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We provide a general formulation for calculating conserved charges for solutions to generally covariant
gravitational theories with possibly other internal gauge symmetries, in any dimensions and with generic
asymptotic behaviors. These solutions are generically specified by a number of exact (continuous, global)
symmetries and some parameters. We define “parametric variations” as field perturbations generated by
variations of the solution parameters. Employing the covariant phase space method, we establish that the set
of these solutions (up to pure gauge transformations) form a phase space, the solution phase space, and that
the tangent space of this phase space includes the parametric variations. We then compute conserved charge
variations associated with the exact symmetries of the family of solutions, caused by parametric variations.
Integrating the charge variations over a path in the solution phase space, we define the conserved charges.
In particular, we revisit “black hole entropy as a conserved charge” and the derivation of the first law of
black hole thermodynamics. We show that the solution phase space setting enables us to define black hole
entropy by an integration over any compact, codminesion-2, smooth spacelike surface encircling the hole,
as well as to a natural generalization of Wald and Iyer-Wald analysis to cases involving gauge fields.
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I. INTRODUCTION

Since the seminal theorems by Emmy Noether, the
notion of conserved charges has been linked to the concept
of symmetry. Being a generally invariant theory and in lack
of a globally defined time direction, defining conserved
charges in a covariant way has been a challenge within
General Relativity (GR). There have been many proposals
since the early days of GR for computing conserved
charges associated with exact isometries of spacetime,
the Killing vector fields, or the asymptotic isometries
(e.g., in asymptotic flat or anti-de Sitter spacetimes). The
first covariant formula for conserved charges associated
with Killing vectors has been due to Arthur Komar [1],
which was shortly followed by the Arnowitt-Deser-Misner
(ADM) papers [2–4] which define charges associated with
symmetries of asymptotic flat space on constant time slices,
as well as papers by Bondi et al. [5,6] which define the
charges associated with asymptotic flat isometries at null
infinity. These have also been extended to asymptotic anti-
de Sitter (AdS) geometries [7–9] (see Ref. [10] for a nice
overview on this case) and asymptotic flat solutions to
higher derivative theories of gravity [11]. These methods
have practical advantages, easy to work with, and are
intuitive. Nonetheless, they have their own shortcomings.
For example, they are not covariant enough or crucially
depend on the form of Einstein-Hilbert action or on the

asymptotic behavior of fields (e.g., fit for asymptotic flat
spacetimes).
In a related line of developments, one may ask for a

“covariant” Hamiltonian formulation of generally invariant
theories. A key object in this formulation is the construction
of phase space and its symplectic structure. To work out
such a “covariant phase space,” one may try to base the
construction on the Lagrangian or action formulation. In
fact this is easily possible, once we recall that the
symplectic two-from may be read from the surface term
in the variation of the action. As a simple illustrative
example, let us consider a single particle Lagrangian L ¼
_q2 − VðqÞ and that δL ¼ ðq̈ − V 0Þδq þ dðpδqÞ=dt. The
second variation of the on-shell action will then yield
dðδp ∧ δqÞ=dt, which is nothing but the time derivative of
the symplectic structure two-form computed over the
tangent space of the phase space parametrized by δq,
δp; for example, see Ref. [12]. Of course in extending
this simple example to field theories (which have an
infinite-dimensional, continuous phase space), especially
when there are gauge symmetries which can lead to
degenerate directions on the symplectic two-form, one
may face extra complications to tackle. This latter has
been studied and analyzed systematically, e.g., for gauge
theories [12] or for gravity in series of precisely formulated
papers by R. Wald and collaborators. This construction
makes a direct relation with the analysis of conserved
charges, once we recall the Noether theorem and that the
charges are read from the same surface term. The covariant
phase space method (CPSM), initiated in Refs. [13–15] and
studied more in Refs. [16,17], is now a very well-developed
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topic (e.g., see Refs. [18–20] as reviews and references
therein). This method has been employed to define the
conserved charges in a covariant way and also in gauge
field theories; e.g., see Refs. [14,15,17,21,22].
In a different viewpoint general relativity like Maxwell

or Yang-Mills gauge field theories has a local symmetry, a
redundancy in the description: not all of the degrees of
freedom encoded in dynamical fields are associated with
physical observables; physically distinct field configura-
tions are those defined “up to gauge transformations.”
These local gauge symmetries are not generically a subject
of Noether’s theorems; i.e., generically there are no con-
served charges associated with the gauge transformations
(see Ref. [23] for a recent discussion on this point.)
Let us consider a theorywith gauge symmetries inwhich a

generic solution to its field equations is denoted byΦ. Exact
symmetries are the (nontrivial) subset of gauge transforma-
tions generated by η, for which δηΦ ¼ 0; i.e., exact sym-
metries are the gauge transformations which do not move us
in the solution space. Such η’s are hence in general field
dependent, η ¼ η½Φ�. If we consider diffeomorphisms, these
exact symmetries are the isometries of spacetime which are
generated by Killing vector fields. In the presence of gauge
fields, the exact symmetries are not limited to Killing
vectors, and there could be a subset of internal gauge
transformation which does not change a given solution.
For example, theMaxwell gauge field corresponding to a set
of static charges, in the static gauge, is invariant under gauge
transformation generated by λ ¼ const., the global part of
the Uð1Þ gauge transformations. Moreover, in the presence
of other gauge fields, the spacetime isometries may not
necessarily keep the gauge field intact; they may transform
the gauge field up to an internal gauge transformation and
hence do not physically change the solution. In this sense, it
has been argued that the notion of “invariance” under exact
symmetries should be extended to invariance up to internal
gauge transformations. This latter will have very interesting
consequences which have been considered in some previous
works [17,24–28].
Given any field theory, one may consider the set of

solutionsF with prescribed boundary and initial conditions
and denote generic field configurations in F , collectively
by Φ. Each element in F may be identified up to pure
gauge transformations (which we will precisely define) by
some number of continuous real parameters pα. Hereafter,
we will name the set of all given solutions spanned by
parameters pα the solution space. That is, the parameters
pα may be viewed as “coordinates” on the solution space.1

One can then consider field perturbations around a given
solution δΦ. In our setting in this paper, we consider only

perturbations δΦ which satisfy linearized field equations
(around Φ). In a theory with local symmetries, the set of
such field perturbations will, by definition, include two
important subclasses: (1) those generated by gauge (local
symmetry) transformations, which will be denoted by δϵΦ
and (2) those generated by the variation of parameters in
the solution space, the parametric variations, denoted by
δ̂Φ.2 In the generally covariant theories we are studying in
this work, δϵΦ include field perturbations generated by
infinitesimal diffeomorphisms δxμ ¼ −ϵμðxÞ and hence
δϵΦ ¼ LϵΦ, where Lϵ denotes the Lie derivative along
vector field ϵ. If we have other internal gauge symmetries,
like in Einstein-Maxwell or Einstein-Yang-Mills theories,
δϵΦ will also include such internal gauge transformations.
Such field perturbations have been very much analyzed
especially in the context of “asymptotic symmetry groups.”
For the example of 3D gravity, 3D Chern-Simons theory,
and near-horizon extremal geometries for some recent
works, see, e.g., Refs. [29–33] and references therein.
Note that perturbations δϵΦ can be decomposed into two
subclasses, those where δϵΦ ¼ 0, which are nothing but the
exact symmetries, and those where δϵΦ ≠ 0.
Our main goal in this paper is to analyze and establish

the intimate connection of parametric variations δ̂Φ with
the conserved charges associated with the exact sym-
metries. To this end, we employ the covariant phase space
method and pay special attention to the parametric varia-
tions δ̂Φ. We show that the set of solutions forms a well-
defined phase space even when the tangent space to a
given point associated with a solution Φ is restricted to δ̂Φ.
We will denote this phase space by Fp. We then use the
standard covariant phase space method to read variation/
perturbation due to δ̂Φ in conserved charges associated
with exact symmetries. After discussing the integrability of
these charge variations over Fp, we integrate the charge
variations over a path in the space of solutions to compute
the charge associated with exact symmetries of each field
configuration Φ.
Our method for computing charges associated with exact

symmetries, and in particular focusing on the solution
space, brings many advantages: the charge variations are
now computed by an integration over an arbitrary smooth,
closed, and compact codimension-2 spacelike surface; we
are not confined to taking the integrals at the asymptotic
region of the spacetime. Of course, to completely specify
the charges from charge variations, we need to choose a
reference point in the solution space, for which, as we will
see, in each case we have a clearly preferred choice.

1The solution may also have some discrete parameters which
will not appear in our discussions in this paper. Note also that the
exact symmetry generators η have implicit dependence on the
parameters of the solution pα.

2In general δΦ are not limited to these two classes. There are
generically δΦ associated with waves corresponding to propa-
gating degrees of freedom on the background Φ. There are,
however, interesting cases, like 3D gravity, 3D Chern-Simons
theories, or modes around near-horizon extremal geometries
where there are no propagating degrees of freedom. For these
cases these two classes can be exhaustive.
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Dealing with parametric perturbations and exact sym-
metries, our formulation is free of the ambiguities appear-
ing in the usual Noether theorems (see Refs. [22,34] for a
thorough analysis of such ambiguities).
The rest of this paper is organized as follows. In Sec. II,

to make our analysis self-contained, we provide a review of
the covariant phase space method, construction of the
presymplectic current, and integrability condition for the
charges. In Sec. III, we specialize discussions of Sec. II to
the parametric variations. We construct the corresponding
conserved charges associated with exact symmetries and
the associated phase space. In Sec. IV, to illustrate how our
prescription for computing charges works, we carry out the
explicit computations for two well-known solutions, the
Kerr-AdS black hole and the near-horizon extremal Kerr-
Newman geometry, and discuss interesting details in each
example. In Sec. V, we use our machinery for computing
the entropy variation and hence entropy in geometries
admitting a Killing horizon. Our result here is essentially a
repetition of Wald’s seminal work [35], with an important
extension: the entropy need not be computed by an integral
over the codimension-2 bifurcation surface of the bifurcate
Killing horizon; it could be computed by integrating the
corresponding density over any closed, compact spacelike
codimension-2 surface. Similarly, other charges may be
computed over any arbitrary surface. In this section we also
revisit Iyer-Wald derivation [34] of the first law of
thermodynamics for charge perturbations of black holes
and show how our formulation extends and generalize it in
two different ways, especially when the gauge field charges
are present. The last section is devoted to a summary and
outlook. In some Appendixes we have gathered some
technical details of the analysis and calculations.

