the (d − 1)- dimensional
hypersurface orthogonal to the electric field direction and T
is the time duration of the electric field. The total number of
boson pairs created in all possible states follows from
Eq. (9.11) at JðdÞ ¼ 1.
To calculate the integral in the right-hand side of

Eq. (9.11), we can find a subrange D ⊂ Ω3 where this
integral is collected. It is demonstrated in Appendix E that
the quantity Ncr

n is almost zero in some areas near the
boundary of the range Ω3. Such areas are characterized by
the conditions

παjpRj < 1 or παjpLj < 1:
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For areas that are closer to the center of the rangeΩ3, where
either 1≲ παjpRj≲ πkmα or 1≲ παjpLj≲ πkmα, the
quantity Ncr

n satisfies Eqs. (E12). Therefore it is almost
zero if

k ≪
πmα

2
: ð9:12Þ

We assume that inequality (9.12) holds true together with
Eq. (E9), found in the Appendix E. Therefore, the main
contribution to integral (9.11) is due to the subrangeD⊂Ω3

that is defined by Eqs. (E7) and (E14) (see Appendix E). In
this subrange the functions Ncr

n can be approximated by
Eq. (E15), and the integral (9.11) can be represented as

Ncr ≈
V⊥TJðdÞ
ð2πÞd−1

Z
απ⊥<K⊥

dp⊥Ip⊥ ;

Ip⊥ ¼ 2

Z
eEα−K=α

0

dp0e−πτ; ð9:13Þ

where τ is given by Eq. (E15). By using a variable s,
defined as τ ¼ λðs2 þ 1Þ, one can represent the quantity Ip⊥
as follows

Ip⊥ ¼ 2

Z
smax

0

e−πλðs2þ1Þfðp0ðsÞÞds; ð9:14Þ

where the number smax is defined by the relation τmax ¼
λðs2max þ 1Þ and τmax is given by Eq. (E17). Note that the
expansion of τ in powers of p0 has the form

τ ¼ λþ λ

ðeEαÞ2 p
2
0 þ � � � ð9:15Þ

The leading contribution to integral (9.14) is formed at
s → 0, or equivalently as p0=eEα → 0. Using expansions

p0ðsÞ ¼ eEαsð1þ c2s2 þ c4s4 þ � � �Þ
⇒ fðp0ðsÞÞ ¼ eEαð1þ 3c2s2 þ � � �Þ;

where finite coefficients c2; c4;…, can be found from
Eq. (9.15), we obtain the following asymptotic expressions
for the quantity Ip⊥,

Ip⊥ ≈ 2eEα
Z

smax

0

e−πλðs2þ1Þds

≈ 2eEα
Z

∞

0

e−πλðs2þ1Þds: ð9:16Þ

Substituting it into integral (9.13) and neglecting
exponentially small contribution from the integration over
π⊥ > K⊥=α, we find

Ncr ≈ V⊥Tncr;

ncr ¼ JðdÞ2eEα
ð2πÞd−1

Z
∞

0

ds
Z

dp⊥e−πλðs
2þ1Þ: ð9:17Þ

It should be noted that the density ncr (per the d − 1
space volume) of pairs created by t-electric potential step
given by the Sauter-type vector potential A1ðx0Þ ¼
αE tanh ðt=αÞ with large αðeEα2 ≫ max ð1; m2=eEÞÞ is
given by the same integral (9.17) as was demonstrated
for the first time in our work [53].
Finally, performing the integration over p⊥, we obtain

ncr ¼ JðdÞαδ
ð2πÞd−1 ðeEÞ

d
2 exp

�
−π

m2

eE

�
: ð9:18Þ

Here

δ ¼
Z

∞

0

dtt−1=2ðtþ 1Þ−ðd−2Þ=2 exp
�
−tπ

m2

eE

�

¼ ffiffiffi
π

p
Ψ

�
1

2
;−

d − 2

2
; π

m2

eE

�
;

where Ψða; b; xÞ is the confluent hypergeometric function
[52], and JðdÞ ¼ 1 for bosons.
The vacuum-to-vacuum transition probability Pv reads

Pv ¼ exp ð−μNcrÞ;

μ ¼
X∞
j¼0

ð−1Þð1−κÞj=2ϵjþ1

ðjþ 1Þd=2 exp

�
−jπ

m2

eE

�
;

ϵj ¼ δ−1
ffiffiffi
π

p
Ψ

�
1

2
;−

d − 2

2
; jπ

m2

eE

�
: ð9:19Þ

If eE=m2 ≪ 1, one can use the asymptotic expression for
the Ψ-function [52],

Ψð1=2;−ðd − 2Þ=2; jπm2=eEÞ
¼ ðeE=jπm2Þ1=2 þOð½eE=m2�3=2Þ:

Then δ ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eE=m2

p
, ϵj ≈ j−

1
2 and μ ≈ 1.

In d ¼ 4, the formula (9.19) reproduces a result obtained
in Ref. [41] for bosons, and a result obtained in Ref. [42]
for fermions.

C. The Klein step

The Klein paradox was discovered by Klein [6] who
calculated, using the Dirac equation, reflection and trans-
mission probabilities of charged particles incident on a
sufficiently high rectangular potential step (Klein step) of
the form
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qA0ðxÞ ¼
�
UL; x < 0

UR; x > 0
; ð9:20Þ

where UR and UL are constants. According to calculations
of Klein and other authors, for certain energies and
sufficient high magnitude U ¼ UR −UL of the Klein step,
there are more reflected fermions than incident. This is
what many articles and books call the Klein paradox. Let us
study quantum processes near the Klein step, applying our
approach to the Sauter potential with α sufficiently
small, α → 0.
The Sauter potential with constant asymptotic potentials,

UR ¼ −UL ¼ U=2 ¼ eEα and with small α,

Uα ≪ 1; ð9:21Þ

imitates the Klein step (9.20) sufficiently well, and co-
incides with the latter as α → 0. Thus, the Sauter potential
can be considered as the regularization of the Klein step.
In the ranges Ω1 and Ω5 the energy jp0j is not restricted

from the above, that is why in what follows we consider
only the subranges, where

max fαjpLj; αjpRjg ≪ 1: ð9:22Þ

Then in the leading-term approximation in α it follows from
Eqs. (9.4) and (9.6) that

jgðþj−Þj−2 ≈
4k

ð1 − kÞ2 ;

k ¼
(
kf ¼ kb

π0ðLÞþπ⊥
π0ðRÞþπ⊥ ; for fermions

kb ¼ jpRj
jpLj ; for bosons

; ð9:23Þ

where k is called the kinematic factor.
Note that in the ranges Ω1 and Ω5 we have that both kb

and kf are positive and do not achieve the unit values,
kb ≠ 1, kf ≠ 1.
It should be noted that the quantity jgðþj−Þj−2 was

calculated in Refs. [6,7,12,14] only at p⊥ ¼ 0.
Equation (9.23) contains these results as a particular case.
In the ranges Ω1 and Ω5, coefficients g satisfy the same

relations for bosons and fermions,

jgðþjþÞj2 ¼ jgðþj−Þj2 þ 1: ð9:24Þ

Therefore, reflection and transmission probabilities derived
from Eqs. (9.23) have the same forms, common for bosons
and fermions

jTζ;nj2 ¼ jgðþjþÞj−2 ¼
4k

ð1þ kÞ2 ;

jRζ;nj2 ¼ jgðþj−Þj2jgðþjþÞj−2 ¼
ð1 − kÞ2
ð1þ kÞ2 : ð9:25Þ

To compare our exact results with results of the non-
relativistic consideration obtained in any textbook for one
dimensional quantum motion, we set p⊥ ¼ 0, then
π⊥ ¼ m, π0ðLÞ ¼ p0 ¼ mþ E, and π0ðRÞ ¼ p0 − U ¼
mþ E − U. In this case

kf ¼ μkb; μ ¼ π0ðLÞ þm
π0ðRÞ þm

¼ ½1 − U=ðEþ 2mÞ�−1:

For sufficiently small steps U ≪ Eþ 2m, we have
μ ≈ 1þ U=ðEþ 2mÞ. In the nonrelativistic limit, when
E ≪ m, we obtain

kb ¼ kf ¼ kNR ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
E − U
E

r
;

which can be identified with nonrelativistic results, e.g., see
[48]. Relativistic corrections have different forms for
bosons and fermions,

kb ≈ kNR
�
1 −

U
4m

�
; kf ≈ kNR

�
1þ U

4m

�
:

Let us consider the range Ω3. Here quantum numbers p⊥
are restricted by the inequality 2π⊥ ≤ U and for any of such
π⊥ quantum numbers p0 obey the strong inequality (3.31),
see Fig. 3. In this range the quantity jgðþj−Þj−2 represents
the differential mean numbers of electron-positron pairs
created from the vacuum, Ncr

n ¼ jgðþj−Þj−2. In this range
for any given π⊥ the absolute values of jpRj and jpLj are
restricted from above, see (D6). Therefore, condition (9.21)
implies Eq. (9.22). Then it follows from Eq. (9.4) that for
fermions in the leading approximation the following result
holds true

jgðþj−Þj−2 ≈
4jpLjjpRj

U2 − ðjpLj − jpRjÞ2 ¼
4jkfj

ð1þ jkfjÞ2
: ð9:26Þ

Note that expression (9.26) differs from expression
(9.23) only by the sign of the kinematic factor kf. This
factor is positive in Ω1 and Ω5, and it is negative in Ω3. In
the range Ω3, the difference jpLj− jpRj may be zero at
p0¼0, which corresponds to kf¼−ðUþ2π⊥Þ=ðU−2π⊥Þ.
Namely in this case the quantity jgðþj−Þj−2 has a maximum
at a given π⊥,
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max jgðþj−Þj−2 ¼ 1 − ð2π⊥=UÞ2: ð9:27Þ

As it follows from Eq. (9.6) for bosons in the range Ω3

and in the leading approximation, the quantity jgðþj−Þj−2
reads

jgðþj−Þj−2 ≈
4jpLjjpRj

α2U4=2þ ðjpLj − jpRjÞ2 : ð9:28Þ

It has a maximum at jpLj − jpRj ¼ 0,

max jgðþj−Þj−2 ¼
2

ðαUÞ2
	
1 −

�
2π⊥
U

�
2


: ð9:29Þ

However, in contrast with the Fermi case the limit α → 0

in (9.28) is possible only when the difference jpLj − jpRj is
not very small, namely when

α2U4=2 ≪ ðjpLj − jpRjÞ2:

Only under the latter condition one can neglect an α-
depending term in Eq. (9.28) to obtain

jgðþj−Þj−2 ≈
4kb

ð1 − kbÞ2
; ð9:30Þ

which coincides with Eq. (9.23).
The same results for jgðþj−Þj−2 in the forms (9.26) and

(9.30) at p⊥ ¼ 0 were obtained in Refs. [6,7,12,14].
In the range Ω3, relation (9.24) still holds for bosons,

whereas for fermions we have

jgðþjþÞj2 ¼ jgðþj−Þj2 − 1: ð9:31Þ

Relative probability amplitudes of the reflection and of
electron-positron pair creation follows from Eqs. (9.8),
(9.26), and (9.30) to be

jwnðþ − j0Þj2 ¼ jgðþjþÞj−2 ¼
4jkj

ð1þ kÞ2 ;

jwnð−j−Þj2 ¼ jgðþj−Þj2jgðþjþÞj−2 ¼
ð1 − kÞ2
ð1þ kÞ2 : ð9:32Þ

We see that expressions (9.32) for jwnðþ − j0Þj2 and
jwnð−j−Þj2 are quite similar to the forms of transmission
and reflection probabilities given by Eqs. (9.25), respec-
tively. However, in case of fermions, the range of values of
these functions is quite different because kf < 0 in
Eq. (9.32). This is natural, since the interpretation of these
quantities in the range Ω3 differ essentially from their
interpretation in the ranges Ω1 and Ω5. This formal
similarity was the reason for the systematic misunderstand-
ing in treating quantum processes in the Klein zone.

