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We investigate the special case of quintic interactions for massless higher spin gauge fields using the
string-theoretic vertex operator construction for higher spin gauge fields in Vasiliev’s framelike formalism.
We compute explicitly the related five-point interaction vertex in the low energy limit of string theory and
find that the structure of the quintic s1 − s2 − s3 − s4 − s5 higher spin interaction gets drastically simplified
and localized if (a) the spin values satisfy the constraint s1 þ s2 þ s3 ¼ s4 þ s5 þ 2 (and, more generally, if
the sum of three spin values roughly equals the sum of the remaining two) and (b) one of the spin values s4
or s5 is sufficiently small. In this paper, the explicit computation is done for the case s4 ¼ 4.
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I. INTRODUCTION

Interacting higher-spin gauge fields are known to be the
crucial ingredient of AdS/CFT and holography in general
and, at the same time, difficult and fascinating objects to
work with. Despite the fact that the higher spin theories in
anti–de Sitter (AdS) spaces can circumvent the restrictions
imposed by the Coleman-Mandula’s theorem, describing
the gauge-invariant higher-spin interactions is a highly
nontrivial problem since the gauge symmetry in these
theories must be sufficiently powerful in order to eliminate
unphysical degrees of freedom [1–43].
The restrictions imposed by such a gauge symmetry

make understanding the interactions in higher-spin theories
a distinctively complicated problem. While there was some
progress in classification of the higher-spin 3-vertices and
cubic interactions over recent years, our understanding of
the higher-order interactions is still largely incomplete even
at the quartic level [with the quartic interactions presum-
ably related to conformal blocks in the dual conformal field
theories (CFTs)]. Apart from that, at this point we know
very little, if anything about higher spin theories beyond the
quartic order, e.g. about quintic and higher order inter-
actions. One general property expected from the interacting
higher spin theories is that they have to be essentially
nonlocal. Such a nonlocality is a natural compromise in
order to evade the restrictions imposed by Coleman-
Mandula’s theorem in flat space-time; however, it also
appears to persist in curved background geometries such as
AdS where, at least formally, the Coleman-Mandula’s
restrictions can be circumvented. In fact, this nonlocality
property can be seen in a very natural way in string theory,
where one interprets the higher spin fields as space-time
wave functions for the certain class of vertex operators and

the higher spin interactions in terms of the world sheet
correlators of these operators. Indeed, string theory appears
to be a natural framework to describe higher spin dynamics,
as the framelike description of the higher spin modes in
Vasiliev’s formalism has a very natural vertex operator
interpretation [44]. The vertex operators describing higher
spin modes have, however, the ghost structure which is very
different from that of operators for the lower spin modes,
such as a photon [44,45]. First of all, these operators couple
nontrivially to the β − γ system of superconformal ghosts.
These couplings are classified by the minimum super-
conformal ghost pictures carried by the operators. That is,
the vertex operators of spin s are the elements of ghost
cohomologies H−s ∼Hs−2ðs > 2Þ implying that they are
annihilated by direct picture changing transformation
at negative picture −s and by inverse picture changing
transformation at dual positive picture s − 2. Moreover,
these operators also have an anomalous b − c ghost number
coupling, which is closely related to the nonlocalities in the
resulting interactions. Namely, the standard b − c pictures
for lower spin vertices, such as a photon, involve either an
integrated form at ghost number 0 or an unintegrated form
at ghost number 1. Combined with the b − c ghost number
anomaly cancellation condition, this requires three unin-
tegrated operators and N − 3 integrated leading, for exam-
ple, to the standard form of Veneziano amplitude, defining
local quartic interaction terms in the low-energy effective
action. The ghost structure of the higher spin operators is
different. Since these operators violate picture equivalence
and have no picture 0 representation, one needs operators at
both positive and negative superconformal ghost pictures to
ensure the correct superconformal ghost number balance in
correlators. The higher spin vertex operators at positive
pictures, however, only exist in the integrated form, given
by the integrals of three types of terms. That is, for spin s
operators these types carry the ghost structures eðs−2Þϕ,
ceðs−3Þϕþχ , and ∂cceðs−4Þϕþ2χ , respectively (where ϕ and χ
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are the bosonized superconformal ghosts). Typically, it is
the first and the second types of terms that contribute to
higher spin correlators. The second type, while being
integrated operators, also carry the b − c ghost number
one. This leads to the possibility of the b − c ghost number
balance being saturated while having an extra integration
in the correlator (compared to the correlators of vertices
for lower spins). This extra integration leads to the
appearance of additional singularities in the resulting
scattering amplitude. Unlike the poles of lower spin
amplitudes (such as the Veneziano amplitude), correspond-
ing to particle exchanges, the extra singularities reflect the
nonlocalities in the related interaction terms for higher spin
modes in the low-energy effective action. Typically, the
combination of superconformal and b − c ghost number
balance constraints dictates that the type 2 operators always
contribute to the higher spin amplitudes, leading to non-
localities in space-time (e.g. considered in [46]). However,
as we point out in this work, there exists a class of
amplitudes contributed by the first type operators only.
These amplitudes are in turn related to the appearance of
local gauge-invariant interactions for higher spins in the
low-energy effective action. We find that the higher spin
interaction vertices of this type appear as follows:
(1) only appear at higher orders of interaction, starting

from the quintic order. The interactions of this type
are absent at lower orders, such as the quartic order.

(2) only may appear if the spin values satisfy the
localization constraint; that is, for the order N higher
spin interaction the sum of three spins must be
roughly equal to the sum of the remainingN − 3, i.e.

s1 þ s2 þ s3 ¼ s4 þ � � � þ sN þ α; ð1Þ
where α is of the order of 1 (in the concrete example
of the quintic interaction, considered in this work,
α ¼ 2). The rest of this paper is organized as
follows. In the next section, we review the vertex
operator formalism for framelike higher spin gauge
fields of arbitrary spin values and perform a general
analysis of the derivative structure of higher spin
interaction, related to the correlators of these oper-
ators. In Sec. III, we calculate the particular example
of the five-point amplitude, satisfying the constraint
(1), leading to the localization effect in the quintics.
The structure of the amplitude and of the interaction
particularly simplifies if one of the spins, s4 or s5,
has a relatively small value, up to 6 [in this work we
consider the case s4 ¼ 4, with all other spin values
arbitrary, up to localization constraint (1)]. In the
calculation, we particularly use the operator product
expansion (OPE) formalism for the Bell polynomial
operators, developed in previous work [47]. In the
concluding section, we discuss the physical impli-
cations of the calculation done in this work and its
possible generalizations.

II. FRAMELIKE FIELDS AND VERTEX
OPERATORS: REVIEW OF THE FORMALISM
AND PRELIMINARY DERIVATIVE ANALYSIS

In the framelike formalism a symmetric higher spin field
of spin s is described by the set of s two-row gauge fields

Ωs−1jtðxÞ≡Ωa1���as−1jb1���bt
m ðxÞð0 ≤ t ≤ s − 1Þ appearing in

the higher spin extension of Cartan’s 1-form by generators
of infinite-dimensional higher spin algebra,

Ωð1Þ ≡Ωmdxm ¼
�
eamTa þ ωa1a2

m Ta1a2

þ
X∞
s¼3

Xs−1
t¼0

Ωa1���as−1jb1���bt
m Ta1���as−1jb1���bt

�
dxm; ð2Þ

where Ta; Ta1a2 are the space-time isometry generators, e
and ω are the vielbeins and spin connections for s ¼ 2, and
Ta1���as−1jb1���bt are the generators of the higher spin algebra
that envelops the space-time isometry algebra. In this
formalism, only t ¼ 0 fields are genuinely dynamical
and are related to Fronsdal’s metric-type higher spin fields
upon symmetrization. The fields with t ≠ 0 are the extra
fields, related to Fronsdal’s field Ωs−1j0 by generalized zero
torsion constraints according to