II. REVIEW OF COVARIANT PHASE SPACE
METHOD AND CONSERVED CHARGES

The CPSM provides a systematic way of calculating
variations or perturbations of conserved charges in generic
theories with local gauge symmetries, in particular
generally covariant theories. This method was primarily
developed in the papers of Wald et al. [13,34,35]. Wald’s
approach, which is what we will review below, is based
on action formulation. There is another way of formulat-
ing the CPSM, developed by Barnich et al., based on
equations of motion (instead of action) [16,17]. In this
work we discuss a less appreciated application of the
CPSM for computing the conserved charges associated
with exact symmetries. As we will see for this class
(see also Ref. [17]), the Wald et al. and Barnich et al.
formulations become equivalent. We therefore briefly
review the better-established Wald et al. formulation
using their, now standardized, notation. A concrete and
rigorous discussions can be found in the original papers,
e.g., in Ref. [22], while for a pedagogical review we refer
to Ref. [20].

A. Covariant phase space

Phase space is a manifold M which is equipped with
a symplectic two-form Ω. To construct Ω for a given
d-dimensional generally invariant theory, one may start
through the action

S½Φ� ¼
Z

L; ð1Þ

where L is the Lagrangian d-form and Φ is used to denote
collectively all the dynamical fields. Variation of the action
leads to

δL½Φ� ¼ EΦδΦþ dΘLWðδΦ;ΦÞ;
where δΦ is a generic field perturbation and provides the
basis for tangent space of the phase space M. The set of
equations EΦ ¼ 0 gives the equations of motion. ΘLW is a
d − 1-form over the spacetime and one-form on the tangent
bundle of M, i.e., ΘLW is a ðd − 1; 1Þ-form. On-shell
equality is denoted by ≈:

δL½Φ� ≈ dΘLWðδΦ;ΦÞ: ð2Þ
A symplectic two-form in the CPSM, the Lee-Wald sym-
plectic form [13], is defined as

ΩΣ
LWðδ1Φ; δ2Φ;ΦÞ ¼

Z
Σ
ωLWðδ1Φ; δ2Φ;ΦÞ; ð3Þ

where

ωLWðδ1Φ; δ2Φ;ΦÞ≡ δ1ΘLWðδ2Φ;ΦÞ − δ2ΘLWðδ1Φ;ΦÞ;
ð4Þ

where ωLW is a ðd − 1; 2Þ-form and δ1Φ and δ2Φ are two
arbitrary field perturbations which are members of the
tangent bundle of the M. In Eq. (3), Σ is a codimension-
1 spacelike surface. Hereafter, we restrict to solutions of
equations of motion (up to gauge transformations), with the
tangent bundle being perturbations satisfying linearized field
equations around Φ, for which [13,22]
(1) dωLWðδ1Φ; δ2Φ;ΦÞ ≈ 0,
(2) ΩΣ

LW has no degenerate directions and is conserved
and independent of Σ, if Σ is a Cauchy surface with
appropriate boundary conditions for fields and their
perturbations on ∂Σ.

Therefore, if we denote the set of solutions to equations of
motion (up to gauge transformations) by F, ðF ;ΩÞ con-
stitutes a well-defined phase space. The tangent space of F ,
which is spanned by δΦ, will be denoted by TF.

B. Freedom/ambiguities on ω

The Lee-Wald (pre)symplectic form ωLW is constructed
from the Lagrangian d-from. Equation (2) reveals that
one has a freedom in defining Θ up to ðd − 2; 1Þ-form
“boundary terms” Y:
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ΘLWðδΦ;ΦÞ → ΘðδΦ;ΦÞ ¼ ΘLWðδΦ;ΦÞ þ dYðδΦ;ΦÞ:
ð5Þ

As a result, the symplectic current has the following
ambiguity:

ωLWðδ1Φ; δ2Φ;ΦÞ → ωðδ1Φ; δ2Φ;ΦÞ
¼ ωLWðδ1Φ; δ2Φ;ΦÞ þ d½δ1Yðδ2Φ;ΦÞ

− δ2Yðδ1Φ;ΦÞ�: ð6Þ

Some specific choices for the boundary term Y have been
discussed in the literature; for example, if we base the
formulation on equations of motion and not the action,
we get a specific Y term and the corresponding “invariant
symplectic form” ωinv [16,17]. Other choices of boundary
terms may be chosen and used in different contexts,
e.g., those motivated by the AdS/CFT [36] or possibly
by different boundary conditions on fields and their
perturbations [30–33].
However, being linear in δϵΦ, for the exact symmetries

the boundary term relating ωLW and ωinv vanishes [17,22],
and hence as long as conserved charges associated with the
exact symmetries are concerned, these two lead to the same
result.

C. Conserved charges on the phase space

On may use ω to define conserved charges associated
with a specific set of transformations generated by ϵ, δϵΦ.
The transformations we consider here are among local
(gauge) transformations, which also include the exact
symmetries. Since dωðδ1Φ; δ2Φ;ΦÞ ≈ 0 for any two per-
turbations satisfying linearized equations of motion, locally
and on the phase space F ,

ωðδΦ; δϵΦ;ΦÞ ≈ dkϵðδΦ;ΦÞ; ð7Þ

where kϵ is a ðd − 2; 1Þ-form. The above is called the
fundamental identity of the CPSM.
One may integrate kϵ to define perturbations of charge

associated with ϵ [34]:

δHϵðΦÞ ¼
Z
Σ
dkϵðδΦ;ΦÞ ¼

I
∂Σ

kϵðδΦ;ΦÞ: ð8Þ

D. Example: Charges associated with
diffeomorphismsþ gauge transformations

In the presence of some number ofUð1Þ gauge fields Aa,
labelled by index a, besides diffeomorphisms generated by
ξ’s, the Lagrangian can also be gauge invariant, i.e.,L → L
under Aa → Aa þ dλa for arbitrary scalars λa. Our δϵ now
involves both diffeomorphisms and gauge transformations,
ϵ≡ fξ; λag, explicitly, δϵΦ ¼ fLξΦ; δλaΦg.

The charge perturbations (also called Hamiltonian gen-
erators) associated with the variations generated by ϵ,
δHϵðΦÞ, are then given as

δHϵðΦÞ≡ΩðδΦ; δϵΦ;ΦÞ ¼
Z
Σ
ωðδΦ; δϵΦ;ΦÞ ð9Þ

¼
Z
Σ
ðδΘðδϵΦ;ΦÞ − δϵΘðδΦ;ΦÞÞ¼

I
∂Σ

kϵðδΦ;ΦÞ:

ð10Þ

If the above integrals are finite and nonvanishing,
δHϵðΦÞ then corresponds to a conserved charge variation.
The generic form of kϵ is (see Appendix A)

kϵðδΦ;ΦÞ ¼ δQϵ − ξ ·ΘðδΦ;ΦÞ; ð11Þ
in which Qϵ is the Noether-Wald charge density,

dQϵ ≡ΘðδϵΦ;ΦÞ − ξ ·L: ð12Þ
One may then evaluate the charge knowing how to
compute kϵ.

E. Integrability of charges

The chargeHϵ½Φ� is well defined if δHϵðΦÞ is integrable
over the phase space. This condition holds if ðδ1δ2 − δ2δ1Þ
HϵðΦÞ ¼ 0, in which Φs are any field configuration in the
presumed phase space F , and δ1;2Φ are any arbitrary
chosen member of its tangent bundle. For field-independent
transformations, i.e., when δϵ ¼ 0, straightforward analysis
(see Appendix A) shows that this condition is equivalent
to [13]
I
∂Σ

ξ · ωðδ1Φ; δ2Φ;ΦÞ ≈ 0; ∀ Φ ∈ F ; δΦ ∈ TF : ð13Þ

F. Field-dependent transformations
and their charges

In the standard CPSM which we reviewed above, there is
an implicit assumption that the generator of transformations
ϵ are field independent, i.e., δϵ ¼ 0. For the important
example of exact symmetries, which is our main focus in this
work, however, this assumption is not always respected,
and one needs to revisit the steps of the CPSM given above
for possible modifications. This has been discussed in
the Appendix of Ref. [31], and we give the results here.
The “field-dependence adjusted” charge variations are

δHϵ ≡
Z
Σ
ðδ½Φ�ΘðδϵΦ;ΦÞ − δϵΘðδΦ;ΦÞÞ. ð14Þ

In this definition, δ½Φ� in δ½Φ�ΘðδϵΦ;ΦÞ acts only on Φ and
not the ϵ inside Θ. Hence, one can still compute δHϵ via
δHϵ ¼

H
∂Σ kϵðδΦ;ΦÞ, but the integrability condition is now

modified to [31]
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I
∂Σ
ðξ · ωðδ1Φ; δ2Φ;ΦÞ þ kδ1ϵðδ2Φ;ΦÞ − kδ2ϵðδ1Φ;ΦÞÞ≈ 0:

ð15Þ
G. Pure gauge transformations

If for an ϵ, δHϵ ¼ 0 over all of the phase space F , then ϵ
is the generator of a “pure gauge transformation” [13].
The field configurations related by such coordinate (gauge)
transformations are physically equivalent, and their
Hamiltonian generator is trivial and vanishing over the
phase space. As is usual in the context of gauge theories or
generally covariant theories, one may then define physical
states or observables up to gauge equivalent classes.