D. Klein paradox

We remind that the Klein paradox dating back to the
works of Klein [6] and Sauter [7,8] (see Sommerfeld [54],
as well) is that when considering scattering of relativistic
electrons on a high step potential in the context of the Dirac
equation one comes to a strange result that there is more
reflected electrons than incoming. One of the initial
resolutions of the paradox was reduced to the impossibility
that there is no possibility of establishing the appropriate
high-step potential. However, later Hund studied the para-
dox in connection with pair production [55] and it seems
that Feynman was the first to point out that the paradox
should disappear in a field-theoretical treatment [56]. A
detailed historical review can be found in Refs. [12,14].
The absence of the Klein paradox in the framework of
appropriate field theoretical interpretation of solutions of
the Dirac and Klein-Gordon equations was first demon-
strated by Nikishov in Refs. [2,13]. In these works
Nikishov used a reformulation of the Green theorem to
demonstrate an analogy between the propagation in time t
and in the space coordinate x and thus to identify solutions
of the Dirac equation that describe electrons and positrons.
Nikishov had tested his way of calculation using the special
case of a constant and uniform electric field. In this case,
explicit solutions of the Dirac and Klein-Gordon equations
can be found in the constant electric field, which can be
described either by a vector potential with only one nonzero
component A1ðtÞ ¼ Et, or by a scalar potential A0ðxÞ ¼
−Ex alone, only, see details in [17]. The first case can be
treated as a degenerated t-electric potential step and the
second case can be treated as a degenerated x-electric
potential step. Comparison of exact solutions in these cases
allowed that author to confirm his interpretation for x-
potential steps referring to the well developed Feynman
interpretation of the t-electric potential step. His calcula-
tions give a clear qualitative explanation of the physics
involved in Klein scattering. However complete consid-
eration of the scattering on arbitrary x-electric potential
steps in the frame work of a consistent QFT consideration
was not given.
Applying our general approach to particular cases that

were studied by Nikishov, we obtain the same results. In
particular, his point of view that the scattering theory that
works within the rangesΩ1 andΩ5 cannot be applied to the
range Ω3 has a clear support in our general approach.
In the ranges Ω1 and Ω5 transmission and reflection

probabilities for bosons and fermions are expressed via the
coefficients g as follows

jTζ;nj2 ¼ jgðþjþÞj−2;
jRζ;nj2 ¼ jgðþj−Þj2jgðþjþÞj−2: ð9:33Þ

As follows from unitarity relations the sum of these prob-
abilities satisfies the relation of probability conservation,
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jRζ;nj2 þ jTζ;nj2 ¼ 1: ð9:34Þ

In particular, for the Klein step we obtain Eq. (9.25)

jgðþjþÞj−2 ¼
4k

ð1þ kÞ2 ; jgðþj−Þj2jgðþjþÞj−2 ¼
ð1− kÞ2
ð1þ kÞ2 ;

k¼
�
kf; Fermi case

kb; Bose case
: ð9:35Þ

In the range Ω3, we obtain for the Klein step5

jgðþjþÞj−2 ¼
4jkj

ð1þ kÞ2 ;

jgðþj−Þj2jgðþjþÞj−2 ¼
ð1 − kÞ2
ð1þ kÞ2 ; ð9:36Þ

where for fermions one has k ¼ kf < 0, see Eq. (9.26)
and Eq. (9.30).
If by analogy with the ranges Ω1 and Ω5 we believe that

jgðþjþÞj−2 and jgðþj−Þj2jgðþjþÞj−2 are transmission and
reflection probabilities, respectively, then we have to accept
that there will apparently be more fermions reflected than
coming in. This is the situation first considered by Klein.
Besides, in this case there will apparently be more fermions
transmitted than coming in and the following relation will
hold true

jgðþj−Þj2jgðþjþÞj−2 − jgðþjþÞj−2 ¼ 1; ð9:37Þ

which does not imply Eq. (9.34). These contradictions do
not exist in the framework of our approach with correct
interpretation of the quantities (9.36). Indeed, as follows
from Eq. (7.17) the quantity jgðþjþÞj−2 is the relative
probability of the electron-positron pair creation,

jgðþjþÞj−2 ¼ jwnðþ − j0Þj2; ð9:38Þ

and jgðþj−Þj2jgðþjþÞj−2 is the relative probability of the
electron (positron) reflection,

jgðþj−Þj2jgðþjþÞj−2 ¼ jwnð−j−Þj2 ¼ jwnðþjþÞj2; ð9:39Þ

in the range Ω3. Besides, the x-electric potential step
creates pairs in the region Ω3, the differential numbers
of such pairs being Ncr

n ¼ jgðþj−Þj−2 (7.7). In this situation
the many-particle nature of the problem is essential, and
relations of probability conservation are quite different in
the range Ω3 and in the ranges Ω1 and Ω5. Unitarity of
canonical transformation between the in- and out- creation
and annihilation operators was proved in the general case in

Sec. VII D. Here it is enough to mention that for fermions
the quantity

pn
v ¼ jwnðþjþÞj−2 ¼ ð1 − Ncr

n Þ ð9:40Þ

is the probability that the partial vacuum state with a given
n remains a vacuum. Due to the Pauli principle, if an initial
state is vacuum, there are only two possibilities in a cell of
the space with given quantum number n, namely, this
partial vacuum remains a vacuum, or with the probability
pn
vjwnðþ − j0Þj2 a pair with the quantum number n will be

created. Then Eq. (9.37) is just the condition of probability
conservation,

pn
v þ pn

vjwnðþ − j0Þj2 ¼ 1: ð9:41Þ

It is obvious that many particle consideration is neces-
sary for correct interpretation of relation (9.37). The same is
true when we consider one-electron initial state with a given
n. Here again due to the Pauli principle, creation of a pair of
fermions with the same quantum number is impossible.
Then the total reflection of the initial particle on the x-
electric potential step is described by the conditional
probability of reflection under the condition that in all
other cells of the space with quantum numbers m ≠ n
partial vacua remain vacua. Such a probability has the form
jwnðþjþÞj2pn

v. Consequently,

jwnðþjþÞj2pn
v ¼ 1: ð9:42Þ

This result is consistent with calculations of mean occu-
pation numbers given in Sec. C 2.
For bosons, in the range Ω3, the correct interpretation of

quantities jgðþjþÞj−2, jgðþj−Þj2jgðþjþÞj−2 and jgðþj−Þj−2
coincides with the one for fermions, they are relative
probabilities of a pair creation and electron/positron
reflection respectively. However, for bosons an additional
relation holds,

jgðþj−Þj2jgðþjþÞj−2 þ jgðþjþÞj−2 ¼ 1: ð9:43Þ

It formally can be understood as relation (9.34). However,
here equation (9.43) is a relation for relative probabilities,
and does not admit an interpretation in the framework of
one-particle theory. Due to the vacuum instability the
probability conservation has to be considered in the
framework of many-particle theory, taking into account
that in the bosons case in a given state n any number of
pairs can be created. The unitarity of canonical trans-
formation between the in- and out- operators was proven in
Appendix A. Here it should be noted that for boson the
probability that the partial vacuum state with given n
remains a vacuum is

pn
v ¼ jwnðþjþÞj2 ¼ ð1þ Ncr

n Þ−1 ð9:44Þ
5In Sec. IX C we have demonstrated that for bosons Eq. (9.30)

holds true only in a part of Ω3, where the difference jpLj − jpRj is
not very small.
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The conditional probability of a pair creation with a given
quantum numbers n, under the condition that all other
partial vacua with the quantum numbers m ≠ n remain the
vacua is the sum of probabilities of creation for any number
l of pairs

Pðpairsj0Þn ¼ pn
v

	X∞
l¼1

jwnðþ − j0Þj2l


: ð9:45Þ

In this case Eq. (9.43) is the probability conservation law in
the form of a sum of probabilities of all possible events in a
cell of the space of quantum numbers n:

Pðpairsj0Þn þ pn
v ¼ 1: ð9:46Þ

X. SUMMARY

When quantizing charged fields (those of Dirac and
Klein-Gordon) in the presence of x-electric potential steps,
we succeeded to describe quantum theory of the systems
under consideration in terms of adequate in- and out-
particles. These particles represent positive-energy excita-
tions above the corresponding in- and out-vacua and have
all natural physical properties inherent to such particles in
various examples of known QFTmodels. In fact, the idea of
introducing such particles is an advancement of the well-
known Furry picture in QED with external magnetic field
[57] and of the generalized Furry picture in QED with
t-electric potential steps [5]. For the class of external
electromagnetic field, which we identify as the x-electric
potential steps, we define special solutions of the relativ-
istic Dirac and Klein-Gordon wave equations that expand
the corresponding Heisenberg field operators in adequate
in- and out-creation and annihilation operators related to
the in- and out-particles. Solutions, which we have used in
the implementation of the quantization program, were
chosen as stationary solutions with special asymptotic
behavior at the remote left and remote right sides of the
potential step (of course, this choice is not unique). These
solutions, by their asymptotic behavior, are labeled also by
a set of quantum numbers n that include the total energy p0,
transverse momenta p⊥, and the spin polarization (the latter
in the case of the Dirac field). In the most general case of
critical steps with the potential difference U > 2m, there
exist five ranges of quantum numbers n, where these
solutions have similar forms, and physical processes with
the corresponding in- and out-particles have similar inter-
pretation. A detailed consideration of various physical
processes with these particles had confirmed justified their
definitions and had demonstrated that:
(a) In the first range p0 ≥ UR þ π⊥ (π⊥ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2⊥ þm2

p
)

there exist only in- and out-electrons, whereas in the
fifth range p0 ≤ UL − π⊥ there exist only in- and out-
positrons. In these ranges electrons and positrons are

subjected to the scattering and the reflection only. No
particle creation in these ranges is possible.

