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We apply general relativity to construct the post-Newtonian background manifold that serves as a
reference spacetime in relativistic geodesy for conducting a relativistic calculation of the geoid’s undulation
and the deflection of the plumb line from the vertical. We chose an axisymmetric ellipsoidal body made up
of a perfect homogeneous fluid uniformly rotating around a fixed axis, as a source generating the reference
geometry of the background manifold through Einstein’s equations. We then reformulate and extend
hydrodynamic calculations of rotating fluids done by a number of previous researchers for astrophysical
applications to the realm of relativistic geodesy to set up algebraic equations defining the shape of the post-
Newtonian reference ellipsoid. To complete this task, we explicitly perform all integrals characterizing
gravitational field potentials inside the fluid body and represent them in terms of the elementary functions
depending on the eccentricity of the ellipsoid. We fully explore the coordinate (gauge) freedom of the
equations describing the post-Newtonian ellipsoid and demonstrate that the fractional deviation of the post-
Newtonian level surface from the Maclaurin ellipsoid can be made much smaller than the previously
anticipated estimate based on the astrophysical application of the coordinate gauge advocated by Bardeen
and Chandrasekhar. We also derive the gauge-invariant relations of the post-Newtonian mass and the
constant angular velocity of the rotating fluid with the parameters characterizing the shape of the post-
Newtonian ellipsoid including its eccentricity, a semiminor axis, and a semimajor axis. We formulate the
post-Newtonian theorems of Pizzetti and Clairaut that are used in geodesy to connect the geometric
parameters of the reference ellipsoid to the physically measurable force of gravity at the pole and equator of
the ellipsoid. Finally, we expand the post-Newtonian geodetic equations describing the post-Newtonian
ellipsoid to the Taylor series with respect to the eccentricity of the ellipsoid and discuss their practical
applications for geodetic constants and relations adopted in fundamental astronomy.
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I. INTRODUCTION

Accurate definition, determination, and realization of
celestial and terrestrial reference frames in the Solar System
is essential for a deeper understanding of the underlying
principles and concepts of fundamental gravitational phys-
ics, astronomy, and geophysics as well as for practical
purposes of precise satellite and aircraft navigation, posi-
tioning, and mapping. It was suggested long ago to separate

the conceptual meaning of a reference frame and a
reference system [1]. The former is understood as a
theoretical construction, including mathematical models
and standards for its implementation. The latter is its
practical realization through observations and materializa-
tion of coordinates of a set of reference benchmarks, e.g., a
set of fundamental stars—for the International Celestial
Reference Frame (ICRF)—or a set of fiducial geodetic
stations—for the International Terrestrial Reference Frame
(ITRF). Continuous monitoring and maintenance of the
reference frames and a self-consistent set of geodetic and
astronomical constants associated with them is rendered by
the International Earth Rotation Service (IERS) and the
International Union of Geodesy and Geophysics (IUGG).
Nowadays, four main geodetic techniques are used to

compute accurate terrestrial coordinates and velocities of
stations—global positioning system (GPS), very long-
baseline interferometry (VLBI), satellite laser ranging
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(SLR), and Doppler orbitography and radiopositioning
integrated by satellite (DORIS), for the realizations of
the ITRF referred to different epochs. The observations are
so accurate that geodesists have to model and to include in
the data processing the secular Earth’s crust changes to
reach self-consistency between various ITRF realizations
which are available at http://itrf.ensg.ign.fr/ITRF_
solutions/index.php. The higher frequencies of the station
displacements (mainly due to geophysical phenomena) can
be accessed with the formulations present in Ch. 7 of the
IERS conventions [2] (see also http://62.161.69.131/iers/
convupdt/convupdt.html). Continuity between the ITRF
realizations has been ensured when adopting conventions
for ICRF and ITRF definitions [2][Ch. 4]. It is recognized
that to maintain the up-to-date ITRF realization as accu-
rately as possible the development of the most precise
theoretical models and parametric relationships is of para-
mount importance.
Currently, SLR and GPS allow us to determine the

transformation parameters between coordinates and veloc-
ities of the collocation points of the ITRF realizations with
the precision of ∼1 mm and ∼1 mm=yr, respectively [[2],
Table 4.1]. On the other hand, the dimensional analysis
applied to estimate the relativistic effects in geodesy
predicts that the post-Newtonian contribution to the coor-
dinates of the ITRF points on the Earth’s surface (as
compared with the Newtonian theory of gravity) is
expected to be of the order of the Earth’s gravitational
radius that is about 9 mm [3,4] or, maybe, less [5]. This
post-Newtonian geodetic effect emerges as an irremovable
long-wave deformation of the three-dimensional coordinate
grid of the ITRF which might be potentially measurable
with the currently available geodetic techniques and hence
deserves to be taken into account when building the ITRF
realization of a next generation.
ITRF solutions are specified by the Cartesian equatorial

coordinates xi ¼ fx; y; zg of the reference geodetic stations.
For the purposes of geodesy and gravimetry, the Cartesian
coordinates areoftenconverted togeographical coordinatesh,
θ, λ (h: height, θ: colatitude, λ: longitude) referring to an
international reference ellipsoid which is a solution found
by Maclaurin [6] for the figure of a fluid body with a
homogeneous mass density that slowly rotates around a fixed
z axis with a constant angular velocity ω. Because the post-
Newtonian effects deforms the shapeof the reference ellipsoid
[7,8] and modifies the basic equations of classical geodesy,
theymust be properly calculated to ensure the adequacy of the
geodetic coordinate transformations at the millimeter level of
accuracy. To evaluate more precisely the post-Newtonian
effects in the shape of the Earth’s reference ellipsoid and the
geodetic equations,wehavedecided toconduct amoreprecise
mathematical study of equations of relativistic geodesywhich
is given in the present paper.
Certainly, we are touching upon the topic which has been

already discussed in the literature by research teams from

the USA [7,8,11–18], Lithuania [19–21], USSR [22–25],
and, most recently, by theorists from the University of Jena
in Germany [26–30]. We note that the previous papers
focused primarily on studying the astrophysical aspects of
the problem like the instability of the equilibrium rotating
configurations and the points of bifurcations, finding exact
solutions of Einstein’s equations for axially symmetric
spacetimes, the emission of gravitational waves, etc. Our
treatment concerns different aspects and is focused on the
post-Newtonian effects in physical geodesy. More specifi-
cally, we extend the research on the figures of equilibrium
into the realm of relativistic geodesy and pay attention
mostly to the possible geodetic applications for an adequate
numerical processing of the high-precise data obtained by
various geodetic techniques that include but are not limited
to SLR, lunar laser ranging (LLR), VLBI, DORIS and
global navigation satellite system (GNSS) [31,32]. This
vitally important branch of the theory of equilibrium of
rotating bodies was not covered by the above-referenced
astrophysical works.
An additional stimulating factor for pursuing more

advanced research on relativistic geodesy and the Earth
figure of equilibrium is related to the recent breakthrough in
manufacturing quantum clocks [33], ultraprecise time scale
dissemination over the globe [34], and geophysical appli-
cations of the clocks [35,36]. Clocks at rest in a gravita-
tional potential tick slower than clocks outside of it. On
Earth, this translates to a relative frequency change of 10−16

per meter of height difference [37]. Comparing the fre-
quency of a probe clock with a reference clock provides a
direct measure of the gravity potential difference between
the two clocks. This novel technique has been dubbed
chronometric levelling. It is envisioned as one of the most
promising applications of the relativistic geodesy in the
near future [10,38,39]. Optical frequency standards have
recently reached a stability of 2.2 × 10−16 at 1 s and
demonstrated an overall fractional frequency uncertainty
of 2.1 × 10−18 [40], which enables their use for relativistic
geodesy at an absolute level of 1 cm.
The chronometric levelling directly measures the equi-

potential surface of a gravity field (geoid) without con-
ducting a complicated gravimetric survey and solving the
differential equations for anomalous gravity potentials [39].
Combining the data of the chronometric levelling with
those of the conventional geodetic techniques will allow us
to determine the normal heights of reference points with an
unprecedented accuracy [35]. An adequate physical inter-
pretation of this type of measurements is inconceivable
without an accompanying development of the correspond-
ing mathematical algorithms accounting for the major
relativistic effects in geodesy.
Basic theoretical concepts of relativistic geodesy have

been discussed in a number of textbooks, most notably
[9,41–43] and review papers [5,10,39]. Nonetheless, the
theoretical problem of the determination of the reference
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level surface in relativistic geodesy has not yet been
discussed in the scientific literature with full mathematical
rigour. The objective of the present paper is to give its
comprehensive post-Newtonian solution. To this end, Sec. II
explains briefly the principles of the post-Newtonian
approximations and describes the post-Newtonian metric
tensor. Section III discusses the post-Newtonian ellipsoid
which generalizes the Maclaurin ellipsoid and is the surface
of the fourth order. Section IV introduces the reader to the
concept of the post-Newtonian gauge freedom and shows
how this freedom can be used to simplify the mathematical
descriptionof the post-Newtonian (PN) ellipsoid. SectionsV
and VI calculate, respectively, the Newtonian and post-
Newtonian gravitational potentials inside the rotating PN
ellipsoid. Section VII gives the post-Newtonian definitions
of the conservedmass and angularmomentumof the rotating
PN ellipsoid. Section VIII is devoted to the derivation of the
post-Newtonian equations defining the geometric structure
of the reference level surface and its kinematic relation to the
angular velocity of rotationω. Sections IX andX provide the
reader with the relativistic generalization of the Pizzetti and
Clairaut theorem of classical geodesy [44,45] which con-
nects parameters of the reference ellipsoidwith themeasured
value of the force of gravity. Finally, Sec. XI gives truncated
versions of the relativistic formulas which can be used in
practical applications of relativistic geodesy. Appendix A
contains details of the mathematical calculation of integrals.
We adopt the following notations:
(i) The Greek indices α; β;… run from 0 to 3.
(ii) The Roman indices i; j;… run from 1 to 3.
(iii) Repeated Greek indices mean Einstein’s summation

from 0 to 3.
(iv) Repeated Roman indices mean Einstein’s summa-

tion from 1 to 3.
(v) The unit matrix (also known as the Kroneker

symbol) is denoted by δij ¼ δij,
(vi) The fully antisymmetric symbol Levi-Civitá is

denoted as εijk ¼ εijk with ε123 ¼ þ1.
(vii) The bold letters a ¼ ða1; a2; a3Þ≡ ðaiÞ;

b ¼ ðb1; b2; b3Þ≡ ðbiÞ, and so on denote spatial
three-dimensional vectors.

(viii) A dot between two spatial vectors, for example,
a · b ¼ a1b1 þ a2b2 þ a3b3 ¼ δijaibj, means the
Euclidean dot product.

(ix) The cross between two vectors, for example,
ða × bÞi ≡ εijkajbk, means the Euclidean cross
product.

(x) We use a shorthand notation for partial derivatives
∂α ¼ ∂=∂xα.

(xi) gαβ is the spacetime metric.
(xii) The Greek indices are raised and lowered with the

metric gαβ.
(xiii) The Minkowski (flat) space-time metric ηαβ ¼

diagð−1;þ1;þ1;þ1Þ is used to raise and lower
indices of the gravitational metric perturbation, hαβ.

(xiv) G is the universal gravitational constant.
(xv) c is the speed of light in vacuum.
(xvi) ω is a constant rotational velocity of the Earth.
(xvii) ρ is a constant density of the reference ellipsoid.
(xviii) a is a semimajor axis of the Maclaurin ellipsoid.
(xix) b is a semiminor axis of the Maclaurin ellipsoid.
(xx) κ ≡ πGρa2=c2 is a dimensional parameter character-

izing the strength of the gravitational field.
(xxi) R⊕ is the mean (volumetric) radius of the Earth,

R⊕ ≃ 6.3710 × 108 cm.
(xxii) a⊕ is the equatorial radius of the Earth reference

ellipsoid, a⊕ ≃ 6.3781 × 108 cm.
(xxiii) b⊕ is the polar radius of the Earth reference

ellipsoid, b⊕ ≃ 6.3568 × 108 cm.
Other notations are explained in the text as they appear.

II. POST-NEWTONIAN METRIC

Einstein’s field equations represent a system of ten
nonlinear differential equations in partial derivatives for
the metric tensor, gαβ, and we have to find their solutions
for the case of an isolated rotating fluid. Because the
equations are difficult to solve exactly due to their non-
linearity, we apply the post-Newtonian approximations
(PNAs) for their solution [7].
The PNAs are applied in case of slowly moving matter

having a weak gravitational field. This is exactly the
situation in the Solar System which makes PNAs highly
appropriate for constructing a relativistic theory of refer-
ence frame reference frames [46] and relativistic celestial
mechanics celestial mechanics!relativistic in the Solar
System [9,41,47].
The PNAs are based on the assumption that a Taylor

expansion of the metric tensor can be done in inverse
powers of the fundamental speed c that is equal to the speed
of light in vacuum. Exact mathematical formulation of a set
of basic axioms required for doing the post-Newtonian
expansion was given by Rendall [48]. Practically, it
requires having several small parameters characterizing
the source of gravity. They are εi ∼ vi=c, εe ∼ ve=c and
ηi ∼Ui=c2, ηe ∼Ue=c2, where vi is a characteristic veloc-
ity of the motion of matter inside a body, ve is a character-
istic velocity of the relative motion of the bodies with
respect to each other, Ui is the internal gravitational
potential of each body, and Ue is the external gravitational
potential between the bodies. If one denotes a characteristic
radius of a body as L and a characteristic distance between
the bodies as R, the internal and external gravitational
potentials will be Ui ≃GM=L and Ue ≃GM=R, whereM
is a characteristic mass of the body. Because of the virial
theorem of the Newtonian gravity [7], the small parameters
are not independent. Specifically, one has ε2i ∼ ηi and
ε2e ∼ ηe. Hence, parameters εi and εe are sufficient in doing
post-Newtonian approximations. Because within the Solar
System these parameters do not significantly differ from
each other, they will be not distinguished when doing the
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post-Newtonian iterations. In particular, notation ε≡ 1=c is
used to mark the powers of the fundamental speed c in the
post-Newtonian terms. This parameter is considered as a
primary expansion parameter of the PNA scheme because
all the other parameters are proportional to it, for example,
εi ¼ εvi, ηi ¼ ε2Ui, etc.
Wework in the framework of general relativity and adopt

the harmonic coordinates xα ¼ ðx0; xiÞ, where x0 ¼ ct
and t is the coordinate time. The class of the harmonic
coordinates is defined by imposing the de Donder gauge
condition on the metric tensor [49,50],

∂αð
ffiffiffiffiffiffi
−g

p
gαβÞ ¼ 0: ð1Þ

Our choice of the harmonic coordinates is not of the
principal value. Calculations could be performed in arbi-
trary coordinates. Nonetheless, the choice of the harmonic
coordinates is dictated by their long-term use in relativistic
celestial mechanics, astrometry, and geodesy [4,9,47,51].
Furthermore, all relativistic algorithms of the data process-
ing of high-precise astronomical and geodetic observations
are written down in harmonic coordinates and are recom-
mended to use by the International Astronomical Union
(IAU) resolutions [2,46]
Einstein equations for the metric tensor are a compli-

cated nonlinear system of differential equations in partial
derivatives. Because the gravitational field of the Solar
System is weak and the motion of matter is slow, we can
focus on the first post-Newtonian approximation of general
relativity. Furthermore, we assume that Earth rotates uni-
formly with angular velocity ω around a fixed axis, which
we identify with the z axis. We shall also neglect tides and
consider Earth as an isolated body. Under these assump-
tions, the spacetime becomes stationary with the post-
Newtonian metric having the form [9]

g00 ¼ −1þ 2V
c2

þ 2

c4
ðΦ − V2Þ þOðc−6Þ; ð2Þ

g0i ¼ −
4Vi

c3
þOðc−5Þ; ð3Þ

gij ¼ δij

�
1þ 2V

c2

�
þOðc−4Þ; ð4Þ

where the gravitational potentials entering the metric satisfy
the Poisson equations,