H. Symplectic nonexact and exact symmetries

By definition the phase space ðF ;ΩÞ has a nondegen-
erate symplectic two-form. It may happen that for a
subspace of the tangent space (to a given point Φ) the
symplectic current ω vanishes on shell, i.e., for a subclass
of δϵΦ’s, which will be denoted by δωΦ,

ωðδΦ; δωΦ;ΦÞ ≈ 0; ð16Þ

for all δΦ satisfying linearized equations of motion. Two
important properties follow from (16): (i) conservation, i.e.,
independence of Σ, would be guaranteed for the δHω;
(ii) independence of the charge on the codimension-2
integration surface ∂Σ [20,30–33]. In this case, instead
of the usual notion of asymptotic symmetries, we are
dealing with charges which may be defined “everywhere.”
The transformations generated by δωΦ are called symplec-
tic symmetries [32].
Equation (16) may be satisfied for two classes of field

perturbations, the nonexact symmetries δχΦ and the exact
symmetries δηΦ:
(1) Symplectic nonexact symmetries are the subset of

δωΦ, which are nonzero at least on one point of the
phase space. We will denote symplectic nonexact
symmetry perturbation by δχΦ ≠ 0. Based on a
given solution Φ0, one may construct a full phase
space by successive action of δχ on Φ0 (which may

formally be denoted as e
R
γ
δχΦ0, where γ denotes an

arbitrary path in the phase space). The elements in
this phase space which may be denoted by FΦ0

are
then labelled by conserved charges associated with
symplectic nonexact symmetries (which are defined
by integration of symplectic current over a generic
smooth, closed, and compact codimension-2 surface
∂Σ); they fall into the “orbits” of the algebra of
symplectic charges. For cases when Φ0 is a locally
AdS3 geometry or a near-horizon extremal geom-
etry, respectively, see Refs. [31–33] for discussion
on sympelctic charges and their algebra.

(2) Symplectic exact symmetries are the subset of δωΦ,
which vanish all over the phase space. We will
denote symplectic exact symmetry perturbation by
δηΦ ¼ 0, for which obviously (16) is satisfied.

The symplectic exact symmetries, which we will call them
exact symmetries hereafter, are the class of perturbations
we will analyze in more detail in the rest of this work. We
construct the charges perturbations associated with the
exact symmetries, caused through parametric variations δ̂Φ,
by focusing on kηðδ̂Φ;ΦÞ. We will show below that these
perturbations form their own phase space which will be
denoted as Fp.

III. SOLUTION PHASE SPACE AND ASSOCIATED
CONSERVED CHARGES

In the previous section we introduced the machinery of
the covariant phase space method through which one can in
principle compute conserved charges variations. In our
notation we used δΦ for any field perturbation which
satisfies linearized equations of motion. In the class of
theories with local gauge symmetries (like diffeomorphism
invariant theories or the Maxwell theory), a sector of such
field perturbations is δϵΦ’s which denote field perturbations
under generic gauge transformation, generated by ϵ. It may
happen that one can associate well-defined (finite and
nontrivial) charge variations to a subclass of δϵΦ’s (which,
e.g., are allowed by a specific boundary condition or keep a
given gauge intact). There is yet another subclass of the
gauge transformations, generated by η, for which δηΦ ¼ 0.
The latter is called exact symmetries.
Besides δϵΦ, we may consider a different category of

perturbations/variations, the parametric variations δ̂Φ.
In this section we will focus on this class of variations
and the class of exact symmetries δηΦ.

A. Parametric variations and solution phase space

Let us consider family of solutions collectively denoted
by Φ. Each solution may be identified with a set of
parameters pα: Φ ¼ Φðx;pαÞ. As is usual, any such
solution is defined up to some coordinate or gauge trans-
formation. As the notation indicates, here we are assuming
that pα’s are continuous real labels on the solution field
configuration Φ. In our analysis here, we do not consider
discrete labels and also assume that for each given set of
pα’s we have a distinct solution. Explicitly and by
definition, δϵΦ will not take a solution with given pα’s
to another solution with different pα’s.
The parametric variations δ̂Φ [37] are then defined as

δ̂Φ≡ ∂Φ
∂pα

δpα: ð17Þ

Note that (17) defines δ̂Φ up to pure gauge transformations.
It is clear from the definition that they satisfy linearized
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equations of motion because Φ ¼ Φðx;pαÞ and Φþ δ̂Φ ¼
Φðx;pα þ δpαÞ are both solutions to EΦ ¼ 0 and hence
δEðΦÞ
δΦ jΦδ̂Φ ¼ 0. With the above discussion, it becomes clear

that the set of parametric variations δ̂Φ and those associated
with nontrivial (nonpure) gauge transformations δϵΦ only
overlap at δΦ ¼ 0 cases, i.e., on the set of exact sym-
metries. We shall use this fact in our construction below.
From the discussions of previous sections, we learn that

tangent space of the covariant phase space manifold F has
different subspaces, e.g., those spanned by δϵΦ or those
with δ̂Φ. The set of solutions Φðxμ;pαÞ with tangent space
restricted to δ̂Φ constitutes a (sub)manifold ofF , which can
be denoted by Fp. One may then show that the symplectic
two-form Ω̂ defined as

Ω̂≡ Ωðδ̂1Φ; δ̂2Φ;ΦÞ ¼
Z
Σ
ωðδ̂1Φ; δ̂2Φ;ΦÞ ð18Þ

where

ωðδ̂1Φ; δ̂2Φ;ΦÞ ¼ δ̂1Θðδ̂2Φ;ΦÞ − δ̂2Θðδ̂1Φ;ΦÞ; ð19Þ
constitutes a well-defined symplectic two-form on Fp; i.e.,
ðFp; Ω̂Þ forms a phase space, which we will dub as the
solution phase space. Note that the symplectic structure
above already includes the boundary Y terms discussed in
the previous section.

B. Conserved charges on solution phase space

One may readily use the general covariant phase space
method formulation of computing conserved charges, to the
solution phase space. To this end, we first define charge
variations, and then integrating them over a given path in
Fp, we define the charges.

1. Conserved charge variations

Charge variations associated with perturbations ϵ can be
calculated by inserting δ̂Φ into the right-hand side of (8),

δ̂Hϵ ¼
I
∂Σ

kϵðδ̂Φ;ΦÞ: ð20Þ

Hence, by this equation one is able to calculate δ̂Hϵ on a
solution Φ for any given covariant theory identified by L.
Thanks to the linearity of δ̂Hϵ in δ̂Φ, one can insert (17)
into (20) term by term, so the explicit computations can be
performed easier. We note that in (20), in general δ̂ϵ ≠ 0;
i.e., we may have parameter-dependent transformations.

2. Integrability

In order for the charge variations δ̂Hϵ to be well-defined
over Fp, we need to require

ðδ̂1δ̂2 − δ̂2δ̂1ÞHϵ ¼ 0: ð21Þ

The above then leads to the integrability condition for
parametric variations,

I
∂Σ
ðξ · ωðδ̂1Φ; δ̂2Φ;ΦÞ þ kδ̂1ϵðδ̂2Φ;ΦÞ

− kδ̂2ϵðδ̂1Φ;ΦÞÞ ≈ 0: ð22Þ

The above integrability condition will be used to constrain
transformation generators ϵ. We note that (22) is linear, and
hence if ϵ1 and ϵ2 are two generators with integrable
conserved charges, then c1ϵ1 þ c2ϵ2 (for any c1, c2 which
are constant on spacetime and on the solution space) would
be also integrable.

3. Pure gauge transformations among δ̂Φ

If for an ϵ, the δ̂Hϵ ¼ 0 over all of the solution phase
space Fp, then we consider the ϵ as generator of a pure
gauge transformation. Recalling the presence of such pure
gauge transformations implies that the solution phase is an
infinite-dimensional phase space.

4. Integrating on solution phase space

The calculated δ̂Hϵ in (20) would be a function of
parameters, δ̂HϵðpαÞ. It might or might not be a well-
defined and integrable function. In the case of well-defined
and integrable δ̂Hϵ, it can be integrated over the solution
phase space which is parametrized by pα’s. Hence, by a
choice of the appropriate reference point, HϵðpαÞ, can be
found. More precisely

Hϵ½Φ� ¼
Z

p

p̄
δ̂Hϵ þHϵ½Φ̄�; ð23Þ

in which the integration is performed over arbitrary integral
curves which connect a reference field configuration Φ̄ to
theΦ on the solution phase space (studied but not been well
appreciated in Refs. [21] and [22]). The Hϵ½Φ̄� is the
reference point for the Hϵ defined on the reference field
configuration Φ̄.

5. Specializing to exact symmetries

Although our formulation above may be used for any
gauge or diffeomorphism δϵΦ, in what follows we will be
using it only for exact symmetries generated by η. In our
notations the exact symmetries η include a Killing vector
(isometry) of the geometry, which will be generically
denoted by ζ, and/or an internal gauge transformation
generated by λ: η ¼ fζ; λg. It may happen that for specific
Killing vectors ζ, λ is also fixed in terms of ζ.
As pointed out, exact symmetries are the only place

where the parametric variations δ̂Φ and the gauge sym-
metry ones δϵΦ overlap. In this sense, the charge variations
δ̂Hη½Φ� may be defined on the solution phase space of
which the tangent space is only covered by δ̂Φ. To compute
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the charges for exact symmetries, we first compute
kηðδ̂Φ;ΦÞ for a given set of solutions with parameters
pα and parametric variations δ̂Φ. kη is a d − 2-form on
spacetime and a one-form over the solution phase space,
and one may integrate over smooth, codimension-2, com-
pact spacelike surfaces ∂Σ to obtain charge variations δ̂Hη

which are one-forms over the solution phase space. If the
charge is integrable, one may then define the charge Hη½Φ�
by integrating the charge variation over an (appropriately
chosen) path in the solution phase space. Integrability then
implies that the charge should be path independent.
Finally we point out that dealing with the exact sym-

metries for which δηΦ ¼ 0 brings the interesting result that
the boundaryY term (which is an ambiguity in the definition
of ω) would not contribute to the charges, and hence for the
computation of conserved Noether charges, one may only
focus on the Lee-Wald (LW) (pre)sympletic structure density
ωLW. Therefore, in what follows, to simplify the notation, we
will only consider the Lee-Wald symplectic structure density
and simplify the notation by dropping the LW index.