(b) In the second range UR − π⊥ < p0 < UR þ π⊥ if
2π⊥ ≤ U, similar to the first range, there exist only
electrons that are subjected to the total reflection. In
the fourth rangeUL − π⊥ < p0 < UL þ π⊥ there exist
only positrons that are also subjected to the total
reflection.

(c) In the third range UL þ π⊥ ≤ p0 ≤ UR − π⊥, which
exists only for critical steps and for transversal
momenta that satisfy the inequality 2π⊥ ≤ U, there
exist in- and out-electrons that can be situated only to
the left of the step, and in- and out-positrons that can
be situated only to the right of the step. In the third
range, all the partial vacua are unstable, processes of
pair creation are possible. The pairs consist of out-
electrons and out-positrons that appear on the left and
on the right of the step and move there to the left and to
the right, respectively. At the same time, the in-
electrons that move to the step from the left are
subjected to the total reflection. After being reflected
they move to the left of the step already as out-
electrons. Similarly, the in-positrons that move to the
step from the right are subjected to the total reflection.
After being reflected they move to the right of the step
already as out-positrons.

We elaborated a technique that allows one to calculate all
the above described processes (zero-order processes) and
also to calculate Feynman diagrams that describe all the
processes of interaction between the introduced in- and out-
particles and photons. These diagrams have formally the
usual form, but contain special propagators. Constructions
of these propagators in terms of introduced in- and out-
solutions are presented. It should be noted that calculations
in terms of these Feynman diagrams (as well as calculations
of zero-order processes) are nonperturbative, in such
calculations interaction with external field of x-electric
potential steps are taken into account exactly. Another
interesting feature is worth noting: when considering
reflection and transmission of in-particles in the first and
fifth ranges the formalism of QFT allows one to calculate
both the probability amplitudes of transitions between in-
and out-states and the mean currents of out-particles in the
in-states, testing in such a way the rules of one-particle
time-independent potential scattering theory and its
applicability.
Finally, the developed theory is applied to exactly

solvable cases of x-electric potential steps, namely, to
the Sauter potential, and to the Klein step. We present a
consistent QFT treatment of processes, where a naive
one-particle consideration might lead to the Klein
paradox. From this point of view we comment various
approaches known in the literature that use pure one-
particle consideration or its partial combination with
elements of QFT.
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APPENDIX A: SOME DETAILS OF SCALAR
FIELD QUANTIZATION

The quantization of scalar field in terms of adequate in-
and out-particles can be given along the same lines as the
quantization for Dirac field. Having results of Sec. III, a
quantum scalar field Ψ̂ðXÞ can be written as the sum
Ψ̂ðXÞ ¼ P

5
i¼1 Ψ̂iðXÞ of five operators, each one Ψ̂iðXÞ in

the range Ωi. The operators Ψ̂iðXÞ, i ¼ 1, 2, 4, 5. have
similar to the fermionic case [see Eqs. (4.5) and (4.6)]
decompositions in terms of the creation and annihilation
operators and only the operator Ψ̂3ðXÞ,

Ψ̂3ðXÞ ¼
X
n3

M−1=2
n3 ½þan3ðinÞþψn3ðXÞ þ þb†n3ðinÞþψn3

ðXÞ�

¼
X
n3

M−1=2
n3 ½−an3ðoutÞ−ψn3ðXÞ

þ −b†n3ðoutÞ−ψn3ðXÞ�; ðA1Þ

is distinct from the corresponding form in Eqs. (4.5) due to
the � signs in the right-hand side of Eq. (3.50). In what
follows, we consider some peculiarities of the quantization
of the scalar field in the range Ω3.
Taking into account relations (3.50) and Eqs. (3.53)–

(3.55), one can see that commutation relations (4.3) imply
the commutation rules for the introduced creation and
annihilation in- and out-operators: all creation (annihila-
tion) operators with different quantum numbers n commute
between themselves; all the operators from different ranges
Ωi commute between themselves, and satisfy the canonical
commutation relations. One defines two vacuum vectors
j0; ini and j0; outi, using introduced annihilation operators.
In the ranges Ωi,i ¼ 1, 2, 4, 5 the corresponding equations
have exactly the same form as in (4.27) and (4.28), whereas
in the range Ω3 they are different since here the in- and out-
operators are different,

þan3ðinÞj0; ini ¼ þbn3ðinÞj0; ini ¼ 0;

−bn3ðoutÞj0; outi ¼ −an3ðoutÞj0; outi ¼ 0: ðA2Þ

Partial and total vacuum states are related by Eqs. (4.29),
(4.30), (4.34), and (4.37). The introduced vacua have zero

energy and electric charge and all the excitations above the
vacuum have positive energies.
Canonical transformations between the in- and out-

operators in the ranges Ω1 and Ω5 are similar to the
fermionic case. In particular, amplitudes of electron reflec-
tion and transmission in the range Ω1 have the same form
(5.5) as in the fermionic case. The form of amplitudes of
positron reflection and transmission in the range Ω5 differs
from Eqs. (5.5) only by phases.
Justification of the presented choice of in- and out-

operators can be done similarly to the fermionic case. In the
range Ω3 there appear some peculiarities, since here we
have different positions of � superscripts and subscripts in
comparing to the fermionic case, nevertheless the inter-
pretation of sets fζψnðXÞg as electron states and sets
fζψn

ðXÞg as positron states is the same. The canonical
transformations between the in- and out-operators are
−anðoutÞ ¼ gðþj−Þ−1þb†nðinÞ þ gðþj−Þ−1gð−j−ÞþanðinÞ;
−b†nðoutÞ ¼ gðþj−Þ−1gð−j−Þþb†nðinÞ þ gðþj−Þ−1þanðinÞ;
þb†nðinÞ ¼ gð−jþÞ−1gðþjþÞ−b†nðoutÞ − gð−jþÞ−1−anðoutÞ;
þanðinÞ ¼ −gð−jþÞ−1−b†nðoutÞ

þ gð−jþÞ−1gðþjþÞ−anðoutÞ; n ∈ Ω3:

ðA3Þ
Differential mean numbers of out-particles created from

the in-vacuum are

Na
n3ðoutÞ ¼ h0; inj−a†n3ðoutÞ−an3ðoutÞj0; ini ¼ jgðþj−Þj−2;

Nb
n3ðoutÞ ¼ h0; inj−b†n3ðoutÞ−bn3ðoutÞj0; ini ¼ jgð−jþÞj−2:

ðA4Þ
It can be shown that they are equal and define differential
mean numberNcr

n3 of created pairs similarly to the fermionic
case given by Eq. (7.7). In contrast to the case of fermions,
the quantity Ncr

n is unbounded from above due to relation
(3.42) with formal setting ηL ¼ ηR ¼ 1 for bosons. If Ncr

n

tends to zero, Ncr
n → 0, then jgðþj−Þj2 → ∞ and, at the

same time, jgðþjþÞj2 → ∞ similar to the fermionic case.
The total number N of pairs created from the vacuum is
defined similarly to the fermionic case given by Eq. (7.13).
One can see that due to relation (3.42) with ηL ¼ ηR ¼ 1

the differential mean numbers of out-particles in one-
particle in-states are

h0; injþanðinÞ−a†nðoutÞ−anðoutÞþa†nðinÞj0; ini ¼ 1þ 2Ncr
n ;

h0; injþanðinÞ−b†nðoutÞ−bnðoutÞþa†nðinÞj0; ini ¼ 2Ncr
n ;

h0; injþbnðinÞ−b†nðoutÞ−bnðoutÞþb†nðinÞj0; ini ¼ 1þ 2Ncr
n ;

h0; injþbnðinÞ−a†nðoutÞ−anðoutÞþb†nðinÞj0; ini ¼ 2Ncr
n ;

n ∈ Ω3;

ðA5Þ
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and see that Eqs. (A5) are quite different from Eqs. (C14)
obtained for fermions. This a consequence of the absence
of the Pauli principle. In this case 2Ncr

n is the differential
mean number of scalar electrons (positrons) created by the
external field. We see that the presence of a particle at the
initial state increases the mean number of created bosons. It
is known effect for bosons, e.g., see [49].
In the range Ω3, we consider relative scattering ampli-

tudes of scalar electrons and positrons,

wðþjþÞn0n ¼ c−1v h0; outj−an0 ðoutÞþa†nðinÞj0; ini;
wð−j−Þn0n ¼ c−1v h0; outj−bn0 ðoutÞþb†nðinÞj0; ini; ðA6Þ

and relative amplitudes of a pair creation and a pair
annihilation,

wðþ − j0Þn0n ¼ c−1v h0; outj−an0 ðoutÞ−bnðoutÞj0; ini;
wð0j −þÞnn0 ¼ c−1v h0; outjþb†nðinÞþa†n0 ðinÞj0; ini; ðA7Þ

where cv is the vacuum-to-vacuum transition amplitude for
bosons

cð3Þv ¼ ð3Þh0; outj0; inið3Þ ¼ cv ¼ h0; outj0; ini: ðA8Þ

As follows from relations (A3), all the amplitudes (A6)
and (A7) are diagonal in the quantum numbers n and can be
expressed in terms of the coefficients gðζ0 jζÞ as follows:

wðþjþÞn0n ¼ δn;n0wnðþjþÞ;
wnðþjþÞ ¼ gð−jþÞgðþjþÞ−1 ¼ gð−jþÞgð−j−Þ−1;
wð−j−Þnn0 ¼ δn;n0wnð−j−Þ;
wnð−j−Þ ¼ gðþj−ÞgðþjþÞ−1 ¼ gðþj−Þgð−j−Þ−1;

wð0j −þÞnn0 ¼ δn;n0wnð0j −þÞ;
wnð0j −þÞ ¼ −gðþjþÞ−1;

wðþ − j0Þn0n ¼ δn;n0wnðþ − j0Þ;
wnðþ − j0Þ ¼ gð−j−Þ−1; n ∈ Ω3: ðA9Þ

In the range Ω3, similar to the case of fermions, the total
reflection is the only possible form of particle scattering,
with wðþjþÞn and wð−j−Þn being relative probability
amplitudes of a particle reflection.
Unitary relations (3.40) and their consequences (3.41)

and (3.42) with setting ηL ¼ ηR ¼ 1 for bosons imply the
following connections for the introduced amplitudes w:

jwnðþjþÞj2 ¼ jwnð−j−Þj2;
jwnðþ − j0Þj2 ¼ jwnð0j −þÞj2;

jwnðþjþÞj2 þ jwnðþ − j0Þj2 ¼ 1;

wnð−j−Þ�
wnðþjþÞ ¼ −

wnðþ − j0Þ�
wnð0j −þÞ : ðA10Þ

Using Eqs. (A9), two lower lines in relations (A3) can be
rewritten as

þanðinÞ ¼ wnðþjþÞ−1½−anðoutÞ − wnðþ − j0Þ−b†nðoutÞ�;
þbnðinÞ ¼ wnð−j−Þ−1½−bnðoutÞ − wnðþ − j0Þ−a†nðoutÞ�:

ðA11Þ

Together with their adjoint relations they define an unitary
transformation VΩ3

between the in- and out-operators,

fþa†ðinÞ; þaðinÞ; þb†ðinÞ; þbðinÞg
¼ VΩ3

f−a†ðoutÞ; −aðoutÞ; −b†ðoutÞ; −bðoutÞgV†
Ω3
:

Since Eqs. (A10) and (A11) formally coincide with the
corresponding equations for the general case of time-
dependent external field, the unitary operator VΩ3

can be
taken, for example, from [49] or book [5]. The operator VΩ3

relates the in- and out-vacua, j0; ini ¼ VΩ3
j0; outi and

determines the vacuum-to-vacuum transition amplitude,

cv ¼ h0; outjVΩ3
j0; outi ¼

Y
n

wnð−j−Þ: ðA12Þ

The probabilities of a particle reflection, a pair creation,
and the probability for a vacuum to remain a vacuum can be
expressed via differential mean numbers of created pairs
Ncr

n . By using the relation jwnð−j−Þj2 ¼ ð1þ Ncr
n Þ−1, one

finds

PðþjþÞn;n0 ¼ jh0;outjþanðoutÞ−a†n0 ðinÞj0; inij2
¼ δn;n0 ð1þNcr

n Þ−1Pv;

Pðþ− j0Þn;n0 ¼ jh0;outjþanðoutÞþbn0 ðoutÞj0; inij2
¼ δn;n0Ncr

n ð1þNcr
n Þ−1Pv;

Pv ¼ jcvj2 ¼
Y
n∈Ω3

pn
v; pn

v ¼ ð1þNcr
n Þ−1: ðA13Þ

The probabilities for a positron scattering Pð−j−Þ and a
pair annihilation Pð0j −þÞ coincide with the expressions
PðþjþÞ and Pðþ − j0Þ, respectively.
Note that pn

v given by Eq. (A13) is the probability that
the partial vacuum state with given n remains a vacuum. If
all Ncr

n ≪ 1 then in the leading approximation the relation
1 − Pv ≈ N is the same with the case of fermions. The
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vacuum instability is not essential if Ncr
n → 0. Then like for

fermions Pv → 1, PðþjþÞn;n → 1 and Pðþ − j0Þn;n → Ncr
n .

Processes of higher orders are described by the Feynman
diagrams with two kinds of charged scalar particle propa-
gators in the external field under consideration, namely, the
so-called in-out propagator ΔcðX;X0Þ, which is just the
causal Feynman propagator, and the so-called in-in propa-
gator Δc

inðX;X0Þ,

ΔcðX;X0Þ ¼ ih0; outjT̂ Ψ̂ðXÞΨ̂†ðX0Þj0; inic−1v ;

Δc
inðX;X0Þ ¼ ih0; injT̂ Ψ̂ðXÞΨ̂†ðX0Þj0; ini: ðA14Þ

We find the in-in propagator as

Δc
inðX;X0Þ ¼ θðt − t0ÞΔ−

inðX;X0Þ − θðt0 − tÞΔþ
inðX;X0Þ;

Δ−
inðX;X0Þ ¼ i

X2
j¼1

GjðX;X0Þ þ ~Δ−
inðX;X0Þ;

Δþ
inðX;X0Þ ¼ −i

X5
j¼4

GjðX;X0Þ þ ~Δþ
inðX;X0Þ;

~Δ−
inðX;X0Þ ¼ i

X
n3

M−1
n3

þψn3ðXÞþψ�
n3ðX0Þ;

~Δþ
inðX;X0Þ ¼ −i

X
n3

M−1
n3 þψn3

ðXÞþψ�
n3
ðX0Þ; ðA15Þ

where the functions GjðX;X0Þ are given by Eq. (3.52), and
obtain for the in-out propagator that

ΔcðX;X0Þ ¼ θðt − t0ÞΔcðX;X0Þ − θðt0 − tÞΔþðX;X0Þ;

Δ−ðX;X0Þ ¼ i
X2
j¼1

GjðX;X0Þ þ ~Δ−ðX;X0Þ;

ΔþðX;X0Þ ¼ −i
X5
j¼4

GjðX;X0Þ þ ~ΔþðX;X0Þ;

~Δ−ðX;X0Þ ¼ i
X
n3

M−1
n3 ½−ψn3ðXÞwn3ðþjþÞþψ�

n3ðX0Þ�;

~ΔþðX;X0Þ ¼ −i
X
n3

M−1
n3 ½þψn3

ðXÞwn3ð−j−Þ−ψ�
n3ðX0Þ�:

ðA16Þ
Using relations (3.38) with ηL ¼ ηR ¼ 1 for bosons, we

can represent the difference between both propagators as
follows

ΔpðX;X0Þ ¼ Δc
inðX;X0Þ − ΔcðX;X0Þ

¼ −i
X
n3

M−1
n3 ½þψn3

ðXÞwn3ð0j −þÞþψ�
n3ðX0Þ�:

ðA17Þ
It is formed in the range Ω3 only and vanishes if there is no
pair creation.

APPENDIX B: ORTHOGONALITY AND
NORMALIZATION ON t-CONSTANT

HYPERPLANE

Integrating in (3.46) over the coordinates r⊥ and using
the structure of constant spinors vσ that enter the states
ψnðXÞ and ψ 0

n0 ðXÞ, we obtain:

ðψn;ψ 0
n0 Þ ¼ δσ;σ0δp⊥;p0⊥V⊥R; R ¼

Z
KðRÞ

−KðLÞ
Θdx;

Θ ¼ eiðp0−p0
0
Þtφ�

nðxÞ½p0 þ p0
0 − 2UðxÞ�

× ½p0
0 −UðxÞ þ χi∂x�φ0

n0 ðxÞ: ðB1Þ

Then we represent the integral R as follows

R ¼
Z

xL

−KðLÞ
Θdxþ

Z
xR

xL

Θdxþ
Z

KðRÞ

xR

Θdx: ðB2Þ

Due to our suppositions about the structure of the scalar
potential A0ðxÞ only the second terms in the right-hand side
of Eq. (B2) depends on the external field. At the same time,
the smoothness of the scalar potential allows us to believe
that this integral is finite. The first and the third terms are
calculated as integrals over the areas where the electric field
is zero but the scalar potentials, as being constant, differ
from zero. Thus, functions φðxÞ and φ0ðxÞ entering the
quantity Θ (B1) are different for the left and the right areas
even for equal quantum numbers n and n0.
First, we evaluate the quantityR for coinciding quantum

numbers n and n0, and then we calculate the norm squared
ðψn;ψnÞ of the introduced solutions for any n. In this case
Eq. (B2) reads:

Rjn¼n0 ¼ RL þRint þRR;

RL ¼
Z

xL

−KðLÞ
ΘLdx; Rint ¼

Z
xR

xL

Θjn¼n0dx < ∞;

RR ¼
Z

KðRÞ

xR

ΘRdx;

ΘL=R ¼ φ�
nðxÞ2π0ðL=RÞ½π0ðL=RÞ þ χi∂x�φ0

nðxÞ: ðB3Þ

If we consider only solutions from the sets fζψn
ðXÞg and

fζψnðXÞg, then the first line in Eqs. (B3) looks different in
the ranges n ∈ Ω1 ∪ Ω3 ∪ Ω5, n ∈ Ω2, and n ∈ Ω4.
Namely,

Rjn¼n0 ¼ RL þRR þOð1Þ; n ∈ Ω1 ∪ Ω3 ∪ Ω5;

Rjn¼n0 ¼ RL þOð1Þ; n ∈ Ω2;

Rjn¼n0 ¼ RR þOð1Þ; n ∈ Ω4; ðB4Þ

where the designation Oð1Þ is used here and in what
follows for the terms that satisfy the relation
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lim
KðL=RÞ→∞

Oð1Þ
KðL=RÞ ¼ 0:

Consider the quantities RL=R (B3) defined by the
functions ζφn

ðxÞ and ζφnðxÞ. In this case we attribute
the corresponding index ζ to these quantities as follows:
RL=R → ζRL=R

or RL=R → ζRL=R. Using Eqs. (3.14),

(3.18), and (3.37), we obtain

ζRL
¼ Y2KðLÞ

���� π0ðLÞpL

����þOð1Þ;

ζRR ¼ Y2KðRÞ
���� π0ðRÞpR

����þOð1Þ: ðB5Þ

This result allows one to find the square norm of the
states with n ∈ Ω2 ∪ Ω4,

ðψn;ψnÞ ¼ Mn; n ∈ Ω2 ∪ Ω4;

Mn2 ¼ 2
KðLÞ

T

���� π0ðLÞpL

����þOð1Þ;

Mn4 ¼ 2
KðRÞ

T

���� π0ðRÞpR

����þOð1Þ: ðB6Þ

To calculate the quantities ζRR
and ζRL that correspond

to functions φnðxÞ with n ∈ Ω1 ∪ Ω3 ∪ Ω5 we have to use
relations between the functions ζφn

ðxÞ and ζφnðxÞ. It
follows from Eq. (B1) that the matrix elements ðψn;ψ 0

n0 Þ
are diagonal in quantum numbers σ. Using this fact, one
can easily see that relations (3.38) remain valid under
changing the functions ζψni

ðXÞ and ζ0ψniðXÞ to ζφni
ðxÞ and

ζ0φniðxÞ. Using these relations, and taking into account
Eqs. (3.14), (3.18), and (3.37), we find