ΔV ¼ −4πGρ; ð5Þ
ΔVi ¼ −4πGρvi; ð6Þ

ΔΦ ¼ −4πGρ
�
2v2 þ 2V þ Πþ 3p

ϵ

�
; ð7Þ

with p and vi being the pressure and velocity of matter,
respectively, and Π being the internal energy of matter per

unit mass. We emphasize that ρ is the local mass density of
baryons per a unit of the invariant (three-dimensional)
volume element dV ¼ ffiffiffiffiffiffi−gp

u0d3x, where u0 is the time
component of the 4-velocity of matter. The local mass
density, ρ, relates in the post-Newtonian approximation to
the invariant mass density ρ� ¼ ffiffiffiffiffiffi−gp

u0ρ. In the first post-
Newtonian approximation, this equation reads

ρ� ¼ ρþ ρ

c2

�
1

2
v2 þ 3V

�
: ð8Þ

We assume that the matter consists of a perfect fluid. Then,
the internal energy,Π, is related to pressure, p, and the local
density, ρ, by the thermodynamic equation

dΠþ pd

�
1

ρ

�
¼ 0; ð9Þ

and the equation of state,p ¼ pðρÞ. In the present paper, we
consider the case of a body consisting of a fluid with a
constant mass density ρ ¼ const. Equation (9) states then
that inside such a fluid the internal energy,Π, is also constant.
In the stationary spacetime, the mass density ρ� obeys

the exact equation of continuity

∂iðρ�viÞ ¼ 0: ð10Þ
The velocity of rigidly rotating fluid is

vi ¼ εijkωjxk; ð11Þ
where ωi is the constant angular velocity. Replacing the
velocity vi in Eq. (10) with Eq. (11), and differentiating,
reveals that

vi∂iρ ¼ 0; ð12Þ
which means that the velocity of the fluid is tangent to the
surfaces of constant density ρ.
Modelling the real Earth as a rotating fluid ball of

constant density is, of course, unrealistic from a geophysi-
cal point of view as it is inconsistent with the seismological
data [52] and with IERS data on the Earth’s rotation, which
clearly indicates the presence of several layers of different
densities. Nonetheless, when one considers the geodetic
problem of the terrestrial reference frame, the realistic
model of the Earth’s interior leads to enormous practical
difficulties in establishing the geoid’s surface. Indeed,
calculation of the geoid requires a well-defined reference
level surface occupied by rotating fluid and approximating
the geoid with the height’s deviations as minimal as
possible. If one takes a realistic mass distribution, the
reference level surface cannot be an ellipsoid of rotation
[53]. Furthermore, the gravity field of such a figure of
equilibrium (the so-called normal gravity field [54]) will
be described by too-complicated mathematical equations

KOPEIKIN, HAN, and MAZUROVA PHYSICAL REVIEW D 93, 044069 (2016)

044069-4



which are not suitable for practical applications. A com-
promise is to take the reference level of the rotating fluid
body as an ellipsoid, which allows us to derive the normal
gravity field in a concise meaningful form. However, such a
reference ellipsoid of rotation can be maintained only by a
homogeneous density distribution [53]. Fortunately, the
maximum deviation between the level surfaces of the
realistic density distribution and the surfaces of equal
density are of the order of e2 ≃ 1=149 only, and the
differences in stress at the model remain considerably
smaller than in the real Earth [43,55]. This explains why
the classic geodesy operates with the reference Maclaurin
ellipsoid of constant density as a reference surface.
The same reasons are applied for the justification of using

the constant density ρ to build the reference level surface in
relativistic geodesy. The constant density allows us to solve
the post-Newtonian equations exactly so that we can write
down precise mathematical equations to describe the gravi-
tational field of the post-Newtonian rotating fluid configu-
ration. However, as we shall see in the next section, the
rotating fluid of constant density cannot be an ellipsoid of
revolution in the post-Newtonian approximation but a sur-
face of the fourth order. In the post-Newtonian approxima-
tion, it is possible to build the rotating ellipsoid of revolution
which is a surface of the second order, only under the
assumption that the density of the fluid has an inhomo-
geneous ellipsoidal distribution ofmass [56]. The deviations
from the inhomogeneity are of the post-Newtonian order of
magnitude, δρ=ρ≃GM⊕=c2R⊕ ≃ 7 × 10−10, and are prac-
tically unmeasurable in local experiments. Nonetheless, the
relativistic effects in the normal gravity field produced by
such a density inhomogeneity over the global scale might be
noticed in precise measurements of the gravity field con-
ducted with the next generation of gravimeters [57,58] and/
or gravity gradientometers [59–61]. Thus, we again have to
compromise between two models of the Earth’s interior—a
nonhomogeneous density distribution of matter inside a
reference level ellipsoid or a homogeneous density with the
small, post-Newtonian deviations of the reference level
surface from the precise ellipsoid of revolution. It is not
the goal of the present paper to decide between the two cases.
Instead, we focus on the solution of the problem of the
rotating fluid having a homogeneous distribution of density
as the most tractable mathematical case extrapolating the
Newtonian case of the Maclaurin ellipsoid to relativistic
geodesy. The case of the inhomogeneous density distribu-
tion and comparisonwith the homogeneous densitymodel is
considered in [56].

III. POST-NEWTONIAN REFERENCE ELLIPSOID

In classical geodesy, the reference figure for the calcu-
lation of geoid’s undulation is the Maclaurin ellipsoid of a
rigidly rotating fluid of a constant density ρ. Maclaurin’s
ellipsoid is a surface described by a polynomial of the
second order [53],

x2 þ y2

a2
þ z2

b2
¼ 1; ð13Þ

where a and b are the semimajor and semiminor axes of the
ellipsoid. This property is because the differential Euler
equation defining the equilibrium of gravity and pressure is
of the first-order partial differential equation of which the
first integral is the Newtonian gravity potential that is a
scalar function represented by a polynomial of the second
order with respect to the Cartesian spatial coordinates. In
what follows, we assume a > b and define the eccentricity
of the Maclaurin ellipsoid by a standard formula [43,54],

e≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − b2

p

a2
: ð14Þ

We shall demonstrate in the following sections that in the
post-Newtonian approximation the gravity potential, W, of
the rotating homogeneous fluid is a polynomial of the
fourth order as was first noticed by Chandrasekhar [7].
Hence, the level surface of a rigidly rotating fluid is
expected to be a surface of the fourth order. We shall
assume that the surface remains axisymmetric in the post-
Newtonian approximation and call the body with such a
surface as a PN ellipsoid [62].
We shall denote all quantities taken on the surface of the

PN ellipsoid with a bar to distinguish them from the
coordinates outside of the surface. Let the barred coor-
dinates x̄i ¼ fx̄; ȳ; z̄g denote a point on the surface of the
PN ellipsoid with the axis of symmetry directed along the
rotational axis and with the origin located at its post-
Newtonian center of mass. The post-Newtonian definitions
of mass, the center of mass, and the other multipole
moments of an extended astronomical body can be found,
for example, in Ref. [9][chapter 4.5.3] and are also given in
Sec. VII of the present paper. Let the rotational axis
coincide with the direction of the z axis. Then, the most
general equation of the PN ellipsoid is

σ2

a2
þ z2

b2
¼ 1þ κFðxÞ; ð15Þ

where σ2 ≡ x2 þ y2, κ ≡ πGρa2=c2 is the post-Newtonian
parameter which is convenient in the calculations that
follow,

FðxÞ≡K1

σ2

a2
þK2

z2

b2
þE1

σ4

a4
þE2

z4

b4
þE3

σ2z2

a2b2
; ð16Þ

and K1; K2, Ei ði ¼ 1; 2; 3Þ are arbitrary numerical
coefficients.
Let xi ¼ fx; y; zg be any point inside the PN ellipsoid.

We introduce a quadratic polynomial,
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CðxÞ≡ σ2

a2
þ z2

b2
− 1; ð17Þ

where σ2 ≡ x2 þ y2. This polynomial vanishes on the
boundary surface of the Maclaurin ellipsoid (13).
However, in the post-Newtonian approximation, we have
on the boundary of the PN ellipsoid (15) the following
condition:

Cðx̄Þ ¼ κFðx̄Þ: ð18Þ

In terms of the polynomial CðxÞ, function FðxÞ in the right-
hand side of (15) can be formally recast to

FðxÞ ¼ K1 þ E1 − ðK1 − K2 þ 2E1 − E3Þ
z2

b2

þ ðE1 þ E2 − E3Þ
z4

b4
þRðxÞ; ð19Þ

where the remainder

RðxÞ≡
�
K1 þ E1 þ E1

σ2

a2
þ ðE3 − E1Þ

z2

b2

�
CðxÞ: ð20Þ

The remainder RðxÞ can be discarded on the boundary
of the PN ellipsoid because Rðx̄Þ ¼ 0. This property
indicates a specific freedom in the definition of the surface
of the PN ellipsoid. Namely, Eq. (15) is defined up to a
class of equivalence modulo function CðxÞ given in
Eq. (17) that vanishes on the surface of the Maclaurin
ellipsoid, Cðx̄Þ ¼ 0. It means that the surface of the PN
ellipsoid defined by Eq. (15) is always determined in the

post-Newtonian terms only up to a function
ðα1 σ2

a2 þ α2
z2

b2ÞCðxÞ where α1; α2 are arbitrary constant
parameters. By making a specific choice of the parameters
α1, α2, we can eliminate any two of the five coefficients
K1; K2; E1; E2; E3 entering function FðxÞ in Eq. (15). It is
convenient to choose K1 ¼ K2 ¼ 0 that simplifies the
equations which follow. The choice K1 ¼ K2 ¼ 0 is
equivalent to rescaling the semimajor and semiminor axes,
a and b, in Eq. (15), respectively.
Each cross section of the PN ellipsoid being orthogonal

to the rotational axis represents a circle. The equatorial
cross section has an equatorial radius, σ̄ ¼ re, being
determined from Eq. (15) by the condition z̄ ¼ 0. It yields

re ¼ a

�
1þ 1

2
κE1

�
: ð21Þ

The meridional cross section of the PN ellipsoid is no
longer an ellipse (as it was in case of the Maclaurin
ellipsoid) but a curve of the fourth order. Nonetheless,
we can define the polar radius, z̄ ¼ rp, of the PN ellipsoid
by the condition, σ̄ ¼ 0. Equation (15) yields

rp ¼ b

�
1þ 1

2
κE2

�
: ð22Þ

In terms of the parameters re and rp, Eq. (15) of the PN
ellipsoid takes on the following form:

σ2

r2e
þ z2

r2p
¼ 1 − κðE1 þ E2 − E3Þ

�
z2

r2p
−
z4

r4p

�
: ð23Þ

FIG. 1. Meridional cross section of the PN ellipsoid (a red curve in the online version) vs the Maclaurin ellipsoid (a blue curve in the
online version). The left panel represents the most general case with arbitrary values of the shape parameters E1; E2; E3 when the
equatorial, re, and polar, rp, radii of the PN ellipsoid differ from the semimajor, a, and semiminor, b, axes of the Maclaurin ellipsoid,
re ≠ a; rp ≠ b. The right panel shows the case of E1 ¼ E2 ¼ 0when the equatorial and polar radii of the PN ellipsoid and the Maclaurin
ellipsoid are equal. The angle φ is the geographic latitude (−90° ≤ φ ≤ 90°), and the angle θ is a complementary angle (colatitude) used
for the calculation of integrals in the Appendix of the present paper (0 ≤ θ ≤ π). In general, when E1 ≠ E2 ≠ 0, the maximal radial
difference (the “height” difference) between the surfaces of the PN ellipsoid and the Maclaurin ellipsoid depends on the choice of the
post-Newtonian coordinates and can amount to a few cm. Carefully operating with the residual gauge freedom of the post-Newtonian
theory by choosing E1 ¼ E2 ¼ 0 allows us to make the difference between the two surfaces much less than 1 mm that is practically
unobservable at the present time (for more discussion, see Sec. XI).
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This reveals that only a single combination, E1 þ E2 − E3,
of the parameters explicitly appears in the description of the
shape of the PN ellipsoid in the harmonic coordinates,
while the other two parameters, E1 and E2, can be absorbed
(like the coefficients K1 and K2 above) in its equatorial and
polar radii. The combination E1 þ E2 − E3 is determined
by the physical equation of the equilibrium of the rotating
fluid as explained in Sec. VIII. Parameters E1 and E2 are
not limited by physics and can be chosen arbitrary within
the accuracy allowed by the post-Newtonian approxima-
tion. We discuss their possible choices in Secs. VIII and XI.
We characterize the “oblateness” of the PN ellipsoid (23)

by the post-Newtonian “eccentricity”

ϵ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2e − r2p

q
re

: ð24Þ

It differs from the eccentricity (14) of the Maclaurin
ellipsoid by the relativistic correction

ϵ ¼ e − κ
1 − e2

2e
ðE2 − E1Þ: ð25Þ

If we choose either E2 ¼ E1 or E1 ¼ E2 ¼ 0, the two
eccentricities will coincide. The possible configurations of
the PN ellipsoid vs Maclaurin’s ellipsoid are visualized in
Fig. 1.