IV. EXAMPLE: CONSERVED CHARGES IN
EINSTEIN-MAXWELL-SCALAR-Λ THEORY

As reviewed and explained above, kη depends on the
details of the theory. As a concrete example and to illustrate
how our method works, let us consider Einstein-Maxwell-
scalar (EMS) theories, with cosmological constant Λ. The
dynamical fields Φ would be the metric gμν, some number
of Abelian one-form gauge fields Aa, and some number of
scalar fields ϕI governed by the Lagrangian

L ¼ 1

16πG
ðR − 2fIJ∇μϕI∇μϕ

J − kabFa
μνFbμν − VðϕÞÞ:

ð24Þ

R is the Ricci scalar, and Fa ¼ dAa is the field strength. fIJ
and kab are some functions of ϕ. The Lagrangian d-form is
the Hodge dual of (24), L ¼ ⋆L,

L ¼
ffiffiffiffiffiffi−gp
d!

ϵμ1μ2���μdL dxμ1 ∧ dxμ2 ∧ � � � ∧ dxμd ; ð25Þ

where ϵμ1μ2���μd is the Levi-Civita symbol; i.e., ϵ012���d−1 ¼
þ1 and changes sign according to the permutations of
indices. The surface d − 1-form Θ would be

Θ ¼
ffiffiffiffiffiffi−gp

ðd − 1Þ! ϵμμ1���μd−1ðΘ
Eμ þ ΘMμ þ ΘSμÞ

× dxμ1 ∧ � � � ∧ dxμd−1 ð26Þ

in which

ΘEμðδΦ;ΦÞ ¼ 1

16πG
ð∇νhμν −∇μhÞ; ð27Þ

ΘMμðδΦ;ΦÞ ¼ −1
4πG

kabFaμνδAb
ν ; ð28Þ

ΘSμðδΦ;ΦÞ ¼ −1
4πG

fIJ∇μϕIδϕJ; ð29Þ

where hμν ≡ gμσgντδgστ and h≡ hμμ. For ϵ ¼ fξ; λag, the
Noether-Wald d − 2-form Qϵ can be read through (12) as

Qϵ ¼
ffiffiffiffiffiffi−gp

ðd − 2Þ!2! ϵμνμ1���μd−2ðQ
Eμν
ϵ þ QMμν

ϵ þ QSμν
ϵ Þdxμ1

∧ � � � ∧ dxμd−2 ð30Þ

in which

QEμν
ϵ ¼ −1

16πG
ð∇μξν −∇νξμÞ; ð31Þ

QMμν
ϵ ¼ −1

4πG
kabFaμνðAb

ρξ
ρ þ λbÞ; ð32Þ

QSμν
ϵ ¼ 0: ð33Þ

Next, we should compute d − 2-form kϵðδΦ;ΦÞ, which can
be done using (11). The calculations are cumbersome but
straightforward [38] (e.g., see Appendix C.6 in Ref. [20]
for the Einstein-Hilbert theory). The final result is

kϵðδΦ;ΦÞ ¼
ffiffiffiffiffiffi−gp

ðd − 2Þ!2! ϵμνμ1���μd−2ðk
Eμν
ϵ þ kMμν

ϵ þ kSμνϵ Þdxμ1

∧ � � � ∧ dxμd−2 ; ð34Þ

where

kEμνϵ ðδΦ;ΦÞ ¼ 1

16πG

��
ξν∇μh − ξν∇σhμσ þ ξσ∇νhμσ

þ 1

2
h∇νξμ − hρν∇ρξ

μ

�
− ½μ ↔ ν�

�
; ð35Þ

kMμν
ϵ ðδΦ;ΦÞ ¼ 1

8πG

���
−h
2

kabFaμν þ 2kabFaμρhρν

− kabδFaμν −
∂kab
∂ϕI F

aμνδϕI

�
ðξρAb

ρ þ λbÞ

− kabFaμνξρδAb
ρ − 2kabFaρμξνδAb

ρ

�

− ½μ ↔ ν�
�
; ð36Þ

kSμνϵ ðδΦ;ΦÞ ¼ 1

8πG
ðξνfIJ∇μϕIδϕJ − ½μ ↔ ν�Þ ð37Þ

for any chosen cosmological constant Λ.
So far δΦ and ϵ were generic; hereafter we restrict δΦ to

parametric variations δ̂Φ and ϵ to exact symmetries η. To
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illustrate how our formulation works, we analyze some
examples. They are chosen as simple as possible, but rich
enough to be used for our purpose. Some further examples
may be found in Ref. [20].

A. Charges associated with Kerr-AdS black hole

As our first example we start with the Kerr-AdS black
hole, which is an aymptotically AdS solution to the
Einstein-Hilbert theory, with negative cosmological con-
stant Λ. The Lagrangian density for this theory is
L ¼ 1

16πG ðR − 2ΛÞ, with the metric as its only dynamical
field. The metric of the Kerr-AdS black hole in coordinates
which is nonrotating at infinity is given as [39]

ds2 ¼ −Δθ

�
1þ r2

l2

Ξ
− Δθf

�
dt2 þ ρ2

Δr
dr2 þ ρ2

Δθ
dθ2

− 2Δθfasin2θdtdφ

þ
�
r2 þ a2

Ξ
þ fa2sin2θ

�
sin2θdφ2; ð38Þ

where

ρ2 ≡ r2 þ a2cos2θ; Δr ≡ ðr2 þ a2Þ
�
1þ r2

l2

�
− 2Gmr;

Δθ ≡ 1 −
a2

l2
cos2θ; f ≡ 2Gmr

ρ2Ξ2
; Ξ≡ 1 −

a2

l2
: ð39Þ

The solution is specified by two parameters m and a.
The radius of the AdS4 has been denoted by l, which is
related to the Λ by Λ ¼ −3

l2 . The charges and Smarr relation
for this solution have been in particular studied and
analyzed in Refs. [40–42].
To employ our formulation, we start with parametric

variations for this solution, which explicitly are

δ̂gμν ¼
∂gμν
∂m δmþ ∂gμν

∂a δa: ð40Þ

In the absence of gauge fields, our exact symmetries are
identical to Killing vectors ζ. The metric has two obvious
Killings ∂t, ∂φ, and of course any linear combination of
these two with arbitrary m, a-dependent coefficients is also
a Killing. Nonetheless, as we will see, not any combination
of these Killings leads to integrable charges.

1. Mass

One can calculate δ̂H∂t using kEξ from (35) and choosing
∂Σ to be any ðd − 2Þ-dimensional, spacelike, smooth, and
closed surface which surrounds the black hole (includes
r ¼ 0). For simplicity, one can choose ∂Σ to be constant t, r
surfaces, with arbitrary t, r. Using (40) as perturbations in
(35), the result would be

δ̂H∂t ¼
1

Ξ2
δmþ 4ma

Ξ3
δa: ð41Þ

One may then check that δ̂H∂t is integrable over the
solution phase space, by a direct check of (22).
Explicitly, the Killing N∂t with normalization N ¼ 1 leads
to an integrable charge. Alternatively, one may observe
that δ̂H∂t (41) is a variation of a function on the parameters
m, a. That function is explicitly the m

Ξ2 þ const., where the
const. should be a constant over the solution phase space;
i.e., it should be independent of the parameters of the
solution. However, it could be a function of the parameters
of the theory, like l or G. We fix this constant by choosing
the pure AdS4 spacetime (m ¼ a ¼ 0 case) as the reference
point with H∂t

½Φ̄� ¼ 0, and we find the “mass” of the Kerr-
AdS black hole,

M ≡H∂t ¼
m
Ξ2

: ð42Þ

2. Angular momentum

Similar calculation for the Killing ∂φ, on any surface of
constant t, r surrounding the hole, (considering the stan-
dard additional minus sign) leads to

−δ̂H∂φ ¼
a
Ξ2

δmþmð1þ 3 a2

l2 Þ
Ξ3

δa; ð43Þ

which is also integrable over the parameters.3 Reference
point H∂φ ½Φ̄� can be chosen to vanish for pure AdS, i.e., on
the solution withm ¼ a ¼ 0. Hence, the angular momen-
tum for the Kerr-AdS black hole is found to be

J ≡ −H∂φ ¼
ma
Ξ2

: ð44Þ

3. Entropy

The Killing vector generating the (Killing) horizon of the
black hole is

~ζH ¼ ∂t þ ΩH∂φ; ΩH ¼ að1þ r2H
l2 Þ

r2H þ a2
; ð45Þ

and rH is the radius of its event horizon and a solution to
Δr ¼ 0, explicitly,

ðr2H þ a2Þðr2H þ l2Þ − 2Gml2rH ¼ 0: ð46Þ

A direct examination of (22) reveals that the charge
associated with ~ζH is not integrable. (Note that ΩH is

3This means that the charge of N∂φ with normalization N ¼ 1
is integrable over the solution phase space.
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parameter dependent and hence δ̂~ζH ≠ 0.) Nonetheless,
one may check that the appropriately normalized
vector, ζH ≡ 2π

κ
~ζH where κ is surface gravity on the

horizon,

κ ¼
rHð1þ a2

l2 þ 3
r2H
l2 −

a2

r2H
Þ

2ðr2H þ a2Þ ; ð47Þ

is integrable (see Appendix B 1 for the detailed analysis).
Therefore, one may integrate δ̂HζH to obtain the corre-
sponding charge. We emphasize that δ̂HζH may be defined
over any codimension-2, compact spacelike surface ∂Σ
which surrounds the hole (not necessarily the horizon).
The result which is independent of the choice of such
∂Σ is

δ̂HζH ¼
∂
�

πðr2Hþa2Þ
GΞ

�

∂m δmþ
∂
�

πðr2Hþa2Þ
GΞ

�

∂a δa: ð48Þ

By choosing the pure AdS4 spacetime as the reference point
withHζH ½Φ̄� ¼ 0, Eq. (48) then results in the entropy for the
Kerr-AdS black hole [34,35],

S≡HζH ¼ πðr2H þ a2Þ
GΞ

: ð49Þ

Hamiltonian generators which are calculated above are
in agreement with the known mass, angular momentum,
and entropy of the Kerr-AdS black hole [40,41]. Before
moving to the next example, some comments are in order:
(1) Being on an asymptotic AdS backgorund, the

charges defined through other methods (e.g., see
Ref. [10] for a review) may be infinite and need
regularization. By contrast in our method, not only
are the charges obtained to be finite, but also by an
appropriate choice of the reference point, the con-
served charges are completely fixed.