Ωs−1jtðxÞ ∼ ∂tΩs−1j0: ð3Þ
In curved backgrounds, such as AdS, the framelike
approach to higher spin dynamics is remarkably efficient.
At the same time, string theory is known to be a particularly
natural framework to describe the interactions of higher
spin fields in terms of the world sheet correlators of the
vertex operators. In particular, the bosonic string spectrum
in the tensionless limit contains vertex operators that can be
interpreted as sources for Fronsdal’s higher spin modes,
although the correlators calculated in this limit are some-
what difficult to interpret in terms of higher spin inter-
actions in the field-theoretic low-energy limit of string
theory [2–5,30,31]. Apart from the tensionless limit, the
vertex operators describing massless higher spin modes can
be constructed in Ramond-Neveu-Schwarz (RNS) super-
string theory. These operators are the elements of nonzero
ghost cohomologiesH−s ∼Hs−2, existing either at minimal
negative picture s and below or at dual minimum positive
picture s − 2 and above. These operators describe massless
fields of spin s ≥ 3 in the framelike formalism (except for
s ¼ 3where the corresponding higher spin mode is actually
a Fronsdal’s field). Becchi-Rouet-Stora-Tyutin (BRST)-
invariance constraints on these operators entail the on-shell
constraints on the higher spin fields (such as Pauli-Fierz
constraints) while BRST nontriviality conditions entail the
gauge and diffeomorphism transformations. As these trans-
formations shift the vertex operators by BRST-exact terms,
the resulting correlation functions are gauge invariant by
construction. For s ¼ 3, the manifest expressions for the
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vertex operators in RNS superstring theory are rather
simple and are given by [44,45,48]

V2j0ðp; zÞ ¼ Ωab
m ðpÞce−3ϕψm∂Xa∂XbeipXðzÞ ð4Þ

at unintegrated minimal negative ghost picture −3 and

V2j0ðp; zÞ ¼ Ωab
m ðpÞK∘

Z
dzeϕψm∂Xa∂XbeipXðzÞ ð5Þ

at minimal positive picture þ1 which is always integrated.
Here Xm are the target space coordinates, ψm are the RNS

fermions, and K is the homotopy transform, necessary to
ensure the BRST invariance of the positive picture operator
(5). (See [44,45,48] for the detailed description of the
transform.)
The operators (4) and (5) are thus the elements

of H−3∘H1.
The manifest expressions for the vertex operators Vs−1jt

for the framelike fields with s > 3 become far more
complicated; however, a significant simplification occurs
for the case t ¼ s − 3. In this case, the explicit expressions
for the vertex operators are given by [45]

Vð−Þ
s−1js−3 ¼ ce−sϕ∂Xm1

� � � ∂Xs−1ψ
α0∂ψα1∂2ψα2 � � � ∂s−3ψαs−3e

ipXΩm1���ms−1jα1���αs−3
α0 ðpÞ ð6Þ

at the minimal negative unintegrated picture and

VðþÞ
s−1js−3 ¼ K∘

Z
dzes−2∂Xm1

� � � ∂Xs−1ψ
α0∂ψα1∂2ψα2 � � � ∂s−3ψαs−3e

ipXΩm1���ms−1jα1���αs−3
α0 ðpÞ ð7Þ

at the minimal positive picture representation with the result of the homotopy K-transformation given explicitly by

K∘
I

dzes−2∂Xm1
� � � ∂Xms−1

ψα0∂ψα1∂2ψα2 � � � ∂s−3ψαs−3e
ipXΩm1���ms−1jα1���αs−3

α0 ðpÞ ¼ A0ðp; uÞ þ A1ðp; uÞ þ A2ðp; uÞ; ð8Þ

where

A0ðp; uÞ ¼ Ωm1���ms−1jα1���αs−3
α0 ðpÞ ×

I
dzðz − uÞ2s−4Bð2s−4Þ

2ϕ−2χ−σe
ðs−2Þϕψα0∂ψα1∂2ψα2 � � � ∂s−3ψαs−3e

ipXðuÞ;

A1ðp; uÞ ¼ 2Ωm1���ms−1jα1���αs−3
α0 ðpÞ

I
dzðz − uÞ2s−4ceχþðs−3ÞϕþipX

×

�Xs−3
k¼0

ð−1Þkþ1k!

� Xs−2þk

j¼0

Bðsþk−1Þ
ϕ−χ ∂Xm1

� � � ∂Xms−1
ψα0 × ∂ψα1 � � � ∂k−1ψαk−1ð−ipαkÞ∂kþ1ψαkþ1

� � � ∂s−3ψαs−3

þ
Xs−2þk

j

1

j!
Bðs−2þk−jÞ
ϕ−χ ∂Xm1

� � � ∂Xms−1
× ψα0∂ψα1 � � � ∂k−1ψαk−1ð∂1þjXαkÞ∂kþ1ψαkþ1

� � � ∂s−3ψαs−3

�

− 2ðs − 1Þ
Xs−1
k¼0

1

k!
Bðs−1−kÞ
ϕ−χ ∂Xm1

� � � ∂Xms−2
∂jψms−1

ψα0∂ψα1∂2ψα2 � � � ∂s−3ψαs−3

�
;

A2ðp; uÞ ¼ −4ð2s − 3ÞΩm1���ms−1jα1���αs−3
α0 ðpÞ ×

I
dzðz − uÞ2s−4∂cce2χþðs−4Þϕψα0∂ψα1∂2ψα2 � � � ∂s−3ψαs−3e

ipXðuÞ ð9Þ

with A0, A1, and A2 terms having the ghost structure
described above, namely, eðs−2Þϕ; ceðs−3Þϕþχ , and
∂cceðs−4Þϕþ2χ , respectively, and the integrals being taken
around an arbitrary point u on the world sheet. The choice

of u is arbitrary as any correlators involving VðþÞ
s−1js−3ðp; uÞ-

operators are u-independent since their u-derivatives are
BRST exact in the small Hilbert space; the operators
themselves can be cast as BRST commutators in the large
Hilbert space (but not in the small Hilbert space) and

therefore are the elements of BRST cohomology in the
small Hilbert space, given the on-shell conditions on Ω and

modulo the gauge transformations [45,48]. The BðnÞ
mϕþnχþpσ

are the normalized degree n Bell polynomials in the
bosonized superconformal ghost fields ϕ, χ, and σ, defined
according to

∂n
zemϕþnχþpσðzÞ≡ 1

n!
∶ BðnÞ

mϕþnχþpσe
mϕþnχþpσðzÞ; ð10Þ
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where m, n, p are some numbers. The properties and the
operator algebras involving the Bell polynomial operators
have been studied in detail in [47] and will be used in the
present calculation. Although the negative and positive
picture representations of the higher spin vertex operators

Vð�Þ
s−1js−3ðp; uÞ are not directly related by picture-changing

transformations (as is clear from the fact that they belong to
the nonzero negative/positive cohomologies), they can be
mapped to each other by combining BRST-invariant picture
changing and Z-transformations which ensures that the on-
shell BRST-invariance constraints on Ω are identical in
both of the representations [44,45]. Technically, it is easier
to analyze these constraints at negative pictures, with the
BRST invariance imposing the on-shell conditions,

p2Ωm1���ms−1jα1���αs−3
α0 ðpÞ ¼ 0;

Ωmm3���ms−1jα1���αs−3
α0m ðpÞ ¼ 0;

Ωm1���ms−1jαα3���αs−3
α0α ðpÞ ¼ 0;

Ωm2���ms−1jαα2���αs−3
α0α ðpÞ ¼ 0: ð11Þ

The first and the second constraints are the standard
constraints for the symmetric higher spin fields in the
framelike description. They are supplemented by two more
constraints, indicating that the vertex operators (6) and
(7) describe the framelike fields in space-time with the
gauge partially fixed. The gauge transformations for Ω,

Ωa1���as−1jb1���bs−3
m → Ωa1���as−1jb1���bs−3

m þ pmΛa1���as−1jb1���bs−3 ;
ð12Þ

in turn shift the operators (6) and (7) by the BRST-exact
term (see [44,45] for the detailed BRST analysis). It is
essential that the β-function equations for theΩ-field, in the
leading order, defining the kinetic term for the correspond-
ing Fronsdal’s field and obtained using the off-shell
Weyl invariance constraints on the operators (6) and
(7) differ from the on-shell BRST-invariance constraints
due to nontrivial ghost couplings of the higher spin vertex
operators. Namely, the leading order βΩ ¼ 0 equations are
equivalent to L̂AdSΩ ¼ 0 where L̂AdS is the Fronsdal’s
kinetic operator in the AdS, rather than flat space, as was
shown by detailed computations in [45]. In particular, the
appearance of the mass-like term in L̂AdS (which is
identified with the tail of the covariant derivatives in the
AdS Laplacian) is directly related to the Weyl transforma-
tions of the anomalous superconformal ghost parts of the
higher spin vertex operators.
For the lower spin vertex operators, such as a graviton,

there is a familiar example, somewhat reminiscent of this
difference between Weyl and BRST transformations: e.g.
recall that the graviton’s β-function contains a term given
by the second derivative of the dilaton (which is, of course,

absent in the on-shell conditions imposed by the BRST
invariance). For this reason, it is natural to think of the
ðm; αÞ indices in (11) as of those living in the tangent
bundle of emergent AdS space. Accordingly, the correlators
of these operators describe the AdS higher spin inter-
actions, upon the pullback from the bundle to the manifold.
For the t values other than t ¼ s − 3 the manifest

expressions for the higher spin vertex operators become
significantly more complicated.
The explicit relation between the vertex operators