IV. POST-NEWTONIAN GAUGE FREEDOM

The theoretical formalism for the calculation of the post-
Newtonian level surface can be worked out in arbitrary
coordinates. For mathematical and historic reasons, the
most convenient are harmonic coordinates which are also
used by the IAU [46] and IERS [2] astro-geodetic data
processing centers. The harmonic coordinates are selected
by the de Donder condition (1), but it does not pick up a
single coordinate system because of the property known as
a residual gauge freedom [63]. It means that the gauge
condition (1) selects an infinite set of harmonic coordinates
interrelating by coordinate transformations which do not
violate the gauge condition (1). The field equations (5)–(7)
and their solutions are form invariant with respect to the
residual gauge transformations. The residual gauge free-
dom can be further limited by imposing additional con-
straints on the metric tensor [9].
The residual gauge freedom of the harmonic coor-

dinates is described by a post-Newtonian coordinate
transformation,

x0α ¼ xα þ κξαðxÞ; ð26Þ

where functions, ξα, obey the Laplace equation [63],

Δξα ¼ 0: ð27Þ

We discuss the case of the solution of the post-Newtonian
equations (5)–(7) inside the rotating fluid. Therefore, the
solution of the Laplace equation (27) must be convergent at
the origin of the coordinate system. It is well known that
such a solution is given in terms of the harmonic poly-
nomials which are selected by the condition that the shape
of the PN ellipsoid given by Eq. (15) remains the poly-
nomial of the fourth order with the rotational symmetry
about the z axis. This condition reduces the functions ξα in
Eq. (26) to the harmonic polynomials of the third order
having the form

ξ1 ¼ hxþ px
a2

ðσ2 − 4z2Þ; ð28aÞ

ξ2 ¼ hyþ py
a2

ðσ2 − 4z2Þ; ð28bÞ

ξ3 ¼ kzþ qz
b2

ð3σ2 − 2z2Þ; ð28cÞ

where h, k, p, and q are arbitrary constant parameters. It
can be checked by direct inspection that the polynomials
(28a)–(28c) satisfy the Laplace equation (27). We have
chosen ξ0 ¼ 0 because we consider a stationary spacetime,
which means that all functions are time independent. We
emphasize that the transformation (28a)–(28c) does not
preserve the element of the coordinate volume d3x in the
most general case. The coordinate volume would be
preserved if ∂αξ

α ¼ 0, which implies k ¼ −2h and
q ¼ −4b2p=3a2. This constraint on the gauge transforma-
tion was originally employed by Chandrasekhar [11], who
treated the volume-preserved transformations as the
Lagrange displacements of the Maclaurin ellipsoid. Later
on, Chandrasekhar abandoned this constraint [14] to adjust
his theory to physical criteria for comparison of the post-
Newtonian and Newtonian configurations of rotating fluids
proposed by Bardeen [8] (see Sec. VIII for further details).
Coordinate transformation (26) with ξi taken from

(28a)–(28c) does not violate the harmonic gauge condition
(1), but it changes Eqs. (15) and (16) to

σ02

a2
þ z02

b2
¼ 1þ κF0ðx0Þ; ð29Þ

F0ðx0Þ≡ K1
0 σ

02

a2
þ K2

0 z
02

b2
þ E1

0 σ
04

a4

þ E2
0 z

04

b4
þ E3

0 σ
02z02

a2b2
; ð30Þ

where σ02 ≡ x02 þ y02 and the primed coefficients are

K1
0 ¼ K1 þ 2h; ð31aÞ

K2
0 ¼ K2 þ 2k; ð31bÞ
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E1
0 ¼ E1 þ 2p; ð31cÞ

E2
0 ¼ E2 − 4q; ð31dÞ

E3
0 ¼ E3 − 8p

b2

a2
þ 6q

a2

b2
: ð31eÞ

Transformation equations (31a)–(31e) make it evident that
four out of the five coefficients K1, K2, E1; E2; E3 are
algebraically independent. Moreover, there is one-to-one
mapping between four parameters: K1↔h, K2↔k, E1↔p,
and E2↔q. It means that the choice of the coordinate
parameters, h, k, p, and q, is actually equivalent to selecting
the coefficients K1; K2; E1; E2 in the original equation (15)
of the PN ellipsoid and fixing the residual gauge freedom of
the harmonic coordinates. Because the geodetic data in
classic geodesy are referred to the surface of the Maclaurin
ellipsoid, it would be practically useful to find such a post-
Newtonian gauge in which the differences between the
surfaces of the Maclaurin and PN ellipsoid were mini-
mized. It would allow us to avoid unnecessary complica-
tions in adjusting the results of classic geodesy to the realm
of the general theory of relativity. Nonetheless, the question
about what post-Newtonian gauge is the most convenient
for geodesy remains open for the time being. We shall
explore some possible options to fix the residual gauge in
subsequent sections to see how the post-Newtonian physi-
cal equations defining the level surface, mass, angular
momentum, etc., depend on the choice of the gauge in
Secs. VIII and XI.
We have already fixed K1 ¼ K2 ¼ 0. It complies with

the transformations (31a), (31b) indicating that picking up
the gauge parameters h, k can always eliminate the
coefficients K1, K2. We shall fix the coefficients E1; E2

later on, after solving the field equations and determining
the gravitational potentials. The coefficient E3 linearly
depends on the choice of the parameters p and q and is
a truly gauge-dependent parameter. Its value is fixed (after
choosing the parameters E1 and E2) by physics of the
rotating fluid in the gravitational field leading to Eq. (134)
of the equipotential level surface.
Needless to say, physical quantities that make sense must

be gauge-invariant quantities. In what follows, we will
demonstrate how to build the gauge-invariant expressions
for the total mass and angular momentum of the rotating
fluid. Building the gauge-invariant expressions for the force
of gravity is possible as well but takes us away from the
canonical expressions adopted in the Newtonian geodesy.
The gauge-invariant expressions for geodetic observables
including the force of gravity are given, for example, in
Refs. [64,65]. However, the gauge-invariant approach in
practical geodesy has little, if any, application. Observables
are gauge-invariant quantities, but they are taken at differ-
ent epochs and places and must be interconnected. The
interconnection of the observables is done with the help of

the propagation equations mapping the observables to the
fixed coordinate systems that are employed in fundamental
astronomy and geodesy solely as the intermediate book-
keeper in order to compare the observables at one epoch to
observables measured at another epoch. The process of the
data processing maps one gauge-invariant quantity to
another through the intermediate coordinate chart. This
gauge-dependent chart is called the reference ellipsoid,
stellar fundamental catalog, ITRF, etc., and they cannot be
made gauge independent because they are essentially
realizations of the fundamental coordinate systems which
are chosen and fixed by conventions adopted at general
assemblies of the IAU, IUGG, etc. Therefore, not all our
results can be presented in the gauge-invariant form
because this manuscript is about the fundamental coordi-
nate systems in relativistic geodesy and their comparison.

V. NEWTONIAN POTENTIAL V

Newtonian gravitational potential V satisfies the
inhomogeneous Poisson equation

ΔVðxÞ ¼ −4πGρðxÞ; ð32Þ
inside the mass. Its particular solution is given by

VðxÞ ¼
Z
V

ρðx0Þd3x0
jx − x0j ; ð33Þ

where V is the coordinate volume occupied by the matter
distribution. Inside the mass and under the assumption of
the constant mass density ρ, the integral (33) can be
calculated by making use of the spherical coordinates θ,
λ on a unit sphere. The procedure is as follows [53].
Let us consider a point xi ¼ fx; y; zg inside the PN

ellipsoid (15). It is connected to a point x̄i on the surface of
the ellipsoid by a vector Ri ¼ x̄i − xi where Ri ¼ Rli,

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δijRiRj

q
, and the unit vector, li ≡ fsin θ cos λ;

sin θ sin λ; cos θg. In terms of these quantities, we have

x̄i ¼ xi þ liR: ð34Þ

Substituting Eq. (34) into Eq. (15) yields a quadratic
equation,

AR2 þ 2BRþ C ¼ κFðxþ lRÞ; ð35Þ

where x≡ fxig, l ¼ flig, and

A≡ sin2θ
a2

þ cos2θ
b2

;

B≡ sin θðx cos λþ y sin λÞ
a2

þ z cos θ
b2

;

C≡ σ2

a2
þ z2

b2
− 1: ð36Þ
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We solve Eq. (35) iteratively by making use of
R¼ R̂þc−2ΔR, where R̂ ¼ ðR̂þ; R̂−Þ corresponds to two
algebraically independent solutions of the quadratic
equation (35) with the right side being nil and ΔR being
yet unknown. After omitting terms of the order of
Oðκ2Þ≃Oðc−4Þ, we have two roots,

R� ¼ −
B
A
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 − ACþ κAF�

p
A

; ð37Þ

where

F� ≡ E1 þ ðE3 − 2E1Þ
�
zþ cos θR̂�

b

�
2

þ ðE1 þ E2 − E3Þ
�
zþ cos θR̂�

b

�
4

þRðxþ lR�Þ: ð38Þ

We replace variable x0 in Eq. (33) with r ¼ x − x0 and
use the spherical coordinates to perform the integration
with respect to the radial coordinate r ¼ jx − x0j. After
integrating, the integral (33) takes on the form [53]

V ¼ 1

4
Gρ

I
S2
ðR2þ þ R2

−ÞdΩ; ð39Þ

where Rþ and R− are defined in Eq. (37). After making use
of Eq. (37) and expanding the integrand in Eq. (39) with
respect to the post-Newtonian parameter κ, the Newtonian
potential takes on the form

V ¼ 1

2
Gρ

I
S2

�
2B2 − AC

A2

þ κ

2A

�
Fþ þ F− −

Bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 − AC

p ðFþ − F−Þ
��

dΩ;

ð40Þ

where all post-Newtonian terms of the higher order with
respect to κ have been discarded, the integration is
performed over a unit sphere S2 with respect to the angles
λ and θ, and dΩ≡ sin θdθdλ is the element of the solid
angle on the unit sphere.
Now, we expand F� in a polynomial with respect to R�,

F� ¼ α0 þ α1 cos θR� þ α2ðcos θR�Þ2 þ α3ðcos θR�Þ3
þ α4ðcos θR�Þ4; ð41Þ

where the residual term R� vanishes because it is
proportional to Cðx̄Þ ¼ AR2 þ 2BRþ C ¼ 0þOðκÞ and
the coefficients

α0 ¼ E1 þ ðE3 − 2E1Þ
z2

b2
þ ðE1 þ E2 − E3Þ

z4

b4
; ð42Þ

α1 ¼
2z
b2

�
E3 − 2E1 þ 2ðE1 þ E2 − E3Þ

z2

b2

�
ð43Þ

α2 ¼
1

b2

�
E3 − 2E1 þ 6ðE1 þ E2 − E3Þ

z2

b2

�
ð44Þ

α3 ¼
4z
b4

ðE1 þ E2 − E3Þ; ð45Þ

α4 ¼
1

b4
ðE1 þ E2 − E3Þ; ð46Þ

are polynomials of z only. We also notice that on the
surface of the PN ellipsoid Fðx̄Þ ¼ α0, as follows from
Eqs. (19) and (20). We can also use Cðx̄Þ ¼ 0 in the post-
Newtonian terms.
Replacing Eq. (41) in Eq. (40) transforms it to

V ¼ VN þ κVpN; ð47Þ

where

VN ¼ Gρ
I
S2

�
B2

A2
−

C
2A

�
dΩ ð48Þ

VpN ¼ Gρ
I
S2

�
α0
2A

− α1 cos θ
B
A2

þ α2cos2θ
�
2B2

A3
−

C
2A2

�

− 2α3cos3θ

�
2B3

A4
−
BC
A3

�

þ α4cos4θ

�
8B4

A5
−
6B2C
A4

þ C2

2A3

��
dΩ: ð49Þ

Equations (47)–(49) describe the Newtonian potential
exactly, both on the surface of the PN ellipsoid and
inside it.
The integrals in Eqs. (48) and (49) are discussed in

Appendix A. After evaluating the integrals and reducing
similar terms, potentials VN and VpN take on the form

VN ¼ πGρa2
��

1 −
z2

b2

�
ℷ0 −

�
1 − 3

z2

b2

�
ℷ1 − CðxÞℷ1

�
;

ð50Þ

VpN ¼ πGρa2½F1ðzÞ þ b2F2ðzÞCðxÞ þ b4F3ðzÞC2ðxÞ�;
ð51Þ

where
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F1ðzÞ ¼ α0ℷ0 − 2α1zℷ1 þ 2α2b2
��

1 −
z2

b2

�
ℷ1 −

�
1 −

3z2

b2

�
ℷ2

�
− 4α3b2z

�
3

�
1 −

z2

b2

�
ℷ2 −

�
3 −

5z2

b2

�
ℷ3

�

þ 6α4b4
��

1 −
z2

b2

�
2

ℷ2 − 2

�
1 − 6

z2

b2
þ 5

z4

b4

�
ℷ3 þ

�
1 − 10

z2

b2
þ 35

3

z4

b4

�
ℷ4

�
; ð52Þ

F2ðzÞ ¼ α2ðℷ1 − 2ℷ2Þ − 4α3zð2ℷ2 − 3ℷ3Þ þ 6α4b2
��

1 −
z2

b2

�
ℷ2 − 3

�
1 −

3z2

b2

�
ℷ3 þ 2

�
1 −

5z2

b2

�
ℷ4

�
; ð53Þ

F3ðzÞ ¼ α4ðℷ2 − 6ℷ3 þ 6ℷ4Þ ð54Þ

and the polynomial coefficients α0; α1; α2; α3; α4 are given in Eqs. (42)–(46). It is worth noticing that the potential VN
satisfies the Poisson equation (32) exactly. It means that the post-Newtonian function VpN obeys the Laplace equation

ΔVpN ¼ 0; ð55Þ

and the right side of Eq. (51) is a harmonic polynomial of the fourth order.

VI. POST-NEWTONIAN POTENTIALS

A. Vector ootential Vi

Vector potential Vi obeys the Poisson equation

ΔVi ¼ −4πGρðxÞviðxÞ; ð56Þ
which has a particular solution,

Vi ¼ G
Z
V

ρðx0Þviðx0Þ
jx − x0j d3x0: ð57Þ

For a rigidly rotating configuration, viðxÞ ¼ εijkωjxk so that

Vi ¼ εijkωjDk; ð58Þ

where

Di ¼ G
Z

ρðx0Þx0id3x0
jx − x0j : ð59Þ

It can be recast to the form

Di ¼ xiVN þ G
Z

ρðx0Þðx0i − xiÞ
jx − x0j d3x0; ð60Þ

where VN is the Newtonian potential given in Eq. (50). For the case of a constant density, ρðx0Þ ¼ ρ ¼ const., the second
term in the right-hand side of Eq. (60) can be integrated over the radial coordinate, yielding

Z
V

ρðx0Þðx0i − xiÞ
jx − x0j d3x0 ¼ ρ

6

I
S2
ðR3þ þ R3

−ÞlidΩ: ð61Þ

After making use of Eq. (37) to replace Rþ and R−, we obtain

Z
V

ρðx0i − xiÞ
jx − x0j d3x0 ¼ ρ

I
S2

�
−
4

3

B3

A3
þ BC

A2

�
lidΩ; ð62Þ
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where we have omitted the post-Newtonian terms being proportional to OðκÞ since the vector potential Vi itself appears
only in the post-Newtonian terms. Integrals entering Eq. (62) are given in Appendix A. Calculation reveals

Z
V

ρðx0Þðx0 − xÞ
jx − x0j d3x0 ¼ −πρa2x

��
1 −

z2

b2

�
ℷ0 − 2

�
1 −

3z2

b2

�
ℷ1 þ

�
1 −

5z2

b2

�
ℷ2

�
þ xπρa2CðxÞðℷ1 − ℷ2Þ; ð63Þ

Z
V

ρðx0Þðy0 − yÞ
jx − x0j d3x0 ¼ −πρa2y

��
1 −

z2

b2

�
ℷ0 − 2

�
1 −

3z2

b2

�
ℷ1 þ

�
1 −

5z2

b2

�
ℷ2

�
þ yπρa2CðxÞðℷ1 − ℷ2Þ; ð64Þ

Z
V

ρðx0Þðz0 − zÞ
jx − x0j d3x0 ¼ −4πρa2z

��
1 −

z2

b2

�
ℷ1 −

�
1 −

5z2

3b2

�
ℷ2

�
− 2zπρa2CðxÞðℷ1 − 2ℷ2Þ: ð65Þ

Substituting this result in Eq. (60) and making use of Eq. (50) yields

Di ≡ ðDx;Dy;DzÞ ¼ ðxD1; yD1; zD2Þ; ð66Þ

where functions

D1 ≡ πGρa2
��

1 −
3z2

b2

�
ℷ1 −

�
1 −

5z2

b2

�
ℷ2 − CðxÞℷ2

�
; ð67Þ

D2 ≡ πGρa2
��

1 −
z2

b2

�
ℷ0 −

�
5 − 7

z2

b2

�
ℷ1 þ 4

�
1 −

5z2

3b2

�
ℷ2 þ CðxÞð4ℷ2 − 3ℷ1Þ

�
: ð68Þ

B. Scalar potential Φ

Potential Φ is defined by the equation

ΔΦ ¼ −4πGρðxÞϕðxÞ; ð69Þ

where the function

ϕðxÞ≡ 2ω2σ2 þ 3
p
ρ
þ 2VN: ð70Þ

In the Newtonian approximation, pressure p inside the massive body with a constant density ρ has an ellipsoidal distribution
and is given by the solution of the equation of a hydrostatic equilibrium [53],

p
ρ
¼ −πGρa2CðxÞðℷ0 − 2ℷ1Þ: ð71Þ

Making use of Eqs. (71) and (50), we can write down function ϕðxÞ as

ϕðxÞ ¼ a2½2ω2 − πGρð3ℷ0 − 4ℷ1Þ�
�
σ2

a2
þ z2

b2

�
− 2a2½ω2 − πGρðℷ0 − 3ℷ1Þ�

z2

b2
þ πGρa2ð5ℷ0 − 6ℷ1Þ: ð72Þ

The particular solution of Eq. (69) can be written, then, as

Φ ¼ 2ω2a2ðI1 − I2Þ − πGρa2½ð3I1 þ 2I2 − 5VNÞℷ0 þ 2ð2I1 þ 3I2 − 3VNÞℷ1�; ð73Þ

where we have introduced two new integrals:

I1 ¼ Gρ
Z
V

d3x0

jx − x0j
�
σ02

a2
þ z02

b2

�
; I2 ¼

Gρ
b2

Z
V

z02

jx − x0j d
3x0: ð74Þ

The integrals can be split in several algebraic pieces,
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I1 ¼
�
σ2

a2
þ z2

b2

�
ð2D1 − VNÞ þ 2

z2

b2
ðD2 −D1Þ þ

Gρ
8

I
S2
ðR4þ þ R4

−Þ
�
sin2θ
a2

þ cos2θ
b2

�
dΩ; ð75Þ

I2 ¼
z2

b2
ð2D2 − VNÞ þ

Gρ
8b2

I
S2
ðR4þ þ R4

−Þcos2θdΩ; ð76Þ

where the integrals

1

8

I
S2
ðR4þ þ R4

−Þ
�
sin2θ
a2

þ cos2θ
b2

�
dΩ ¼

I
S2

�
2B4

A3
− 2

B2C
A2

þ C2

4A

�
dΩ; ð77Þ

1

8

I
S2
ðR4þ þ R4

−Þcos2θdΩ ¼
I
S2

�
2B4

A4
− 2

B2C
A3

þ C2

4A2

�
cos2θdΩ: ð78Þ

We use the results of Appendix A to calculate these integrals and obtain
I
S2

�
2B4

A3
− 2

B2C
A2

þC2

4A

�
dΩ¼ 3

2
πa2

��
1−

z2

b2

�
2

ℷ0− 2

�
1− 6

z2

b2
þ 5

z4

b4

�
ℷ1þ

�
1− 10

z2

b2
þ 35

3

z4

b4

�
ℷ2

�

þ πa2
��

1−
z2

b2

�
ℷ0 − 4

�
1− 3

z2

b2

�
ℷ1þ 3

�
1−5

z2

b2

�
ℷ2

�
CðxÞ

− πa2
�
ℷ1−

3

2
ℷ2

�
C2ðxÞ; ð79Þ

I
S2

�
2B4

A4
− 2

B2C
A3

þ C2

4A2

�
cos2θ
b2

dΩ¼ 3

2
πa2

��
1−

z2

b2

�
2

ℷ1 − 2

�
1− 6

z2

b2
þ 5

z4

b4

�
ℷ2

þ
�
1− 10

z2

b2
þ 35

3

z4

b4

�
ℷ3

�
þ πa2

��
1−

z2

b2

�
ℷ1 − 4

�
1− 3

z2

b2

�
ℷ2

þ 3

�
1− 5

z2

b2

�
ℷ3

�
CðxÞ þ πa2

�
ℷ2 −

3

2
ℷ3

�
C2ðxÞ: ð80Þ

Substituting these results in Eqs. (75) and (76) yields

I1 ¼
1

2
πGρa2

��
1 −

z4

b4

�
ℷ0 − 6

z2

b2

�
1 −

5

3

z2

b2

�
ℷ1 −

�
1 − 10

z2

b2
þ 35

3

z4

b4

�
ℷ2

�

− πGρa2
�
3z2

b2
ℷ1 þ

�
1 − 5

z2

b2

�
ℷ2 þ

1

2
ℷ2CðxÞ

�
CðxÞ; ð81Þ

I2 ¼ πGρa2
��

1 −
z2

b2

�
z2

b2
ℷ0 þ

�
3

2
− 12

z2

b2
þ 25

2

z4

b4

�
ℷ1 −

�
3 − 26

z2

b2
þ 85

3

z4

b4

�
ℷ2

þ
�
3

2
− 15

z2

b2
þ 35

2

z4

b4

�
ℷ3

�
þ πGρa2

��
1 − 6

z2

b2

�
ℷ1 − 4

�
1 − 5

z2

b2

�
ℷ2 þ 3

�
1 − 5

z2

b2

�
ℷ3

þ
�
ℷ2 −

3

2
ℷ3

�
CðxÞ

�
CðxÞ: ð82Þ

Replacing these expressions in Eq. (73) results in

Φ ¼ Φ0 þ Φ1CðxÞ þ Φ2C2ðxÞ; ð83Þ

where
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Φ0 ¼
1

2
π2G2ρ2a4½7ℷ20 − 3ℷ0ð8ℷ1 − 5ℷ2 þ 2ℷ3Þ þ 2ℷ1ð15ℷ1 − 20ℷ2 þ 9ℷ3Þ�

− π2G2ρ2a4½7ℷ20 þ ℷ0ð−60ℷ1 þ 67ℷ2 − 30ℷ3Þ þ 2ℷ1ð51ℷ1 − 88ℷ2 þ 45ℷ3Þ�
z2

b2

þ 1

6
π2G2ρ2a4½21ℷ20 þ ℷ0ð−288ℷ1 þ 445ℷ2 − 210ℷ3Þ þ 10ℷ1ð57ℷ1 − 116ℷ2 þ 63ℷ3Þ�

z4

b4

þ πGρa4ω2

�
ℷ0 − 3ℷ1 þ 5ℷ2 − 3ℷ3 − 2ðℷ0 − 9ℷ1 þ 21ℷ2 − 15ℷ3Þ

z2

b2
þ ðℷ0 − 5ð3ℷ1 − 9ℷ2 þ 7ℷ3ÞÞ

z4

b4

�
; ð84Þ

Φ1 ¼ π2G2ρ2a4½ℷ0ð−7ℷ1 þ 11ℷ2 − 6ℷ3Þ þ 2ℷ1ð6ℷ1 − 14ℷ2 þ 9ℷ3Þ�

þ π2G2ρ2a4½ℷ0ð21ℷ1 − 55ℷ2 þ 30ℷ3Þ − 2ℷ1ð24ℷ1 − 70ℷ2 þ 45ℷ3Þ�
z2

b2

− 2πGρa4ω2

�
ðℷ1 − 3ℷ2 þ 3ℷ3Þ − 3ðℷ1 − 5ℷ2 þ 5ℷ3Þ

z2

b2

�
; ð85Þ

Φ2 ¼
1

2
πGρa4½ð−ℷ0ℷ2 þ 8ℷ1ℷ2 þ 6ℷ0ℷ3 − 18ℷ1ℷ3ÞπGρ − 6ðℷ2 − ℷ3Þω2�: ð86Þ

This finalizes the calculation of the post-Newtonian potentials inside the rotating fluid body.

VII. CONSERVED QUANTITIES

The post-Newtonian conservation laws have been dis-
cussed by a number of researchers, most notably in text-
books [9,42,49]. General relativity predicts that the
integrals of energy, linear momentum, angular momentum,
and the center of mass of an isolated system are conserved
in the post-Newtonian approximation. In the present paper,
we are dealing with a single isolated body so that the
integrals of the center of mass and the linear momentum are
trivial, and we can always chose the origin of the coordinate
system at the center of mass of the body with the linear
momentum being nil. The integrals of energy and angular
momentum are less trivial and require detailed calculations,
which are given below.

A. Post-Newtonian mass

The law of the conservation of energy yields the post-
Newtonian mass of a rotating fluid ball that is defined as
[9,42,49]

M ¼ MN þ 1

c2
MpN; ð87Þ

where

MN ¼
Z
V
ρðxÞd3x ð88Þ

is the Newtonian mass of baryons comprising the body;

MpN ¼
Z
V
ρðxÞ

�
v2 þ Πþ 5

2
VN

�
d3x ð89Þ

is the post-Newtonian correction taking into account the
contribution of the internal kinetic, gravitational, and
compressional energies; and V is the coordinate volume
of the PN ellipsoid. In what follows, we shall formally
include the compressional energy Π in the density ρ
because Π is constant.
Under condition that the density ρðxÞ ¼ ρ ¼ const, the

rest mass is reduced to

MN ¼ ρV: ð90Þ

To calculate the volume, V, we introduce the normalized
spherical coordinates r, θ, λ related to the Cartesian
(harmonic) coordinates x, y, z as follows:

x ¼ ar sin θ cos λ; y ¼ ar sin θ sin λ;

z ¼ br cos θ: ð91Þ

In these coordinates, the volume V is given by

V ¼ a2b
Z

rðθÞ

0

Z
π

0

Z
2π

0

r2 sin θdrdθdλ; ð92Þ
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where rðθÞ describes the surface of the PN ellipsoid defined
above in Eq. (15):

r2ðθÞ ¼ 1þ κðE1 sin4 θ þ E2 cos4 θ þ E3 sin2 cos2 θÞ:
ð93Þ

Integration in Eq. (92) results in

MN ¼ 4π

3
ρa2b

�
1þ κ

10
ð8E1 þ 3E2 þ 2E3Þ

�
; ð94Þ

which clearly indicates that the Newtonian mass, MN ,
depends on the particular choice of the shape of the PN
ellipsoid through the linear combination of the coeffi-
cients E1; E2; E3.
The post-Newtonian contribution, MpN , to the rest mass

reads

MpN ¼ ρa4b
Z

1

0

Z
π

0

Z
2π

0

�
ω2r2sin2θ

þ 5

2
πGρ½ℷ0ð1 − r2cos2θÞ − ℷ1r2ð1 − 3cos2θÞ�

�

× r2 sin θdrdθdλ

¼ 8π

15
ρa4bðω2 þ 5πGρℷ0Þ; ð95Þ

which was obtained from Eq. (89) upon substitution of
v2 ¼ ω2r2 sin2 θ and VN from Eq. (50). After adding up
formulas (94) and (95), the total mass (87) becomes

M¼ 4π

3
ρa2b

�
1þ κ

10

�
4ω2

πGρ
þ 8E1þ 3E2þ 2E3þ 20ℷ0

��
:

ð96Þ

Some clarifications are required at this point to prevent
confusion with the residual gauge freedom described by
Eqs. (31a)–(31e) and the constancy of the total mass M as
the integral of motion of the fluid. If we do calculations in
the primed harmonic coordinates, x0α, related to the original
coordinates xα by Eq. (26), it changes the mathematical
expression for the Newtonian mass,

MN ¼
Z
V 0
ρ0ðx0ÞJðx0Þd3x0; ð97Þ

where V 0 is the coordinate volume occupied by the same
amount of mass in the primed coordinates, ρ0ðx0Þ ¼ ρðxÞ ¼
ρ is the constant mass density, d3x0 is an element of the
coordinate volume in the primed coordinates, and

Jðx0Þ ¼ det

				 ∂x
i

∂x0j
				 ¼ 1 − ∂iξ

i

¼ 1 − κ

�
4p
a2

þ 3q
b2

�
ðx02 þ y02 − 2z02Þ ð98Þ

is the Jacobian of the inverse coordinate transformation
(26) with h ¼ k ¼ 0. Integration in Eq. (97) with the
volume bounded by the surface (29) of the PN ellipsoid
in the primed coordinates [that is the same as Eq. (29) but
with the radial coordinate r0 ¼ ðx02 þ y02 þ z02Þ1=2 and the
coefficients E0

1; E
0
2; E

0
3] yields the gauge-invariant expres-

sion for the Newtonian mass of the rotating fluid body:

MN ¼ 4π

3
ρa2b

�
1þ κ

10

�
8E0

1 þ 3E0
2 þ 2E0

3 − 16p

þ 12qþ 16p
b2

a2
− 12q

a2

b2

��
: ð99Þ

This expression naturally coincides with that given in
Eq. (94) after making use of Eqs. (31c)–(31e). The post-
Newtonian contribution, MpN , to the total mass is not
sensitive to the post-Newtonian coordinate transformation
and remains the same as in Eq. (95). Therefore, the total
mass is the gauge-invariant quantity under the condition
that the coefficients E1 and E2 have been fixed in a
particular coordinate system. It is also worth mentioning
that the combination of the residual gauge parameters
−16pþ 12qþ 16pb2=a2 − 12qa2=b2 ¼ 0, when the
residual gauge transformation (26) preserves the coordinate
volume of integration, that is, when ∂iξ

i ¼ 0.
Parameters E1 and E2 define the shape of the PN

ellipsoid as compared with the shape of the Maclaurin
ellipsoid in the chosen coordinate system. Picking up the
shape of the PN ellipsoid is equivalent to eliminating the
residual gauge freedom. Depending on their choice, we
have different options; for example, we can either equate
the relativistic massM of the PN ellipsoid to the Newtonian
mass of the Maclaurin ellipsoid (Bardeen-Chandrasekhar’s
gauge discussed at the end of Sec. VIII) or minimize the
deviation of the PN ellipsoid from the surface of the
Maclaurin ellipsoid (this option is discussed in Sec. XI)
or something else. Comparison of the various gauges is
facilitated if we operate with the equatorial, re, and polar,
rp, radii of the PN ellipsoid that were introduced earlier in
Eqs. (21) and (22).
Making use of re and rp, we can recast the total mass M

in Eq. (96) to the form which depends on the linear
combination, E1 þ E2 − E3, that is

M ¼ 4π

3
ρr2erp

�
1 −

κ

5

�
E1 þ E2 − E3 − 10ℷ0 −

2ω2

πGρ

��
:

ð100Þ
The inverse relation will be used to convert the density ρ to
the total mass,
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ρ ¼ 3M
4πr2erp

�
1þ κ

5

�
E1 þ E2 − E3 − 10ℷ0 −

2ω2

πGρ

��
:

ð101Þ
We shall prove in Sec. VIII that the linear combination
E1 þ E2 − E3 is uniquely defined by the physical equa-
tion (134) of the equipotential level surface. Thus,
Eq. (100) for the total post-Newtonian mass of the rotating
fluid depends on the choice of the free parameters E1 and
E2 solely through the equatorial, re, and polar, rp, radii or,
more exactly, on the choice of the ratios: re=a ¼ 1þ κE1=2
and rp=b ¼ 1þ κE2=2.