(2) Comparing the analysis for ~ζH and ζH demonstrates
the sensitivity of integrability to the normalization of
Killing vectors by some function of parameters.
More generally, integrability is highly sensitive to
the appropriate choice of vector fields. For example,
if one had chosen the metric in Boyer-Lindquist
coordinates (which can be found, e.g., in Ref. [41]),
the time would be something different than t in (38);
let us denote it by τ. One may then check that ∂τ does
not have an integrable conserved charge. As a result,
the formulation can be used for investigating ap-
propriate Killing vector fields associated with mass
or other conserved charges.

(3) Entropy has been found as a Hamiltonian generator,
instead of the Noether-Wald charge of ζH. Notice
that they are different by the last term in (11). That

extra term vanishes on the bifurcation of the horizon,
because ζH vanishes there. This is a key point in
allowing us to define entropy on any surface ∂Σ and
free us from defining it on the bifurcation surface
only, as is prescribed in Wald’s entropy [35]. Our
definition of entropy as Hamiltonian generator
associated to ζH is in a sense a more fundamental
definition, as we will discuss in Sec. V.

(4) For the extremal case, where κ ¼ 0, there is no
properly normalized Killing vector field ζH. For this
case, however, there are infinitely many such Killing
vectors in the near horizon region [27]. We will
consider one closely related such example in the
next subsection.

B. Extremal Kerr-Newman near horizon geometry

For the next example we choose the near horizon
extremal Kerr-Newman geometry. This example is chosen
to show how our formulation naturally takes into account
the effects of gauge fields, and also for cases which are not
a black hole. This geometry is a solution to the Einstein-
Maxwell theory with the Lagrangian L ¼ 1

16πG ðR − F2Þ
and is specified through

ds2 ¼ Γ
�
−r2dt2 þ dr2

r2
þ dθ2 þ γðdφþ krdtÞ2

�
; ð50Þ

A ¼ fðdφþ krdtÞ − erdt; ð51Þ

where

Γ ¼ q2 þ a2ð1þ cos2θÞ; γ ¼
�

q2 þ 2a2 sin θ
q2 þ a2ð1þ cos2θÞ

�
2

;

k ¼ 2a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ a2

p
q2 þ 2a2

; f ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ a2

p
qasin2θ

q2 þ a2ð1þ cos2θÞ ;

e ¼ q3

q2 þ 2a2
: ð52Þ

This solution has two free parameters, a and q. It has
SLð2;RÞ ×Uð1Þφ isometry with the Killing vectors

ξ− ¼ ∂t; ξ0 ¼ t∂t − r∂r;

ξþ ¼ 1

2

�
t2 þ 1

r2

�
∂t − tr∂r −

k
r
∂φ; ∂φ: ð53Þ

Since in our solution, besides the metric, we also have a
gauge field, not all the above isometries are directly exact
symmetries (of the full solution). One may readily see that
ξ−, ξ0 and ∂φ are exact symmetries while ξþ is not: under
transformations generated by the ξþ, the solution goes to
itself up to an internal Uð1Þ transformation. Explicitly
δξþA ¼ e

r2 dr ≠ 0. Nonetheless, one may check that
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ηþ ¼ fξþ;
e
r
þ const:g ð54Þ

is an exact symmetry. The “const.” is a constant on the
spacetime, while it can be a function of parameters q
and a. Its choice should respect the integrability of δHηþ .

A consistent choice, as will become apparent below, is to
set it to zero.
Let us calculate the conserved charges associated to the

mentioned exact symmetries and also the electric charge Q
for this geometry. For the Einstein-Maxwell theory, the kϵ
for generic ϵ ¼ fξ; λg is

kEMμν
ϵ ðδΦ;ΦÞ ¼ 1

16πG

��
ξν∇μh − ξν∇σhμσ þ ξσ∇νhμσ þ 1

2
h∇νξμ − hρν∇ρξ

μ

�
− ½μ ↔ ν�

�

þ 1

8πG

���
−h
2

Fμν þ 2Fμρhρν − δFμν

�
ðξσAσ þ λÞ − FμνξρδAρ − 2FρμξνδAρ

�
− ½μ ↔ ν�

�
: ð55Þ

We note in addition that parametric variations for this
solution are

δ̂gμν ¼
∂gμν
∂a δaþ ∂gμν

∂q δq; δ̂Aμ ¼
∂Aμ

∂a δaþ ∂Aμ

∂q δq:

ð56Þ
1. Angular momentum

Choosing η ¼ f∂φ; 0g as generator of angular momen-
tum, one can insert the parametric variations into the
equation above. Then by Eq. (20), and choosing ∂Σ to
be surfaces of constant t, r (only for simplicity of
calculations), the result would be

−δ̂H∂φ ¼
q2 þ 2a2

G
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ a2

p δaþ qa

G
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ a2

p δq: ð57Þ

As is explicitly seen δ̂H∂φ
is integrable over the parameters/

solution phase space. It is natural to chooseH∂φ ½Φ̄� ¼ 0 for
a ¼ 0. Hence, angular momentum for this geometry is
found to be

J ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ q2

p
G

a: ð58Þ

This result is in agreement with the known angular
momentum for the extremal Kerr-Newman black hole.

2. SLð2;RÞ charges
For η− ¼ fξ−; 0g, η0 ¼ fξ0; 0g, and ηþ ¼ fξþ; erg, by a

similar procedure we find

δ̂Hη− ¼ δ̂Hη0 ¼ δ̂Hηþ ¼ 0: ð59Þ
Hence, by the choice of reference Hη0;�½Φ̄� ¼ 0 for an
arbitrary member Φ̄ of these solutions, one arrives at

Hη− ¼ Hη0 ¼ Hηþ ¼ 0: ð60Þ
This result is of course expected, as a consequence of
invariance under the non-Abelian SLð2;RÞ exact sym-
metry group.

3. Electric charge

Choosing η ¼ f0; 1g as generator of the electric charge
Q, the δHη as integration of (55) would reduce simply to
the standard result

δQ≡ δHη ¼
−1

16πG

I
∂Σ

ϵμνμ1μ2δð
ffiffiffiffiffiffi
−g

p
δFμνÞdxμ1 ∧ dxμ2 :

ð61Þ

For the specific solution on which we have focused, by
inserting parametric variations into the equation above, we
find δ̂Q ¼ δq

G . So, by integration over parameters, electric
charge of this geometry would be Q ¼ q

G.

4. Entropy

As discussed in Ref. [27], in the geometry which we
have focused on, any surface of constant time and radius,
dubbed as H, is the bifurcation point of a Killing horizon.
Denoting those constant time and constant radius by tH and
rH, the associated horizon Killing vector is explicitly [27]

~ζH ¼ −
t2Hr

2
H − 1

2rH
ξ− þ tHrHξ0 − rHξþ − k∂φ: ð62Þ

There are an infinite number of surfaces H, hence an
infinite number of Killing vectors ~ζH. The surface gravity
associated to the ~ζH can be found to be κ ¼ 1 for any
chosen H [33]. So, the normalized horizon Killing vectors
would be ζH ¼ 2π ~ζH. Although ζH are Killings, they are
not exact symmetries because δζHA ¼ −2πerH

r2 dr ≠ 0.

Instead, fζH; −2πerHr þ const:g are exact symmetries.
The constant can be fixed by the integrability condition
to be 2πe (see Appendix B 2), i.e.,

ηH ¼
�
ζH; 2πe

�
r − rH

r

��
: ð63Þ

Note in particular that, similarly to ζH, the exact symmetry
generator ηH also vanishes at the “bifurcation surface”
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t ¼ tH, r ¼ rH. Inserting ηH and the parametric variations
in (55), we obtain

δ̂HηH ¼ 4πa
G

δaþ 2πq
G

δq: ð64Þ

Integrating over the solution phase space, the entropy is
found as

S≡HηH ¼ πð2a2 þ q2Þ
G

: ð65Þ

Some comments and remarks are in order:
(1) This geometry is not a black hole, as it does not have

an event horizon. Nonetheless, our formulation
works for the calculation of conserved charges in
this geometry.

(2) The asymptotics of this geometry is not flat or AdS.
Our formulation works for solutions with more
general asymptotics.

(3) According to the CPSM, the conserved charges of
Killing vectors are independent of the chosen
smooth and closed surface ∂Σ. This example ex-
hibits that a similar feature extends to the case in the
presence of matter fields.

(4) The charges do not depend on the chosen ∂Σ, and
one may in particular choose ∂Σ to be the bifurcate
Killing horizon surface for black hole solutions.
Therefore, our formulation shows that all conserved
charges, and hence the black hole thermodynamical
quantities, are encoded in the near horizon geometry.

(5) It is worth mentioning that the ADM formalism
[2–4] cannot be used to derive the angular momen-
tum of this near horizon geometry (which is not
asymptotic flat). Also using the Komar integral [1]
leads to incorrect angular momentum. This example
shows one of the advantages of our proposed method
over these well-known methods.

V. BLACKHOLE ENTROPY AND THE FIRST LAW
OF THERMODYNAMICS

In previous sections we provided a formulation for
computing conserved charge variations over the solution
phase space. In this section we focus in particular on the
notion of the entropy as a Hamiltonian generator associated
with an exact symmetry. In this way we provide a gener-
alization and extension of Wald’s seminal result [35],
especially to the cases involving gauge fields. Moreover,
we also work out (or prove) the first law of thermodynamics.
This part is a variation as well as a generalization and
extension of the Iyer-Wald formulation [34].
Although our formulation, as explicitly demonstrated in

the two examples of the previous section, applies to more
general cases, to illustrate explicitly how it works in the
most familiar and simple examples, let us focus on black

hole solutions to d-dimensional generally covariant gravity
theory which includes some gauge fields Aa. We assume
these black holes to be stationary and admit a nondegen-
erate Killing horizon (while neither of these conditions is
crucial for our formulation to work). Let us denote the
timelike Killing vector of the stationary black hole by ∂t
and its possible other axial Uð1Þ isometries by ∂φi

. One can
choose the coordinates ft;φig such that the charges
(Hamiltonian generators) to these isometries are integrable
and, in particular, assume that

M ¼ H∂t ; Ji ¼ −H∂φi ; ð66Þ

where M and Ji denote the mass and angular momenta.
In these coordinates, the horizon Killing vector would be

~ζH ¼ ∂t þΩi
H∂φi ; ð67Þ

where the Ωi
H are angular velocities of the horizon.