ζRR
¼ Y2KðRÞ

���� π0ðRÞpR

����½jgðζjþÞj2 þ jgðζj−Þj2� þOð1Þ;

ζRL ¼ Y2KðLÞ
���� π0ðLÞpL

����½jgðþjζÞj2 þ jgð−jζÞj2� þOð1Þ:

ðB7Þ

These results allow us to find square norms of states with
n ∈ Ω1 ∪ Ω3 ∪ Ω5. They are

ðζψn
; ζψn

Þ ¼ ζRL
þ ζRR

;

ðζψn; ζψnÞ ¼ ζRL þ ζRR: ðB8Þ

Note that these square norms are of the order of the large
numbers KðLÞ and/or KðRÞ.
In the case n ≠ n0, we already know that ðψn;ψ 0

n0 Þ∼
δσ;σ0δp⊥;p0⊥ . Thus, it is enough to study the quantity
Rjσ¼σ0;p⊥¼p0⊥;p0≠p0

0
in order to make up a conclusion about

the complete inner product (B1) for n ≠ n0. Let us consider
solutions ψnðXÞ and ψ 0

n0 ðXÞ with a given asymptotic
behavior and for σ ¼ σ0, p⊥ ¼ p0⊥, p0 ≠ p0

0. In this case
p0 ≠ p0

0 implies pL ≠ pL0 and/or pR ≠ pR0. That is why
the quantities Θ are oscillating functions of x in the
both regions SL and SR, and the modulus of the
quantityRjσ¼σ0;p⊥¼p0⊥;p0≠p0

0
is finite. Then for any n, n0 ∈ Ω

we have

ðψn;ψ 0
n0 Þ ¼ Oð1Þ; n ≠ n0: ðB9Þ

One can easily verify that the relation

ðψn; Ĥψ 0
n0 Þ − ðĤψn;ψ 0

n0 Þ ¼ Oð1Þ ðB10Þ

holds true for any stationary states. Thus, the Hamiltonian
Ĥ is Hermitian as KðL=RÞ → ∞.
In what follows, such matrix elements always appear

divided by terms proportional KðL=RÞ such that they can be
neglected in the limits KðL=RÞ → ∞. Thus, we further
assume that all the wave functions (described in
subsections III A and III B) having different quantum
numbers n are orthogonal with respect to the introduced
inner product on the hyperplane t ¼ const,

ðψn;ψ 0
n0 Þ ¼ 0; n ≠ n0: ðB11Þ

Then the complete orthonormality relations (3.47) for the
ranges Ω2 and Ω4 follow from Eqs. (B6) and (B11).
Orthonormality relations for solutions with quantum

numbers n ∈ Ω1 ∪ Ω3 ∪ Ω5 are considered below, they
are more complicated since such solutions have an addi-
tional quantum number ζ.
There always exist two independent solutions with

quantum numbers n ∈ Ω1 ∪ Ω3 ∪ Ω5. In spite of the fact
that these solutions are obtained in the constant external
field, we believe that they represent asymptotic forms of
some unknown solutions of the Dirac equation with the
external field that is switched on and off at t → �∞ and
that effects of the switching on and off are negligible. We
believe that there exist orthogonal pairs of solutions
describing independent particle states at the initial and
final time instants, and [since the inner product (3.46) does
not depend on t in the limits KðL=RÞ → ∞] that such
solutions remain orthogonal at arbitrary time instant.
Below, we are going to find out which solutions under
consideration form such orthogonal pairs.
Let us consider the inner products ðζψn

; ζ
0
ψnÞ,

n ∈ Ω1 ∪ Ω3 ∪ Ω5. They are written [see (B1) and
(B3)] in terms of the quantities RL=Rðζjζ

0 Þ as follows
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RLðζjζ
0 Þ ¼

Z
xL

−KðLÞ
ΘLðζjζ

0 Þdx;

RRðζjζ
0 Þ ¼

Z
KðRÞ

xR

ΘRðζjζ
0 Þdx;

ΘL=Rðζjζ
0 Þ ¼ ζφ

�
n
ðxÞ2π0ðL=RÞ½π0ðL=RÞ þ χi∂x�ζ0φnðxÞ;

n ∈ Ω1 ∪ Ω3 ∪ Ω5: ðB12Þ

As was mentioned before, relations (3.38) remain valid if
the functions ζψni

ðXÞ and ζ0ψniðXÞ are changed to the

functions ζφni
ðxÞ and ζ0φniðxÞ. Using this fact, we express

the functions ζφniðxÞ in terms of ζφni
ðxÞ in RLðζjζ

0 Þ, and
the functions ζφni

ðxÞ in terms of ζφniðxÞ in RRðζjζ
0 Þ. Then

taking into account Eqs. (3.37), we obtain

RLðζjζ
0 Þ ¼ ζηLY2KðLÞ

���� π0ðLÞpL

����gðζjζ0 Þ þOð1Þ;

RRðζjζ
0 Þ ¼ ζ0ηRY2KðRÞ

���� π0ðRÞpR

����gðζjζ0 Þ þOð1Þ: ðB13Þ

Then we consider only the case n ∈ Ω1 ∪ Ω5. For
n ∈ Ω1, due to the inequalities π0ðLÞ > π0ðRÞ ≥ π⊥, both
sets of solutions describe electrons. For n ∈ Ω5, due to the
inequalities π0ðRÞ < π0ðLÞ ≤ −π⊥, both sets of solutions
describe positrons. In both cases ηL ¼ ηR. Then it follows
from Eqs. (B3) and (B13) that

ðζψn
; −ζψnÞ ¼ 0; n ∈ Ω1 ∪ Ω5; ðB14Þ

if we assume that the quantities KðL=RÞ satisfy the following
relation

KðLÞ
���� π0ðLÞpL

���� − KðRÞ
���� π0ðRÞpR

���� ¼ Oð1Þ; ðB15Þ

that was first proposed by Nikishov in Ref. [17]. Condition
(B14) means that for n ∈ Ω1 ∪ Ω5 solutions ζψn

ðXÞ and
−ζψnðXÞ, represent independent physical states. The cur-
rents (3.36) of these independent physical states have
opposite directions.
Let us consider the range n ∈ Ω3. In this range, the

inequalities π0ðLÞ ≥ π⊥ and π0ðRÞ ≤ −π⊥ hold true and
ηL ¼ −ηR ¼ þ1. Then it follows from Eqs. (B3), (B13),
and (B15) that

ðζψn
; ζψnÞ ¼ 0; n ∈ Ω3: ðB16Þ

Thus, for n ∈ Ω3 solutions ζψn
ðXÞ and ζψnðXÞ, represent

independent physical states. Formally, the difference be-
tween the two cases n ∈ Ω1 ∪ Ω5 and n ∈ Ω3 is owing to
the difference in signs in the unitarity relations for these

cases. The currents (3.36) of these independent physical
states have the same directions.
Finally, using Eqs. (3.40), (B8), and (B15), we obtain

the orthonormality relations (3.47) for the ranges. Ωi,
i ¼ 1, 3, 5.

APPENDIX C: SOME MEAN VALUES

1. Mean values in Ω1 and Ω5

I. All mean values of the QFT charge operator Q̂ given
by Eq. (4.22) in states (5.1) are −e, whereas all mean values
of the QFT charge operator Q̂ in states (5.2) are þe.
II. Using Eqs. (4.21) and (4.16), we can verify that all the

kinetic energies of the states under consideration are
positive. For the electron states, we obtain:

h0jþan1ðinÞĤkin
þa†n1ðinÞj0i ¼ þEn1

> 0;

h0j−an1ðinÞĤkin−a†n1ðinÞj0i ¼ −En1 > 0;

h0j−an1ðoutÞĤkin−a†n1ðoutÞj0i ¼ −En1 > 0;

h0jþan1ðoutÞĤkinþa†n1ðoutÞj0i ¼ þEn1 > 0; ðC1Þ

whereas for the positron states, we have

h0j−bn5ðinÞĤkin−bþn5ðinÞj0i ¼ −−En5 > 0;

h0jþbn5ðinÞĤkinþbþn5ðinÞj0i ¼ −þEn5 > 0;

h0jþbn5ðoutÞĤkin
þbþn5ðoutÞj0i ¼ −þEn1

> 0;

h0j−bn5ðoutÞĤkin−bþn5ðoutÞj0i ¼ −−En5 > 0: ðC2Þ

III. Let us calculate differential mean values of out-
particles with respect to different in-states (5.1) and (5.2).
To this end we have to find the corresponding mean values
of the following operators,

N̂ðaÞ
þ;n1 ¼ þa†n1ðoutÞþan1ðoutÞ;

N̂ðaÞ
−;n1 ¼ −a

†
n1ðoutÞ−an1ðoutÞ;

N̂ðbÞ
−;n5 ¼ −b†n5ðoutÞ−bn5ðoutÞ;

N̂ðbÞ
þ;n5 ¼ þb†n5ðoutÞþbn5ðoutÞ: ðC3Þ

Technically it can be done by using canonical transforma-
tions (4.33) between in and out operators, derived in
Sec. IV C. Thus, we obtain
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NðaÞ
ζ;n1

ð0Þ ¼ h0jN̂ðaÞ
ζ;n1

j0i ¼ 0;

NðbÞ
ζ;n5

ð0Þ ¼ h0jN̂ðbÞ
ζ;n5

j0i ¼ 0;

NðaÞ
ζ;n1

ðn1;þÞ ¼ h0jþan1ðinÞN̂
ðaÞ
ζ;n1þa

†
n1
ðinÞj0i

¼
� jgðþjþÞj−2; ζ ¼ þ
jgðþjþÞj−2jgð−jþÞj2; ζ ¼ −

;

NðaÞ
ζ;n1

ðn1;−Þ ¼ h0j−an1ðinÞN̂ðaÞ
ζ;n1

−a†n1ðinÞj0i

¼
� jgðþjþÞj−2; ζ ¼ −
jgðþjþÞj−2jgð−jþÞj2; ζ ¼ þ ;

NðbÞ
ζ;n5

ðn5;þÞ ¼ h0jþbn5ðinÞN̂ðbÞ
ζ;n5

þb†n5ðinÞj0i

¼
� jgðþjþÞj−2; ζ ¼ þ
jgðþjþÞj−2jgð−jþÞj2; ζ ¼ −

;