Vs−1jt ≡ Ωs−1jtWs−1jt (with W being conformal dimension
0 primary fields which, upon coupling with the space-time
higher spin framelike fields Ωs−1jt are the elements of H−s)
with different t values, generating the chain of the zero
torsion constraints, is given by [modulo the on-shell
constraints (11)]

Ωs−1jt∶ ΓWs−1jt ≔ Ωs−1jtþ1Ws−1jtþ1: ð13Þ

Here W are the conformal dimension 0 vertex operators
which, upon coupling to the space-time higher spin
framelike fields Ωs−1jt, become the elements of H−s. Γ
is the picture-changing operator for the β − γ ghost system
given by

Γ ¼ fQ; eχg

¼ −
1

2
eϕψm∂Xm þ 1

4
be2ϕ−χð∂χ þ ∂σÞ þ ceχ∂χ: ð14Þ

The relation (13) can be generalized according to

Ωs−1jt∶ ΓkWs−1jt ≔ Ωs−1jtþ1Ws−1jtþk ðk ≤ s − 3 − tÞ;
Ωs−1jt∶ ΓkWs−1jt ≔ 0 ðk > s − 3 − tÞ; ð15Þ

where Γk ≕ Γ � � �Γ ≔ ∶ekϕG∂G � � � ∂k−1G∶ is the nor-
mally ordered product of k picture-changing operators
and G is the full matter þ ghost world sheet supercurrent.
In particular, to obtain the operator for Fronsdal’s field one
can take k ¼ s − 3 and t ¼ 0.
k ¼ s − 3: Note that all the Vs−1jt ≡Ωs−1jtWs−1jt higher

spin vertex operators are the elements of H−s ∼Hs−2
cohomology for all the values of 0 ≤ t ≤ s − 3, although
the canonical pictures for Vs−1jt are different and equal to
−2sþ tþ 3 at the negative picture representation. The
action of Γ on Vsjt thus results in increasing the ghost
picture by one unit and the appearance of the extra p factor
in front of ΩðpÞ, typically due to the contraction of the first
term in Γ with the eipX factor in the vertex operator. The
zero torsion constraints can, of course, be reformulated
equivalently for the operators in the positive cohomology
representations; with all the spin s operators being the
elements of Hs−2, the constraints for the framelike vertex
operators in the positive cohomologies are
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Ωs−1jt∶ Γ−kWs−1jt ≔ Ωs−1jtþ1Ws−1jtþk ðk ≤ s − 3 − tÞ;
Ωs−1jt∶ Γ−kWs−1jt ≔ 0 ðk > s − 3 − tÞ; ð16Þ

withΩs−1jtWs−1jt-operators having canonical ghost pictures
2s − 5 − t, in particular the operator for Fronsdal’s field
having canonical positive picture 2s − 5. Here ∶Γ−k ≔
∶ðΓ−1Þk∶ with Γ−1 ¼ −4ceχ−2ϕ∂χ being the inverse
picture-changing operator.
In practice, Eqs. (15) and (16) generating the gener-

alized zero torsion constraints by the picture-changing
relations are hard to solve. For example, the solution
for the simplest of Eqs. (15) for t ¼ s − 4 is already
complicated enough, with the vertex operator having the
form

Vs−1js−4ðp; zÞ
∼ ce−ðsþ1Þϕ∂Xm1

� � � ∂Xs−1ψ
α0∂ψα1∂2ψα2 � � � ∂s−4ψαs−4

×

�
αBð2s−3Þ

−ϕ

Xs−3
p¼0

Xs−2
q¼pþ1

αpjq∂pψm∂qψnBð2s−4−p−qÞ
−ϕ

þ αs−3js−1∂s−3ψm∂s−1ψm

�
eipX ð17Þ

at the canonical −s − 1 picture where the αpjq-coefficients
must be calculated so as to ensure that Vs−1js−4ðp; zÞ is
primary (i.e. the singularities of cubic and higher orders
stemming from the OPE of the stress tensor with the ψ -
part must be canceled by those stemming from the
operator product with the Bell polynomials in the
derivatives of the ϕ-ghost field). Note that the leading
order of the operator products of all the Bell polynomials

BðNÞ
−ϕ with eϕ is the simple pole for any N, which ensures

that the picture-changing transformation of (17) does not
produce any terms other than those proportional to
Vs−1js−3, as well as the absence of singularities in the
OPE of Γ and Vs−1js−4ðp; zÞ. It is now not hard to see
that the expressions for operators with t ≤ s − 5 will get
more and more tedious for the lower t values; their

general structure would involve sums over multiple
products of ∂p ~ψ∂q ~ψ-factors multiplied by products of
s − 3 − t Bell polynomials of the ghost fields, making
them cumbersome objects to work with.
Thus the Vs−1js−3-operators appear to be particularly

convenient and natural objects to use in order to describe
the higher spin vertices in space-time. However, there are
restrictions on the spin values for the vertices that can be
described by the correlators with all the operators being of
the Vs−1js−3-only. That is, for a n ¼ pþ q-point higher
spin amplitude containing p Vs−1js−3-operators at positive
cohomologies and q operators at negative cohomologies
the spin values must satisfy

Xp
j¼1

ðsj − 2Þ −
Xpþq

j¼pþ1

sj ¼ −2 ð18Þ

in order to satisfy the superconformal ghost balance
constraint. The amplitudes with spin values not satisfying
(18) cannot be described by using solely the operators of
this type and require finding explicit solutions of the
operator equations (15) and (16) making them far more
complicated. At the same time, note that if the constraint
(18) is satisfied, despite the fact that the correlation
functions of the Vs−1js−3-type operators by construction
contain a certain minimal number of derivatives (since
each space-time field Ωs−1js−3 by definition contains
s − 3 derivatives), all the amplitudes involving Vs−1js−3
can be cast equivalently in terms of those involving
operators for Fronsdal’s fields and/or the operators for the
extra fields Ωs−1jt with lower t, using the zero torsion
relations (15) and (16), combined with the picture
equivalence of the operators inside each particular coho-
mology. For example, consider a five-point higher spin
amplitude with the spins satisfying the constraints (18):
s1 þ s2 − s3 − s4 − s5 ¼ 2. In the amplitude of this type,
two operators are integrated at the positive picture, and
three operators are unintegrated at the negative pictures.
Using the zero torsion relations (15) and (16) we get

Aðs1;…;s5Þ¼hΩs1−1js1−3Wðs1−2Þ
s1−1js1−3ðp1ÞΩs2−1js2−3Wðs2−2Þ

s2−1s2−3ðp2ÞΩs3−1js3−3Wð−s3Þ
s3−1js3−3ðp3ÞΩs4−1js4−3Wð−s4Þ

s4−1js4−3ðp4Þ
×Ωs5−1js5−3Wð−s5Þ

s5−1js5−3ðp5Þi
¼h∶Γ−s1−s2þ6∶Ωs1−1j0Wð2s1−5Þ

s1−1js1−3ðp1ÞΩs2−1j0Wð2s2−5Þ
s2−1s2−3ðp2Þ∶Γs3þs4þs5−9∶Ωs3−1j0Wð3−2s3Þ

s3−1j0 ðp3Þ
×Ωs4−1j0Wð3−2s4Þ

s4−1j0 ðp4ÞΩs5−1j0Wð3−2s5Þ
s5−1j0 ðp5Þi

¼hΩs1−1j0Wð2s1−6Þ
s1−1j0 ðp1ÞΩs2−1j0Wð2s2−6Þ

s2−1j0 ðp2ÞΩs3−1j0Wð2−2s3Þ
s3−1j0 ðp3ÞΩs4−1j0Wð2−2s4Þ

s4−1j0 ðp4ÞΩs5−1j0Wð2−2s5Þ
s5−1j0 ðp5Þi; ð19Þ
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i.e. the amplitude involving five Vs−1js−3 higher spin
operators is identical to the one involving five Fronsdal
operators at pictures each lowered by one unit with respect
to the canonical.
As it is clear from the above discussion, the overall