B. Post-Newtonian angular momentum

The vector of the post-Newtonian angular momentum,
Si ¼ ðSx; Sy; SzÞ, is defined by [9,42,49]

Si ¼ SiN þ 1

c2
SipN; ð102Þ

where SiN and SipN are the Newtonian and post-Newtonian
contributions, respectively,

SiN ¼
Z

ρðxÞðx × vÞid3x; ð103Þ

SipN ¼
Z

ρðxÞ
�
v2 þ Πþ 6V þ p

ρ

�
ðx × vÞid3x

− 4

Z
ρðxÞðx × VÞid3x; ð104Þ

and vector-potential V ≡ Vi has been given in Eqs. (58)
and (66).
It can be checked by inspection that in case of axisym-

metric mass distribution with a constant density ρðxÞ ¼ ρ
the only nonvanishing component of the angular momen-
tum is S3 ¼ Sz ≡ S. Indeed, v ¼ fvig ¼ ðω × xÞi, and
ðx×vÞi¼ðx×ðω×xÞÞi¼ωiðx2þy2þz2Þ−xiωz. Making
use of these relations in Eq. (103) results in

SxN ¼ −ωρ
Z

xzd3x; SyN ¼ −ωρ
Z

yzd3x;

SzN ¼ ωρ

Z
ðx2 þ y2Þd3x: ð105Þ

Subsequent calculation of the spin components (105) with
the help of the spherical coordinates (91) confirms that the
two components, SxN ¼ SyN ¼ 0 and SzN ≡ SN , where

SN ¼ a4bρω
Z

rðθÞ

0

Z
π

0

Z
2π

0

r4sin3θdrdθdλ; ð106Þ

and the boundary of the integration of the radial coordinate,
rðθÞ, is defined in Eq. (93). After integration in Eq. (106),
we obtain,

SN ¼ 8π

15
a4bρω

�
1þ κ

14
ð24E1 þ 3E2 þ 4E3Þ

�
: ð107Þ

Replacing the density ρ by the total massM with the help of
Eq. (96) makes the Newtonian part of the angular momen-
tum as follows:

SN ¼ 2

5
Ma2ω

�
1þ κ

35

�
32E1 − 3E2

þ 3E3 − 70ℷ0 −
14ω2

πGρ

��
: ð108Þ

The gauge-invariant expression for S can be obtained after
making the residual gauge transformation (26) in the
defining equation (103). With the repeating calculations
being similar to those which led to the gauge-invariant
expression for the mass, we obtain

SN ¼ 2

5
Ma2ω

�
1þ κ

35

�
32E0

1 − 3E0
2 þ 3E0

3 − 70ℷ0

−
14ω2

πGρ
− 48pþ 12qþ 32p

b2

a2
− 24q

a2

b2

��
: ð109Þ

The combination of the residual gauge parameters −48pþ
12qþ 32pb2=a2 − 24qa2=b2 ≠ 0 in the general case even
if the residual gauge transformation (26) preserves the
coordinate volume of integration. This is because in the
case of spin we integrate over the volume not simply a local
mass density ρ but the local density of the angular
momentum, ρðx × vÞi, which is not constant.
It is straightforward to prove that x and y components of

SipN also vanish due to the axial symmetry, and only its z
component, SzpN ≡ SpN , remains. We notice that

Z
ρðx × VÞzd3x ¼

Z
ρD1ðx × vÞzd3x; ð110Þ

where D1 is taken from (67). Therefore,

SpN ¼
Z

ρ

�
v2 þ 6VN þ p

ρ
− 4D1

�
ðx × vÞzd3x; ð111Þ

where we have eliminated the compression energy Π by
including it in the mass density ρ. Making transformation to
the coordinates (91) yields

SpN ¼ ωa6bρ
Z

1

0

Z
π

0

Z
2π

0

× fω2r2sin2θ þ 7ℷ0 − 6ℷ1 − ðℷ0 þ 4ℷ1 − 4ℷ2Þr2
− 2ð3ℷ0 − 15ℷ1 þ 10ℷ2Þr2cos2θgr4sin3θdrdθdλ

¼ 4

35
Ma2ω½2ω2 þ πGρð19ℷ0 − 16ℷ1Þ�: ð112Þ
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After adding up formulas (108) and (112), the total angular momentum becomes

S ¼ 2

5
Ma2ω

�
1þ κ

35

�
32E1 − 3E2 þ 3E3 þ 40ð3ℷ0 − 4ℷ1Þ þ

6ω2

πGρ

��
: ð113Þ

Making use of the equatorial radii, re defined in Eq. (21), we obtain the final expression for the total angular momentum:

S ¼ 2

5
Mr2eω

�
1 −

κ

35

�
3ðE1 þ E2 − E3Þ − 40ð3ℷ0 − 4ℷ1Þ −

6ω2

πGρ

��
: ð114Þ

This expression depends only on the linear combination of the parameters, E1 þ E2 − E3, both explicitly and implicitly
[through the mass M in Eq. (100)], which is uniquely fixed in the chosen coordinate system by the equation of the level
surface (134). The total angular momentum S depends explicitly only on the parameter E1 through the equatorial radius re.
It depends implicitly on the parameters E1 and E2 through the mass M. The two parameters E1 and E2 can be chosen
arbitrarily depending on our preferences and the goals we want to reach in relativistic geodesy.

VIII. POST-NEWTONIAN EQUATION OF THE LEVEL SURFACE

The figure of the rotating fluid body is defined by the boundary condition of vanishing pressure, p ¼ 0. The boundary
surface, p ¼ 0, is called the level surface. The relativistic Euler equation derived for the rigidly rotating fluid body tells us
[3,64] that the level surface coincides with the equipotential surface of the post-Newtonian gravitational potentialW, which
is given by [9]

W ¼ 1

2
ω2σ2 þ VN þ κVpN þ 1

c2

�
1

8
ω4σ4 þ 3

2
ω2σ2VN − 4ω2σ2D1 −

1

2
V2
N þ Φ

�
; ð115Þ

where κ ≡ πGρa2=c2 and the potentials VN; VpN;D1;Φ have been explained in Secs. V and VI. After substituting these
potentials in Eq. (115), it can be presented as a quadratic polynomial with respect to the function CðxÞ,

WðxÞ ¼ W0 þW1CðxÞ þW2C2ðxÞ; ð116Þ
where the coefficients of the expansion are polynomials of the z coordinate only. In particular, the coefficient W0 is a
polynomial of the forth order [notice that the coefficients of the expansion K1 and K2 have no relation to the gauge-
dependent coefficients entering Eq. (16)]

W0 ¼ K0 þ K1

z2

b2
þ K2

z4

b4
; ð117Þ

where

K0 ¼
1

2
ω2a2 þ πGρa2ðℷ0 − ℷ1Þ þ

1

8c2
ω4a4 þ 1

2
κω2a2ð5ℷ0 − 17ℷ1 þ 18ℷ2 − 6ℷ3Þ

þ 1

2
κπGρa2½6ℷ20 − ℷ0ð22ℷ1 − 15ℷ2 þ 6ℷ3Þ þ ℷ1ð29ℷ1 − 40ℷ2 þ 18ℷ3Þ�

þ κπGρa2½ðℷ0 − 4ℷ1 þ 10ℷ2 − 12ℷ3 þ 6ℷ4ÞE1 þ 2ðℷ1 − 4ℷ2 þ 6ℷ3 − 3ℷ4ÞE3 þ 6ðℷ2 − 2ℷ3 þ ℷ4ÞE2�; ð118Þ

K1 ¼ −
1

2
ω2a2 − πGρa2ðℷ0 − 3ℷ1Þ −

1

4c2
ω4a4 − κω2a2ð5ℷ0 − 40ℷ1 þ 66ℷ2 − 30ℷ3Þ

− κπGρa2ð6ℷ20 − 56ℷ0ℷ1 þ 99ℷ21 þ 67ℷ0ℷ2 − 176ℷ1ℷ2 − 30ℷ0ℷ3 þ 90ℷ1ℷ3Þ
− κπGρa2½2ðℷ0 − 12ℷ1 þ 42ℷ2 − 60ℷ3 þ 30ℷ4ÞE1 − ðℷ0 − 18ℷ1 þ 78ℷ2 − 120ℷ3 þ 60ℷ4ÞE3

− 12ðℷ1 − 6ℷ2 þ 10ℷ3 − 5ℷ4ÞE2�; ð119Þ

K2 ¼
1

8c2
ω4a4 þ 1

2
κω2a2ð5ℷ0 − 63ℷ1 þ 130ℷ2 − 70ℷ3Þ þ

1

6
κπGρa2½18ℷ20 − 5ℷ0ð54ℷ1 − 89ℷ2 þ 42ℷ3Þ

þ ℷ1ð543ℷ1 − 1160ℷ2 þ 630ℷ3Þ� þ κπGρa2ðℷ0 − 20ℷ1 þ 90ℷ2 − 140ℷ3 þ 70ℷ4ÞðE1 þ E2 − E3Þ: ð120Þ
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The coefficient W1 in Eq. (116) is a polynomial of the second order,

W1 ¼ Pþ P1

z2

b2
; ð121Þ

where

P ¼ 1

2
ω2a2

�
1þ 1

2c2
ω2a2 þ κð3ℷ0 − 18ℷ1 þ 28ℷ2 − 12ℷ3Þ

�
− πGρa2ℷ1

− κπGρa2½2ðℷ1 − 5ℷ2 þ 9ℷ3 − 6ℷ4ÞE1 − ðℷ1 − 8ℷ2 þ 18ℷ3 − 12ℷ4ÞE3 − 6ðℷ2 − 3ℷ3 þ 2ℷ4ÞE2�
− κπGρa2ð6ℷ0ℷ1 − 11ℷ21 − 11ℷ0ℷ2 þ 28ℷ1ℷ2 þ 6ℷ0ℷ3 − 18ℷ1ℷ3Þ; ð122Þ

P1 ¼ −
1

4c2
ω2a4 −

3

2
κω2a2ðℷ0 − 16ℷ1 þ 36ℷ2 − 20ℷ3Þ þ κπGρa2½2ð3ℷ1 − 25ℷ2 þ 51ℷ3 − 30ℷ4ÞðE1 þ E2 − E3Þ

þ 20ℷ0ℷ1 − 45ℷ21 − 55ℷ0ℷ2 þ 140ℷ1ℷ2 þ 30ℷ0ℷ3 − 90ℷ1ℷ3�: ð123Þ

The coefficient W2 in Eq. (116) is constant,

W2 ¼
1

8c2
ω4a4 −

1

2
κω2a2ð3ℷ1 − 2ℷ2 − 6ℷ3Þ

þ κπGρa2
�
ðℷ2 − 6ℷ3 þ 6ℷ4ÞðE1 þ E2 − E3Þ −

1

2
ðℷ21 þ ℷ0ℷ2 − 8ℷ1ℷ2 − 6ℷ0ℷ3 þ 18ℷ1ℷ3Þ

�
: ð124Þ

Let us recall that the coordinates on the surface of the PN ellipsoid are denoted as x̄, ȳ, z̄. On the level surface of the PN
ellipsoid, we have all three coordinates interconnected by Eq. (18) of the PN ellipsoid, Cðx̄Þ ¼ κα0ðz̄Þ, so that Eq. (116)
becomes

W̄ ≡ W̄0 þ κW̄1α0ðz̄Þ; ð125Þ

and the term with W2 ∼Oðκ2Þ is discarded as negligibly small. After reducing similar terms, the potential W̄ on the level
surface is simplified to the polynomial of the fourth order,

W̄ ¼ K0
0 þ K0

1

z̄2

b2
þ K0

2

z̄4

b4
; ð126Þ

where

K0
0 ¼ K0 þ κ

�
1

2
ω2a2 − πGρa2ℷ1

�
E1; ð127Þ

K0
1 ¼ K1 þ κ

�
1

2
ω2a2 − πGρa2ℷ1

�
ðE3 − 2E1Þ; ð128Þ

K0
2 ¼ K2 þ κ

�
1

2
ω2a2 − πGρa2ℷ1

�
ðE1 þ E2 − E3Þ: ð129Þ

Because the potential W̄ is to be constant on the level surface [64], the numerical coefficients K0
1 and K0

2 must vanish. The
first condition, K0

1 ¼ 0, yields a relation between the angular velocity of rotation, ω, and oblateness, e, of the rotating fluid
body,
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ω2

2πGρ

�
1þ ω2a2

2c2
þ 2κ

�
5ℷ0 − 40ℷ1 þ 66ℷ2 − 30ℷ3 −

1

2
E3 þ E1

��

¼ 3ℷ1 − ℷ0 − κð6ℷ20 − 56ℷ0ℷ1 þ 99ℷ21 þ 67ℷ0ℷ2 − 176ℷ1ℷ2 − 30ℷ0ℷ3 þ 90ℷ1ℷ3Þ − κðℷ0 − 7ℷ1 þ 6ℷ2ÞðE1 − E2Þ
− κðℷ0 − 19ℷ1 þ 78ℷ2 − 120ℷ3 þ 60ℷ4ÞðE1 þ E2 − E3Þ: ð130Þ

Equation (130) generalizes the famous result that was first obtained by Colin Maclaurin in 1742, from the Newtonian theory
of gravity to the realm of general relativity. The physical meaning of the post-Newtonian Maclaurin relation is that it
connects four parameters of the rotating ellipsoid made up of a homogeneous fluid—its eccentricity e, the semimajor axis a,
the angular velocity of revolution ω, and the density ρ. In the Newtonian case, the Maclaurin relation connects only three
parameters: e, ω, and r. It also gives a rigorous mathematical proof of Newton’s original claim that a rotating body must
oblate in the direction of rotational axis [6].
Equation (130) can be further simplified by replacing the eccentricity e of the Maclaurin ellipsoid with that ϵ of the PN

ellipsoid by making use of Eq. (25). We introduce functions ℷ0ðϵÞ and ℷ1ðϵÞ that are given by Eqs. (A9a) and (A9a) after the
formal replacement of e in those equations with ϵ. We expand ℷ0ðϵÞ and ℷ1ðϵÞ in the Taylor series with respect to the
relativistic parameter κ and find out that

ℷ0ðϵÞ ¼ ℷ0 þ κðE1 − E2Þℷ1 þOðκ2Þ ð131Þ

ℷ1ðϵÞ ¼ ℷ1 þ κ
E1 − E2

e2
ð3ℷ1 − ℷ0Þ þOðκ2Þ; ð132Þ

where ℷ0 ≡ ℷ0ðeÞ and ℷ1 ≡ ℷ1ðeÞ are given by Eqs. (A9a) and (A9a). We express ℷ0 and ℷ1 in terms of ℷ0ðϵÞ and ℷ1ðϵÞ by
inverting (131) and (132) and then substitute the expressions having been obtained, to the Newtonian part, 3ℷ1 − ℷ0, in the
right side of Eq. (130). It turns out that all terms depending explicitly on E1 and E2 cancel each other mutually so that
Eq. (130) takes on a more elegant form

ω2

2πGρ

�
1þ ω2a2

2c2
þ 2κð5ℷ0 − 40ℷ1 þ 66ℷ2 − 30ℷ3Þ

�

¼ 3ℷ1ðϵÞ − ℷ0ðϵÞ − κð6ℷ20 − 56ℷ0ℷ1 þ 99ℷ21 þ 67ℷ0ℷ2 − 176ℷ1ℷ2 − 30ℷ0ℷ3 þ 90ℷ1ℷ3Þ

− κ

�
ω2

2πGρ
þ ℷ0 − 19ℷ1 þ 78ℷ2 − 120ℷ3 þ 60ℷ4

�
ðE1 þ E2 − E3Þ: ð133Þ

We can see that the Maclaurin relation in the form of Eq. (133) depends explicitly only on the linear combination of the
coefficients, E1 þ E2 − E3, which is fixed by the equation of the level surface (134). Dependence on the free parameters E1

and E2 enters Eq. (133) only through the eccentricity ϵ of the PN ellipsoid.
The second condition, K0

2 ¼ 0, yields an algebraic equation for the linear combination of three coefficients
E1 þ E2 − E3, namely,

�
ω2

2πGρ
þ ℷ0 − 21ℷ1 þ 90ℷ2 − 140ℷ3 þ 70ℷ4

�
ðE1 þ E2 − E3Þ

¼ −
ω4

8π2G2ρ2
−

ω2

4πGρ
ð5ℷ0 − 63ℷ1 þ 130ℷ2 − 70ℷ3Þ

−
1

6
½18ℷ20 − 5ℷ0ð54ℷ1 − 89ℷ2 þ 42ℷ3Þ þ ℷ1ð543ℷ1 − 1160ℷ2 þ 630ℷ3Þ�: ð134Þ

Equation (134) imposes one physical constraint on the coefficients E1; E2; E3 defining the shape of the PN ellipsoid (23).
Two other algebraic equations are required to fix the numerical coefficients E1 and E2. Because of the residual gauge
freedom, explained above in Sec. IV, the two equations can be chosen arbitrarily. This property of the gauge freedom of the
post-Newtonian theory of figures of rotating fluid bodies has been noticed by Chandrasekhar [7,11], who limited the gauge
freedom by imposing one condition of the conservation of the volume element of the fluid under the gauge transformation
(28a)–(28c). Chandrasekhar believed that the second condition remains free and can be chosen arbitrarily.
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On the other hand, Bardeen [8] pointed out that there exist
two gauge-fixing conditions arising naturally from the
astrophysical point of view and specifying uniquely the
shape of the uniformly rotating fluid in the post-Newtonian
approximation. Namely, he suggested to equate the total
mass and angular momentum of the (Newtonian) Maclaurin
ellipsoid to those of the post-Newtonian ellipsoid [66] under
condition that they both have equal mass density ρ. Later on,
Bardeen’s conditions were accepted and implemented by
Chandrasekhar [15] and Pyragas et al. [20] as well. We can
easily impose the Bardeen gauge by making use of our
Eqs. (96) and (113). The total mass and the angular
momentumof theMaclaurin ellipsoid are given by equations