NðbÞ
ζ;n5

ðn5;−Þ ¼ h0j−bn5ðinÞN̂ðbÞ
ζ;n5−b

†
n5ðinÞj0i

¼
� jgðþjþÞj−2; ζ ¼ −
jgðþjþÞj−2jgð−jþÞj2; ζ ¼ þ ; ðC4Þ

see (3.39) for the definition of the coefficients g.
Then it follows from relations (3.41) and (3.42) that

NðaÞ
þ;n1ðn1;þÞ þ NðaÞ

−;n1ðn1;þÞ
¼ NðaÞ

þ;n1ðn1;−Þ þ NðaÞ
−;n1ðn1;−Þ ¼ 1;

NðbÞ
þ;n5ðn5;þÞ þ NðbÞ

−;n5ðn5;þÞ
¼ NðbÞ

þ;n5ðn5;−Þ þ NðbÞ
−;n5ðn5;−Þ ¼ 1: ðC5Þ

Thus, the number of electrons with quantum numbers n1
and positrons with quantum numbers n5 are conserved in
the course of scattering off the x-electric potential step.
III. Using the electric current operator Ĵ (4.26), we

construct the corresponding renormalized operator Ĵ. Its
mean value in the vacuum state is zero,

Ĵ ¼ Ĵ − h0jĴj0i; h0jĴj0i ¼ 0: ðC6Þ

Then, using orthonormality condition (3.36), we calculate
currents created by one-electron states in the range Ω1:

h0jþan1ðinÞĴþa†n1ðinÞj0i ¼ −eðMn1TÞ−1 < 0;

h0j−an1ðinÞĴ−a†n1ðinÞj0i ¼ eðMn1TÞ−1 > 0;

h0j−an1ðoutÞĴ−a†n1ðoutÞj0i ¼ eðMn1TÞ−1 > 0;

h0jþan1ðoutÞĴþa†n1ðoutÞj0i ¼ −eðMn1TÞ−1 < 0; ðC7Þ

and currents created by one-positron states in the
range Ω5:

h0j−bn5ðinÞĴ−b†n5ðinÞj0i ¼ eðMn5TÞ−1 > 0;

h0jþbn5ðinÞĴþb†n5ðinÞj0i ¼ −eðMn5TÞ−1 < 0;

h0jþbn5ðoutÞĴþb†n5ðoutÞj0i ¼ −eðMn5TÞ−1 < 0;

h0j−bn5ðoutÞĴ−b†n5ðoutÞj0i ¼ eðMn5TÞ−1 > 0; ðC8Þ

The quantities Mn are given by Eqs. (3.48), and the
combination ðMnTÞ−1 is the modulus of the probability
flux of a one-particle state through the hyperplane
x ¼ const. One can see that signs of currents (C7) and
(C8) are always opposite to the signs of the asymptotic
values pR and pL, respectively. Thus, the one-particle
quantum mechanical interpretation of quantum numbers
pR and pL as momenta holds true in the ranges Ω1

and Ω5.
IV. Using energy flux operator F̂ðxÞ (4.25), we construct

the corresponding renormalized operator F̂ðxÞ. Its mean
value in the vacuum state is zero,

F̂ðxÞ ¼ F̂ðxÞ − h0jF̂ðxÞj0i; h0jF̂ðxÞj0i ¼ 0: ðC9Þ

Then, with the help of this operator, we calculate mean
energy fluxes created by one-particle states (5.1) and (5.2)
through the surfaces x ¼ xL and x ¼ xR. Using orthonor-
mality condition (3.36), we obtain for electrons in the
range Ω1:

Fn1;þðinÞ ¼ h0jþan1ðinÞF̂ðxLÞþa†n1ðinÞj0i
¼ ðMn1TÞ−1π0ðLÞ > 0;

Fn1;þðoutÞ ¼ h0jþan1ðoutÞF̂ðxRÞþa†n1ðoutÞj0i
¼ ðMTÞ−1π0ðRÞ > 0;

Fn1;−ðinÞ ¼ h0j−an1ðinÞF̂ðxRÞ−a†n1ðinÞj0i
¼ −ðMTÞ−1π0ðRÞ < 0;

Fn1;−ðoutÞ ¼ h0j−an1ðoutÞF̂ðxLÞ−a†n1ðoutÞj0i
¼ −ðMTÞ−1π0ðLÞ < 0; ðC10Þ

and for positrons in the range Ω5:

Fn5;−ðinÞ ¼ h0j−bn5ðinÞF̂ðxLÞ−b†n5ðinÞj0i
¼ ðMTÞ−1jπ0ðLÞj > 0;

Fn5;−ðoutÞ ¼ h0j−bn5ðoutÞF̂ðxRÞ−b†n5ðoutÞj0i
¼ ðMTÞ−1jπ0ðRÞj > 0;

Fn5;þðinÞ ¼ h0jþbn5ðinÞF̂ðxRÞþb†n5ðinÞj0i
¼ −ðMTÞ−1jπ0ðRÞj < 0;

Fn5;þðoutÞ ¼ h0jþbn5ðoutÞF̂ðxLÞþb†n5ðoutÞj0i
¼ −ðMTÞ−1jπ0ðLÞj < 0: ðC11Þ
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We believe that the direction of the energy flux indicates
the direction of motion of the corresponding particle, which
is shown on Fig. 3 by the corresponding arrows.
This fact allows us to find longitudinal momenta of the

waves in the asymptotic regions SL and SR by integrating
the corresponding energy fluxes over x. Such QFT quan-
tities differ from the quantum numbers pL and pR that are
asymptotic longitudinal momenta of the corresponding unit
one-particle flux, for simplicity, we call them QM longi-
tudinal momenta of particles.
For example, QFT longitudinal momenta of electron

states are

Pn1;þðinÞ ¼ Fn1;þðinÞKðLÞ ¼ 1

2
jpLjjgðþjþÞj−2;

Pn1;þðoutÞ ¼ Fn1;þðoutÞKðRÞ ¼ 1

2
jpRjjgðþjþÞj−2;

Pn1;−ðoutÞ ¼ Fn1;−ðoutÞKðLÞ ¼ −
1

2
jpLjjgðþjþÞj−2;

Pn1;−ðinÞ ¼ Fn1;−ðinÞKðRÞ ¼ −
1

2
jpRjjgðþjþÞj−2; ðC12Þ

see Sec. III C. In the same manner, using Eq. (C11), we can
find longitudinal momenta of positron states.
These relations show that quantum numbers jπ0ðL=RÞj

can be interpreted as kinetic energies of the unit particle
flux, both for electrons and positrons in the asymptotic
regions SL and SR, respectively. Then it follows from
Eqs. (C12) that jpLj and jpRj are modulus of asymptotic
longitudinal momenta of the unit of the corresponding one-
particle fluxes. One can also see that the sign of the mean
values Fn;ζðin=outÞ in electron states is ζ and in positron
states is −ζ. The directions of the energy fluxes represent
the directions of the motion of both electrons and positrons.
Thus, we see that the asymptotic longitudinal physical
momenta of electrons are pL

ph ¼ pL and pR
ph¼pR, whereas

for positrons they are pL
ph¼−pL and pR

ph¼−pR. This
matches with the standard interpretation of quantum
numbers of solutions of the Dirac equation. One can also
see that the electric current of electrons is opposite to the
direction of their energy flux (and to their asymptotic
longitudinal physical momenta), whereas the electric cur-
rent of positrons coincides with the direction of their energy
flux (and with the asymptotic longitudinal physical
momenta).

2. Mean values in Ω3

I. By using relations (7.4), we find differential mean
numbers of out-particles in the vacuum j0; ini, and differ-
ential mean numbers of in-particles in the out-vacuum
j0; outi,

Na
nðoutÞ ¼ h0; injþa†nðoutÞþanðoutÞj0; ini ¼ jgð−jþÞj−2;

Nb
nðoutÞ ¼ h0; injþb†nðoutÞþbnðoutÞj0; ini ¼ jgðþj−Þj−2;
Na

nðinÞ ¼ h0; outj−a†nðinÞ−anðinÞj0; outi ¼ jgðþj−Þj−2;
Nb

nðinÞ ¼ h0; outj−b†nðinÞ−bnðinÞj0; outi ¼ jgð−jþÞj−2:
ðC13Þ

II. By using relations (3.42) we find differential mean
numbers of out-particles in one-particle in-states,

h0; inj−anðinÞþa†nðoutÞþanðoutÞ−a†nðinÞj0; ini ¼ 1;

h0; inj−anðinÞþb†nðoutÞþbnðoutÞ−a†nðinÞj0; ini ¼ 0;

h0; inj−bnðinÞþb†nðoutÞþbnðoutÞ−b†nðinÞj0; ini ¼ 1;

h0; inj−bnðinÞþa†nðoutÞþanðoutÞ−b†nðinÞj0; ini ¼ 0: ðC14Þ

Thus, the one-electron in-state contains only one out-
electron and does not contain any out-positron, whereas
the one-positron in-state contains only one out-positron and
does not contain any out-electron, which is a consequence
of the Pauli principle.
III. Using the operator Ĥkin (4.21), we calculate kinetic

energies of all particles in the range Ω3,

h0; inj−anðinÞĤkin−a†nðinÞj0; ini ¼ −En3 ;

h0; inj−bnðinÞĤkin−b†nðinÞj0; ini ¼ −−En3 ;

h0; outjþanðoutÞĤkinþa†nðoutÞj0; outi ¼ þEn3 ;

h0; outjþbnðoutÞĤkin
þb†nðoutÞj0; outi ¼ −þEn3

: ðC15Þ

One can verify that, with the account taken of (4.17), the
combinations ðζEn3 − ζEn3

Þ are positive (as we demonstrate

in Sec. VII C, kinetic energies of physical wave packets of
electrons and positrons are also positive).
IV. Let us introduce renormalized (with respect to the

corresponding vacua) in- and out-operators of the electric
current flowing through the surface x ¼ const,

ĴðinÞ ¼ Ĵ − h0; injĴj0; ini;
ĴðoutÞ ¼ Ĵ − h0; outjĴj0; outi; ðC16Þ

where the operator Ĵ is given by Eq. (4.26). With the help of
Eq. (3.36) we find differential mean values of these
operators in all one-particle states (7.3),
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JanðinÞ ¼ h0; inj−anðinÞĴðinÞ−a†nðinÞj0; ini ¼−eðMnTÞ−1;
JbnðinÞ ¼ h0; inj−bnðinÞĴðinÞ−b†nðinÞj0; ini ¼−eðMnTÞ−1;
JanðoutÞ ¼ h0;outjþanðoutÞĴðoutÞþa†nðoutÞj0;outi