Denoting the surface gravity of the black hole on its
bifurcate horizon by κ, motivated by the integrability
discussions of the example discussed in previous section,
we define

ζH ¼ 2π

κ
~ζH ¼ 2π

κ
ð∂t þΩi

H∂φiÞ: ð68Þ

Note that Ωi
H, although constants over spacetime, are

functions on the solution phase space, and hence it is
not immediate that the charge associated with ζH is
integrable. We will comment on this point further in the
next section.4 Moreover, the reason we consider the specific
combination of Killings ζH will become apparent below.

A. Entropy as a Hamiltonian generator
and in cases involving gauge fields

InRefs. [34,35] Iyer andWald proposed that the entropy of
these black holes is a conserved charge associated with the
horizon generating Killing vector. In their analysis what was
importantwas thevanishing of thevector at the codimension-
2 bifurcation surface and the “normalization” factor ð2πÞ=κ
was included to get the standard expected results for the
entropy and/or for the first law. Starting from ζH (68), they
provide a very elegant proof/derivation of the first law of
black hole thermodynamics for charge perturbations asso-
ciated with any perturbations of dynamical/physical δΦ
which satisfy linearized field equations. This proof works
very well in the absence of gauge fields. In the presence of
gauge fields, the proof misses producing the Φa

HδQa term. It
is basically because in ζH there is no trace of the gauge fields.
Of course, there have been some analyses, e.g., Refs. [24–26]
and most notably recently in Ref. [28], to include the effects

4Similarly, it is not trivial that the charge associated with exact
symmetries ∂t or ∂φi

is integrable. This point needs explicit
examination.
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of the gauge fields in this derivation to include the effects of
the gauge field. Below, we give a “natural” extension of the
Iyer-Wald formulation for the latter.
Our main observation in this regard is to replace the

notion of “invariance up to internal gauge transformations”
[28] with the notion of “exact symmetries,” requiring one to
generalize the notion of Killing ζH to ηH ¼ ðζH; λaζHÞ such
that ηH is an exact symmetry. This formulation, among
other things, extends the notion of Wald (or Iyer-Wald)
entropy as a conserved charge defined through an integra-
tion over the bifurcation surface. As we discussed, dealing
with an exact symmetry, the integration surface could now
be chosen to be any codimension-2, smooth, closed space-
like hypersurface ∂Σ. This will then also allow us to present
a “generalized” derivation for the first law which auto-
matically includes the gauge fields.
In the presence of gauge fields, one may show that the

horizon generating Killing vector field is either not an exact
symmetry or is not satisfying the integrability condition (22).
For the former, as mentioned above, one can always locally
construct an exact symmetry based on ζH by the addition of
appropriate gauge symmetry transformation. This is due to
the fact that, since ζH is a symmetry of the solution,

LζHF
a ¼ 0; ð69Þ

where Fa ¼ dAa. Using Cartan’s identity LξX ¼
ξ · dX − dðξ · XÞ, we learn dðζH · dAaÞ ¼ 0 or ζH · dAa ¼
dZa

H locally, whereZa
H is a scalar function. Then, using once

again the Cartan identity, δζHA
a − dðζH · AaÞ ¼ dZa

H, we
learn that

δζHA
a ¼ dðζH · Aa þ Za

HÞ≡ dλaζH : ð70Þ

That is, ζH is an isometry generator up to a gauge trans-
formation (see Ref. [28] for a recent discussion on this). As a
result, the

ηH ¼ fζH;−λaζH þ const:g ð71Þ

would be a generator of an exact symmetry. The “const.” can
then be determined by the integrability condition over the
solution phase space Fp.
Although we have examples of solutions for which λaζH is

not zero (cf. the near horizon extremal Kerr-Newman
geometry discussed in Sec. IV B) for the known black
hole solutions we have examined, the solution is written in
a gauge where ζH is an exact symmetry, i.e., δζHA

a ¼ 0 and
λaζH ¼ 0. So, let us focus on these cases. One may then,
using an analysis similar to those worked through in
Appendix B, check that the integrability condition (22)
fixes the constant part, leading to

ηH ¼
�
ζH;−

2π

κ
Φa

H

�
; ð72Þ

where Φa
H ¼ ~ζH · Aajhorizon are the horizon electric poten-

tials. The details can be found in Appendix B 3.
The entropy for this family of solutions can be defined as

follows:
For stationary nonextremal black holes as solutions to
covariant gravitational theories, the entropy S can be
defined as the Hamiltonian generator associated to the
ηH calculated on any smooth and closed d − 2-dimensional
surface surrounding the black hole.
Although this definition reproduces similar results as the
Iyer-Wald entropy, it differs from it in three aspects:
(1) Entropy is defined as Hamiltonian generator HηH,

instead of the Noether-Wald charge.
(2) The surface of integration is relaxed and need not be

the horizon itself. In particular, note that the exact
symmetry generator ηH does not/need not vanish at
the horizon bifurcation surface.

(3) The generator contains a specific gauge transforma-
tion, when gauge fields are present. This extra term
is fixed by the condition of ηH being an exact
symmetry and the integrability of the associated
charge over the solution phase space Fp. We note
that, even for cases where ζH is an exact symmetry
(like, e.g., the Kerr-Newman black hole), as pointed
out above, the charge associated with ζH (which
produces the Wald entropy in uncharged cases) is
not integrable. To make it integrable one needs to
add an appropriately chosen gauge transformation,
as given in (72).

B. Revisiting derivation of the first law

Given the above definition of the entropy, we revisit the
Iyer-Wald proof of the first law, matching it with our
definition of the entropy. Since many of the details of the
computations are essentially a repetition of the Iyer-Wald
analysis [34], we do not present them, and here we only
highlight the modifications. Assume that a stationary
nonextremal black hole is given as a solution to a covariant
gravitational theory in d-dimensional spacetime. For the
generator ηH, we have δηHΦ ¼ 0. So, the Lee-Wald sym-
plectic current density5

ωðδΦ; δηHΦ;ΦÞ ¼ δΘðδηHΦ;ΦÞ − δηHΘðδΦ;ΦÞ ð73Þ

which is linear in δηHΦ vanishes. Integrating over an
arbitrary d − 1-dimensional spacelike surface with two
closed and smooth boundaries ∂1Σ and ∂2Σ surrounding
the black hole,

Z
Σ
ωðδΦ; δηHΦ;ΦÞ ¼

Z
Σ
dkηHðδΦ;ΦÞ ð74Þ

5As already pointed out, dealing with exact symmetries, our
analysis here goes through for any other (pre)symplectic current
density as well.
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¼
I
∂2Σ

kηHðδΦ;ΦÞ −
I
∂1Σ

kηHðδΦ;ΦÞ: ð75Þ

Since δηHΦ ¼ 0,I
∂1Σ

kηHðδΦ;ΦÞ ¼
I
∂2Σ

kηHðδΦ;ΦÞ; ð76Þ

and one may drop the index 1 or 2 on ∂iΣ and define the
entropy perturbation as

δS ¼
I
∂Σ

kηHðδΦ;ΦÞ: ð77Þ

The generator ηH ¼ fζH;− 2π
κ Φ

a
Hg can be decomposed as

ηH ¼
�
2π

κ
∂t; 0

�
þ
�
2πΩi

H

κ
∂φi ; 0

�
þ
�
0;−

2π

κ
Φa

H

�
:

ð78Þ

So, by the linearity of k in generators,

δS ¼ 2π

κ

I
∂Σ

k∂tðδΦ;ΦÞ þ
2πΩi

H

κ

I
∂Σ

k∂φi ðδΦ;ΦÞ

−
2π

κ
Φa

H

I
∂Σ

kf0;1gðδΦ;ΦÞ: ð79Þ

Noticing that the generators for mass, angular momenta,
and electric charge are f∂t; 0g, f∂φi ; 0g, and f0; 1g,
respectively (with an additional minus sign for angular
momenta); then

δS ¼ 2π

κ
δM −

2π

κ
Ωi

HδJi −
2π

κ
Φa

HδQ: ð80Þ

Finally, by rearrangement and the Hawking temperature
TH ¼ κ

2π, the first law of black hole thermodynamics is
proved:

δM ¼ THδSþ Ωi
HδJi þ Φa

HδQa: ð81Þ
As some remarks, we emphasize that our proof and results
are independent of ∂Σ. Moreover, for the above proof to go
through, the only condition on δΦ is to satisfy linearized
equation of motion, as in the Iyer-Wald case [34]. In
particular, the parametric variations δ̂Φ can also be used.
In this case one obtains the Bardeen-Carter-Hawking form
of the first law [43] which in our notation is δ̂M ¼
THδ̂Sþ Ωi

Hδ̂Ji þ Φa
Hδ̂Qa.

VI. DISCUSSION AND OUTLOOK

In this paper we revisited the derivation of conserved
charges in generally covariant theories with a particular
emphasis on the cases which also involve (internal) gauge
symmetries. We based our analysis on the covariant phase
space method and the notion of exact symmetries. We

stressed the importance of the solution phase space Fp
and parametric variations δ̂Φ. The solution phase space is
composed of a set of solutions to the classical field equations
which are parametrized by some parameters pα, Φðxμ;pαÞ.6
The symplectic structure of the phase space is the Lee-Wald
symplectic structure possibly plus (appropriate) boundary
Y-terms. The tangent space of this phase space consists of
parametric variations δ̂Φ; δ̂Φmay be viewed as one-forms in
this tangent space. This phase space is expected to be
included in any presumed bigger phase space, e.g., those
introduced and discussed in Refs. [13,17,22].
We then used the covariant phase space method applied

to the solution phase space Fp for calculating conserved
charges associated with exact symmetries. For any given
exact symmetry generator η and parametric variation δ̂Φ,
one can associate conserved charge variations δ̂Hη over the
Fp. δ̂Hη is obtained from integration of kηðδ̂Φ;ΦÞ which a
surface term read from the symplectic current densityω and
the latter is computed for any given generally covariant
theory. The integration can be performed on any smooth
and closed d − 2-dimensional surface.
δ̂Hη will lead to the conserved charge (Hamiltonian

generator) Hη over Fp, iff δ̂Hη is an exact one-form on the
tangent space of Fp. The latter is nothing but the
integrability condition for the charge, which we worked
out in (22). Once integrability is established, one may
integrate δ̂Hη over a path on the solution phase space to
obtain the chargesHηðΦÞ. Integrability then implies that the
charges are independent of the path. In this formulation the
charges are then specified up to an integration constant
which is fixed upon an appropriate choice for the reference
point (reference solution).
Here we highlight some notable features of our formu-

lation for defining conserved charges associated with exact
symmetries and some open problems in this regard.