b − c and superconformal ghost structures of the
n ¼ pþ q-point higher spin amplitudes, combined with
the ghost structure of the picture-changing operators (14)
suggest the existence of two types of higher spin
interactions at higher orders: the first type having
p ¼ n − 3; q ¼ 3. This amplitude involves three uninte-
grated negative picture operators and standard N − 3
integrated operators at positive pictures. All the terms,
contributed by all the integrated operators, are of A0-type
(having b − c ghost number zero). The higher spin
amplitudes of this type have the standard Veneziano
pole structure, leading to local interaction terms in the
low-energy effective action (with the poles in the
amplitudes corresponding to different channels of par-
ticle exchanges). These poles do not produce any
physical nonlocalities (the nonlocalities that one
may encounter upon the space-time momentum
integration and that express the low-energy effective
action in the position space), are not physical, and can be
removed by substituting the β-function equations
at lower orders [46] (strictly speaking, the locality of
the amplitude does not by itself guarantee the locality
of the related higher spin interaction vertex in the
low-energy effective action; for the case considered in
this paper see, however, the discussion below
in Sec. IV).
The amplitudes of the second type, on the other hand,

have the structure p ¼ n − 2; q ¼ 2.They involve two
unintegrated operators contributing two c-ghosts, with
the third c-ghost stemming from the A1-type terms of
one of the integrated operators and the remaining operators
contributing A0-type terms. These amplitudes have a
structure very different from those of the first type.
Because of the extra integration, they contain extra poles,
corresponding to physical nonlocalities, rather than particle
exchanges. Unlike the Veneziano-type case, the nonlocal-
ities in the position space, obtained upon the Fourier
transform, cannot be removed using the β-function flows,
but reflect genuine nonlocalities of the higher spin
interactions.
In fact, generically most of the higher spin amplitudes

are of the second type, with the first type emerging only
for the special combination of the spin values. We will
refer to the appearance of the first type higher spin
amplitudes as the “localization.” In fact, as we shall
point out below, such a localization effect does not
occur at the quartic order but only appears at quintic
and higher order interactions. In the next section, we will
study this effect by direct computation of the correlation
functions.

III. QUINTIC INTERACTIONS
AND LOCALIZATION

We start with the four-point higher spin amplitude
with the spin values satisfying constraint (18) with
p ¼ 1; q ¼ 3. It is not difficult to see that this four-point
amplitude vanishes. Indeed, the Vs1 operator at positive
cohomology contains s1 − 2 ¼ s1 þ s2 þ s3 − 2 ψ-fields,
which cannot fully contract to the RNS fermions of the
remaining three operators, since the operators at negative
pictures contribute altogether s1 þ s2 þ s3 − 6 ψ-fields.
This means that the four-point amplitude with such spin
values admits no localization. Next, consider the five-point
amplitude with the localization constraint p ¼ 2; q ¼ 3. To
simplify the calculations as much as possible, we assume
that the value one of the spins is small enough (namely,
s4 ≡ u ¼ 4) and s5 þ u − s1 − s2 − s3 ¼ 2. All the vertex
operators for the framelike fields are in the Vs−1js−3
representation, with the operators for s1; s2; s3 being unin-
tegrated at negative pictures and the operators for spins
u ¼ 4 and s5 ¼

P
s − 2 at integrated positive (to abbre-

viate the notations, denote
P

s ¼ s1 þ s2 þ s3). With such
a picture arrangement, only A0-type terms of both of the
integrated operators contribute to the correlator. We are
now all set to compute, step by step, the X-ghost and ψ -
factors of the correlator defining the quintic interaction of
the above spin values. We start with the calculation of the
X-part. The correlation function is given by

AXðp1;…;p5jw;z;ξÞ
¼ h∂Xm1 � � �∂Xms1−1eip5XðwÞjw→∞∂Xn1 � � �∂Xns2−1eip4Xð1Þ
×∂Xq1 � � �∂Xqu−1eip3XðzÞ∂Xr1 � � �
×∂XrP

sþ1−ueip2XðξÞ∂Xt1 � � �∂Xts3−1eip1Xð0Þi; ð20Þ

where we have arranged the operator’s insertions in the
order ðz1 ¼ wÞ > ðz2 ¼ 1Þ > z > ξ > ðz3 ¼ 0Þ, with z1;2;3
being the locations of the spin s1;2;3 unintegrated vertices,
and z and ξ are the insertion points of the remaining spins
(to be integrated over). We shall later set z3 ≡ w → ∞ but
for now shall set the w-dependence manifest to keep track
of the infinities. To compute the correlator (20), define the
partitions

si − 1 ¼
X5

j¼1;j≠i
ðRij þQijÞ; i; j ¼ 1;…; 5; ð21Þ

where Rij is the number of contractions between ∂X’s of
the operators of spins si and sj (obviously Rij ¼ Rji) and
Qij counts the contractions of X-derivatives of the operators
for si with the exponent eipX in the operator for spin sj.
Straightforward computation then gives

DIMITRI POLYAKOV PHYSICAL REVIEW D 93, 045001 (2016)

045001-6



AXðp1;…;p5jw;z;ξÞ¼
X

½partitions∶si−1j
P

5

j¼1;j≠i
ðRijþQijÞ;i¼1;…;5�

6ðs1−1Þ!ðs2−1Þ!ðs3−1Þ!ðPs−3Þ!Q
4
i¼1

Q
5
j¼2;j>iRij!

Q
5
k¼1

Q
5
l¼1;k≠lQkl!

×ðiÞ
P

5

i;j¼1;i≠j
Qijð−1Þ

P
5

j¼1
ðQ1jþQ2jÞ−Q21þQ43þQ43þQ45þQ53w−

P
5

j¼2
ð2R1jþQ1jþQ1jÞ

×ð1−zÞp3p4−2R24−Q24−Q42ð1−ξÞp2p4−2R25−Q25−Q52ðz−ξÞp2p3−2R45−Q45−Q54zp1p3−2R34−Q34−Q43

×ξp1p2−2R35−Q35−Q53p
mQ12þQ14þQ15þ1

1 ���pmQ12þQ14þQ15þQ13

1 p
nQ21þQ24þQ25þ1

1 ���pnQ21þQ24þQ25þQ23

1

×p
qQ41þQ42þQ45þ1

1 ���pqQ41þQ42þQ45þQ43

1 p
rQ51þQ52þQ54þ1

1 ���prQ51þQ52þQ54þQ53

1 p
mQ12þQ14þ1

2 ���pmQ12þQ14þQ15

2

×p
nQ21þQ24þ1

2 ���pnQ21þQ24þQ25

2 p
qQ41þQ42þ1

2 ���pqQ41þQ42þQ45

2 p
tQ31þQ32þQ34þ1

2 ���ptQ31þQ32þQ34þQ35

2

×p
mQ12þ1

3 ���pmQ12þQ14

3 p
nQ21þ1

3 ���pnQ21þQ24

3 p
rQ51þQ52þ1

3 ���prQ51þQ52þQ54

3 p
tQ31þQ32þ1

3 ���ptQ31þQ32þQ34

3

×pm1

4 ���pmQ12

4 p
qQ41þ1

4 ���pqQ41þQ42

4 p
rQ51þ1

4 ���prQ51þQ52

4 p
tQ31þ1

4 ���ptQ31þQ32

4

×pn1
5 ���pnQ21

5 pq1
5 ���pqQ41

5 pr1
5 ���p

rQ51

5 pt1
5 ���p

tQ31

5 η
mP

j
Q1jþ1

jnP
j
Q2jþ1 ���η

mP
j
Q1jþR12

jnP
j
Q2jþR12

×η
mP

j
Q1jþ1þR12

jqP
j
Q4jþ1 ���η

mP
j
Q1jþR12þR14

jqP
j
Q4jþR14 η

mP
j
Q1jþR12þR14þ1

jrP
j
Q5jþ1 ���

×η
mP

j
Q1jþR12þR14þR15

jrP
j
Q5jþR15η

mP
j
Q1jþR12þR14þR15þ1

jtP
j
Q3jþ1 ���η

mP
j
Q1jþR12þR14þR15þR13

jtP
j
Q3jþR13

×η
nP

j
Q2jþ1þR12

jqP
j
Q4jþR14þ1 ���η

mP
j
Q2jþR12þR24

jqP
j
Q4jþR14þR24 η

nP
j
Q2jþ1þR12þR24

jrP
j
Q5jþR15þ1 ���

×η
mP

j
Q2jþR12þR24þR25

jrP
j
Q5jþR15þR25 η

nP
j
Q2jþ1þR12þR24þR25þ1

jtP
j
Q3jþR31þ1 ���η

mP
j
Q2jþR12þR24þR25

jtP
j
Q3jþR31þR32

×η
qP

j
Q4jþ1þR41þR42

jrP
j
Q5jþR51þR52þ1 ���η

qP
j
Q4jþR41þR42þR45

jrP
j
Q5jþR15þR25þR54

×η
qP

j
Q4jþ1þR41þR42þR45

jtP
j
Q3jþR31þR32þ1 ���η

qP
j
Q4jþR41þR42þR45þR43

jtP
j
Q3jþR31þR32þR34

×η
rP

j
Q5jþ1þR51þR52þR54

jtP
j
Q3jþR31þR32þR34þ1 ���ηr

P
s−3

jts3−1 ð22Þ

where in our notations ηmijnj is Minkowski tensor and
P

jAij ≡P
5
j¼1;j≠i Aij.