MMaclaurin ¼
4π

3
ρa2b; SMaclaurin ¼

2

5
MMaclaurina2ω:

ð135Þ

Equating M ¼ MMaclaurin in Eq. (96) and S ¼ SMaclaurin in
Eq. (113) yields the Bardeen gauge conditions

8E1 þ 3E2 þ 2E3 ¼ −20ℷ0 −
4ω2

πGρ
; ð136Þ

32E1 − 3E2 þ 3E3 ¼ −40ð3ℷ0 − 4ℷ1Þ −
6ω2

πGρ
: ð137Þ

It should be emphasized, however, that these constraints
suggest that neither equatorial, a, nor polar, b, radii of the
(Newtonian) Maclaurin ellipsoid are equal to the equatorial,
re, and the polar, rp, radii of the PN ellipsoid, respectively;
re ≠ a, rp ≠ b as shown in the left panel of Fig. 1. Indeed,
assuming that re ¼ a, rp ¼ b imposes two constraints on the
parameters E1 and E2, which are simply E1 ¼ E2 ¼ 0 as
follows from Eqs. (21) and (22). This corresponds to the
geometrical shape of the PN ellipsoid shown in the right
panel of Fig. 1. However, these two constraints makes three
equations, Eqs. (134), (136), and (137), for the remaining
parameter E3 incompatible with each other. Thus, in geo-
detic applications of the relativistic theory of rotating fluids,
we have to decide which option has more practical advan-
tages: 1) to keep the same mass and angular momenta but
different axes of the Maclaurin and PN ellipsoids or 2) to
keep their axes equal but to abandon the equality of their
masses and angular momenta.
To understand better the physical meaning of the Bardeen-

Chandrasekhar gauge, let us consider threemasses introduced
earlier: 1) the Newtonian mass MMaclaurin of the Maclaurin
ellipsoid (135), 2) theNewtonianmassMN of thePNellipsoid
(94), and 3) the total post-Newtonian mass M of the PN
ellipsoid (96). The coordinate volumes of the Maclaurin and
PN ellipsoids are different, while the density ρ of the
constituting matter is the same. Hence, MMaclaurin cannot be
equal to MN except in the trivial case, E1 ¼ E2 ¼ E3 ¼ 0,
that is when the surface PN ellipsoid coincideswith that of the

Maclaurin ellipsoid. The coordinate volumes occupied by the
Newtonian massMN , and the post-Newtonian massM of the
PN ellipsoid, are the same. Nonetheless, M ≠ MN because
MN is solely comprised of the rest mass of baryons, while the
total post-NewtonianmassM includes anadditional (positive)
contributionMpN given in Eq. (89) and corresponding to the
internal kinetic, compressional, and gravitational energy of
the body’s matter. By changing the numerical values of the
freely adjustable parameters E1 and E2, we can decrease
the baryon mass MN by the amount that compensates the
(positive) post-Newtonian contribution MpN and make
MMaclaurin equal to M. This is achieved under the condition
that the first gauge-fixing equation (136) is satisfied.The same
reasoning is valid with regard to the comparison of the
Newtonian and post-Newtonian angular momenta, which
leads to the second gauge-fixing condition (137).
It should be understood that the Bardeen-Chandrasekhar

gauge imposed on the coordinates to build the post-
Newtonian metric of a rotating fluid planet or a star is
not the only possible one in the most general case. It is
convenient in astrophysics because it facilitates an unam-
biguous comparison of various physical properties of the
rotating Newtonian configurations with respect to relativ-
istic stars having the same mass and angular momenta
which are the integrals of the equations of motion.
However, the primary goal of geodesy differs from astro-
physics and is to build the terrestrial reference frame that is
the most precise and adequate for the interpretation of
measurements of a baseline’s length, motion of geodetic
stations, deflections of the plumb line, and variations
(anomalies) of Earth’s gravitational field. Until recently,
these types of measurements have been referred to as a
homogeneous reference ellipsoid possessing a rather sim-
ple and exact analytic description of the normal gravita-
tional field of the Earth. It seems reasonable to make the
post-Newtonian reference configuration in relativistic
geodesy as close to the Maclaurin reference ellipsoid as
possible to minimize the contribution of relativistic cor-
rections to the coordinates and velocities of the geodetic
stations. This can be achieved with the choice of the
coefficients E1 ¼ E2 ¼ 0 in Eq. (15) of the PN ellipsoid
which is not the Bardeen-Chandrasekhar gauge. We con-
tinue discussion of this question in Sec. XI.
Besides making a decision which gauge is the most

appropriate in relativistic geodesy, we have to establish
mathematical relations between the parameters of the
relativistic PN ellipsoid and the gravimetric measurements
of the Earth’s gravity force on its topographic surface.
These relations are known in classic (Newtonian) geodesy
as the theorems of Pizzetti and Clairaut [67], and they
connect parameters of the Maclaurin ellipsoid, namely, the
semimajor and semiminor axes a and b, mass M, and the
angular velocity of rotation ω, with the physically mea-
sured values of the gravity force at the pole and equator of
the ellipsoid [43,44].
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Let us denote the Newtonian force of gravity by
γNi ðxÞ ¼ fγNx ; γNy ; γNz g, the force of gravity measured at
the pole of the ellipsoid by γNp ≡ γNz ðx ¼ 0; y ¼ 0; z ¼ bÞ,
and the force of gravity measured at the equator by γNe ≡
γNy ðx ¼ 0; y ¼ a; z ¼ 0Þ [68]. Because of the rotational
symmetry of the ellipsoid, the equatorial point can be, in
fact, chosen arbitrarily. The classic form of the theorem of
Pizzetti is ([43])[Eq. (4.42)]

2
γNe
a

þ γNp
b

¼ 3GMN

a2b
− 2ω2; ð138Þ

while the theorem of Clairaut states ([43])[Eq. (4.43)]

γNe
a

−
γNp
b

¼ 3GMN

2a2b
3e − e3 − 3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
arcsin e

e3
þ ω2:

ð139Þ

The main value of the theorems of Pizzetti and Clairaut is
that they allow us to calculate explicitly the normal gravity
field of the reference level ellipsoid in terms of only four
ellipsoid’s parameters—MN;ω; a; b—in agreement with
the Stokes-Poincaré theorem [69].
Theorems (138) and (139) were crucial in the geodesy of

19th century because they helped scientists to realize that
the geometric shape of the Earth’s figure can be determined
not only from the geometric measurements of the geodetic
arcs but, independently, by rendering the intrinsic mea-
surements of the force of gravity on the Earth’s surface
[45]. The gravity-geometry correspondence expressed in
the form of the two theorems (138) and (139) led a number
of scientists from Lobachevsky to Einstein to a gradual
understanding that the gravity force and geometry of
curved spacetime must be interrelated. This geodesy-
inspired way of thinking culminated in the 20th century
in the development of a general theory of relativity by
Einstein.
We derive the post-Newtonian analogs of the Pizzetti and

Clairaut theorems in the next two sections. We show that
the parameters entering the post-Newtonian formulation of
these theorems are still the same four parameters as in the
Newtonian approximation with a corresponding replace-
ment of the Newtonian values of the parameters by their
relativistic counterparts.

IX. POST-NEWTONIAN THEOREM
OF PIZZETTI

We denote the post-Newtonian force of gravity
γiðxÞ ¼ fγx; γy; γzg. The force of gravity measured by a
local observer on the equipotential surface of the Earth’s
gravity field has been derived in Refs. [3,64] and is given
by the equation [9]

γi ¼ ½Λj
i∂jW�x¼x̄; ð140Þ

where ∂i ≡ ∂=∂xi, the post-Newtonian gravity potentialW
has been defined in Eq. (116),

Λj
i ¼ δij

�
1 −

1

c2
VN

�
−

1

2c2
vivj ð141Þ

is the matrix of transformation from the global geo-
centric celestial reference system (GCRS) coordinates to
the local inertial (topocentric) coordinates of observer, vi ¼
ðω × xÞi is the velocity of the observer with respect to the
global coordinates, and VN is the Newtonian potential (50).
It is worth emphasizing that we first take the partial
derivative in Eq. (140) and then take the spatial coordinates,
x, on the equipotential surface, x → x̄.
Velocity vi ¼ ðω × xÞi is orthogonal to the gradient ∂iW

everywhere, that is,

vi∂iW ¼ 0: ð142Þ

Indeed, it is easy to prove that

vi∂iW ¼ ωðx∂yW − y∂xWÞ: ð143Þ

Partial derivatives of W are calculated from Eq. (116),

∂xW ¼ dW
dC

∂xCðxÞ ¼
dW
dC

2x
a2

;

∂yW ¼ dW
dC

∂yCðxÞ ¼
dW
dC

2y
a2

: ð144Þ

Substituting the partial derivatives from Eq. (144) to
Eq. (143) yields Eq. (142), which was to be demon-
strated. After accounting for Eq. (142), Eq. (140) is
simplified to

γiðx̄Þ ¼
��

1 −
1

c2
VN

�
∂iW

�
x¼x̄

: ð145Þ

We take the PN ellipsoid (15) as the equipotential
surface enclosing the entire rotating mass and denote the
post-Newtonian force of gravity on the pole by γp ≡
γzðx ¼ 0; y ¼ 0; z ¼ rpÞ and the force of gravity on the
equator by γe ≡ γyðx ¼ 0; y ¼ re; z ¼ 0Þ with the equato-
rial re and polar rp radii defined in Eqs. (21) and (22),
respectively. Taking the partial derivative from W in
Eq. (145) yields
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γp ¼ 2πGρa2

b
ðℷ0 − 2ℷ1Þ þ 16

ω2a2

b
κðℷ1 − 3ℷ2 þ 2ℷ3Þ

þ πGρa2

b
κ½2ðℷ0 − 5ℷ1 þ 4ℷ2ÞE1 − ðℷ0 − 8ℷ1 þ 8ℷ2ÞE2 − 2ðℷ0 − 17ℷ1 þ 60ℷ2 − 76ℷ3 þ 32ℷ4ÞðE1 þ E2 − E3Þ�

þ 4πGρa2

3b
κ½ℷ0ð27ℷ1 − 56ℷ2 þ 24ℷ3Þ − 2ℷ1ð33ℷ1 − 74ℷ2 þ 36ℷ3Þ�; ð146Þ

γe ¼ að2ℷ1Gπρ − ω2Þ − ω4a3

2c2
þ κ

�
−3ℷ0 þ 18ℷ1 − 28ℷ2 þ 12ℷ3 þ

�
ℷ0 − ℷ1 −

1

2
E1

��
ω2a

þ κπGρa½ð3ℷ1 − 4ℷ2ÞE1 − 2ðℷ1 − 2ℷ2ÞE2 þ 2ðℷ1 − 8ℷ2 þ 18ℷ3 − 12ℷ4ÞðE1 þ E2 − E3Þ�
þ 2κπGρa½ℷ0ð5ℷ1 − 11ℷ2 þ 6ℷ3Þ − 2ℷ1ð5ℷ1 − 14ℷ2 þ 9ℷ3Þ�: ð147Þ

The right sides of Eqs. (146) and (147) depend on the semimajor and semimainor axes of the Maclaurin ellipsoid, a and
b, but they are not defining parameters of the PN ellipsoid, which are the equatorial and polar radii, re and rp, given in
Eqs. (21) and (22), respectively. Moreover, the right sides of Eqs. (146) and (147) depend on the gauge parameters E1 and
E2. We replace parameters a and b with re and rp and form a linear combination generalizing the Newtonian theorem of
Pizzetti to the post-Newtonian approximation,

2
γe
re

þ γp
rp

¼ 2πGρ

�
2ℷ1 þ

a2

b2
ðℷ0 − 2ℷ1Þ

�
− 2ω2 −

1

c2
ω4a2

− 2κ

�
2ℷ0 − 17ℷ1 þ 28ℷ2 − 12ℷ3 − 8

a2

b2
ðℷ1 − 3ℷ2 þ 2ℷ3Þ

�
ω2

þ 2κπGρ

�
2ℷ1 − 16ℷ2 þ 36ℷ3 − 24ℷ4 −

a2

b2
ðℷ0 − 17ℷ1 þ 60ℷ2 − 76ℷ3 þ 32ℷ4Þ

�
ðE1 þ E2 − E3Þ

þ 2κπGρ

�
ð2ℷ1 − 4ℷ2Þ þ

a2

b2
ðℷ0 − 5ℷ1 þ 4ℷ2Þ

�
ðE1 − E2Þ

þ 4κπGρ½ℷ0ð5ℷ1 − 11ℷ2 þ 6ℷ3Þ − 2ℷ1ð5ℷ1 − 14ℷ2 þ 9ℷ3Þ�

þ 4a2

3b2
κπGρ½ℷ0ð27ℷ1 − 56ℷ2 þ 24ℷ3Þ − 2ℷ1ð33ℷ1 − 74ℷ2 þ 36ℷ3Þ�: ð148Þ

It seems that the right side of Eq. (148) still depends explicitly on the gauge parameters E1 and E2. However, making use of
integrals given in Appendix A, we can check that the numerical coefficient standing in front of the difference, E1 − E2,
vanishes identically so that Eq. (148) is simplified to

2
γe
re

þ γp
rp

¼ 4πGρ − 2ω2 −
1

c2
ω4a2

−
κ

3e7
½eð1 − e2Þð105 − 104e2 þ 42e4Þ − 3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
ð5 − 4e2Þð7 − 6e2 þ 2e4Þ arcsin e�ω2

þ κπGρ
12e9

ð7 − 4e2Þ½5eð21 − 31e2 þ 10e4Þ − 3
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
ð35 − 40e2 þ 8e4Þ arcsin e�ðE1 þ E2 − E3Þ

þ κπGρ
3e10

ð1 − e2Þ½−315e2 þ 621e4 − 250e6 þ 24e8 þ 2e
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
ð315 − 516e2 þ 169e4 − 18e6Þ arcsin e

−3ð105 − 242e2 þ 178e4 − 40e6Þ arcsin2 e�: ð149Þ

Relation (149) depends only on the linear combination E1 þ E2 − E3 of the parameters, which has been already fixed by
Eq. (134) of the level surface, and can be expressed solely as a function of the eccentricity e.
To compare Eq. (149) with its classic counterpart (138), we convert the constant density ρ to the total relativistic massM

of the PN ellipsoid by making use of Eq. (101). It recasts Eq. (149) into
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2
γe
re
þ γp
rp

¼ 3GM
r2erp

− 2ω2−
ω4r2e
c2

þ 3
ffiffiffiffiffiffiffiffiffiffiffiffi
1− ϵ2

p

16ϵ9r2er2p

G2M2

c2
½ϵ

ffiffiffiffiffiffiffiffiffiffiffiffi
1− ϵ2

p
ð−315þ 621ϵ2− 250ϵ4þ 24ϵ6Þþ 2ð315− 831ϵ2þ 685ϵ4− 187ϵ6þ 42ϵ8Þarcsinϵ�

þ 1

20ϵ7rp

GMω2

c2

�
ϵð−525þ 1045ϵ2− 730ϵ4þ 234ϵ6Þþ 15

35− 93ϵ2þ 92ϵ4− 42ϵ6þ 8ϵ8ffiffiffiffiffiffiffiffiffiffiffiffi
1− ϵ2

p arcsinϵ

�

−
9

16

G2M2

c2
105− 347ϵ2þ 420ϵ4 − 218ϵ6þ 40ϵ8

ϵ10r2er2p
arcsin2ϵþ 3

320ϵ8r2er2p

G2M2

c2
ðE1þE2 −E3Þ

×

�
3675− 7525ϵ2þ 4850ϵ4− 1000ϵ6 − 48ϵ8− 15

ffiffiffiffiffiffiffiffiffiffiffiffi
1− ϵ2

p

ϵ
ð7− 4ϵ2Þð35− 40ϵ2þ 8ϵ4Þarcsinϵ

�
; ð150Þ

where we have used in the post-Newtonian terms the eccentricity ϵ defined in Eq. (24) instead of e because they differ only
in the post-Newtonian terms and where we assume that the combination of the parameters E1 þ E2 − E3 ¼ fðϵÞ with
function fðϵÞ given by formula (134).
Equation (150) represents the Pizzetti theorem generalizing the classic result (138) to the domain of the post-Newtonian

approximation. It tells us that similarly to the Newtonian theory, the linear combination of the post-Newtonian forces of
gravity measured on the surface of the PN ellipsoid at the pole and equator is a function of only four parametersthe post-
Newtonian mass M, the angular velocity of rotation ω, and the equatorial re and polar rp radii of the PN ellipsoid.