A. Covariance of the charges

Since our formulation is based on the covariant phase
space method, our method provides a covariant definition
of the charges and relaxes the dependence on any specific
integration surface (horizon or asymptotic region).

B. Relaxing the dependence of charges on
asymptotic behavior of the solution

Our charge variations are defined on the solution phase
space Fp, and the charges are obtained by an integration
over the a path in Fp. The corresponding integration
constant is fixed by a reference solution there, and not
the asymptotic behavior of the geometry, as is usually
prescribed in ADM formulation or its extensions and
variants to asymptotically AdS spaces.

6Note that both Φ and δ̂Φ are defined up to pure gauge
transformations.
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C. Black hole entropy as a Hamiltonian generator

As an immediate application of the formulation, we
revisited the Iyer-Wald definition of entropy for black holes
and discussed that it conveniently extends the (Iyer-)Wald
definition in two ways: (1) The entropy may now be
defined as a conserved charge associated with an exact
symmetry and hence can be obtained by integration over a
generic codimension-2 surface ∂Σ (and not just the horizon
bifurcation surface). (2) It is not a Noether-Wald charge
associated with the horizon generating Killing vector field
but a Hamiltonian generator associated with an exact
symmetry. The latter brings in the effects of the gauge
fields. Consequently, we observe that the entropy is not
necessarily only a property associated with the geometry
and its horizon, but it is a property of the solution.

D. Doing away with the horizon?

In the standard derivation/definition of the entropy using
Wald’s recipe, one is prescribed to integrate the charge
associated with the horizon generating Killing vector field
ζH, which is defined by an integration at the bifurcation
surface of the horizon. In this formulation to remove the
ambiguities of the Noether-Wald charges, one crucially
uses two properties of ζH [34,35]: that ζH vanishes at the
bifurcation surface and is null at the horizon. In our
formulation, as already stressed, we are defining all
charges, including the entropy, as a Hamiltonian generator
associated with an exact symmetry. In particular, we define
the entropy by integration over any generic codimension-2
surface, where neither of these two properties holds.
Despite the fact that the role of horizon and properties
of ζH is “weakened” in our setting, in the definition of the
entropy, we based the construction of the associated exact
symmetry ηH on the same Killing vector field ζH. It is
desirable to analyze this point further to check if even this
much could be relaxed.

E. Symplectic exact symmetries vs nonexact symmetries

In the end of Sec. II we discussed two interesting cases
for which the (pre)symplectic current densityω vanishes on
shell [cf. (16) and discussions around it]: the symplectic
nonexact and exact symmetries. The two examples of the
former were analyzed recently [31–33]. The analysis in
these works reveals an interesting feature: the charges
associated with the nonexact symmetries and those asso-
ciated with exact symmetries are two distinct sets and
importantly commute with each other.7 It seems that this
property is independent of specific features of these

particular examples and is more general. It is interesting
to establish this in a general setting.
Moreover, this also reveals that for the cases with

nonexact and exact symmetries one can construct a “bigger
phase space,” Fω, of which the tangent space at each point
Φ contains the set of perturbations δωΦ which is the union
of the set of nonexact symmetries δχΦ and exact sym-
metries δ̂Φ. Since these two sets have no overlap, and if the
above statement/expectation that the corresponding charges
commute holds, then Fω ¼ F χ ⊗ Fp, where F χ denotes
the phase space associated with nonexact symmetries. One
of the consequences of the latter is that Fω denotes the
union of the coadjoint orbits of the nonexact symmetry
algebra and that these coadjoint orbits are labelled by the
charges associated with exact symmetries. The prime
example of this is the set of locally AdS3 geometries
discussed in Ref. [31]. It is desirable to establish this in the
case of other examples and hopefully in an example-
independent way.
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APPENDIX A: NOETHER-WALD CHARGES
IN PRESENCE OF INTERNAL GAUGE

SYMMETRIES

The variation of the Lagrangian under transformations
generated by ϵ ¼ fξ; λag is

δϵL ¼ EΦδϵΦþ dΘðδϵΦ;ΦÞ; ðA1Þ
where summation on different dynamical fields should be
understood in EΦδϵΦ and

δϵΦ ¼ LξΦþ δλaAa: ðA2Þ

The field equations for Φ are EΦ ¼ 0. According to the
identity δξL ¼ ξ · dLþ dðξ ·LÞ and noting that δλaL ¼ 0
and dL ¼ 0, we can replace the lhs of (A1) by dðξ ·LÞ, so

dΘðδϵΦ;ΦÞ − dðξ ·LÞ ≈ 0; ðA3Þ
where ≈ denotes on-shell equality. We can now introduce a
Noether ðd − 1Þ-form current Jϵ as

Jϵ ≡ΘðδϵΦ;ΦÞ − ξ ·L: ðA4Þ

7Although the simple Lie bracket of the corresponding
symmetry generators may not vanish, once we recall field
dependence of the generators and use the “adjusted bracket”
[31], the adjusted bracket of nonexact and exact symmetries
vanishes.
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One may check that dJϵ ≈ 0. According to Poincaré’s
lemma, since Jϵ is closed, it would be locally exact on shell
and can be written as

Jϵ ≈ dQϵ; ðA5Þ

where Qϵ is a ðd − 2Þ-form, the Noether-Wald charge
density. By variation of (A4), we have

δJϵ ¼ δΘðδϵΦ;ΦÞ − ξ · δL: ðA6Þ

In the standard CPSM, it is assumed that δϵ ¼ 0, so δ
passes through it. Substituting δL in the last term in (A6)
by (2),

δJϵ ≈ δΘðδϵΦ;ΦÞ − ξ · dΘðδΦ;ΦÞ
¼ δΘðδϵΦ;ΦÞ − LξΘðδΦ;ΦÞ þ dðξ ·ΘðδΦ;ΦÞÞ:

ðA7Þ

By rearrangement, and by δJϵ ¼ δdQϵ ¼ dδQϵ where the
last equality is a result of linearized field equations, we find

δΘðδϵΦ;ΦÞ − LξΘðδΦ;ΦÞ ≈ dðδQϵ − ξ ·ΘðδΦ;ΦÞÞ:
ðA8Þ

For the theories under considerations, ΘðδΦ;ΦÞ is com-
posed of some gauge invariant quantities (e.g., the field
strengths Fa ¼ dAa) and δΦ. On the other hand, by the
δλaδAb ¼ 0, the δλaδΦ ¼ 0 can be deduced. So,
δλaΘðδΦ;ΦÞ ¼ 0. By subtraction of this vanishing term
from the lhs of (A8), we end with

δΘðδϵΦ;ΦÞ − δϵΘðδΦ;ΦÞ ≈ dðδQϵ − ξ ·ΘðδΦ;ΦÞÞ:
ðA9Þ

Notice that this result is correct, irrespective of any chosen
Y ambiguity. It is because in (A4) anyΘ → Θþ dY would
also yield the Qϵ → Qϵ þ YðδϵΦÞ through (A6), keeping
the (A9) intact. Comparing (A9) with (7), the explicit
general formula for kϵðδΦ;ΦÞ can be read as

kϵðδΦ;ΦÞ ¼ δQϵ − ξ ·ΘðδΦ;ΦÞ: ðA10Þ

1. Integrability

The integrability condition is explicitly

ðδ1δ2 − δ2δ1ÞHϵðΦÞ ¼ 0; ∀ Φ ∈ F ; δΦ ∈ TF :

We can use (11) to rewrite it as

ðδ1δ2 − δ2δ1ÞHϵ ≈
I

ðδ1δ2 − δ2δ1ÞQϵ

−
I

ðδ1ðξ ·Θðδ2Φ;ΦÞÞ

− δ2ðξ ·Θðδ1Φ;ΦÞÞÞ ðA11Þ

¼ −
I

ðξ · δ1Θðδ2Φ;ΦÞ − ξ · δ2Θðδ1Φ;ΦÞÞ

ðA12Þ

¼ −
I

ðξ · ðδ1Θðδ2Φ;ΦÞ − δ2Θðδ1Φ;ΦÞÞÞ ðA13Þ

¼ −
I

ξ · ωðδ1Φ; δ2Φ;ΦÞ: ðA14Þ

Note that δQϵ is by definition integrable, i.e., ðδ1δ2−
δ2δ1ÞQϵ ¼ 0, which is used in the equations above. Note
also that in deriving (A12) from (A11), we have assumed
δξ ¼ 0. The vanishing of (A14) is the desired integrability
condition (13). For the field-dependent variations, when
δϵ ≠ 0, we need to modify the above, as discussed in the
Appendix of Ref. [31] and quoted in Sec. II.