This concludes the X-part evaluation. Next, consider the ghost part of the amplitude. The relevant correlator is

Aghðw; z; ξÞ ¼ hce−s1ϕðwÞce−s2ϕð1Þeðu−2ÞϕBð2u−2Þ
2ϕ−2χ−σðzÞeðΣs−uÞϕBð2Σs−uÞ

2ϕ−2χ−σðξÞce−s3ϕð0Þi: ð23Þ

To calculate it, introduce again the characteristic partitions

2ðu − 2Þ ¼ 4 ¼ α1 þ α2 þ α3 þ αð1Þ4 þ αð2Þ4 ;

2ðΣs − uÞ≡ 2ðΣs − 4Þ ¼ β1 þ β2 þ β3 þ βð1Þ4 þ βð2Þ4 ;

ð24Þ

where the integers αjðj ¼ 1; 2; 3Þ refer to the OPE singu-
larity orders ∼ðz − zjÞ−αj due to contractions of

Bð2u−2Þ
2ϕ−2χ−σðzÞ with the ghost exponents ce−sjϕðzjÞ; βjðj ¼

1; 2; 3Þ refer to the OPE singularities ∼ðξ − zjÞ−βj due to

contractions of Bð2Σs−uÞ
2ϕ−2χ−σðξÞ with ce−sjϕðzjÞ; αð1Þ4 βð1Þ4 refer

to the OPE singularities of the Bell polynomials at z and ξ
with the opposite ghost exponents eðΣs−uÞϕðξÞ and

Bð2u−2Þ
2ϕ−2χ−σðzÞ, respectively, and finally αð2Þ4 and βð2Þ4 refer

to the OPE due to contractions between Bell polynomials at
z and ξ, i.e.

Bð2u−2Þ
2ϕ−2χ−σðzÞBð2Σs−uÞ

2ϕ−2χ−σðξÞ
∼

X
αð2Þ
4
;βð2Þ

4

ðz − ξÞ−αð2Þ4
−βð2Þ

4 λðαð2Þ4 ; βð2Þ4 Þ

× ∶Bð2u−2−αð2Þ
4
Þ

2ϕ−2χ−σ ðzÞBð2Σs−u−βð2Þ
4
Þ

2ϕ−2χ−σ ðξÞ∶; ð25Þ

where λðαð2Þ4 ; βð2Þ4 Þ are the structure constants that can be
computed (see below). The correlator (23) is thus equal to
the universal factor due to contractions between the ghost
exponents, multiplied by the sum stemming from contrac-
tions of the Bell polynomials with themselves and with
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various exponents, with each term in the sum correspond-
ing to some of the partitions (24), with the correlator being
given by the sum over the partitions. The explicit expres-
sions for the operator products, needed to compute the
correlator, are [47]

BðN1Þ
~α ~φ ðzÞBðN2Þ

~β ~φ
ðwÞ

¼
XN1

n1¼0

XN2

n2¼0

ðz − wÞ−n1−n2λðn1; n2Þ∶BðN1Þ
~α ~φ ðzÞBðN2Þ

~β ~φ
ðwÞ∶

ð26Þ

and

BðNÞ
~α ~φ ðzÞe

~β ~φðwÞ ¼
XN
n¼0

ðz − wÞ−n Γð−~α ~βþ1Þ
n!Γð−~α ~βþ1 − nÞ

×∶BðN−nÞ
~α ~φ ðzÞe~β ~φðwÞ∶; ð27Þ

where

~α ~φ≡α1ϕþ α2χ þ α3σ;

~α ~β ¼ α1β1 − α2β2 − α3β3; ð28Þ

and the OPE structure constants in (26) are given by [47]

λðn1; n2Þ ¼
1

n1!n2!
∂n1
x ∂n2

y Fλðx; yÞjx¼y¼0;

Fλðx; yÞ ¼
�ð1þ xÞð1 − yÞ

1þ x − y

�
~α ~β
: ð29Þ

Clearly, in our case ~α ~β ¼ −1 so one simply has

λðn1; n2Þ ¼ ð−1Þn1 : ð30Þ

With all the above identities it is now straightforward to
compute the ghost correlator, with the result given by

Aghðw; z; ξÞ ¼
X

½partitions∶2ðu−2Þ≡4jα1þα2þα3þαð1Þ
4
þαð2Þ

4
�
×

X
½partitions∶2ðΣs−uÞ≡2ðΣs−4Þjβ1þβ2þβ3þβð1Þ

4
þβð2Þ

4
�

×
Y3
j¼1

ðð2sj − 1Þ!Þ2
αj!βj!ð2sj − 1 − αjÞ!ð2sj − 1 − βjÞ!

×
Γð3 − 2uÞΓð1þ 2u − 2ΣsÞ

Γð3 − 2u − αð1Þ4 ÞΓð1þ 2u − 2Σs − βð1Þ4 Þ

����
u→4

× ð−1Þαð2Þ4
þ1ws2

1
þ2−α1−β1ð1 − zÞ2s2−α2ð1 − ξÞs2ðΣs−4Þ−β2z2s3−α3ξs3ðΣs−4Þ−β3ðz − ξÞ2ð4−ΣsÞ−αð1Þ4

−αð2Þ
4
−βð1Þ

4
−βð2Þ

4 : ð31Þ

This concludes the computation of the ghost factor,
contributing to the integrand of the five-point amplitude.
Finally, we are left with computing the ψ-factor,
given by

Aψ ðw;z;ξÞ¼
	Ys1−3

j1¼0

∂j1ψαj1
ðwÞ

Ys2−3
j2¼0

∂j2ψβj2
ð1Þ

Yu−3
j3¼0

∂j3ψγj3
ðzÞ

×
YΣs−u−1

j4¼0

∂j4ψλj4
ðξÞ

Ys3−3
j5¼0

∂j5ψσj5
ð0Þ



: ð32Þ

This amplitude would actually be the most tedious one
to compute for generic spin values, since there seems
to be no way to systemize it in terms of sums over
partitions of the spin values, as it has been done for
the previous correlators. However, assuming that u is
the minimal spin value of the operators, it simplifies
significantly for the minimal possible u ¼ 4 value (for
u < 4 it vanishes identically). The simplification is
that for u ¼ 4, all the ψ-fields of four operators have to
couple to the ψ-fields of the operator with the highest
spin value, given by smax ¼ Σs − 2. Technically, this
means that in the corresponding space-time amplitude

all the 4 out of 5 Ωs−1jt extra-field’s t-indices α, β, γ, σ
have to contract to the λ-index of the highest spin field
Ωsmax−1jλ. The computation performed below is still
possible to perform for u > 4, e.g. for u ¼ 5 or 6;
however, for u > 4 the locality of the interaction
vertex in space-time would be broken by the renorm-
alization group (RG) flows from lower orders despite
the locality of the scattering amplitude (see the
discussion in Sec. IV). In case of u ¼ 4, it is
convenient to make the following definition. Let
iðαkÞ describe the contraction of the world sheet
fermion ∂kψαk of the spin s1 operator to the fermion
∂iðαkÞψλiðαkÞ

of the spin smax operator. Similarly, let iðβkÞ
describe the contractions between the world sheet
fermions of the s2 and smax operators, and so on.
Clearly, iðαÞ ≠ iðβÞ ≠ iðγÞ ≠ iðσÞ for all values of α, β,
γ, σ and 0 ≤ iðα; β; γ; σÞ ≤ smax − 3. Then it is natural to
express the ψ-correlator in terms of the sum over the
permutations of different i’s or, equivalently, in terms
of the sum over all possible length smax − 2 orderings
of unequal integer numbers from 0 to smax − 3.
The Aψ correlator is then straightforward to compute in

terms of such a sum, with the result given by
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Aψðw; z; ξÞ ¼ ð−1Þs1s2þs1þs2þs3
X

½permutations∶f;iðα0Þ���iðαs1−3Þ;iðβ0Þ���iðβs2−3Þ;iðγ0Þ;iðγ1Þ;iðσ0Þ���iðσs3−3Þg�

×

�
ð−1Þπðf;iðα0Þ���iðαs1−3Þ;iðβ0Þ���iðβs2−3Þ;iðγ0Þ;iðγ1Þ;iðσ0Þ���iðσs3−3ÞgÞð1þ iðγ0ÞÞ!ð2þ iðγ1ÞÞ!