X. POST-NEWTONIAN THEOREM OF CLAIRAUT

To derive the post-Newtonian analog of the Clairaut theorem (139), we follow its classic derivation given, for example, in
Ref. [44]. To this end, we subtract the ratio of the force of gravity (146) measured at the pole to rp from that of the force of
gravity (147) measured on equator to re. We get

γe
re

−
γp
rp

¼ 2πGρ

�
−ℷ1 þ

a2

b2
ðℷ0 − 2ℷ1Þ

�
þ ω2 þ 1

2c2
ω4a2

þ κ

�
2ℷ0 − 17ℷ1 þ 28ℷ2 − 12ℷ3 þ 16

a2

b2
ðℷ1 − 3ℷ2 þ 2ℷ3Þ

�
ω2

þ κπGρ

�
−2ℷ1 þ 16ℷ2 − 36ℷ3 þ 24ℷ4 −

2a2

b2
ðℷ0 − 17ℷ1 þ 60ℷ2 − 76ℷ3 þ 32ℷ4Þ

�
ðE1 þ E2 − E3Þ

− 2κπGρ

�
ðℷ1 − 2ℷ2Þ −

a2

b2
ðℷ0 − 5ℷ1 þ 4ℷ2Þ

�
ðE1 − E2Þ

þ 2κπGρ½ℷ0ð−5ℷ1 þ 11ℷ2 − 6ℷ3Þ þ 2ℷ1ð5ℷ1 − 14ℷ2 þ 9ℷ3Þ�

þ 4a2

3b2
κπGρ½ℷ0ð27ℷ1 − 56ℷ2 þ 24ℷ3Þ − 2ℷ1ð33ℷ1 − 74ℷ2 þ 36ℷ3Þ�: ð151Þ

We use the results of Appendix A to replace the integrals entering the right side of Eq. (151), with their explicit expressions
given in terms of the eccentricity e of the Maclaurin ellipsoid (13). It yields
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γe
re
−
γp
rp

¼ 6πGρ
e3

ðe−
ffiffiffiffiffiffiffiffiffiffiffiffi
1− e2

p
arcsineÞ− 2πGρþω2þ 1

2c2
ω4a2

þ κ

6e7
ð−75e− 5e3þ 122e5− 42e7þ 3

ffiffiffiffiffiffiffiffiffiffiffiffi
1− e2

p
ð25þ 10e2− 34e4þ 8e6ÞarcsineÞω2

þ κ

24e9
πGρ½525e− 1075e3þ 662e5− 112e7− 3

ffiffiffiffiffiffiffiffiffiffiffiffi
1− e2

p
ð175− 300e2þ 144e4 − 16e6Þarcsine�ðE1þE2−E3Þ

−
3κ

e5
πGρ½3eð1− e2Þ−

ffiffiffiffiffiffiffiffiffiffiffiffi
1− e2

p
ð3− 2e2Þarcsine�ðE1 −E2Þ

−
κ

6e9
πGρð1− e2Þ½eð225− 351e2 − 58e4þ 24e6Þ− 2

ffiffiffiffiffiffiffiffiffiffiffiffi
1− e2

p
ð225− 276e2 −85e4þ 18e6Þarcsine�

−
κ

2e10
πGρð1− e2Þð75− 142e2þ 38e4þ 40e6Þarcsin2 e: ð152Þ

This form of the Clairaut theorem apparently depends on the gauge parameters E1 and E2 and can be used to impose a
constraints on one of them in addition to the constraint given by the level surface equation (134). For example, we could
demand that all post-Newtonian terms in Eq. (152) vanish. Such a choice of the gauge can be used instead of the constraints
(136) and (137) proposed by Bardeen [8].
It is more interesting, however, to bring Eq. (152) to another form which is more physically relevant and does not contain

explicitly the gauge parameters E1 and E2. This is achieved after the replacement of the eccentricity e of the Maclaurin
ellipsoid with the eccentiricty ϵ of the PN ellipsoid with the help of the inversion of Eq. (25),

e ¼ ϵ − κ
1 − ϵ2

2ϵ
ðE1 − E2Þ: ð153Þ

We substitute Eq. (153) in Eq. (152), expand in the Taylor series with respect to κ, and reduce similar terms. This procedure
entirely eliminates from Eq. (152) the term being proportional to the difference E1 − E2 and yields

γe
re

−
γp
rp

¼ 6πGρ
ϵ3

ðϵ−
ffiffiffiffiffiffiffiffiffiffiffiffi
1− ϵ2

p
arcsin ϵÞ− 2πGρþω2 þ 1

2c2
ω4a2

þ κ

6e7
ð−75ϵ− 5ϵ3 þ 122ϵ5 − 42ϵ7 þ 3

ffiffiffiffiffiffiffiffiffiffiffiffi
1− ϵ2

p
ð25þ 10ϵ2 − 34ϵ4 þ 8ϵ6Þ arcsin ϵÞω2

þ κ

24ϵ9
πGρ½525ϵ− 1075ϵ3 þ 662ϵ5 − 112ϵ7 − 3

ffiffiffiffiffiffiffiffiffiffiffiffi
1− ϵ2

p
ð175− 300ϵ2 þ 144ϵ4 − 16ϵ6Þ arcsin ϵ�ðE1 þ E2 − E3Þ

−
κ

6ϵ9
πGρð1− ϵ2Þ½ϵð225− 351ϵ2 − 58ϵ4 þ 24ϵ6Þ − 2

ffiffiffiffiffiffiffiffiffiffiffiffi
1− ϵ2

p
ð225− 276ϵ2 − 85ϵ4 þ 18ϵ6Þ arcsin ϵ�

−
κ

2ϵ10
πGρð1− ϵ2Þð75− 142ϵ2 þ 38ϵ4 þ 40ϵ6Þ arcsin2 ϵ: ð154Þ

The last step is to replace the density ρ in Eq. (154) with the total mass of the PN ellipsoid by making use of expression
(101). We get

γe
re

−
γp
rp

¼ 3GM
2r2erp

3ϵ − ϵ3 − 3
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϵ2

p
arcsin ϵ

ϵ3
þ ω2 þ a2ω4

2c2

−
ϵð375þ 25ϵ2 − 682ϵ4 þ 234ϵ6Þ − 3

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϵ2

p
ð125þ 50ϵ2 − 194ϵ4 þ 40ϵ6Þ arcsin ϵ

40bϵ7
GM
c2

ω2

þ ϵð2625 − 5375ϵ2 þ 3310ϵ4 − 704ϵ6 þ 48ϵ8Þ −
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϵ2

p
ð875 − 1500ϵ2 þ 720ϵ4 − 128ϵ6Þ arcsin ϵ

640a3bϵ9
3G2M2

c2

× ðE1 þ E2 − E3Þ

−
ϵð1 − ϵ2Þð225 − 351ϵ2 − 58ϵ4 þ 24ϵ6Þ − 2

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϵ2

p
ð225 − 501ϵ2 þ 191ϵ4 þ 175ϵ6 − 42ϵ8Þ arcsin ϵ

160a3bϵ9
3G2M2

c2

−
9

32

G2M2

c2
75 − 142ϵ2 þ 38ϵ4 þ 88ϵ6

a4ϵ10
arcsin2 ϵ: ð155Þ
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This is the post-Newtonian extension of the classical
Clairaut theorem (139). We can see that the right side of
Eq. (155) depends on the parameters E1, E2, and E3 solely
in the form of the linear combination E1 þ E2 − E3 that is
fixed by the physical condition (134). Like the theorem of
Pizzetti, the post-Newtonian Clairaut theorem in the form
given in Eq. (155) connects the force of gravity on the level
surface of the PN ellipsoid with only four parameters—the
post-Newtonian massM, the angular velocity of rotation ω,
and the equatorial re and polar rp radii of the PN ellipsoid.

XI. PRACTICAL APPLICATIONS FOR
FUNDAMENTAL ASTRONOMY

Fundamental astronomy is an essential branch of modern
gravitational physics, which explores the fundamental
structure of space and time by studying the dynamics of
massive bodies and elementary particles, such as photons,
in a gravitational field on time scales from less than 1 sec to
the Hubble time. It establishes basic theoretical principles
for the high-accuracy calculation and interpretation of
various astronomical effects and phenomena observed in
gravitationally bounded systems, for example, clusters of
galaxies, the Milky Way, stellar clusters, binary and
multiple stars, and the Solar System and its subsystems.
It also provides definitions and models that describe
astronomical constants, time scales, reference systems,
and frames used in astronomy and geodesy [9,70].
Fundamental astronomy obtains physical information on

celestial objects and investigates physical laws using the
methods of astrometry, celestial mechanics, and geodesy
which include long-baseline radio and optical interferom-
etry; laser and radio ranging; pulsar timing; Doppler
tracking; space astrometry; atomic clocks; GPS; and other
experimental tools like absolute gravimeters, gradientom-
eters, etc. [41,47,51,71].
We shall apply the formalism of the previous sections to

derive a practically meaningful post-Newtonian equation of
the level surface and the other relationships used in
geodetic and gravimetric applications on the ground and
in space. To this end, we adopt that the classic geodesy
operates with the Maclaurin reference ellipsoid defined by
Eq. (13) with the semimajor and semimainor axes, a and b,
and the eccentricity e defined in Eq. (14). We notice that the
Earth’s oblateness is about e2 ≃ 1=149 ¼ 0.0067 (Ref. [2])
[Sec. I] and can be used as a small parameter for expanding
all post-Newtonian terms into the convergent Taylor series.
When expanding the post-Newtonian formulas to the
Taylor series, we shall keep the Newtonian expressions
as they are, without expanding them with respect to the
eccentricity e, and take into account only terms of the order
of e2 in the post-Newtonian parts of equations by system-
atically discarding terms of the order of Oðe4Þ and higher.
According to Maclaurin’s relation (133), the square of the
angular velocity ω2 ≃ e2 (see Refs. [43,44,53] for more

detail), which allows us to discard terms of the order of
Oðω4Þ and Oðω2e2Þ as well.
Now, we have to make a decision about what kind of

gauge in the mathematical description of the PN ellipsoid
would be more preferable for high-precision geodetic
applications. First of all, we expand and solve Eq. (134)
of the level surface and find out that the linear combination
of the parameters

E1 þ E2 − E3 ¼
76

525
e4 þOðe6Þ; ð156Þ

according to our agreement, can be discarded in all post-
Newtonian expressions. Then, we look at the Bardeen
gauge conditions (136) and (137), which can be solved with
respect to the parameters E1 and E2 with the help of
Eq. (156), that is, E3 ¼ E1 þ E2 þOðe4Þ. The solution is
given by

E1 ¼ −
128

21
; E2 ¼

88

21
; E3 ¼ −

40

21
: ð157Þ

Substituting these values in Eq. (15), we get the equation of
the PN ellipsoid in terms of the parameters a and b of the
Maclaurin ellipsoid,

σ2

a2
þ z2

b2
¼ 1 −

κ

21

�
128

σ4

a4
− 88

z4

b4
þ 40

σ2z2

a2b2

�
; ð158Þ

where the numerical value κ ≃ 5.21 × 10−10 for the Earth
[2]. Equation (158) can be reduced to the form

σ2

r2e
þ z2

r2p
¼ 1; ð159Þ

where re and rp are defined in Eqs. (21) and (22),

re ¼ a
�
1 −

62

21
κ

�
; rp ¼ b

�
1þ 44

21
κ

�
: ð160Þ

Equation (159) describes the post-Newtonian deviation
from the Maclaurin ellipsoid adopted in the Newtonian-
based geodesy. It can be viewed as another ellipsoid with
the semimajor axis re smaller than a by ≃1.0 cm and the
semiminor axis rp larger than b by ≃0.7 cm (see Fig. 2).
The difference (158) between the PN ellipsoid and the
Maclaurin ellipsoid can be also interpreted as a long spatial
wave,

σ2

a2
þ z2

b2
¼ 1 −

20

21
κ

�
1 −

27

5
cos 2θ

�
; ð161Þ

with a wavelength equal to one-half of the Earth’s radius
R⊕. The Bardeen-Chandrasekhar gauge condition leads to
a noticeable scale difference between the post-Newtonian
and Maclaurin ellipsoids, which is not negligibly small for
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modern geodetic measurements and (in case the Bardeen-
Chandrasekhar gauge is adopted by IERS and IUGG)
should be carefully taken into account in the near future
adjustment of the geodetic parameters of the reference
ellipsoid.
In our opinion, another choice of the gauge, which we

shall call the Maclaurin gauge, would be more preferable.
More specifically, we shall accept that the geodetic coor-
dinate system is chosen in such a way that the shape
parameters E1 ¼ E2 ¼ 0 exactly. This is always possible
due to the residual gauge freedom. In this gauge, the
equatorial, re, and polar, rp, radii are the same as the
semimajor and semiminor axes of the Maclaurin ellipsoid,
respectively, with re ¼ a, rp ¼ b, and the parameter
E3 ¼ 0 in the above-adopted approximation with all terms
of the order of Oðe4Þ having been discarded. The eccen-
tricity of the PN ellipsoid is also equal to that of the
Maclaurin ellipsoid, ϵ ¼ e. With this choice of the residual
gauge, the surface of the PN ellipsoid in the given
approximation coincides with the surface of the
Maclaurin ellipsoid in the Newtonian geodesy,

σ2

a2
þ z2

b2
¼ 1; ð162Þ

with an error not exceeding κe4R⊕ ≃ 2 × 10−4 mm. Such a
small error, caused by the relativistic contribution of the
Earth’s gravitational field, can be safely neglected in all
distance/height calculations conducted in the International
Terrestrial Reference System defined in Ref. [2]. It also
means that the classic ellipsoidal coordinate system, having

been ubiquitously used in the Newtonian geodesy, is not
deformed by the relativistic corrections to the gravity field.
We can now easily compare the main post-Newtonian

equations in the two different gauges. The Maclaurin
relation (133) takes on the approximate form