¼ eðMnTÞ−1;
JbnðoutÞ ¼ h0;outjþbnðoutÞĴðoutÞþb†nðoutÞj0;outi

¼ eðMnTÞ−1: ðC17Þ

One can see that the mean currents JanðoutÞ and JbnðoutÞ are
positive and have the same direction as the applied external
electric field, whereas the mean currents JanðinÞ and JbnðinÞ
are negative and have the opposite direction to the applied
external electric field. Both in- and out-electron states (7.3)
are states with definite quantum numbers pR, whereas both
in- and out-positron states (7.3) are states with definite
quantum numbers pL. Therefore, signs of both currents
JanðinÞ and JanðoutÞ coincide with the sign of pR, whereas
signs of both currents JbnðinÞ and JbnðoutÞ coincide with the
sign of pL.
V. Using energy flux operator F̂ðxÞ (4.25), we construct

the corresponding renormalized operators F̂ðxjinÞ and
F̂ðxjoutÞ,

F̂ðxjinÞ ¼ F̂ðxÞ − h0; injF̂ðxÞj0; ini;
F̂ðxjoutÞ ¼ F̂ðxÞ − h0; outjF̂ðxÞj0; outi: ðC18Þ

With the help of these operators, we calculate mean energy
fluxes through the surfaces x ¼ xL and x ¼ xR. Since
electron wave packets are localized in the region SL, and
positron wave packets are localized in the region SR, the
mean energy flux of electron partial waves is to be defined
through the surface x ¼ xL, and of positron partial waves
through the surface x ¼ xR. These mean values are ex-
pressed via energy fluxes of the Dirac field through the
surfaces x ¼ xL and x ¼ xR, respectively. The latter fluxes
can be calculated using Eqs. (3.36),

Fa
nðinÞ ¼ h0; inj−anðinÞF̂ðxL; inÞ−a†nðinÞj0; ini

¼ ðMnTÞ−1π0ðLÞ;
Fa
nðoutÞ ¼ h0; outjþanðoutÞF̂ðxL; outÞþa†nðoutÞj0; outi

¼ −ðMnTÞ−1π0ðLÞ;
Fb
nðinÞ ¼ h0; inj−bnðinÞF̂ðxR; inÞ−b†nðinÞj0; ini

¼ −ðMnTÞ−1jπ0ðRÞj;
Fb
nðoutÞ ¼ h0; outjþbnðoutÞF̂ðxR; outÞþb†nðoutÞj0; outi

¼ ðMnTÞ−1jπ0ðRÞj: ðC19Þ

To find the longitudinal momenta of particles in the
asymptotic regions SL and SR, we have to integrate these
energy fluxes over x. Thus we obtain:

Pa
nðin=outÞ ¼ Fa

nðin=outÞKðLÞ ¼ � 1

2
jpLjjgðþj−Þj−2;

Pb
nðin=outÞ ¼ Fb

nðin=outÞKðRÞ ¼ ∓ 1

2
jpRjjgðþj−Þj−2:

ðC20Þ

We stress that in contrast to the ranges Ω1 and Ω5, signs
of the quantities related to the electrons in Eqs. (C19) and
(C20) are determined by the signs of the quantum number
pR, but not by the signs of the quantum number pL,
whereas signs of the quantities related to the positrons are
determined by the signs of the quantum number pL, but not
by the signs of the quantum number pR,

sgnðPa
nðin=outÞÞ ¼ −sgnðpRÞ;

sgnðPb
nðin=outÞÞ ¼ sgnðpLÞ: ðC21Þ

Relations (C21) indicate a direct correlation between
directions of in- and out- energy fluxes and directions of the
corresponding currents, which is

sgnpR ¼ sgnJbnðoutÞ ¼ sgnJanðoutÞ;
sgnpL ¼ sgnJbnðinÞ ¼ sgnJanðinÞ: ðC22Þ

One can see from these relations that in the range Ω3, as
well as in the ranges Ω1 and Ω5, the quantum numbers
jπ0ðL=RÞj are kinetic energies per unit of one-particle flux
in the corresponding asymptotic regions. Direction of the
energy flux indicates the direction of the particle motion.
This direction coincides with the direction of positron
currents situated in the region SR and is opposite to the
direction of the electron currents situated in the region SL.

APPENDIX D: TOTAL REFLECTION
IN THE KLEIN ZONE

To consider the total reflection in the range Ω3 in the
general case of arbitrary strong electric field when Ncr

n → 1
for some n ∈ Ωstr

3 ⊂ Ω3 it is necessary to associate particles
with special wave packets that are stable enough. We
consider the Dirac case. The case of scalar field can be
given along the same lines.
There are in and out electron and positron states each of

them associated with the corresponding wave packet.
Electron in-states are composed from the plane waves
−ψn3ðXÞ, whereas electron out-states are composed from
the plane waves þψn3ðXÞ. Positron in-states are composed
from the plane waves −ψn3ðXÞ, whereas positron out-states
are composed from the plane waves þψn3

ðXÞ. It is natural
to suppose that all these wave packets are localized at some
time instants in some areas that have a finite length on the
axis x. Let x ¼ xF be a center of such an area at some time
instant. We represent such wave packets for electrons and
positrons as follows
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ζψxFðXÞ ¼ ζNxF

X
n∈Ω3

ζcðxFÞn M−1=2
n

ζψnðXÞ

− in=outðζ ¼ −=þÞ − electron states;

ζψxF
ðXÞ ¼ ζNxF

X
n∈Ω3

ζc
ðxFÞ
n

M−1=2
n ζψn

ðXÞ

− in=outðζ ¼ −=þÞ − positron states; ðD1Þ

where ζcðxFÞn and ζc
ðxFÞ
n

are some coefficients and ζNxF and

ζNxF
are normalization factors,

jζNxF j−2 ¼
X
n∈Ω3

jζcðxFÞn j2; jζNxF
j−2 ¼

X
n∈Ω3

jζcðxFÞn
j2:

We are interested in the cases when particle wave packets
are localized in the asymptotic region SL far enough from
the asymptotic region SR, which means xF < xFL < xL, or in
the asymptotic region SR far enough from the asymptotic
region SL, which means xF > xFR > xR. We assume that
minimal extension ΔF of the whole wave packet along the
axis x, is much less than the distance between the points xFL
and xR, or xFR and xL,ΔF ≪ xFR − xL, xR − xFL. Similar to the
discussion related to Eqs. (B3) and (B4), one can study
square norms of the introduced wave packets ðζψxF ;

ζψxFÞ
and ðζψxF

; ζψxF
Þ. One can separate contributions to these

square norms from the asymptotic regions SL and SR, as
follows

ðζψxF ;
ζψxFÞ ¼ ðζψxF ;

ζψxFÞL þ ðζψxF ;
ζψxFÞR þOð1Þ;

ðζψxF
; ζψxF

Þ ¼ ðζψxF
; ζψxF

Þ
L
þ ðζψxF

; ζψxF
Þ
R
þOð1Þ;

ðD2Þ

where

ðζψxF ;
ζψxFÞL ¼

Z
V⊥

dr⊥
Z

xL

−KðLÞ
ζψ†

xFðXÞζψxFðXÞdx;

ðζψxF ;
ζψxFÞR ¼

Z
V⊥

dr⊥
Z

KðRÞ

xR

ζψ†
xFðXÞζψxFðXÞdx;

ðζψxF
; ζψxF

Þ
L
¼

Z
V⊥

dr⊥
Z

xL

−KðLÞ ζ
ψ†
xF
ðXÞζψxF

ðXÞdx;

ðζψxF
; ζψxF

Þ
R
¼

Z
V⊥

dr⊥
Z

KðRÞ

xR
ζψ

†
xF
ðXÞζψxF

ðXÞdx: ðD3Þ

Let us study integrals (D3) following the procedure
described in Appendix B. Taking into account the mutual
decompositions of the plane waves (3.38) and using spin
and coordinate factorization of Dirac spinors given by
Eq. (3.6), one can represent integrals (D3) in the following
forms

ðζψxF ;
ζψxFÞL ¼ jζNxF j2

Z
V⊥

dr⊥
Z

xL

−KðLÞ
jζφL

xFðXÞj2dx;

ðζψxF ;
ζψxFÞR ¼ jζNxF j2

Z
V⊥

dr⊥
Z

KðRÞ

xR

jζφR
xFðXÞj2dx;

ðζψxF
; ζψxF

Þ
L
¼ jζNxF

j2
Z
V⊥

dr⊥
Z

xL

−KðLÞ
jζφL

xF
ðXÞj2dx;

ðζψxF
; ζψxF

Þ
R
¼ jζNxF

j2
Z
V⊥

dr⊥
Z

KðRÞ

xR

jζφR
xF
ðXÞj2dx; ðD4Þ

where

ζφR
xFðXÞ ¼

X
n∈Ω3

ζcðxFÞn exp ð−ip0tþ ipRxþ ip⊥r⊥Þffiffiffi
2

p jgðþj−Þj
;

ζφL
xFðXÞ ¼

X
n∈Ω3

½gðþjζÞeijpLjx − gð−jζÞe−ijpLjx�

× ζc
ðxFÞ
n

exp ð−ip0tþ ip⊥r⊥Þffiffiffi
2

p jgðþj−Þj
;

ζφ
R
xF
ðXÞ ¼

X
n∈Ω3

½gðþjζÞeijpRjx − gð−jζÞe−ijpRjx�

× ζc
ðxFÞ
n

exp ð−ip0tþ ip⊥r⊥Þffiffiffi
2

p jgðþj−Þj
;

ζφ
L
xF
ðXÞ ¼

X
n∈Ω3

ζc
ðxFÞ
n

exp ð−ip0tþ ipLxþ ip⊥r⊥Þffiffiffi
2

p jgðþj−Þj
: ðD5Þ

Absolute values of the asymptotic momenta jpLj and
jpRj are determined by the quantum numbers p0 and p⊥,
see Eqs. (3.15) and (3.19). This fact imposes certain
correlations between both quantities. In particular, one
can see from Eq. (3.21) that djpLj=djpRj < 0, and at
any given p⊥ these quantities are restricted inside the
range Ω3,

0 ≤ jpR=Lj ≤ pmax; pmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
UðU − 2π⊥Þ

p
: ðD6Þ

As an example, let us consider an electron wave
packet with a given spin polarization σ and transversal
momentum p⊥,

ζψxFðXÞ ¼
ζNxFT

2π

Z
p0∈Ω3

M−1=2
n

ζcðxFÞn
ζψnðXÞdp0; ðD7Þ

where the integration over p0 is fulfilled for a given fixed
p⊥ and the corresponding asymptotic scalar functions (D5)
are
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ζφL
xFðXÞ¼