×
Ys1−2
k1¼1

ðk1 þ iðαk1 − 1ÞÞ!
Ys2−2
k2¼1

ðk2 þ iðβk2 − 1ÞÞ!
Ys3−2
k3¼1

ðk3 þ iðβk3 − 1ÞÞ!w1
2
ðs1−2Þ2þ

Ps1−3
l1¼0

iðαl1 Þ

× ð1 − ξÞ12ðs2−2Þ2þ
Ps2−3

l2¼0
iðβl2 Þξ

1
2
ðs3−2Þ2þ

Ps2−3
l3¼0

iðσl3 Þðz − ξÞ2þiðγ0Þþiðγ1Þ
�
; ð33Þ

where

πðfiðα0Þ � � � iðαs1−3Þ; iðβ0Þ � � � iðβs2−3Þ; iðγ0Þ; iðγ1Þ; iðσ0Þ � � � iðσs3−3ÞgÞ
is the minimal number of the permutations it takes to convert the ordering

fiðα0Þ � � � iðαs1−3Þ; iðβ0Þ � � � iðβs2−3Þ; iðγ0Þ; iðγ1Þ; iðσ0Þ � � � iðσs3−3Þg
in the argument of π into the reference ordering

f0; 1; 2;…; smax − 3g
of smax − 2 integers. This concludes the computation of the ψ-factor contributing to the integrand of the amplitude. The final
remaining step to determine the amplitude describing the five-point higher spin interaction is to perform the double world
sheet integration over the positions of the integrated vertices, given by

Aðp1;…; p5Þ ¼
Z

1

0

dz
Z

z

0

dξz4ξ2ðΣs−4ÞAψðw; z; ξÞAghðw; z; ξÞAXðp1;…; p5jw; z; ξÞ ð34Þ

to set the limit w → ∞ and to contract the result with the space-time framelike higher spin fields [in the integral (9) it is
convenient to choose the reference u-points u ¼ 0 in both of the homotopy transformations for the integrated vertex
operators). Combining AX; Aψ , and Agh factors together, evaluating the integral (34), and contracting with the framelike
space-time fields, we obtain the overall quintic amplitude, given by

Aðp1;…;p5Þ ¼ 6πΩm1���ms1−1jλ0���λs1−3ðp5ÞΩn1���ns2−1jλs1−2���λs1þs2−5
ðp4ÞΩq1q2q3jλs1þs2−4λs1þs2−3

ðp3ÞΩλ0���λΣs−5
r1���rΣs−3ðp2Þ

×Ωt1���ts3−1jλs1þs2−2���λΣs−5ðp1Þ
X

partitions∶ si−1j
P

5

j¼1;j≠i
ðRijþQijÞ;i¼1;…;5

×
X

partitions∶ 2ðu−2Þ≡4jα1þα2þα3þαð1Þ
4
þαð2Þ

4

×
X

partitions∶ 2ðΣs−uÞ≡2ðΣs−4Þjβ1þβ2þβ3þβð1Þ
4
þβð2Þ

4

×
X

permutations∶ f;iðα0Þ���iðαs1−3Þ;iðβ0Þ���iðβs2−3Þ;iðγ0Þ;iðγ1Þ;iðσ0Þ���iðσs3−3Þg

×

�
ð−1Þπðf;iðα0Þ���iðαs1−3Þ;iðβ0Þ���iðβs2−3Þ;iðγ0Þ;iðγ1Þ;iðσ0Þ���iðσs3−3ÞgÞþs1s2þs1þs2þs3þαð2Þ

4 × ð1þ iðγ0ÞÞ!ð2þ iðγ1ÞÞ!

×
Ys1−2
k1¼1

ðk1þ iðαk1 −1ÞÞ!
Ys2−2
k2¼1

ðk2þ iðβk2 −1ÞÞ!
Ys3−2
k3¼1

ðk3þ iðβk3 −1ÞÞ!×
Y3
j¼1

ðð2sj−1Þ!Þ2
αj!βj!ð2sj−1−αjÞ!ð2sj−1−βjÞ!

×
Γð3−2uÞΓð1þ2u−2ΣsÞ

Γð3−2u−αð1Þ4 ÞΓð1þ2u−2Σs−βð1Þ4 Þ

����
u→4

ðs1−1Þ!ðs2−1Þ!ðs3−1Þ!ðPs−3Þ!Q
4
i¼1

Q
5
j¼2;j>i Rij!

Q
5
k¼1

Q
5
l¼1;k≠l Qkl!

× ðiÞ
P

5

i;j¼1;i≠j
Qijð−1Þ

P
5

j¼1
ðQ1jþQ2jÞ−Q21þQ43þQ43þQ45þQ53p

mQ12þQ14þQ15þ1

1 � � �pmQ12þQ14þQ15þQ13

1 p
nQ21þQ24þQ25þ1

1 � � �
×p

nQ21þQ24þQ25þQ23

1 p
qQ41þQ42þQ45þ1

1 � � �pqQ41þQ42þQ45þQ43

1 p
rQ51þQ52þQ54þ1

1 � � �prQ51þQ52þQ54þQ53

1 p
mQ12þQ14þ1

2 � � �
×p

mQ12þQ14þQ15

2 p
nQ21þQ24þ1

2 � � �pnQ21þQ24þQ25

2 p
qQ41þQ42þ1

2 � � �pqQ41þQ42þQ45

2 p
tQ31þQ32þQ34þ1

2 � � �ptQ31þQ32þQ34þQ35

2

×p
mQ12þ1

3 � � �pmQ12þQ14

3 p
nQ21þ1

3 � � �pnQ21þQ24

3 p
rQ51þQ52þ1

3 � � �prQ51þQ52þQ54

3 p
tQ31þQ32þ1

3 � � �ptQ31þQ32þQ34

3 ð35Þ
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×pm1

4 � � �pmQ12

4 p
qQ41þ1

4 � � �pqQ41þQ42

4 p
rQ51þ1

4 � � �prQ51þQ52

4 p
tQ31þ1

4 � � �ptQ31þQ32

4 pn1
5 � � �pnQ21

5 pq1
5 � � �pqQ41

5 pr1
5 � � �prQ51

5 pt1
5 � � �p

tQ31

5

×
Γ½p2p3þ9−T45−2Σs−β2− 1

2
ðs2−2Þ2−Ps2−2

k¼1 iðβk−1Þ�
Γ½−p2p4þT25− s2ðΣs−4Þþ 1

2
ðs2−2Þ2þβ2þ

Ps2−2
k¼1 iðβk−1Þ�

×
Γ½p3p4−T24þ2s2−α2�

sin½πðp2p4−T25þ s2ðΣs−4Þ− 1
2
ðs2−2Þ2−β2−

Ps2−2
k¼1 iðβk−1ÞÞ�

×Γ½p2p4þp2p3þp1p3þ6−T25−T45−T34þðs2−2ÞðΣs−4Þ−1

2
ðs2−2Þ2þ2s3−α3

−
Xs2−2
k¼1

iðβk−1Þ− iðγ0Þ− iðγ1Þ�Γ−1½p2p4þp2p3þ2−T25−T45þðs2−2ÞðΣs−4Þ−1

2
ðs2−2Þ2

−
Xs2−2
k¼1

iðβk−1Þ− iðγ0Þ− iðγ1Þ�Γ½p2p4þp2p3þp1p3þp3p4þ6−T24þ2s2−α2−T25−T45−T34

þðs2−2ÞðΣs−4Þ−1

2
ðs2−2Þ2þ2s3−α3−

Xs2−2
k¼1

iðβk−1Þ− iðγ0Þ− iðγ1Þ�3F2

�
−p1p2þT35− ðs3þ2ÞðΣs−4Þ

þ1

2
ðs3−2Þ2þβ3þ

Xs3−2
k¼1

iðβk−1Þ;p2p4þ1−T25þ s2ðΣs−4Þ−1

2
ðs2−2Þ2−β2−

Xs2−2
k¼1

iðβk−1Þ;