APPENDIX B: INTEGRABILITY OF ηH
FOR EXAMPLES IN SEC. IV

In this Appendix we investigate the integrability of the
exact symmetry generators associated with the entropy, ηH.
In general ηH is a linear combination of other exact
symmetry generators which are integrable. Recalling
the fact that the integrability condition (22) is linear in
the (exact) symmetry generators, the main point for the
integrability condition to hold is the parameter dependence
of the coefficients of linearity. Explicitly, the integrability
condition for η ¼ fζ; λg is

I
∂Σ
ðζ · ωðδ̂1Φ; δ̂2Φ;ΦÞ þ kδ̂1ηðδ̂2Φ;ΦÞ − kδ̂2ηðδ̂1Φ;ΦÞÞ

≈ 0: ðB1Þ

If ζ is a linear combination of parameter-independent
Killing vectors (exact symmetries) of which the charges
associated are integrable, one may then drop the first term.
For such cases the integrability condition reduces to

I
∂Σ
ðkδ̂1ηðδ̂2Φ;ΦÞ − kδ̂2ηðδ̂1Φ;ΦÞÞ ¼ δ̂2Hδ̂1η

− δ̂1Hδ̂2η
≈ 0:

ðB2Þ

In what follows for concreteness we will focus on the two
examples discussed in Sec. IV.
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1. Integrability ηH for Kerr-AdS black hole

As discussed in Sec. IVA, the charges associated with
the two Killing vectors of the Killing vectors (exact
symmetries) of the Kerr-AdS4 geometry, ∂t, ∂φ are inte-
grable, as may be readily checked from (B1). Let us start
with a general linear combination of the two,

ζ ¼ A∂t þ B∂φ; ðB3Þ

where A and B are some constants over spacetime but
functions of the parameters of the Kerr-AdS solution,
i.e., A ¼ Aðm; aÞ, B ¼ Bðm; aÞ. Since the TFp

for the
Kerr-AdS4 solution is two dimensional and spanned by
∂Φ
∂m δm and ∂Φ

∂a δa, to check (B2), it is enough to only

consider δ̂1Φ ¼ ∂Φ
∂m δm and δ̂2Φ ¼ ∂Φ

∂a δa, yielding

0 ¼ δ̂2Hδ̂1ζ
− δ̂1Hδ̂2ζ

¼ δ̂2H∂A∂mδm∂tþ∂B∂mδm∂φ − δ̂1H∂A∂aδa∂tþ∂B∂aδa∂φ

¼
�∂A
∂m δm

�
δ̂2H∂t þ

�∂B
∂m δm

�
δ̂2H∂φ

−
�∂A
∂a δa

�
δ̂1H∂t −

�∂B
∂a δa

�
δ̂1H∂φ

¼
�∂A
∂m δm

��∂M
∂a δa

�
−
�∂B
∂m δm

��∂J
∂a δa

�

−
�∂A
∂a δa

��∂M
∂m δm

�
þ
�∂B
∂a δa

��∂J
∂m δm

�
;

where M ¼ m
Ξ2 and J ¼ ma

Ξ2 . In the above we used the fact
that the charges for the linear combination of exact
symmetries are the same linear combination of the corre-
sponding charges. The above is satisfied if

∂A
∂m

∂M
∂a −

∂A
∂a

∂M
∂m ¼ ∂B

∂m
∂J
∂a −

∂B
∂a

∂J
∂m : ðB4Þ

The above may also be written in a way convenient for
further analysis below,

ffA;Mgg − ffB; Jgg ¼ 0;

ffX; Ygg≡ ∂X
∂m

∂Y
∂a −

∂X
∂a

∂Y
∂m : ðB5Þ

The bracket is a standard bracket on the space spanned by
parameters m, a. We should stress that ff; gg is not the
bracket induced by the Lee-Wald symplectic structure on
Fp; we have introduced it for convenience in performing
the computations.
Now, our task is to find coefficients A and B for which

Eq. (B5) is satisfied. First of all one may check by a direct
straightforward and a bit lengthy computation that

A0 ¼
2π

κ
; B0 ¼

2πΩH

κ
; ðB6Þ

where the values for κ and ΩH given in Sec. IVA are a
solution to (B5). To this end one may use the fact the
horizon radius rH is an implicit function of m, a,
cf. Eq. (46). One may then show that a general solution
to (B5) is of the form

A ¼ fðMÞ þDðm; aÞA0 þ CðJMÞJ;
B ¼ gðJÞ þDðm; aÞB0 − CðJMÞM; ðB7Þ

where f, g, C are arbitrary functions of the their argument
and D is a function satisfying ffD;Mgg ¼ ffD; JggΩH.
We also note that, written in terms of the bracket on ðm; aÞ
space, the integrability condition (B5) remains invariant
under a “canonical” transformation m → ~m, a → ~a for
which ff ~m; ~agg ¼ 1.

2. Integrability ηH for near horizon extremal
Kerr-Newman geometry

Here, we analyze integrability of ηH for the near
horizon extremal Kerr-Newman geometry discussed in
Sec. IV B. Let us consider the exact symmetry generator
η ¼ fζ; λg in which

ζ ¼ A−ξ− þ A0ξ0 þ Aþξþ þ B∂φ; λ ¼ eAþ

r
þ C:

ðB8Þ

The coefficients A, B, and C can be functions of the
parameters a and q, but constant over spacetime. One can
then decompose η as

η ¼ fA−ξ−; 0g þ fA0ξ0; 0g þ
�
Aþξþ;

eAþ

r

�
þ fB∂φ;Cg:

ðB9Þ

Since the charges associated with the first three
terms in the above decomposition for η are inte-
grable (cf. the discussions of Sec. IV B), and since
the SLð2;RÞ charges and their variations vanish over
the whole solution phase space (59), the integrability
condition should only be checked for the last term
in η, which is

I
∂Σ
ððB∂φÞ · ωðδ̂1Φ; δ̂2Φ;ΦÞ þ kfδ̂1B∂φ;δ̂1Cgðδ̂2Φ;ΦÞ

− kfδ̂2B∂φ;δ̂2Cgðδ̂1Φ;ΦÞÞ ≈ 0: ðB10Þ

The first term in the integral vanishes because of the
integrability of the angular momentum, and the integra-
bility of η then implies

δ̂1Bδ̂2H∂φ þ δ̂1Cδ̂2Hf0;1g − δ̂2Bδ̂1H∂φ
− δ̂2Cδ̂1Hf0;1g ≈ 0:

ðB11Þ
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The TFp
for the solution which we have focused on is

spanned by ∂Φ
∂a δa and ∂Φ

∂q δq. So, in order to check (B11),

putting δ̂1Φ ¼ ∂Φ
∂a δa and δ̂2Φ ¼ ∂Φ

∂q δq would be enough,
yielding

�
−
∂B
∂a δa

��∂J
∂q δq

�
þ
�∂C
∂a δa

��∂Q
∂q δq

�

þ
�∂B
∂q δq

��∂J
∂a δa

�
−
�∂C
∂q δq

��∂Q
∂a δa

�
¼ 0;

in which J ¼
ffiffiffiffiffiffiffiffiffiffi
a2þq2

p
G a and Q ¼ q

G. As in the previous case
of Appendix B 1, the above may also be written in terms a
bracket on the space spanned by ðq; aÞ,

ffB; Jgg − ffC; Qgg ¼ 0;

ffX; Ygg≡ ∂X
∂a

∂Y
∂q −

∂X
∂q

∂Y
∂a : ðB12Þ

It can be easily checked that

B ¼ B0 ¼ 2πk; C ¼ C0 ¼ 2πe; ðB13Þ
for values of k and e given in (52), satisfy the equation
above. Freedom in the choice of A’s is basically the same as
freedom in the choice of H. Therefore, by the analysis
above, we have shown that the generators ηH introduced in
(63) have integrable charges.
As in the previous case, one may find more general

solutions of (B12), based on (B13). The construction is
very similar to the one given in (B7), and we do not repeat
it here.

3. Integrability ηH for a generic nonextreme
charged black hole

Having discussed the two examples in previous sub-
sections, let us now analyze the integrability of ηH for a
generic black hole. Consider a stationary black hole with
axial Uð1Þφi isometries as a solution to a covariant
gravitational theory with some Abelian gauge fields Aa.
Assume that it is identified by the parameters m, ai, and qa
collectively denoted by pα. The generators for the mass M,
angular momenta Ji, and electric charges Qa can be,
respectively, chosen to be f∂t; 0g, f∂φi ; 0g, and f0; 1ag
where by 1a we mean λa ¼ 1 and λb ¼ 0 if b ≠ a.
Now, consider an exact symmetry as η ¼ fζ;Cag in

which ζ ¼ A∂t þ Bi∂φi . The A, Bi, and Ca are constants
over the spacetime, but functions of the parameters.
Recalling the integrability of mass and angular momenta,
one may use (B1) as the integrability condition for η,
explicitly,

I
∂Σ
ðkδ̂1ηðδ̂2Φ;ΦÞ − kδ̂2ηðδ̂1Φ;ΦÞÞ ¼ δ̂2Hδ̂1η

− δ̂1Hδ̂2η
≈ 0:

ðB14Þ
By the decomposition

η ¼ fA∂t; 0g þ fBi∂φi ; 0g þ f0;Cag; ðB15Þ

then

δ̂2Hδ̂1A∂tþδ̂1Bi∂φiþf0;δ̂1Cag − δ̂1Hδ̂2A∂tþδ̂2Bi∂φiþf0;δ̂2Cag ≈ 0:

ðB16Þ

The TFp
for the solution is spanned by ∂Φ

∂pα
δpα (no

summation over α). Hence, the equation above should
be satisfied for any δ̂1Φ ¼ ∂Φ

∂pα
δpα and δ̂2Φ ¼ ∂Φ

∂pβ
δpβ for all

α and β. It results in the system of equations (no summation
over α and β)

� ∂A
∂pα

δpα

��∂M
∂pβ

δpβ

�
−
�∂Bi

∂pα
δpα

��∂Ji
∂pβ

δpβ

�

þ
�∂Ca

∂pα
δpα

��∂Qa

∂pβ
δpβ

�
− ½α ↔ β� ¼ 0; ∀ α; β:

ðB17Þ

The above can be written in a convenient way, if we use a
collective notion for the charges and coefficients,

Cρ ≡ ðA;Bi;CaÞ; Qρ ≡ ðM;−Ji; QaÞ; ðB18Þ

in terms of which (B17) take the form

∂Cρ
∂pα

∂Qρ

∂pβ
−
∂Cρ
∂pβ

∂Qρ

∂pα
¼ 0; ðB19Þ

where the summation on ρ is understood.
One can check that for standard black holes such as

the Kerr-Newman andMyers-Perry black holes the above is
satisfied. In particular, for the four-dimensional Kerr-
Newman,

A ¼ 2π

κ
; B ¼ 2πΩH

κ
; C ¼ −

2πΦH

κ

and, for d-dimensional Myers-Perry,

A ¼ 2π

κ
; Bi ¼ 2πΩi

H

κ

solve the integrability condition (B19).
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