ω2

2πGρ
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
ð3 − 2e2Þ arcsin e − 3eð1 − e2Þ

e3

þ 8

35

GM
ac2

e2∶ the Maclaurin gauge; ð163Þ

ω2

2πGρ
¼

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϵ2

p
ð3 − 2ϵ2Þ arcsin ϵ − 3ϵð1 − ϵ2Þ

ϵ3

þ 8

35

GM
ac2

e2∶ the Bardeen-Chandrasekhar gauge;

ð164Þ

which, after replacing ρ with the help of the inverse of
Eq. (96) and expanding, can be recast to

ω2 ¼ 3GM
2a3

�ð3 − 2e2Þ arcsin e − 3e
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p

e3

−
4

7

GM
ac2

e2
�
∶ the Maclaurin gauge; ð165Þ

ω2 ¼ 3GM
2r3e

�ð3 − 2ϵ2Þ arcsin ϵ − 3ϵ
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϵ2

p

ϵ3

−
4

7

GM
ac2

e2
�
∶ the Bardeen-Chandrasekhar gauge:

ð166Þ

Numerical values for the geopotential and the semimajor
axis of the reference ellipsoid are given in Ref. [2]
[Table 1.1]. They yield GM⊕=c2R⊕ ≃ 6.7 × 10−10. The
magnitude of the relativistic correction to the classic
Maclaurin relation between the angular velocity ω of the
rotating ellipsoid and its oblateness e are given in the
Bardeen-Chandrasekhar gauge by the post-Newtonian
terms that appear as a consequence of the expansion of
the terms with ϵ in the right side of Eq. (166). These post-
Newtonian terms amount to 1.3 × 10−10. On the other hand,
the relativistic correction to ω in the Maclaurin gauge is
given solely by the last term in the right part of Eq. (165).
Its magnitude is reduced by the factor of e2 and amounts to
only 2.6 × 10−12.
The approximate version of the post-Newtonian theorem

of Pizzetti (150) reads

FIG. 2. Meridional cross section of the PN ellipsoid (a red curve
in the online version) vs the Maclaurin ellipsoid (a blue curve in
the online version) in the Bardeen-Chandrasekhar gauge. The
equatorial, re, and polar, rp, radii of the PN ellipsoid differ from
the semimajor, a, and semiminor, b, axes of the Maclaurin
ellipsoid, re < a, rp > b. The maximal radial difference (the
height difference) between the surfaces of the PN ellipsoid and
the Maclaurin ellipsoid amounts to 1 cm, while the difference in
the eccentricities ϵ and e is about 8 × 10−7.
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2
γe
a
þ γp

b
¼ −2ω2 þ 3GM

a2b
þ 4GM

ac2

×

��
3þ 47

25
e2
�
GM
a3

þ 1

4
ω2

�
∶ the Maclaurin gauge; ð167Þ

2
γe
re

þ γp
rp

¼ −2ω2 þ 3GM
r2erp

þ 4GM
ac2

×

��
3þ 47

25
e2
�
GM
a3

þ 1

4
ω2

�
∶ the Bardeen-Chandrasekhar gauge;

ð168Þ

where the relations of the radii re and rp to a and b,
respectively, are given in Eq. (160). The post-Newtonian
corrections in the Clairaut theorem (155), after it is
expanded with respect to the eccentricity e, yield

γe
a
−
γp
b
¼ω2þ3GM

2a2b
eð3−e2Þ−3

ffiffiffiffiffiffiffiffiffiffiffiffi
1−e2

p
arcsine

e3

þGM
ac2

�
59

25

GM
a3

e2þ11

14
ω2

�
∶ the Maclaurin gauge;

ð169Þ

γe
re

−
γp
rp

¼ ω2 þ 3GM
2r2erp

eð3 − e2Þ − 3
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
arcsin e

e3

þGM
ac2

�
59

25

GM
a3

e2

þ 11

14
ω2

�
∶ the Bardeen-Chandrasekhar gauge:

ð170Þ

The post-Newtonian corrections to the gravitational field
entering the Pizzetti and Clairaut theorems (167)–(170) are
not so negligibly small, amount to the magnitude of
approximately 3μGalð1Gal ¼ 1 cm=s2Þ, and are to be
taken into account in the calculation of the parameters
of the reference-ellipsoid from astronomical and gravimet-
ric data in the foreseeable future.
The Bardeen-Chandrasekhar gauge has some advantage

in the comparison of the masses of the Newtonian and
post-Newtonian ellipsoids. According to the Bardeen-
Chandrasekhar gauge condition, the masses of the two
ellipsoids are exactly the same, M ¼ MMaclaurin. On
the other hand, if we chose the Maclaurin gauge, the
masses of the two ellipsoids will differ. Post-Newtonian
correction to the Newtonian mass of the Earth,

MMaclaurin ¼ MN ¼ 4πρa2b=3, can be evaluated in the
Maclaurin gauge from (100), which is given in the
approximation under consideration, by

M ¼ MN

�
1þ 2κ

�
ℷ0 þ

ω2

5πGρ

��
: ð171Þ

Because the mass couples with the universal gravitational
constant G, it contributes to the numerical value of the
geocentric gravitational constant GM⊕ ¼ 3.986004418 ×
1014 m3 s−2 (Ref. [2])[Table 1.1]. After expansion of the
right side of Eq. (171) with respect to the eccentricity e,
the relativistic variation in the value of GM⊕ is

δðGM⊕ÞpN
GM⊕

≃ 2κℷ0 ≃ 4κ ≃ 2.8 × 10−9: ð172Þ

The current uncertainty in the numerical value of GM⊕ is
8 × 105 m3 s−2 (Ref. [2])[Table 1.1], which gives the
fractional uncertainty

δðGM⊕Þ
GM⊕

≃ 2.0 × 10−9: ð173Þ

This is comparable with the relativistic contribution (172),
which must be taken into account in the reduction of
precise geodetic data processing if the Maclaurin gauge is
adopted in the post-Newtonian geodesy.
Similar considerations tells us that in the Bardeen-

Chandrasekhar gauge the Newtonian and post-Newtonian
values of the angular momentum of the Earth are exactly
the same, S ¼ SMaclaurin. However, if we chose the
Maclaurin gauge, we should expect the difference between
the Newtonian and relativistic angular momenta given by
Eq. (114), which, in the approximation where all terms of
the order of Oðe4Þ are discarded, reads

S ¼ SN

�
1þ 2

7
κ

�
12ℷ0 − 16ℷ1 þ

3ω2

5πGρ

��
: ð174Þ

The fractional difference between the relativistic and
Newtonian angular momenta of the Earth is

δS
S
≃ 40

7
ℷ1 ≃ 2 × 10−9: ð175Þ

It should be noted, however, that the difference (175) is not
so important in geodesy because the angular momentum of
the Earth is not yet a directly measurable quantity as
contrasted with the angular velocity ω, which is measured
directly by VLBI of the IERS.
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APPENDIX: INTEGRALS

Integrals entering Eqs. (48), (49), (61), (62), (77), and
(78) are solved in two steps:
(1) integrating with respect to the angle λ from 0 to 2π,
(2) integrating with respect to the angle θ from 0 to π by

making use of a new variable,

u ¼ b2tan2θ; du ¼ 2b2 sec3θ sin θdθ; ðA1Þ
which changes from 0 to ∞.

In terms of the new variable, we have

sin θ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

u
b2 þ u

r
; cos θ ¼ bffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 þ u
p ; ðA2Þ

and

A ¼ 1

a2
a2 þ u
b2 þ u

;
dΩ
A

¼ a2b
2

dλdu

ða2 þ uÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ u

p : ðA3Þ

We use these values for transforming integrands in
Eqs. (48) and (49), where we also take into account that
all functions entering the integrands are even functions of
the argument, fðcos θÞ ¼ fð− cos θÞ. Thus, it makes

Z
π

0

fðcos θÞ sin θdθ ¼ 2

Z
π=2

0

fðcos θÞ sin θdθ: ðA4Þ

This procedure allows us to represent the integrals under
discussion in the following form:

J 0 ≡
I
S2

dΩ
A

¼ 2πa2b
Z

∞

0

du

ða2 þ uÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ u

p ; ðA5aÞ

J 1 ≡
I
S2

cos2 θ
A2

dΩ ¼ 2πa4b3
Z

∞

0

du

ða2 þ uÞ2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ u

p ; ðA5bÞ

J 2 ≡
I
S2

B
A2

cos θdΩ ¼ 2πa4bz
Z

∞

0

du

ða2 þ uÞ2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ u

p ; ðA5cÞ

J 3 ≡
I
S2

B
A3

cos3 θdΩ ¼ 2πa6b3z
Z

∞

0

du

ða2 þ uÞ3
ffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ u

p ; ðA5dÞ

J 4 ≡
I
S2

cos4 θ
A3

dΩ ¼ 2πa6b5
Z

∞

0

du

ða2 þ uÞ3
ffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ u

p ; ðA5eÞ

J 5 ≡
I
S2

B2

A2
dΩ ¼ πa2

b

�Z
∞

0

b2uþ ð2a2 − uÞz2
ða2 þ uÞ2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ u

p duþ b2CðxÞ
Z

∞

0

udu

ða2 þ uÞ2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ u

p
�
; ðA5fÞ

J 6 ≡
I
S2

B2

A4
cos4θdΩ ¼ πa6b3

�Z
∞

0

b2uþ ð2a2 − uÞz2
ða2 þ uÞ4

ffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ u

p duþ b2CðxÞ
Z

∞

0

udu

ða2 þ uÞ4
ffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ u

p
�
; ðA5gÞ

J 7 ≡
I
S2

B2

A3
cos2θdΩ ¼ πa4b

�Z
∞

0

b2uþ ð2a2 − uÞz2
ða2 þ uÞ3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ u

p duþ b2CðxÞ
Z

∞

0

udu

ða2 þ uÞ3
ffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ u

p
�
; ðA5hÞ

J 8 ≡
I
S2

B3

A4
cos3θdΩ ¼ πa6bz

�Z
∞

0

3b2uþ ð2a2 − 3uÞz2
ða2 þ uÞ4

ffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ u

p duþ 3b2CðxÞ
Z

∞

0

udu

ða2 þ uÞ4
ffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ u

p
�
; ðA5iÞ

POST-NEWTONIAN REFERENCE ELLIPSOID FOR … PHYSICAL REVIEW D 93, 044069 (2016)

044069-27



J 9 ≡
I
S2

B4

A5
cos4θdΩ ¼ πa6b

4

Z
∞

0

3b4u2 þ 6b2uð4a2 − uÞz2 þ ð8a4 − 24a2uþ 3u2Þz4
ða2 þ uÞ5

ffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ u

p du

þ 3

2
CðxÞπa6b3

�Z
∞

0

ðb2 − z2Þu2 þ 4a2uz2

ða2 þ uÞ5
ffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ u

p duþ b2

2
CðxÞ

Z
∞

0

u2du

ða2 þ uÞ5
ffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ u

p
�
; ðA5jÞ

J 10 ≡
I
S2

B3

A3
sin θ cos λdΩ ¼ 3πa2x

4b

�Z
∞

0

ðb2uþ 4a2z2 − uz2Þudu
ða2 þ uÞ3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ u

p þ b2CðxÞ
Z

∞

0

u2du

ða2 þ uÞ3
ffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ u

p
�
; ðA5kÞ

J 11 ≡
I
S2

B3

A3
sin θ sin λdΩ ¼ 3πa2y

4b

�Z
∞

0

ðb2uþ 4a2z2 − uz2Þudu
ða2 þ uÞ3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ u

p þ b2CðxÞ
Z

∞

0

u2du

ða2 þ uÞ3
ffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ u

p
�
; ðA5lÞ

J 12 ≡
I
S2

B3

A3
cos θdΩ ¼ πa4z

b

�Z
∞

0

ð3b2uþ 2a2z2 − 3uz2Þdu
ða2 þ uÞ3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ u

p þ 3b2CðxÞ
Z

∞

0

udu

ða2 þ uÞ3
ffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ u

p
�
; ðA5mÞ

J 13 ≡
I
S2

B
A2

sin θ cos λdΩ ¼ πa2bx
Z

∞

0

udu

ða2 þ uÞ2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ u

p ; ðA5nÞ

J 14 ≡
I
S2

B
A2

sin θ sin λdΩ ¼ πa2by
Z

∞

0

udu

ða2 þ uÞ2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ u

p ; ðA5oÞ

J 15 ≡
I
S2

B4

A3
dΩ ¼ πa2

4b3

Z
∞

0

3b4u2 þ 6b2uð4a2 − uÞz2 þ ð8a4 − 24a2uþ 3u2Þz4
ða2 þ uÞ3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ u

p du

þ 3

2
CðxÞ πa

2

b

�Z
∞

0

ðb2 − z2Þu2 þ 4a2uz2

ða2 þ uÞ3
ffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ u
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J 16 ≡
I
S2
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A4
cos2θdΩ ¼ πa4

4b

Z
∞
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These integrals can be performed analytically,

J 0 ≡ 2πa2ℷ0; ðA6aÞ

J 1 ≡ 2πa2b2ℷ1; ðA6bÞ

J 2 ¼ 2πa2zℷ1; ðA6cÞ
J 3 ≡ 2πa2b2zℷ2; ðA6dÞ
J 4 ≡ 2πa2b4ℷ2; ðA6eÞ

J 5 ¼ πa2
��

1 −
z2

b2

�
ℷ0 −

�
1 − 3

z2

b2

�
ℷ1 þ CðxÞðℷ0 − ℷ1Þ

�
; ðA6fÞ

J 6 ≡ πa2b4
��
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z2

b2

�
ℷ2 −

�
1 −

3z2
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�
ℷ3 þ CðxÞðℷ2 − ℷ3Þ

�
; ðA6gÞ

J 7 ¼ πa2b2
��
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z2

b2

�
ℷ1 −

�
1 − 3

z2

b2

�
ℷ2 þ CðxÞðℷ1 − ℷ2Þ

�
; ðA6hÞ
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J 8 ¼ 3πa2b2z
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where

ℷn ≡ a2nb
Z

∞

0

du

ða2 þ uÞnþ1
ffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ u

p ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p

e2ðnþ1Þ

Z
∞ffiffiffiffiffiffi
1−e2

p
e

dξ
ð1þ ξ2Þnþ1

ðA7Þ

is a table integral given in I.S. Gradshteyn and I.M. Ryzhik's "Table of Integrals, Series, and Products" (Academic Press:
London, 1980) as integral 2.148-4,

ℷn ¼
ð2n − 1Þ!!
2n−1n!

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p

e2nþ1
arcsin e − ð1 − e2Þ

Xn
k¼1

ðn − kÞ!
ð2n − 2kþ 1Þ!!

2n−k

e2k

�
: ðA8Þ

In particular,

ℷ0 ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p

e
arcsin e; ðA9aÞ

ℷ1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p

e3
arcsin e −

1 − e2

e2
; ðA9bÞ

ℷ2 ¼
3

4

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p

e5
arcsin e −

ð1 − e2Þð3þ 2e2Þ
4e4

; ðA9cÞ
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ℷ3 ¼
5

8

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p

e7
arcsin e

−
ð1 − e2Þð15þ 10e2 þ 8e4Þ

24e6
; ðA9dÞ

ℷ4 ¼
35

64

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p

e9
arcsin e

−
ð1 − e2Þð105þ 70e2 þ 56e4 þ 48e6Þ

192e8
: ðA9eÞ

There is also a recurrent formula that allows us to
calculate the integrals ℷn by iterations starting from ℷ0,

ℷn ¼
2n − 1

2n
ℷn−1
e2

−
1 − e2

ne2
ðn ≥ 1Þ; ðA10Þ

where ℷ0 is given in Eq. (A9a). Notice that none of these
integrals is divergent for small values of the eccentricity
because the numerators of the integrals suppress the small
value of the eccentricity in the denominators.
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