×p2p4þp2p3þp1p3þ6−T25−T45−T34þðs2−2ÞðΣs−4Þ

−
1

2
ðs2−2Þ2þ2s3−α3−

Xs2−2
k¼1

iðβk−1Þ− iðγ0Þ− iðγ1Þ;p2p4þp2p3þ2−T25−T45þðs2−2ÞðΣs−4Þ

−
1

2
ðs2−2Þ2−

Xs2−2
k¼1

iðβk−1Þ− iðγ0Þ− iðγ1Þ;p2p4þp2p3þp1p3þp3p4þ6−T25−T45−T34−T24þðs2−2ÞðΣs−4Þ

−
1

2
ðs2−2Þ2þ2s2þ2s3−α2−α3−

Xs2−2
k¼1

iðβk−1Þ− iðγ0Þ− iðγ1Þ;1
�

ð36Þ

× η
mP

j
Q1jþ1

jnP
j
Q2jþ1 � � � η

mP
j
Q1jþR12

jnP
j
Q2jþR12 η

mP
j
Q1jþ1þR12

jqP
j
Q4jþ1 � � � η

mP
j
Q1jþR12þR14

jqP
j
Q4jþR14

× η
mP

j
Q1jþR12þR14þ1

jrP
j
Q5jþ1 � � � η

mP
j
Q1jþR12þR14þR15

jrP
j
Q5jþR15η

mP
j
Q1jþR12þR14þR15þ1

jtP
j
Q3jþ1 � � � η

mP
j
Q1jþR12þR14þR15þR13

jtP
j
Q3jþR13

× η
nP

j
Q2jþ1þR12

jqP
j
Q4jþR14þ1 � � � η

mP
j
Q2jþR12þR24

jqP
j
Q4jþR14þR24 η

nP
j
Q2jþ1þR12þR24

jrP
j
Q5jþR15þ1 � � � η

mP
j
Q2jþR12þR24þR25

jrP
j
Q5jþR15þR25

× η
nP

j
Q2jþ1þR12þR24þR25þ1

jtP
j
Q3jþR31þ1 � � � η

mP
j
Q2jþR12þR24þR25

jtP
j
Q3jþR31þR32 η

qP
j
Q4jþ1þR41þR42

jrP
j
Q5jþR51þR52þ1 � � �

× η
qP

j
Q4jþR41þR42þR45

jrP
j
Q5jþR15þR25þR54 η

qP
j
Q4jþ1þR41þR42þR45

jtP
j
Q3jþR31þR32þ1 � � � η

qP
j
Q4jþR41þR42þR45þR43

jtP
j
Q3jþR31þR32þR34

× η
rP

j
Q5jþ1þR51þR52þR54

jtP
j
Q3jþR31þR32þR34þ1 � � � ηr

P
s−3

jts3−1
�
; ð37Þ

where

Tij ¼ 2Rij þQij þQji ð38Þ
and the additional constraint is imposed on the partitions

X5
j¼2

Qj1 þ
Xs1−2
k¼1

iðαk−1Þ ¼ 3þ s1ðs1 − 1Þ
2

ð39Þ

stemming from the fact that only w0-terms contribute to the amplitude, with all others vanishing in the limit w → ∞. This
concludes the computation of the five-point amplitude for the localized quintic interaction. In the next section we shall
discuss the construction of the quintic higher spin vertex, related to this amplitude.
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IV. READING OFF THE QUINTIC VERTEX

In the previous section we have computed the five-point
world sheet amplitude, related to the interaction of massless
higher spin in the quintic order. By itself, this amplitude does
not describe yet the five-point interaction vertex in the low
energy effective action: it is only gauge-invariant under
gauge (BRST) transformations at the linearized level. To
read off the interaction vertex with the full gauge symmetry,
one has to subtract from it the terms, produced as a result of
the world sheet RG flows of the effective action’s terms at
lower orders, such as cubic and quartic. Generally speaking,
there are two possible sources of such terms at the quintic
order: the flow of the quartic vertex in the leading α0 order
and the flow of the cubic vertex in the subleading α0 order. In
general, computation of these flow terms would be quite
complicated; in particular they would involve the flows
stemming from all the diversity of the quartic vertices which
by themselves are tedious and complex.Moreover, since the
quartic interactions are generally nonlocal, one would
generally expect the flow terms to retain these nonlocalities,
destroying the local structure of the amplitude (35)–(37).

Fortunately, however, for the spin combinations considered
in our work things again get drastically simplified: as we
pointed out above, the four-point correlation functions
contributing to the world sheet β-function of the space-time
framelike field with the highest spin value, relevant to the
flow terms at the quintic order, vanish identically, as it is
impossible to accommodate the full contractions of the ψ -
fermions consistently with the ghost number balance
restrictions. Therefore the quartic interactions, relevant to
the flow terms at the quintic order, stem themselves from the
flows from the previous (cubic) order. For this reason, the
flow contributions are reduced to the double composition of
the RG flows of the cubic terms, the structure of which is
relatively simple to control. As the structure of the cubic
higher spin vertices is determined by the structure constants
of the higher spin algebra [44,45] and the quintic vertex is
cubic in the structure constants, the effect of the cubic
terms’ flows can be expressed by regularizing the poles in
sij-channels present in the amplitude (35)–(37) due to
Euler’s gamma functions and the hypergeometric func-
tion where

s12 ¼
1

2
ðp1 − p2Þ2; s13 ¼

1

2
ðp1 − p3Þ2; s14 ¼

1

2
ðp1 − p4Þ2;

s23 ¼
1

2
ðp2 − p3Þ2; s24 ¼

1

2
ðp2 − p4Þ2; s34 ¼

1

2
ðp3 þ p4Þ2;

X
i;j

sij ¼ 0 ð40Þ

are the generalized Mandelstam variables. Subtracting the poles resulting from the flows of the cubic vertices using the
procedure similar to those explained in [46,49] and taking the field theory limit we find the quintic vertex stemming from
the β-function of the highest spin field is given by

Aðp1;…; p5Þ ¼ 6πΩm1���ms1−1jλ0���λs1−3ðp5ÞΩn1���ns2−1jλs1−2���λs1þs2−5
ðp4ÞΩq1q2q3jλs1þs2−4λs1þs2−3

ðp3ÞΩλ0���λΣs−5
r1���rΣs−3ðp2Þ

×Ωt1���ts3−1jλs1þs2−2���λΣs−5ðp1Þ×
X

partitions∶ si−1j
P

5

j¼1;j≠i
ðRijþQijÞ;i¼1;…;5

×
X

partitions∶ 2ðu−2Þ≡4jα1þα2þα3þαð1Þ
4
þαð2Þ

4

×
X

partitions∶ 2ðΣs−uÞ≡2ðΣs−4Þjβ1þβ2þβ3þβð1Þ
4
þβð2Þ

4

×
X

permutations∶ f;iðα0Þ���iðαs1−3Þ;iðβ0Þ���iðβs2−3Þ;iðγ0Þ;iðγ1Þ;iðσ0Þ���iðσs3−3Þg

×

�
ð−1Þπðf;iðα0Þ���iðαs1−3Þ;iðβ0Þ���iðβs2−3Þ;iðγ0Þ;iðγ1Þ;iðσ0Þ���iðσs3−3ÞgÞþs1s2þs1þs2þs3þαð2Þ

4 ð1þ iðγ0ÞÞ!ð2þ iðγ1ÞÞ!

×
Ys1−2
k1¼1

ðk1 þ iðαk1 − 1ÞÞ!
Ys2−2
k2¼1

ðk2 þ iðβk2 − 1ÞÞ!
Ys3−2
k3¼1

ðk3 þ iðβk3 − 1ÞÞ!
Y3
j¼1

ðð2sj − 1Þ!Þ2
αj!βj!ð2sj − 1− αjÞ!ð2sj − 1− βjÞ!

×
Γð3− 2uÞΓð1þ 2u− 2ΣsÞ

Γð3− 2u− αð1Þ4 ÞΓð1þ 2u− 2Σs− βð1Þ4 Þ
ju→4

ðs1 − 1Þ!ðs2 − 1Þ!ðs3 − 1Þ!ðPs− 3Þ!Q
4
i¼1

Q
5
j¼2;j>i Rij!

Q
5
k¼1

Q
5
l¼1;k≠l Qkl!