T
2π

Z
p0∈Ω3

ζcðxFÞn expð−ip0tþ ip⊥r⊥Þffiffiffi
2

p jgðþj−Þj
× ½gðþjζÞeijpLjx−gð−jζÞe−ijpLjx�dp0;

ζφR
xFðXÞ¼

T
2π

Z
p0∈Ω3

ζcðxFÞn expð−ip0tþ ipRxþ ip⊥r⊥Þffiffiffi
2

p jgðþj−Þj
dp0:

ðD8Þ

Using Eqs. (3.10) and (3.15), we express p0 via pR as

p0 ¼ UR −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpRÞ2 þ π2⊥

q
:

Then we denote the mean value of pR in a wave packet in
SR as p̄R, and the mean value of jpLj of the same packet in

SL as jp̄Lj. Afterwards we chose coefficients ζcðxFÞn as
follows

ζcðxFÞn

jgðþj−Þj
dp0 ¼ −djpRj 1

ΔF

Z þΔF=2

−ΔF=2
dδxF

×
exp ½−ip0ζT=2 − iζjpRjðxF þ δxFÞ�

jḡðþj−Þj
;

ðD9Þ

where the quantity jḡðþj−Þj ¼ jgðþj−ÞjpR¼p̄R does not
depend on jpRj. This allows one to represent wave packets
(D8) as integrals over jpRj,

ζφR
xFðXÞ ¼

ζD
ΔF

Z þΔF=2

−ΔF=2
dδxF

Z
pmax

0

djpRj

× exp
h
i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpRÞ2 þ π2⊥

q
ðtþ ζT=2Þ

þ iζjpRjðx − xF − δxFÞ
i
;

ζφL
xFðXÞ ¼

ζD
ΔF

Z þΔF=2

−ΔF=2
dδxF

Z
pmax

0

djpRj

× exp
h
i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpRÞ2 þ π2⊥

q
ðtþ ζT=2Þ

− iζjpRjðxF þ δxFÞ
i

× ½gðþjζÞeijpLjx − gð−jζÞe−ijpLjx�;
ζD ¼ T exp ½−iURðtþ ζT=2Þ þ ip⊥r⊥�

2
ffiffiffi
2

p
πjḡðþj−Þj

: ðD10Þ

The case pmax → 0 where jpmaxðxR − xF − δxFÞj ≲ 1,
takes place for relatively weak fields, or near the border
between Ω3 and Ω2, and, as was already said above, is
characterized by big values of the quantity
jgðþj−Þj ∼ jgðþjþÞj → ∞. In this case, it follows from
(D10) that the asymptotic densities jζφR

xFðXÞj2 tend to zero,

i.e., electron wave packets do not penetrate in the asymp-
totic region SR, whereas the absolute values of the
coefficients in front of the incoming and outgoing plane
waves in the expression for ζφL

xFðXÞ are equal.
In the case when pmax is not small, i.e., pmaxΔF ≫ 1, we

consider first the situation when xF ∈ SL, xF < xFL, and
xF þ δxF < xFL for all δxF. In our general setting of the
problem we have −T=2 < t < T=2 that is why
ζðtþ ζT=2Þ > 0 and therefore in the region SR where
x > xR > 0 the exponent index in the expression (D10) for
ζφR

xFðXÞ is not zero. Moreover, at any time instant, high-
frequency oscillations in the latter expression lead to
vanishing the asymptotic densities jζφR

xFðXÞj2 → 0. It is
easy to see that situation is quite different in the asymptotic
region SL, where x < xFL < xL < 0. Here ζφL

xFðXÞ is a
superposition of two types of plane waves with opposite
signs of the quantum number pL. That is why there always
exists such an area on the axis x where the exponent index
in the expression (D10) for ζφL

xFðXÞ is zero. In particular,
when jtþ ζT=2j ∼ 0, there always exists an x such that
jpRjðxF þ δxFÞ − jpLjx ¼ 0 for any ζ.
This corresponds to incoming wave packets at t → −T=2

for ζ ¼ − and outgoing wave packets at t → T=2 for
ζ ¼ þ. Note that mean currents of these electron and
positron wave packets are zero unlike the mean currents of
constituent plane waves. To understand such a distinct
behavior, it useful to recall that mean currents are defined
by the inner product (3.33), which is, in particular, the
average value over the period of time from −T=2 to T=2,
where T is the time dimension of a large space-time box.
Thus, a certain direction of a wave packet in a given time
instant matches with the zero average current of this wave
packet.
Let us suppose now that xF ∈ SR, xF > xFR, and

xF þ δxF > xFR for all δxF. In such a case there exist a
coordinate x ∈ SR and x > xFR > xR > 0, such that the
exponent index in the expression (D10) for ζφR

xFðXÞ is
zero. However, since ζφL

xFðXÞ is a superposition of two
types of plane waves with opposite signs of the quantum
number pL, in the asymptotic region SL there always exists
such an area on the axis x where the exponent index in the
expression (D10) for ζφL

xFðXÞ is also zero. This means that
such wave packets cannot represent an electron. This result
holds true for any electron wave packets. Indeed, in our
reasonings we have used only the general structure (D5) of
functions ζφR

xFðXÞ which consist of only one type of plane
waves with the same sign of the quantum number pR,
whereas the functions ζφL

xFðXÞ represent superpositions of
the two types of plane waves with opposite signs of the
quantum number pL. Namely this is the reason why
electron packets cannot be localized only in SR and
cannot represent stable states describing electrons. We
see that in the framework of our consideration there are
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no electrons in the region SR with quantum numbers from
the range Ω3.
It is not difficult to give similar example for positron

wave packets and prove that they can be localized only in
one asymptotic region, namely in SR.
Thus, in the range Ω3 there exists the same localization

of electrons as in the range Ω2 and positron localization as
in the range Ω4. That is why in contrast to the ranges Ω1

and Ω5, any initial and final wave packets in the range Ω3

may come in and go out only to the same asymptotic
region, which corresponds to the total reflection both for
electrons and positrons.

APPENDIX E: DIFFERENTIAL MEAN NUMBER
IN SLOWLY ALTERNATING FIELD

The absolute values of jpRj and jpLj are related by
Eq. (3.21). In the range Ω3 these relations imply Eq. (D6)
and

0 ≤ jjpLj − jpRjj ≤ pmax: ðE1Þ

Therefore, for big α that satisfies Eq. (3.21), we obtain

πα

	
eEα −

1

2
jjpLj − jpRjj



≫ 1: ðE2Þ

As a consequence of (E2) the quantities Ncr
n given by

Eq. (9.4) for fermions, and by Eq. (9.6) for bosons have
approximately the same form

Ncr
n ¼ jgðþj−Þj−2
≈ 4 sinh ðπαjpLjÞ sinh ðπαjpRjÞ exp ð−2πeEα2Þ: ðE3Þ

Then it follows from Eq. (E3) that if the rangeΩ3 is small
enough

eEα − π⊥ → 0 ⇒ παpmax ≪ 1: ðE4Þ

then the quantities Ncr
n are exponentially small.

Let us consider the opposite case of big ranges Ω3 when

παpmax ≫ 1 ðE5Þ

and the quantities Ncr
n are not small. Such ranges do exist if

eEα ≫ m ðE6Þ

and

απ⊥ < K⊥; ðE7Þ

where K⊥ is a given arbitrary number, mα ≪ K⊥ ≪ eEα2.
In this case, we consider first finite subranges adjoining

the range Ω3 from inside. In such subranges

Ncr
n ≃ 2sinh ðπαjpRjÞ

×exp
h
−πα

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpRÞ2þ π2⊥

q i
if παjpRj< kmα;

Ncr
n ≃ 2sinh ðπαjpLjÞ

×exp
h
−πα

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpLÞ2þ π2⊥

q i
if παjpLj< kmα; ðE8Þ

where k≳ 1 is a given arbitrary number, obeying the
inequality

kmα ≪ eEα2: ðE9Þ

Near the borders of the range Ω3, we have

Ncr
n ≈ 2 sinh ðπαjpRjÞe−παπ⊥ if παjpRj < K0;

Ncr
n ≈ 2 sinh ðπαjpLjÞe−παπ⊥ if παjpLj < K0; ðE10Þ

where K0 < 1 is an arbitrary number. The numbers Ncr
n

given by Eq. (E10) are exponentially small, Ncr
n ≲ 2e−πmα.

For border areas situated more close to the center of the
range Ω3, where 1≲ παjpR;Lj, we have

Ncr
n ≈ exp

h
−πα

h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpRÞ2 þ π2⊥

q
− jpRj

ii
if 1≲ παjpRj≲ πkmα;

Ncr
n ≈ exp

h
−πα

h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpLÞ2 þ π2⊥

q
− jpLj

ii
if 1≲ παjpLj≲ πkmα: ðE11Þ

The numbersNcr
n are growing as n recedes from the borders

of the rangeΩ3 and for any fixed π⊥ achieves his maximum
when παjpRj → πkmα, or αjpLj → πkmα. In turn, this
maximum value grows as π⊥ → m. Thus, in the subranges
under consideration, we can estimate the quantities Ncr

n
from above as

Ncr
n < exp

�
−
πmα

2k

�
: ðE12Þ

This quantity is exponentially small if for any given k the
ratio πmα

2k > 1 is big enough.
The main contribution to the particle creation is due to

the inner part of the range Ω3. This range is defined by the
following inequalities

παjpRj > πkmα; παjpRj > πkmα: ðE13Þ
They correspond to the following restrictions on the
energy p0∶

αjp0j < eEα2 − K; K ¼ α
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkmÞ2 þ π2⊥

q
: ðE14Þ

Inequalities (E7) and (E9) imply that K ≪ eEα2. In such
a case, we can approximate the numbers (E3) as
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Ncr
n ≈ Nas

p0;p⊥ ¼ e−πτ;

τ ¼ αð2eEα − jpRj − jpLjÞ: ðE15Þ

The function τ is minimal at p0 ¼ 0,

min τ ¼ τjp0¼0 ¼ λ ¼ π2⊥
eE

; ðE16Þ

it grows monotonically as jp0j grows, and takes its
maximum value

τmax ¼ τjjp0j¼eEα−K=α ≈ K − kmαþ λ=4 ðE17Þ

on the boundary of the Ω3 range. In the wide range of
energies where αjp0j ≪ eEα2, the numbers Ncr

n do not
depend practically on the parameter α and have the form of
the differential number of created particles in an uniform
electric field [2,13],

Ncr
n ≈ e−πλ: ðE18Þ
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