× ðiÞ
P

5

i;j¼1;i≠j
Qijð−1Þ

P
5

j¼1
ðQ1jþQ2jÞ−Q21þQ43þQ43þQ45þQ53

×p
mQ12þQ14þQ15þ1

1 � � �pmQ12þQ14þQ15þQ13

1 p
nQ21þQ24þQ25þ1

1 � � �pnQ21þQ24þQ25þQ23

1 p
qQ41þQ42þQ45þ1

1 � � �pqQ41þQ42þQ45þQ43

1

×p
rQ51þQ52þQ54þ1

1 � � �prQ51þQ52þQ54þQ53

1 p
mQ12þQ14þ1

2 � � �pmQ12þQ14þQ15

2 p
nQ21þQ24þ1

2 � � �pnQ21þQ24þQ25

2 p
qQ41þQ42þ1

2 � � �
×p

qQ41þQ42þQ45

2 p
tQ31þQ32þQ34þ1

2 � � �ptQ31þQ32þQ34þQ35

2 p
mQ12þ1

3 � � �pmQ12þQ14

3 p
nQ21þ1

3 � � �pnQ21þQ24

3 p
rQ51þQ52þ1

3 � � �
×p

rQ51þQ52þQ54

3 p
tQ31þQ32þ1

3 � � �ptQ31þQ32þQ34

3 ð41Þ
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× pm1

4 � � �pmQ12

4 p
qQ41þ1

4 � � �pqQ41þQ42

4 p
rQ51þ1

4 � � �prQ51þQ52

4 p
tQ31þ1

4 � � �ptQ31þQ32

4 pn1
5 � � �pnQ21

5 pq1
5 � � �pqQ41

5 pr1
5 � � �prQ51

5 pt1
5 � � �ptQ31

5

×

��
−9þ T45 þ 2Σsþ β2 þ

1

2
ðs2 − 2Þ2 þ

Xs2−2
k¼1

iðβk−1Þ
�
!

�
−1
L

�
−9þ T45 þ 2Σsþ β2 þ

1

2
ðs2 − 2Þ2 þ

Xs2−2
k¼1

iðβk−1Þ
�

×

�
−T25 þ s2ðΣs − 4Þ − 1

2
ðs2 − 2Þ2 − β2 −

Xs2−2
k¼1

iðβk−1Þ
�
!ð1 − T24 þ 2s2 − α2Þ!

×

�
5 − T25 − T45 − T34 þ ðs2 − 2ÞðΣs − 4Þ − 1

2
ðs2 − 2Þ2 þ 2s3 − α3 −

Xs2−2
k¼1

iðβk−1Þ − iðγ0Þ − iðγ1Þ
�
!

×

��
1 − T25 − T45 þ ðs2 − 2ÞðΣs − 4Þ − 1

2
ðs2 − 2Þ2 −

Xs2−2
k¼1

iðβk−1Þ − iðγ0Þ − iðγ1Þ
�
!

�
−1

×

�
5 − T24 þ 2s2 − α2 − T25 − T45 − T34 þ ðs2 − 2ÞðΣs − 4Þ − 1

2
ðs2 − 2Þ2 þ 2s3 − α3 −

Xs2−2
k¼1

iðβk−1Þ − iðγ0Þ − iðγ1Þ
�
!

× 3F2

�
T35 − ðs3 þ 2ÞðΣs − 4Þ þ 1

2
ðs3 − 2Þ2 þ β3 þ

Xs3−2
k¼1

iðβk−1Þ; 1 − T25 þ s2ðΣs − 4Þ − 1

2
ðs2 − 2Þ2 − β2

−
Xs2−2
k¼1

iðβk−1Þ; 6 − T25 − T45 − T34 þ ðs2 − 2ÞðΣs − 4Þ − 1

2
ðs2 − 2Þ2 þ 2s3 − α3

−
Xs2−2
k¼1

iðβk−1Þ − iðγ0Þ − iðγ1Þ; 2 − T25 − T45 þ ðs2 − 2ÞðΣs − 4Þ − 1

2
ðs2 − 2Þ2

−
Xs2−2
k¼1

iðβk−1Þ − iðγ0Þ − iðγ1Þ; 6 − T25 − T45 − T34 − T24 þ ðs2 − 2ÞðΣs − 4Þ − 1

2
ðs2 − 2Þ2 þ 2s2 þ 2s3 − α2 − α3

−
Xs2−2
k¼1

iðβk−1Þ − iðγ0Þ − iðγ1Þ; 1
�

ð42Þ

× η
mP

j
Q1jþ1

jnP
j
Q2jþ1 � � � η

mP
j
Q1jþR12

jnP
j
Q2jþR12 η

mP
j
Q1jþ1þR12

jqP
j
Q4jþ1 � � � η

mP
j
Q1jþR12þR14

jqP
j
Q4jþR14

× η
mP

j
Q1jþR12þR14þ1

jrP
j
Q5jþ1 � � � η

mP
j
Q1jþR12þR14þR15

jrP
j
Q5jþR15η

mP
j
Q1jþR12þR14þR15þ1

jtP
j
Q3jþ1 � � �

× η
mP

j
Q1jþR12þR14þR15þR13

jtP
j
Q3jþR13 η

nP
j
Q2jþ1þR12

jqP
j
Q4jþR14þ1 � � � η

mP
j
Q2jþR12þR24

jqP
j
Q4jþR14þR24

× η
nP

j
Q2jþ1þR12þR24

jrP
j
Q5jþR15þ1 � � � η

mP
j
Q2jþR12þR24þR25

jrP
j
Q5jþR15þR25

× η
nP

j
Q2jþ1þR12þR24þR25þ1

jtP
j
Q3jþR31þ1 � � � η

mP
j
Q2jþR12þR24þR25

jtP
j
Q3jþR31þR32

× η
qP

j
Q4jþ1þR41þR42

jrP
j
Q5jþR51þR52þ1 � � � η

qP
j
Q4jþR41þR42þR45

jrP
j
Q5jþR15þR25þR54

× η
qP

j
Q4jþ1þR41þR42þR45

jtP
j
Q3jþR31þR32þ1 � � � η

qP
j
Q4jþR41þR42þR45þR43

jtP
j
Q3jþR31þR32þR34

× η
rP

j
Q5jþ1þR51þR52þR54

jtP
j
Q3jþR31þR32þR34þ1 � � � ηr

P
s−3

jts3−1o; ð43Þ

where

LðnÞ ¼
Xn
m¼1

1

m
: ð44Þ

This concludes the evaluation of the quintic interaction vertex.
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V. CONCLUSION

In this work we have considered a very special limit of
higher spin quintic interaction, limited to the case when the
sum of three spins participating in the interaction roughly
equals the sum of the remaining two, or where one must be
small enough and another must be large. In this case, the
ghost structure of the operators drastically simplifies the
calculations, and the absence of RG flows from the quartic
order, contributing at the fifth order, makes the construction
of the interaction five-vertex from the scattering amplitude a
relatively straightforward procedure. Despite the specific
choice of the spin values considered in this work, it is
remarkable that the structure of the 5-vertex can be extracted
from string theory in the low energy limit. One particularly
important result is the locality of the quintic amplitude in this
limit. This is the intriguing novelty of the quintic interaction
where all the known examples of the vertices at the previous
(quartic) order are essentially nonlocal, and the vertex (41)–
(43) constructed in this paper has no quartic analogue (which
vanishes by the ghost/ψ-number constraints). This may bear
important implications for the higher spin holography, as the
nonlocality of higher spinvertices versus their local counter-
parts in the dual CFTs is the well-known puzzle [50–54].
Despite the vanishing of the four-point analogue of the
amplitude considered in this work, onemay still hope to find
alternative mechanisms for localization at the quartic level,
at least in the AdS space. Our hope is that the string theory
may provide efficient and powerful tools to address these
issues, as well as to approach the higher orders of higher spin
interactions, at least for specific spin values. It is also of
interest to find the holographic interpretation of the locali-
zation effect, pointed out in our calculations. For that, it is, on

the other hand, necessary to have better understanding of the
higher spin nonlocalities from the string theory side. So far,
string theory has been able to account for very limited and
simplistic types of higher spin nonlocalities only. For that,
the class of Vs−1js−3-operators considered in this work may
not be sufficient, and one may need to find explicit solutions
of the operator equations (15) and (16) for the generalized
zero torsion constraints. These constraints are generally hard
to work with in the formalism of the on-shell (first-
quantized) string theory. Alternatively, in the string field
theory approach the nonlocalities may be naturally
encrypted in the structure of operators in the cohomologies
of the BRST charge shifted by the appropriate analytic
solutions in open string field theory [55]. The obvious
advantage of this approach is the background independence,
which in theory may allow us to penetrate beyond the realm
of standard string perturbation theory. Although at this time
our understanding of how the analytic solutions work to
describe higher spin interaction is still very preliminary and
limited, in the end it seems plausible that the language of
shifted BRST cohomologies in open string field theory may
be the most natural and efficient to understand the non-
localities in higher spin interactions.
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